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1

Maxwell’s Equations

1.1 Maxwell’s Equations

Maxwell’s equations describe all (classical) electromagnetic phenomena:

0B
VXE=—-——
ot
oD
VXH=J+ ot (Maxwell’s equations) (1.1.1)
V.-D=p
V-B=0

The first is Faraday’s law of induction, the second is Ampere’s law as amended by
Maxwell to include the displacement current 0 D/ 0t, the third and fourth are Gauss’ laws
for the electric and magnetic fields.

The displacement current term 0D/ 0t in Ampére’s law is essential in predicting the
existence of propagating electromagnetic waves. Its role in establishing charge conser-
vation is discussed in Sec. 1.6.

Egs. (1.1.1) are in SI units. The quantities E and H are the electric and magnetic
field intensities and are measured in units of [volt/m] and [ampere/m], respectively.
The quantities D and B are the electric and magnetic flux densities and are in units of
[coulomb/m?] and [weber,/m?], or [tesla]. B is also called the magnetic induction.

The quantities p and J are the volume charge density and electric current density
(charge flux) of any external charges (that is, not including any induced polarization
charges and currents.) They are measured in units of [coulomb/m3] and [ampere/m?].
The right-hand side of the fourth equation is zero because there are no magnetic mono-
pole charges.

The charge and current densities p, J may be thought of as the sources of the electro-
magnetic fields. For wave propagation problems, these densities are localized in space;
for example, they are restricted to flow on an antenna. The generated electric and mag-
netic fields are radiated away from these sources and can propagate to large distances to
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the receiving antennas. Away from the sources, that is, in source-free regions of space,
Maxwell’s equations take the simpler form:

0B
VXxE=-2"
% ot
oD
VXxH= ot (source-free Maxwell’s equations) (1.1.2)
V-D=0
V-B=0

1.2 Lorentz Force

The force on a charge g moving with velocity v in the presence of an electric and mag-
netic field E, B is called the Lorentz force and is given by:

F=q(E+vXB) (Lorentz force) (1.2.1)

Newton’s equation of motion is (for non-relativistic speeds):

m

dt
where m is the mass of the charge. The force F will increase the kinetic energy of the
charge at arate that is equal to the rate of work done by the Lorentz force on the charge,
that is, v - F. Indeed, the time-derivative of the kinetic energy is:

=F=q(E+VvXB) (1.2.2)

1 AWy d
Wiin = smv-v = d:m=mv-d—¥=v-F:qv-E (1.2.3)

We note that only the electric force contributes to the increase of the kinetic energy—
the magnetic force remains perpendicular to v, thatis, v- (v X B) = 0.

Volume charge and current distributions p,J are also subjected to forces in the
presence of fields. The Lorentz force per unit volume acting on p, J is given by:

f=pE+JXB (Lorentz force per unit volume) (1.2.4)

where f is measured in units of [newton/m3]. If J arises from the motion of charges
within the distribution p, then J = pv (as explained in Sec. 1.5.) In this case,

f=p(E+vXB) (1.2.5)

By analogy with Eq. (1.2.3), the quantity v- f= pv- E = J- E represents the power
per unit volume of the forces acting on the moving charges, that is, the power expended
by (or lost from) the fields and converted into kinetic energy of the charges, or heat. It
has units of [watts/m?3]. We will denote it by:

dPloss

av - J-E (ohmic power losses per unit volume) (1.2.6)
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In Sec. 1.7, we discuss its role in the conservation of energy. We will find that elec-
tromagnetic energy flowing into a region will partially increase the stored energy in that
region and partially dissipate into heat according to Eq. (1.2.6).

1.3 Constitutive Relations
The electric and magnetic flux densities D, B are related to the field intensities E, H via

the so-called constitutive relations, whose precise form depends on the material in which
the fields exist. In vacuum, they take their simplest form:

D= EOE
(1.3.1)
B= uoH

where €, Lo are the permittivity and permeability of vacuum, with numerical values:

€o = 8.854 x 1072 farad/m
(1.3.2)
Ho = 41 X 1077 henry/m
The units for €p and o are the units of the ratios D/E and B/H, that is,
coulomb/m? _ coulomb _ farad weber/m®  weber  henry

volt/m  volt-m m ' ampere/m  ampere - m m

From the two quantities €g, (g, we can define two other physical constants, namely,
the speed of light and characteristic impedance of vacuum:

1 Ho
co = =3 x10% m/sec, = [ =377 ohm (1.3.3)
0 VHo€o o €0

The next simplest form of the constitutive relations is for simple dielectrics and for
magnetic materials:

D=¢€E
(1.3.4)
B=uH

These are typically valid at low frequencies. The permittivity € and permeability u
are related to the electric and magnetic susceptibilities of the material as follows:

€=¢€p(l+x)
(1.3.5)
= po(l+xXm)

The susceptibilities X, xm are measures of the electric and magnetic polarization
properties of the material. For example, we have for the electric flux density:

D=€cE=¢€y(1+xX)E=€gE+ €yXE=€gE+ P
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where the quantity P = €gX E represents the dielectric polarization of the material, that
is, the average electric dipole moment per unit volume. The speed of light in the material
and the characteristic impedance are:

-1 _ M
c= \/ﬁ’ nf\/z (1.3.6)

The relative dielectric constant and refractive index of the material are defined by:

=S —1ex, n= %=y (1.3.7)
€0 €o

so that €, = n? and € = €€, = €yn®. Using the definition of Eq. (1.3.6) and assuming a
non-magnetic material (4 = Lp), we may relate the speed of light and impedance of the
material to the corresponding vacuum values:

1 1 Co _ Co

VH 0€0€r

HoE n
l 0
n= \ €0€r

Similarly in a magnetic material, we have B = L (H + M), where M = x,,H is the
magnetization, that is, the average magnetic moment per unit volume. The refractive
index is defined in this case by n = \/eu/€ouo = /(1 + X) (1 + Xm).

More generally, constitutive relations may be inhomogeneous, anisotropic, nonlin-
ear, frequency dependent (dispersive), or all of the above. In inhomogeneous materials,
the permittivity € depends on the location within the material:

Cc =

(1.3.8)

D(r,t)= €(r)E(r,t)

In anisotropic materials, € depends on the X, y, z direction and the constitutive rela-
tions may be written component-wise in matrix (or tensor) form:

Dy Exx €Exy €Exz Ex
Dy |=| €x €y € Ey (1.3.9)
DZ €ZX ezy EZZ EZ

Anisotropy is an inherent property of the atomic/molecular structure of the dielec-
tric. It may also be caused by the application of external fields. For example, conductors
and plasmas in the presence of a constant magnetic field—such as the ionosphere in the
presence of the Earth’s magnetic field—become anisotropic (see for example, Problem
1.9 on the Hall effect.)

In nonlinear materials, € may depend on the magnitude E of the applied electric field
in the form:

D =¢(E)F, where  €(E)=¢€+ €FE +€3E> + - - - (1.3.10)

Nonlinear effects are desirable in some applications, such as various types of electro-
optic effects used in light phase modulators and phase retarders for altering polariza-
tion. In other applications, however, they are undesirable. For example, in optical fibers
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nonlinear effects become important if the transmitted power is increased beyond a few
milliwatts. A typical consequence of nonlinearity is to cause the generation of higher
harmonics, for example, if E = Eqge/®!, then Eq. (1.3.10) gives:

D = €(E)E = €E + 6,E + €3E* + - - - = €Ege/®! + €,E3e¥®! + e3E3e¥ @ + . ..

Thus the input frequency w is replaced by w, 2w, 3w, and so on. Such harmonics
are viewed as crosstalk.

Materials with frequency-dependent dielectric constant € (w) are referred to as dis-
persive. The frequency dependence comes about because when a time-varying electric
field is applied, the polarization response of the material cannot be instantaneous. Such
dynamic response can be described by the convolutional (and causal) constitutive rela-
tionship:

t
D(r,t):J e(t—t)Et)dt

which becomes multiplicative in the frequency domain:

‘D(r,w)z e(w)E(r,w) (1.3.11)

All materials are, in fact, dispersive. However, € (w) typically exhibits strong depen-
dence on w only for certain frequencies. For example, water at optical frequencies has
refractive index n = ,/€, = 1.33, but at RF down to dc, ithas n = 9.

In Sec. 1.9, we discuss simple models of € (w) for dielectrics, conductors, and plas-
mas, and clarify the nature of Ohm’s law:

(Ohm’s law) (1.3.12)

One major consequence of material dispersion is pulse spreading, that is, the pro-
gressive widening of a pulse as it propagates through such a material. This effect limits
the data rate at which pulses can be transmitted. There are other types of dispersion,
such as intermodal dispersion in which several modes may propagate simultaneously,
or waveguide dispersion introduced by the confining walls of a waveguide.

There exist materials that are both nonlinear and dispersive that support certain
types of non-linear waves called solitons, in which the spreading effect of dispersion is
exactly canceled by the nonlinearity. Therefore, soliton pulses maintain their shape as
they propagate in such media [431-433].

More complicated forms of constitutive relationships arise in chiral and gyrotropic
media and are discussed in Chap. 3. The more general bi-isotropic and bi-anisotropic
media are discussed in [31,76].

In Egs. (1.1.1), the densities p, J represent the external or free charges and currents
in a material medium. The induced polarization P and magnetization M may be made
explicit in Maxwell’s equations by using constitutive relations:

D=¢€E+P, B=puo(H+ M) (1.3.13)

Inserting these in Eq. (1.1.1), for example, by writing V X B = uoV x (H+ M)=
Ho(J+ D+ V XM)= pg(egE+ J+ P+ V x M), we may express Maxwell’s equations in
terms of the fields E and B:
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OB
VXE—*E
Vszuoeoa—E+u0[1+a—P+VxM]
ot ot (1.3.14)
V-E:l(p—V-P)
€o
V-B=0

We identify the current and charge densities due to the polarization of the material as:

opP
Jpol = 3 Ppol = =V - P (polarization densities) (1.3.15)

Similarly, the quantity Jmae = V X M may be identified as the magnetization current
density (note that pmag = 0.) The total current and charge densities are:

Jor = T+ Joot + Jmag = J+ 2 + ¥ x M
tot pol T Jmag ot (1.3.16)

Prot =P+ Ppot=p—V - P
and may be thought of as the sources of the fields in Eq. (1.3.14). In Sec. 13.6, we examine

this interpretation further and show how it leads to the Ewald-Oseen extinction theorem
and to a microscopic explanation of the origin of the refractive index.

1.4 Boundary Conditions

The boundary conditions for the electromagnetic fields across material boundaries are
given below:

Eit —Ex=0
Hy — Hy = J; X h n E; TD H,, TB
? (R et e (1.4.1)
Din — Don = E— E—
1n 2n Ps 2 E2t TDZn H2t TBZn
Bln - B2n =0

where 11 is a unit vector normal to the boundary pointing from medium-2 into medium-1.
The quantities pg, Js are any external surface charge and surface current densities on
the boundary surface and are measured in units of [coulomb/m?] and [ampere/m].

In words, the tangential components of the E-field are continuous across the inter-
face; the difference of the tangential components of the H-field are equal to the surface
current density; the difference of the normal components of the flux density D are equal
to the surface charge density; and the normal components of the magnetic flux density
B are continuous.
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The D, boundary condition may also be written a form that brings out the depen-
dence on the polarization surface charges:

(€0E1n + Pin) —(€0Eon + Pon)=ps = €o(Ein — E2n) = ps — Pin + Pan = Ps,tot

The total surface charge density will be ps ot = Ps+ P1s,pol + P2s,pol, Where the surface
charge density of polarization charges accumulating at the surface of a dielectric is seen
to be (1 is the outward normal from the dielectric):

Pspol = Pp=H-P (1.4.2)

The relative directions of the field vectors are shown in Fig. 1.4.1. Each vector may
be decomposed as the sum of a part tangential to the surface and a part perpendicular
to it, that is, E = E; + E,. Using the vector identity,

E=nX (Exn)+n(n- E)= E + E, (1.4.3)
we identify these two parts as:

E,=hx (Exn), E,=n(h-E)=nF,

H
n /4H,=n(n-H)
4 ;
I L7 H,=nx (Hxh)
€ € Hxn
) )

Fig. 1.4.1 Field directions at boundary.

Using these results, we can write the first two boundary conditions in the following
vectorial forms, where the second form is obtained by taking the cross product of the
first with fi and noting that J; is purely tangential:

nx (Epxn)—-nax (EExn) =0 nx (EE—E)=0
or, (1.4.4)
nx (H xn)—-ax (H, XxA) = Jg X1 nx (H — Hy) = Js

The boundary conditions (1.4.1) can be derived from the integrated form of Maxwell’s
equations if we make some additional regularity assumptions about the fields at the
interfaces.

In many interface problems, there are no externally applied surface charges or cur-
rents on the boundary. In such cases, the boundary conditions may be stated as:

Eir = Ex

Hy: = Hy
(source-free boundary conditions) (1.4.5)

Dln = D2n

Bln = BZn
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1.5 Currents, Fluxes, and Conservation Laws

The electric current density J is an example of a flux vector representing the flow of the
electric charge. The concept of flux is more general and applies to any quantity that
flows.t It could, for example, apply to energy flux, momentum flux (which translates
into pressure force), mass flux, and so on.

In general, the flux of a quantity Q is defined as the amount of the quantity that
flows (perpendicularly) through a unit surface in unit time. Thus, if the amount AQ
flows through the surface AS in time At, then:

AQ

J= ASAL (definition of flux) (1.5.1)

When the flowing quantity Q is the electric charge, the amount of current through
the surface AS will be AI = AQ/At, and therefore, we can write J = AI/AS, with units
of [ampere/m?].

The flux is a vectorial quantity whose direction points in the direction of flow. There
is a fundamental relationship that relates the flux vector J to the transport velocity v
and the volume density p of the flowing quantity:

(1.5.2)

This can be derived with the help of Fig. 1.5.1. Consider a surface AS oriented per-
pendicularly to the flow velocity. In time At, the entire amount of the quantity contained
in the cylindrical volume of height vAt will manage to flow through AS. This amount is
equal to the density of the material times the cylindrical volume AV = AS(VvAt), that
is, AQ = pAV = p AS vAt. Thus, by definition:

I AQ  pASvAL
T ASAt T ASAt

Fig. 1.5.1 Flux of a quantity.

When J represents electric current density, we will see in Sec. 1.9 that Eq. (1.5.2)
implies Ohm’s law J = o E. When the vector J represents the energy flux of a propagating
electromagnetic wave and p the corresponding energy per unit volume, then because the
speed of propagation is the velocity of light, we expect that Eq. (1.5.2) will take the form:

Jen = CPen (1.5.3)

TIn this sense, the terms electric and magnetic “flux densities” for the quantities D, B are somewhat of a
misnomer because they do not represent anything that flows.
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Similarly, when J represents momentum flux, we expect to have Jmom = CPmom-
Momentum flux is defined as Jimom = Ap/ (ASAt)= AF/AS, where p denotes momen-
tum and AF = Ap/At is the rate of change of momentum, or the force, exerted on the
surface AS. Thus, Jmem represents force per unit area, or pressure.

Electromagnetic waves incident on material surfaces exert pressure (known as ra-
diation pressure), which can be calculated from the momentum flux vector. It can be
shown that the momentum flux is numerically equal to the energy density of a wave, that
iS, Jmom = Pen, Which implies that pen = PmomC. This is consistent with the theory of
relativity, which states that the energy-momentum relationship for a photon is E = pc.

1.6 Charge Conservation

Maxwell added the displacement current term to Ampere’s law in order to guarantee
charge conservation. Indeed, taking the divergence of both sides of Ampeére’s law and
using Gauss’s law V - D = p, we get:
oD 0 op
V.-VXH=V .- J+V.——=V.J+ -V.-D=V.J+
J ot J ot J ot
Using the vector identity V - V X H = 0, we obtain the differential form of the charge
conservation law:

% +V-J=0 (charge conservation) (1.6.1)

Integrating both sides over a closed volume V surrounded by the surface S, as
shown in Fig. 1.6.1, and using the divergence theorem, we obtain the integrated form of
Eq. (1.6.1):

d
i]-ds— —Ejvpdv (1.6.2)

The left-hand side represents the total amount of charge flowing outwards through
the surface S per unit time. The right-hand side represents the amount by which the
charge is decreasing inside the volume V per unit time. In other words, charge does
not disappear into (or get created out of) nothingness—it decreases in a region of space
only because it flows into other regions.

Fig. 1.6.1 Flux outwards through surface.
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Another consequence of Eq. (1.6.1) is that in good conductors, there cannot be any
accumulated volume charge. Any such charge will quickly move to the conductor’s
surface and distribute itself such that to make the surface into an equipotential surface.
Assuming that inside the conductor we have D = €E and J = 0 E, we obtain

V-]=O’V-E=EV-D=gp
€ €
Therefore, Eq. (1.6.1) implies

-+

op o
3t Ep—O (1.6.3)

with solution:

p(r,t)=po(r)e /e

where pq (r) is the initial volume charge distribution. The solution shows that the vol-
ume charge disappears from inside and therefore it must accumulate on the surface of
the conductor. The “relaxation” time constant T, = €/0 is extremely short for good
conductors. For example, in copper,

€ 8.85x1071?

Trel = — = =1.6x 1071 sec
rel 5.7 x 107

By contrast, Ty is of the order of days in a good dielectric. For good conductors, the
above argument is not quite correct because it is based on the steady-state version of
Ohm'’s law, J = 0 E, which must be modified to take into account the transient dynamics
of the conduction charges.

It turns out that the relaxation time T, is of the order of the collision time, which
is typically 104 sec. We discuss this further in Sec. 1.9. See also Refs. [113-116].

1.7 Energy Flux and Energy Conservation

Because energy can be converted into different forms, the corresponding conservation
equation (1.6.1) should have a non-zero term in the right-hand side corresponding to
the rate by which energy is being lost from the fields into other forms, such as heat.
Thus, we expect Eq. (1.6.1) to have the form:

0Pen
ot
The quantities pen, Jon describing the energy density and energy flux of the fields are
defined as follows, where we introduce a change in notation:

+ V « Jen = rate of energy loss (1.7.1)

1 1
Pen =W = —€E-E+ —uH- H= energy per unit volume
2 2 (1.7.2)

Jen = P = E X H = energy flux or Poynting vector

The quantities w and P are measured in units of [joule/m?3] and [watt/m?]. Using the
identity V- (EX H)= H-V X E— E -V X H, we find:
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ow OE OoH
§+V-?—65-E+uE-H+V-(ExH)
=a—D-E+a—B-H+H-V><E7E-V><H
ot ot
=<8—va><H>-E+<a—B+V><E>-H
ot ot

Using Ampere’s and Faraday’s laws, the right-hand side becomes:

%:/ +V-P=—-J-E (energy conservation) (1.7.3)

As we discuss in Eq. (1.2.6), the quantity J- E represents the ohmic losses, that is, the
power per unit volume lost into heat from the fields. The integrated form of Eq. (1.7.3)
is as follows, relative to the volume and surface of Fig. 1.6.1:

—}?-dszijwdv-i-J]-EdV (1.7.4)
s dat Jv v

It states that the total power entering a volume V through the surface S goes partially
into increasing the field energy stored inside V and partially is lost into heat.

Example 1.7.1: Energy concepts can be used to derive the usual circuit formulas for capaci-
tance, inductance, and resistance. Consider, for example, an ordinary plate capacitor with
plates of area A separated by a distance [, and filled with a dielectric €. The voltage between
the plates is related to the electric field between the plates via V = EI.

The energy density of the electric field between the plates is w = €E?/2. Multiplying this
by the volume between the plates, A-I, will give the total energy stored in the capacitor.
Equating this to the circuit expression CV?/2, will yield the capacitance C:

1 1 . 1 517 A
W =-€E*- Al = ZCV? = ZCE*P? C=e€~
2€ 2 2 = ‘7
Next, consider a solenoid with n turns wound around a cylindrical iron core of length
1, cross-sectional area A, and permeability yu. The current through the solenoid wire is
related to the magnetic field in the core through Ampeére’s law HI = nl. It follows that the
stored magnetic energy in the solenoid will be:
1. H?P?

Yoo tip !
W= uH?-Al= L= L°;

A
L=n2u7

Finally, consider a resistor of length I, cross-sectional area A, and conductivity o. The
voltage drop across the resistor is related to the electric field along it via V = EI. The
current is assumed to be uniformly distributed over the cross-section A and will have
density J = OE.

The power dissipated into heat per unit volume is JE = o E2. Multiplying this by the
resistor volume Al and equating it to the circuit expression V2/R = RI? will give:
VZ  E°P

B A= o2 an= V. - EE 1l
U B)(AD=0E (A=~ = ©= 5 R=_5
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The same circuit expressions can, of course, be derived more directly using Q = CV, the
magnetic flux ® = LI, and V = RI. m]

Conservation laws may also be derived for the momentum carried by electromagnetic
fields [41,605]. It can be shown (see Problem 1.6) that the momentum per unit volume
carried by the fields is given by:

1 1
G=DXB-= C—ZE X H= 2 P (momentum density) (1.7.5)

where we set D = €E, B = yH, and ¢ = 1/.,/€u. The quantity Jnom = ¢G = P/c will
represent momentum flux, or pressure, if the fields are incident on a surface.

1.8 Harmonic Time Dependence

Maxwell’s equations simplify considerably in the case of harmonic time dependence.
Through the inverse Fourier transform, general solutions of Maxwell’s equation can be
built as linear combinations of single-frequency solutions:

E(r,t)= J E(r, w)e/®t ‘;—ﬁ (1.8.1)

Thus, we assume that all fields have a time dependence e/®(;
E(r,t)= E(r)e/®!, H(r,t)= H(r)e/®!

where the phasor amplitudes E(r), H(r) are complex-valued. Replacing time derivatives
by 0¢ — jw, we may rewrite Eq. (1.1.1) in the form:

VX E=—-jwB
VXH=]J+jwD
(Maxwell’s equations) (1.8.2)
V-D=p
V-B=0

In this book, we will consider the solutions of Egs. (1.8.2) in three different contexts:
(a) uniform plane waves propagating in dielectrics, conductors, and birefringent me-
dia, (b) guided waves propagating in hollow waveguides, transmission lines, and optical
fibers, and (c) propagating waves generated by antennas and apertures.

Next, we review some conventions regarding phasors and time averages. A real-
valued sinusoid has the complex phasor representation:

A(t)=|Alcos(wt +0) < A(t)= Ae/*! (1.8.3)

where A = |A]e/?. Thus, we have A (t) = Re[A(t)] = Re[Ae/®!]. The time averages of
the quantities A (t) and A (t) over one period T = 277/ w are zero.

The time average of the product of two harmonic quantities A (t) = Re[Ae/®!] and
B (t) = Re[Be/®!] with phasors A, B is given by (see Problem 1.4):
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1 (T 1
A(t)B(t) = fJ’ A (t)B(t) dt = = Re[AB*] (1.8.4)
T Jo 2

In particular, the mean-square value is given by:

T
A2(1) = %L A2(t) dt = %Re[AA*]z %|A|2 (1.8.5)

Some interesting time averages in electromagnetic wave problems are the time av-
erages of the energy density, the Poynting vector (energy flux), and the ohmic power
losses per unit volume. Using the definition (1.7.2) and the result (1.8.4), we have for
these time averages:

1 1 1
w = ERe[EeE-E* + EHH'H*] (energy density)
1
P = 5 Re[Ex H*] (Poynting vector) (1.8.6)
dp 1
ﬁ =5 Re[Jwor - E¥] (ohmic losses)

where Jior = J+ jwD is the total current in the right-hand side of Ampeére’s law and
accounts for both conducting and dielectric losses. The time-averaged version of Poynt-
ing’s theorem is discussed in Problem 1.5.

1.9 Simple Models of Dielectrics, Conductors, and Plasmas

A simple model for the dielectric properties of a material is obtained by considering the
motion of a bound electron in the presence of an applied electric field. As the electric
field tries to separate the electron from the positively charged nucleus, it creates an
electric dipole moment. Averaging this dipole moment over the volume of the material
gives rise to a macroscopic dipole moment per unit volume.
A simple model for the dynamics of the displacement x of the bound electron is as
follows (with x = dx/dt):
mx = eE — kx — max (1.9.1)

where we assumed that the electric field is acting in the x-direction and that there is
a spring-like restoring force due to the binding of the electron to the nucleus, and a
friction-type force proportional to the velocity of the electron.

The spring constant k is related to the resonance frequency of the spring via the
relationship wg = vVk/m, or, k = mw(z). Therefore, we may rewrite Eq. (1.9.1) as

X+ 0% + wEx = %E (1.9.2)

The limit w( = 0 corresponds to unbound electrons and describes the case of good
conductors. The frictional term «&x arises from collisions that tend to slow down the
electron. The parameter ¢ is a measure of the rate of collisions per unit time, and
therefore, T = 1/ will represent the mean-time between collisions.
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In a typical conductor, T is of the order of 10714 seconds, for example, for copper,
T =24x%x10"" secand & = 4.1 x 10'3 sec™!. The case of a tenuous, collisionless,
plasma can be obtained in the limit ¢ = 0. Thus, the above simple model can describe
the following cases:

a. Dielectrics, wq # 0, & # 0.
b. Conductors, wg = 0, x # 0.
c. Collisionless Plasmas, wg = 0, @ = 0.

The basic idea of this model is that the applied electric field tends to separate positive
from negative charges, thus, creating an electric dipole moment. In this sense, the
model contains the basic features of other types of polarization in materials, such as
ionic/molecular polarization arising from the separation of positive and negative ions
by the applied field, or polar materials that have a permanent dipole moment.

Dielectrics

The applied electric field E (t) in Eq. (1.9.2) can have any time dependence. In particular,
if we assume it is sinusoidal with frequency w, E (t) = Ee/®!, then, Eq. (1.9.2) will have
the solution x (t) = xe/®!, where the phasor x must satisfy:

; , e
—w2x + jwoax + wix = —E
m
which is obtained by replacing time derivatives by 0; — jw. Its solution is:

CE
X= M (1.9.3)
wj— w? +jox
The corresponding velocity of the electron will also be sinusoidal v (t) = ve/®!, where
v = X = jwXx. Thus, we have:

e
jw—E
Jow

V= jwx = (1.9.4)

w3 — w? + jw
From Egs. (1.9.3) and (1.9.4), we can find the polarization per unit volume P. We

assume that there are N such elementary dipoles per unit volume. The individual electric
dipole moment is p = ex. Therefore, the polarization per unit volume will be:

2
Ne E
P=Np=Nex= + =eox(w)E (1.9.5)
Wi — w? +jwx

The electric flux density will be then:
D=¢E+P=¢€x(1+x(w))E=¢e(w)E

where the effective dielectric constant € (w) is:
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Ne?

I — E— (1.9.6)
wg — w2+ jwox

This can be written in a more convenient form, as follows:

E()(L)%7
E(OO): €o + 2 o i (197)
Wi — w? +jwx
where wf, is the so-called plasma frequency of the material defined by:
, Ne?
wf, = eoim (plasma frequency) (1.9.8)

For a dielectric, we may assume wgq # 0. Then, the low-frequency limit (co = 0) of
Eg. (1.9.7), gives the nominal dielectric constant of the material:

2 -
w Ne?
€0)=€ +€—H=€+—— (1.9.9)
wg mwj
The real and imaginary parts of €(w) characterize the refractive and absorptive
properties of the material. By convention, we define the imaginary part with the negative

sign (this is justified in Chap. 2):
€(w)= € (w)—je" (w) (1.9.10)

It follows from Eq. (1.9.7) that:

€ow (w§ — w?)
(w2 — w3)2+ax2w?’

EoWEWX

ell(w):

€ (w)=¢€y+ (1.9.11)

(w2 — w3)2+x2w?

The real part €' (w) defines the refractive index n(w) = /€’ (w) /€,. The imaginary
part €’ (w) defines the so-called loss tangent of the material tan 0 (w) = €' (w) /€’ (w)
and is related to the attenuation constant (or absorption coefficient) of an electromag-
netic wave propagating in such a material (see Sec. 2.6.)

Fig. 1.9.1 shows a plot of €’ (w) and €” (w). Around the resonant frequency wy the
€' (w) behaves in an anomalous manner (i.e., it becomes less than €,) and the material
exhibits strong absorption.

Real dielectric materials exhibit, of course, several such resonant frequencies cor-
responding to various vibrational modes and polarization types (e.g., electronic, ionic,
polar.) The dielectric constant becomes the sum of such terms:

2

_ ip
elw)=eo+ ) w5 — w2 + jo;
i i0 J 1

€O
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4 €(w) anomalous A€’ (w) high
»~ dispersion »~ absorption
€
€o V
0 (UO » (0 0 » (U
Fig. 1.9.1 Real and imaginary parts of dielectric constant.
Conductors

The conductivity properties of a material are described by Ohm’s law, Eq. (1.3.12). To
derive this law from our simple model, we use the relationship J = pv, where the volume
density of the conduction charges is p = Ne. It follows from Eq. (1.9.4) that

. Ne?
Jw—eE
J:pv:NeVz—z ;’l’l - EO’((L))E
wj— w? +jox
and therefore, we identify the conductivity o (w):
. e?
Jw jen
o(w)= —5— M R (1.9.12)

Wi — w2 +jox  wi- w?+jox
We note that o (w)/jw is essentially the electric susceptibility considered above.
Indeed, we have J = Nev = Nejwx = jwP, and thus, P = J/jw = (o (w)/jw)E. It
follows that € (w) —€g = o (w) /jw, and
€ow
W)= o+ —y 20 gy T (1.9.13)
Wy — W= + jo Jw

Since in a metal the conduction charges are unbound, we may take wo = 0 in
Eq. (1.9.12). After canceling a common factor of jw , we obtain:

o(w)= ——7— (1.9.14)

The nominal conductivity is obtained at the low-frequency limit, w = 0:

€0y  Ne?
X m«

(nominal conductivity) (1.9.15)

Example 1.9.1: Copper has a mass density of 8.9 x 105 gr/m? and atomic weight of 63.54
(grams per mole.) Using Avogadro’s number of 6 X 1023 atoms per mole, and assuming
one conduction electron per atom, we find for the volume density N:
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6 x 1023 Aloms et
T electron
N = 7?191(3 (8.9 x 10° %) (1 m) = 8.4 x 10%® electrons/m?
63.54 ’
mole

It follows that:

Ne?  (8.4x10%®) (1.6 x10719)2 .
- e —5.8%107 Si
0= mx T (9.1 x10°3) (4.1 x 1013) 08X 107 Siemens/m

where we used e = 1.6 X 10719, m = 9.1 x 10731, & = 4.1 x 10'3, The plasma frequency
of copper can be calculated by

wp 1 [Ne? 15
=W 2 Y o 6x 100 H
fr 2 21\ meg z

which lies in the ultraviolet range. For frequencies such that w <« «, the conductivity
(1.9.14) may be considered to be independent of frequency and equal to the dc value of
Eq. (1.9.15). This frequency range covers most present-day RF applications. For example,
assuming w < 0.1, we find f < 0.1x/27 = 653 GHz. O

So far, we assumed sinusoidal time dependence and worked with the steady-state
responses. Next, we discuss the transient dynamical response of a conductor subject to
an arbitrary time-varying electric field E (t).

Ohm'’s law can be expressed either in the frequency-domain or in the time-domain
with the help the Fourier transform pair of equations:

t
J(w)=o(w)E(w) = J(t):J_ o(t-tHEWt)dt (1.9.16)

where o (t) is the causal inverse Fourier transform of o (w). For the simple model of
Eq. (1.9.14), we have:

o (t)= eowpe “u(t) (1.9.17)

where u (t) is the unit-step function. As an example, suppose the electric field E (t) is a
constant electric field that is suddenly turned on at t = 0, that is, E(t)= Eu(t). Then,
the time response of the current will be:

t , €02
J(t)= L eowze X EdL = T’”E(l —e ) = gE(1 — e ™)
where 0o = € wf,/tx is the nominal conductivity of the material.

Thus, the current starts out at zero and builds up to the steady-state value of J = O°E,
which is the conventional form of Ohm’s law. The rise time constantis T = 1/x. We
saw above that T is extremely small—of the order of 1014 sec—for good conductors.

The building up of the current can also be understood in terms of the equation of
motion of the conducting charges. Writing Eq. (1.9.2) in terms of the velocity of the
charge, we have:
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V() +av(t) = %E(t)

Assuming E (t) = Eu(t), we obtain the convolutional solution:
t n e ’ ’ e
v(t)= J e ¥ ZFEhdt = —E(1 —e™ )
0 m mao

For large t, the velocity reaches the steady-state value v, = (e/mw) E, which reflects
the balance between the accelerating electric field force and the retarding frictional force,
thatis, mavs = eE. The quantity e/ ma is called the mobility of the conduction charges.
The steady-state current density results in the conventional Ohm’s law:

N
J=Neve = ¢ E—0oE
mao

Charge Relaxation in Conductors
Next, we discuss the issue of charge relaxation in good conductors [113-116]. Writing
(1.9.16) three-dimensionally and using (1.9.17), Ohm’s law reads in the time domain:
- r ’
Jx,t)= ng e ey E(r,t') dt’ (1.9.18)

Taking the divergence of both sides and using charge conservation, V - J+ p = 0,
and Gauss’s law, €9V - E = p, we obtain the following integro-differential equation for
the charge density p(r,t):

t t
—p(r,t)=V - J(r,t)= w%J e - e g . E(r, t')dt = wf,J e~ =) p(r ¢ dt

Differentiating both sides with respect to t, we find that p satisfies the second-order
differential equation:
P, t)+axp(r,t) +wyp(r,t)=0 (1.9.19)
whose solution is easily verified to be a linear combination of:
) o

sin(wreit) , where re =4/ Wp — e

—xt/2 —xt/2

e cos(Wrert) , €

Thus, the charge density is an exponentially decaying sinusoid with a relaxation time
constant that is twice the collision time T = 1/ x:

2
Trel = & = 27| (relaxation time constant) (1.9.20)

Typically, wp > «, so that wye is practically equal to wp. For example, using the
numerical data of Example 1.9.1, we find for copper Trq = 2T = 5x107 sec. We
calculate also: frel = Wrel /27T = 2.6X10'° Hz. In the limit x — o, or T — 0, Eq. (1.9.19)
reduces to the naive relaxation equation (1.6.3) (see Problem 1.8).
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In addition to charge relaxation, the total relaxation time depends on the time it takes
for the electric and magnetic fields to be extinguished from the inside of the conductor,
as well as the time it takes for the accumulated surface charge densities to settle, the
motion of the surface charges being damped because of ohmic losses. Both of these
times depend on the geometry and size of the conductor [115].

Power Losses

To describe a material with both dielectric and conductivity properties, we may take the
susceptibility to be the sum of two terms, one describing bound polarized charges and
the other unbound conduction charges. Assuming different parameters {wy, wp, &}
for each term, we obtain the total dielectric constant:

2

cp
€ =€p + 1.9.21
() =eco w5 — w2 +jwrg  Jjw (e +jw) ( )

Eowﬁp €Eo

Denoting the first two terms by €4 (w) and the third by o, (w) /jw, we obtain the
total effective dielectric constant of such a material:

e(w)=€g(w) +% (effective dielectric constant) (1.9.22)

In the low-frequency limit, w = 0, the quantities €4 (0) and o.(0) represent the
nominal dielectric constant and conductivity of the material. We note also that we can
write Eq. (1.9.22) in the form:

Jwe(w)= o:(w)+jweg (w) (1.9.23)

These two terms characterize the relative importance of the conduction current and
the displacement (polarization) current. The right-hand side in Ampere’s law gives the
total effective current:

Jwot =J + aa—lt) =J+jwD = 0. (W)E + jweg(w)E = jwe(w)E

where the term Jqisp = 0D /0t = jwey (w) E represents the displacement current. The
relative strength between conduction and displacement currents is the ratio:

_ oc(w)El  |oc(w)]
T jweg (W)E|l T lweg(w)] (1.9.24)

Jcond
Jdisp

This ratio is frequency-dependent and establishes a dividing line between a good
conductor and a good dielectric. If the ratio is much larger than unity (typically, greater
than 10), the material behaves as a good conductor at that frequency; if the ratio is much
smaller than one (typically, less than 0.1), then the material behaves as a good dielectric.

Example 1.9.2: This ratio can take a very wide range of values. For example, assuming a fre-
quency of 1 GHz and using (for illustration purposes) the dc-values of the dielectric con-
stants and conductivities, we find:
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] o 10°  for copper with 0 = 5.8x107 S/m and € = €,
deomd | 2 11 for seawater with o = 4 S/m and € = 72¢,
Jaisp we 1072 for a glass with 0 = 1071° S/m and € = 2¢

Thus, the ratio varies over 18 orders of magnitude! If the frequency is reduced by a factor
of ten to 100 MHz, then all the ratios get multiplied by 10. In this case, seawater acts like
a good conductor. O

The time-averaged ohmic power losses per unit volume within a lossy material are
given by Eq. (1.8.6). Writing € (w) = €' (w) —je”’ (w), we have:

Jiot = jwe(w)E = jwe (w)E+ we”’ (w)E

Denoting | E|* = E- E*, it follows that:

dPIOSS _ 1 *1 _ 1 ’” 2 .
F Al 2Re[_]mt E*] = , We (w) | E| (ohmic losses) (1.9.25)

Writing €4 (w) = € (w) —je;; (w) and assuming that the conductivity o (w) is real-
valued for the frequency range of interest (as was discussed in Example 1.9.1), we find
by equating real and imaginary parts of Eq. (1.9.22):

o (w)
w

’

€ (w)=¢€;(w), €' (w)=€; (w)+

(1.9.26)

Then, the power losses can be written in a form that separates the losses due to
conduction and those due to the polarization properties of the dielectric:
dP 1 e : .
# = E(Uc(w)+w€d (w))|E|*  (ohmic losses) (1.9.27)

A convenient way to quantify the losses is by means of the loss tangent defined in
terms of the real and imaginary parts of the effective dielectric constant:

E”(UJ)
€ (w)

tan 0 = (loss tangent) (1.9.28)

where 0 is the loss angle. Eq. (1.9.28) may be written as the sum of two loss tangents,
one due to conduction and one due to polarization. Using Eq. (1.9.26), we have:

tan @ = UC(w)J:wed (@) = UC,(w) + E‘,i(w) =tan 0. + tan 04 (1.9.29)
we; (w) wey(w)  €4(w)

The ohmic loss per unit volume can be expressed in terms of the loss tangent as:

dld)l“;ss = %wefj(w)tane |E|*  (ohmic losses) (1.9.30)
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Plasmas

To describe a collisionless plasma, such as the ionosphere, the simple model considered
in the previous sections can be specialized by choosing wg and &« = 0. Thus, the
conductivity given by Eq. (1.9.14) becomes pure imaginary:

2
E()wp

o(w)= —;
Jjw

The corresponding effective dielectric constant of Eq. (1.9.13) becomes purely real:

2
e(w)=¢€p + g (w) =eo(1—w”> (1.9.31)
Jw

The plasma frequency can be calculated from wf, = Ne?/meg. In the ionosphere
the electron density is typically N = 102, which gives fp = 9 MHz.

We will see in Sec. 2.6 that the propagation wavenumber of an electromagnetic wave
propagating in a dielectric/conducting medium is given in terms of the effective dielec-
tric constant by:

k = w+/ue(w)

It follows that for a plasma:

k= w\/uoeo(l —wi/w?) = %\/wz - w?
where we used ¢ = 1/,/[o€p.

If w > wp, the electromagnetic wave propagates without attenuation within the
plasma. But if w < wp, the wavenumber k becomes imaginary and the wave gets
attenuated. At such frequencies, a wave incident (normally) on the ionosphere from the
ground cannot penetrate and gets reflected back.

1.10 Problems

1.1 Prove the vector algebra identities:

AX (BXC)=B(A-C)-C(A-B) (BAC-CAB identity)
A-(BXC)=B-(CxA)=C- (AXB)

|Ax B|* + |A- B]* = |A|*|B|?

A=NnXAXn+ (a-A)n (A is any unit vector)

In the last identity, does it a make a difference whether i X A X 1iis taken to mean i X (A X 1)
or (i X A) xn?

1.2 Prove the vector analysis identities:
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VX (Vd)=0

V- (pVY)= VY + Vo - Vy (Green’s first identity)
V- (VY — V)= pV?y — V3¢ (Green’s second identity)
V- (pA)=(VP)-A+¢pV -A

VX (pA)= (Vp)xA+ PV XA

V- (VxXA)=0

V-AxB=B-(VxA)-A:-(V XB)

VX (VxA)=V(V-A)-V’A

1.3 Consider the infinitesimal volume element AxAyAz shown below, such that its upper half
lies in medium €; and its lower half in medium €,. The axes are oriented such that i = Z.
Applying the integrated form of Ampere’s law to the infinitesimal face abcd, show that

Hy, — Hyy = JxAz + aaDt"Az

In the limit Az — 0, the second term in the right-hand side may be assumed to go to zero,
whereas the first term will be non-zero and may be set equal to a surface current density,
that is, Jex = limaz—o(JxAZz). Show that this leads to the boundary condition Hyy, — Hy, =
—Jsx. Similarly, show that Hix — Hox = Jsy, and that these two boundary conditions can be
combined vectorially into Eq. (1.4.4).

z
A Ax Az }’y
n X
u Ay d nra
= Az =,
€ >
\ € \
b oo s 4
JAz = Jy,

Next, apply the integrated form of Gauss’s law to the same volume element and show the
boundary condition: Dy, — Dy, = ps = limaz_o(pAZ).

1.4 Show that the time average of the product of two harmonic quantities A (t) = Re[Ae/®!]
and B (t) = Re[Be/*!] with phasors A, B is given by:

- 1 (T 1
AM)B(t) = ,J A(t)B(t) dt = = Re[AB*]
T Jo 2
where T = 27r/w is one period. Then, show that the time-averaged values of the cross

and dot products of two time-harmonic vector quantities A (t)= Re[A ej‘*”] and B(t)=
Re[Be/®!] can be expressed in terms of the corresponding phasors as follows:

A XB(D) = %Re[AxB*], A B = %Re[A-B*]

1.5 Assuming that B = pH, show that Maxwell’s equations (1.8.2) imply the following complex-
valued version of Poynting’s theorem:

VX (Ex H*)= —jwuH- H* — E- J%,, where Jio. = J+ jwD
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1.6

1.7

1.8

1.9

Extracting the real-parts of both sides and integrating over a volume V bounded by a closed
surface S, show the time-averaged form of energy conservation:

—§ lRe[lsx H*]-dS=J 1Re[E-JE&]dV
s 2 v 2

which states that the net time-averaged power flowing into a volume is dissipated into heat.
For a lossless dielectric, show that the above integrals are zero and provide an interpretation.

Assuming that D = €E and B = uH, show that Maxwell’s equations (1.1.1) imply the following
relationships:
OB

pEy + (DX a)x =V- (eEXE—ﬁ%eEZ)

oD 1
Jx B)x+(ﬁ X B), =V - (WHyH-% EuHZ)
where the subscript x means the x-component. From these, derive the following relationship
that represents momentum conservation:

oG
fi+ _atx =V Ty (1.10.1)
where fy, Gy are the x-components of the vectors f= pE+ JX Band G = D X B, and Ty is
defined to be the vector (equal to Maxwell’s stress tensor acting on the unit vector X):

1
Ty = €ExE+ uHH - X 5 (eE? + uH?)

Write similar equations of the y, z components. The quantity Gy is interpreted as the field
momentum (in the x-direction) per unit volume, that is, the momentum density.

Show that the plasma frequency for electrons can be expressed in the simple numerical form:
f» = 9VN, where f, is in Hz and N is the electron density in electrons/m*. What is f), for
the ionosphere if N = 10'2? [Ans. 9 MHz.]

Show that the relaxation equation (1.9.19) can be written in the following form in terms of
the dc-conductivity o defined by Eq. (1.9.15):

1. . o
&p(r,t)+p(r,t)+€0p(r,t)—O

Then, show that it reduces to the naive relaxation equation (1.6.3) in the limit T = 1/x — 0.
Show also that in this limit, Ohm’s law (1.9.18) takes the instantaneous form J = oE, from
which the naive relaxation constant T, = €9/ 0 was derived.

Conductors and plasmas exhibit anisotropic and birefringent behavior when they are in the
presence of an external magnetic field. The equation of motion of conduction electrons in
a constant external magnetic field is mv = e(E + v X B) —m«v, with the collisional term
included. Assume the magnetic field is in the z-direction, B = Z B, and that E = XEx + VE),
and v=XVy +yV,.

a. Show that in component form, the above equations of motion read:

. e

Vx EEx+vay—(xvx B
e

where wp = e (cyclotron frequency)

. e
Vy = aEy — WRVx — KVy

What is the cyclotron frequency in Hz for electrons in the Earth’s magnetic field B =
0.4 gauss = 0.4x1074 Tesla? [Ans. 1.12 MHz.]
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. To solve this system, work with the combinations vy + jv,. Assuming harmonic time-

dependence, show that the solution is:

e .
m (Ex £ JEy)

+j =
Vx £ JVy & +j(w + wpg)

. Define the induced currents as J = Nev. Show that:

. . X0y
Jx £JjJy = 0+ (w) (Ex = JEy), where 0. (w)= m

Ne?
where 0 = me is the dc value of the conductivity.

. Show that the t-domain version of part (c) is:

t
Te () =jT, (1) = L oo (t— ) (Ex(t) £JE, (1)) dt’

where 0. (t)= xope e ™wBly(t) is the inverse Fourier transform of o. (w) and
u(t) is the unit-step function.

. Rewrite part (d) in component form:

t

Ju(0) = L [0 (€ = O) Ex(t') 40y (t — ) Ey (¢') ]dU

t
Jy(t) = L [oyx (t =) Ex(t')+0y, (t — t')E, (') ]dt’

and identify the quantities Oxx (£), Oxy (£), Oyx (), Oy (1).

. Evaluate part (e) in the special case Ex (t) = Exu(t) and E), (t)= Eyu(t), where Ey, E,

are constants, and show that after a long time the steady-state version of part (e) will
be:

Ex + bE,
Je= 00—
E, — bE,
Jy =00

where b = wp/ . If the conductor has finite extent in the y-direction, as shown above,
then no steady current can flow in this direction, J,, = 0. This implies that if an electric
field is applied in the x-direction, an electric field will develop across the y-ends of the
conductor, E, = bEy. The conduction charges will tend to accumulate either on the
right or the left side of the conductor, depending on the sign of b, which depends on
the sign of the electric charge e. This is the Hall effect and is used to determine the
sign of the conduction charges in semiconductors, e.g., positive holes for p-type, or
negative electrons for n-type.

What is the numerical value of b for electrons in copper if B is 1 gauss? [Ans. 43.]

. For a collisionless plasma («x = 0), show that its dielectric behavior is determined from

Dy +jD, = €. (w) (Ex = jE)), where

(UZ
w(w + wpg)

where w), is the plasma frequency. Thus, the plasma exhibits birefringence.
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Uniform Plane Waves

2.1 Uniform Plane Waves in Lossless Media

The simplest electromagnetic waves are uniform plane waves propagating along some
fixed direction, say the z-direction, in a lossless medium {€, u}.

The assumption of uniformity means that the fields have no dependence on the
transverse coordinates x,y and are functions only of z,t. Thus, we look for solutions
of Maxwell’s equations of the form: E(x,y, z,t)= E(z,t) and H(x,y,z,t)= H(z,t).

Because there is no dependence on x, y, we set the partial derivativest 05 = 0 and
0y = 0. Then, the gradient, divergence, and curl operations take the simplified forms:

0 v.p=%: gxp-3xE_ 3% Ok

2z oz 2z Yoz "V oz

V=12

Assuming that D = €E and B = pH, the source-free Maxwell’s equations become:

VXEz—uaa—H 0z~ Mot

. t . OH _ _OF

v OH _ O

_ _OE ) ot

VxH=e5 z 2.1.1)

OF; _
V-E=0 2z
V-H=0 oH; _,

0z
An immediate consequence of uniformity is that E and H do not have components
along the z-direction, that is, E, = H, = 0. Taking the dot-product of Ampeére’s law
with the unit vector Z, and using the identity Z - (Z X A) = 0, we have:

Z-zxX — 0 =0

. ( 6H>7 _0E_ . _ O
oz) ~F ot T ot

0
TThe shorthand notation 9y stands for X
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Because also 0,E, = 0, it follows that E, must be a constant, independent of z, t.
Excluding static solutions, we may take this constant to be zero. Similarly, we have
H; = 0. Thus, the fields have components only along the X, y directions:

E(z,t) = XEx(z,t)+VE)y(z,1)
(transverse fields) (2.1.2)
H(z,t) =XHx(z,t)+VH, (z,t)

These fields must satisfy Faraday’s and Ampeére’s laws in Egs. (2.1.1). We rewrite
these equations in a more convenient form by replacing € and u by:

, where ¢ = %, n= \/g (2.1.3)

Thus, c,n are the speed of light and characteristic impedance of the propagation
medium. Then, the first two of Egs. (2.1.1) may be written in the equivalent forms:

_ Lo, _n
E_nca “_C

oz cMor
(2.1.4)
N2xX %5, = ¢ ot

The first may be solved for 0,E by crossing it with Z. Using the BAC-CAB rule, and
noting that E has no z-component, we have:

. _OE\_ . ©OE_ . (. OE OE
(zx—)xz=—(z-z)—z(z-—>=—
z z 0z oz

where we used Z - 0,E = 0,E, = 0 and Z - Z = 1. It follows that Egs. (2.1.4) may be
replaced by the equivalent system:

OE 10 R
22~ c o MHX2)
; . (2.1.5)
E(YIHX Z):_Eﬁ

Now all the terms have the same dimension. Egs. (2.1.5) imply that both E and H
satisfy the one-dimensional wave equation. Indeed, differentiating the first equation
with respect to z and using the second, we have:

BE_ 100 . o 1@E

022 " “cotoz ! T2 o ’

iz_liz E(z,t)=0 (wave equation) (2.1.6)
0z2 "2 o ) EBU= a -

and similarly for H. Rather than solving the wave equation, we prefer to work directly
with the coupled system (2.1.5). The system can be decoupled by introducing the so-
called forward and backward electric fields defined as the linear combinations:
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E. = —(E+nHX1Z)
(forward and backward fields) (2.1.7)

E . =-(E-nHx2)

N~ N~

These can be inverted to express E, H in terms of E;, E_. Adding and subtracting
them, and using the BAC-CAB rule and the orthogonality conditions Z- E. = 0, we obtain:

E= EJr + E_
1 (2.1.8)
H= EZX [E. —E_]

Then, the system of Egs. (2.1.5) becomes equivalent to the following decoupled sys-
tem expressed in terms of the forward and backward fields E-:

oE._ _10E,
0z ¢ ot

(2.1.9)
oE _ 10E
0z ¢ ot

Using Egs. (2.1.5), we verify:
O ExnHx2) = -1 % (Hx2)*
oz M “Tcoar! N
Egs. (2.1.9) can be solved by noting that the forward field E; (z, ) must depend on

z,t only through the combination z — ct. Indeed, if we set E; (z,t)= F(z — ct), where
F(C) is an arbitrary function of its argument ¢ = z — ct, then we will have:

OE. _ o . . OTOF() _ OF()
0z " 07PNV %, a¢ T o . OE _ _10E
OE, _ 0. . OTOFX) _ OF({) oz ¢ ot
ot "ot ET=% o T o

Vectorially, F must have only x,y components, F = XFy + VFy, that is, it must be
transverse to the propagation direction, Z - F = 0.

Similarly, we find from the second of Egs. (2.1.9) that E_ (z,t) must depend on z,t
through the combination z + ct, so that E_ (z,t) = G(z + ct), where G(&) is an arbitrary
(transverse) function of & = z + ct. In conclusion, the most general solutions for the
forward and backward fields of Egs. (2.1.9) are:

E,(z,t) = F(z — ct)
(2.1.10)
E_(z,t) = G(z + ct)
with arbitrary functions F and G, suchthatz- F=2- G = 0.
Inserting these into the inverse formula (2.1.8), we obtain the most general solution
of (2.1.5), expressed as a linear combination of forward and backward waves:
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E(z,t) = F(z —ct)+G(z + ct)
(2.1.11)

H(z,t) = —2x [F(z—ct)-G(z + ct) ]

S =

The term E, (z,t)= F(z — ct) represents a wave propagating with speed c in the
positive z-direction, while E_ (z, t) = G(z+ct) represents a wave traveling in the negative
z-direction.

To see this, consider the forward field at a later time t + At. During the time interval
At, the wave moves in the positive z-direction by a distance Az = cAt. Indeed, we have:

E.(z,t + At) = F(z — c(t + At)) = F(z — cAt — ct)
=> E, (z,t+At)=E, (z— Az,t)
E, (z— Az, t) = F((z - Az)—ct) = F(z — cAt — ct)

This states that the forward field at time t + At is the same as the field at time t, but
translated to the right along the z-axis by a distance Az = cAt.

Similarly, we find that E_ (z,t + At)= E_(z + Az, t), which states that the backward
field at time t + At is the same as the field at time ¢, translated to the left by a distance
Az. Fig. 2.1.1 depicts these two cases.

E (z,1) c "."‘-_‘ E (z.t+Af) = Ef(z— Az 1)
R 1S > 7

Az = cAt

E_(z,t+A10) = E_(z+ Az, 1) ™ c E_(z,1)
s N > 7
|

Az = cAt

Fig. 2.1.1 Forward and backward waves.

The two special cases corresponding to forward waves only (G = 0), or to backward
ones (F = 0), are of particular interest. For the forward case, we have:

E(z,t) = F(z — ct) Ea

1 1 z (2.1.12)
H(z,t):EixF(z—ct):EixE(z,t) H -

This solution has the following properties: (a) The field vectors E and H are perpen-
dicular to each other, E - H = 0, while they are transverse to the z-direction, (b) The
three vectors {E, H,Z} form a right-handed vector system as shown in the figure, in the
sense that E X H points in the direction of Z, (c) The ratio of E to H X Z is independent
of z,t and equals the characteristic impedance n of the propagation medium; indeed:
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H(z,t):%ixE(z,t) = E(z,t)=nH(z,t) Xz (2.1.13)

The electromagnetic energy of such forward wave flows in the positive z-direction.
With the help of the BAC-CAB rule, we find for the Poynting vector:

1
T=E><H=iE|F|2=Cie|F|2 (2.1.14)

where we denoted |F|? = F- F and replaced 1/n = ce. The electric and magnetic energy
densities (per unit volume) turn out to be equal to each other. Because Z and F are
mutually orthogonal, we have for the cross product |Z X F| = |Z||F| = |F|. Then,

1 1
We = —€|E|?> = =€|F|?
e 2|| 2||

1
~ulH|? =
SHIHI

1
2

1 . 5 1 )
W uﬁlsz\ =§€|F| =W,

where we replaced p1/n? = €. Thus, the total energy density of the forward wave will be:
W =We + W = 2W, = €|F|? (2.1.15)

In accordance with the flux/density relationship of Eq. (1.5.2), the transport velocity
of the electromagnetic energy is found to be:
P cz2¢€|F|? .
=—=—"——--=(C2
w €|F|?
As expected, the energy of the forward-moving wave is being transported at a speed
c along the positive z-direction. Similar results can be derived for the backward-moving
solution that has F= 0 and G # 0. The fields are now:

E(z,t) = G(z + ct)

E
1 1 o (2.1.16)
H(z,t) =—EZXG(Z+CT)=—EZXE(Z,I) -z

The Poynting vector becomes P = E X H = —c2¢€|G|? and points in the negative
z-direction, that is, the propagation direction. The energy transport velocityis v= —cz.
Now, the vectors {E, H,—2} form a right-handed system, as shown. The ratio of E to H
is still equal to n, provided we replace z with —2:

H(Z,t)=%(—i)><E(z,t) = E(z,0)=nH(z 0)x(-2)

In the general case of Eq. (2.1.11), the E/H ratio does not remain constant. The
Poynting vector and energy density consist of a part due to the forward wave and a part
due to the backward one:

P=ExH=cz(e|F|?>-—€|G|?)

1 1 (2.1.17)
w = §€|E|2 + Eulle =€|F|*> +€|G|?
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Example 2.1.1: A source located at z = 0 generates an electric field E(0,t) = XEo u(t), where
u (t) is the unit-step function, and E,, a constant. The field is launched towards the positive
z-direction. Determine expressions for E(z,t) and H(z,t).

Solution: For a forward-moving wave, we have E(z,t)= F(z — ct)= F(0 — c(t — z/c)), which
implies that E(z, t) is completely determined by E(z,0), or alternatively, by E(0, t):

E(z,t)= E(z - ct,0)= E(0,t — z/c)

Using this property, we find for the electric and magnetic fields:

A E(z,1)

E(z,t) = E(0,t —z/c)=XEou(t—z/c) '7/,,,, E(z,t+At)
4>C B
H(z,t)=12><E(z,t)=§/@u(t—z/c) : > 7
n n 0 ct c(t+Arn)

Because of the unit-step, the non-zero values of the fields are restricted tot — z/c = 0, or,
Z < ct, that is, at time t the wavefront has propagated only up to position z = ct. The
figure shows the expanding wavefronts at time t and t + At. [m}

Example 2.1.2: Consider the following three examples of electric fields specified at t = 0, and
describing forward or backward fields as indicated:

E(z,0)=XxE(cos(kz) (forward-moving)
E(z,0)=yEqcos(kz) (backward-moving)

E(z,0)=XE; cos(kyz)+YyE>cos(kpz) (forward-moving)

where k, k1, k, are given wavenumbers (measured in units of radians/m.) Determine the
corresponding fields E(z,t) and H(z,t).

Solution: For the forward-moving cases, we replace z by z — ct, and for the backward-moving
case, by z + ct. We find in the three cases:

E(z,t) =XEycos(k(z — ct)) = REq cos(wt — kz)
E(z,t) =V Eycos(k(z +ct)) = yEycos(wt + kz)

E(Z, t) = XE;cos(wit — k]Z) +}A’E2 cos(wot — kzZ)

where w = k¢, and w; = kic, w» = kzc. The corresponding magnetic fields are:

H(z,t) = —Z X E(z,t)= if% cos(wt — kz) (forward)

ISR

H(z,t) = —% ZX E(z,t)= f(% cos(wt + kz) (backward)

H(z,t) = ixE(z,t):?% cos(wltfk.z)ffc% cos(wyt — kyz)

S =

The first two cases are single-frequency waves, and are discussed in more detail in the
next section. The third case is a linear superposition of two waves with two different
frequencies and polarizations. [m}
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2.2 Monochromatic Waves

Uniform, single-frequency, plane waves propagating in a lossless medium are obtained
as a special case of the previous section by assuming the harmonic time-dependence:

E(x,y,z,t) = E(z)e/®!
) (2.2.1)
H(x,y,z,t) = H(z)e/®!
where E(z) and H(z) are transverse with respect to the z-direction.
Maxwell’s equations (2.1.5), or those of the decoupled system (2.1.9), may be solved
very easily by replacing time derivatives by 0; — jw. Then, Egs. (2.1.9) become the
first-order differential equations (see also Problem 2.3):

O0E.(2)
0z

= FJKkE.(2), where k = % = w./HE (2.2.2)

with solutions: )
E.(z) = Ey,e ¥z (forward)
, (2.2.3)
E_(2) = Ey_e/** (backward)

where Ej. are arbitrary (complex-valued) constant vectors such that z - Ey. = 0. The
corresponding magnetic fields are:

1 1 : ;
Hi(2) = [2XEi(2)= (2 Eo.)e " = Hy,e M
(2.2.4)
1, | jkz jkz
H (z2) =——2XE_(z)= —— (ZX Ey_)e/** = Hy_¢’
n n
where we defined the constant amplitudes of the magnetic fields:
1,
Hy. = iﬁ Z X Ep+ (2.2.5)

Inserting (2.2.3) into (2.1.8), we obtain the general solution for single-frequency
waves, expressed as a superposition of forward and backward components:

E(z) = Eg.e % + Ey_e/*
(forward + backward waves) (2.2.6)

1 . )
H(z) = Ei X [E0+2_sz —Eo,ejkz]

Setting Eyp. = XA+ +VB.,and noting that ZX Ep. = ZX (XA.+yB.)=VA.—XB.,
we may rewrite (2.2.6) in terms of its cartesian components:
Ex(z)= A,ekz + A_olkz Ey(z)= B.e k% + B_elkz

1 ; . 1 , ) (2.2.7)
Hy(2)= [Ace % —A_e*],  Hy(z)= “ [Bie/* — B_e/k?]

Wavefronts are defined, in general, to be the surfaces of constant phase. A forward
moving wave E(z) = Eye /%% corresponds to the time-varying field:
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E(z,t) = Eye/®t=ikz — Ere=J®0  where @(z,t)=kz — wt

A surface of constant phase is obtained by setting @ (z, t) = const. Denoting this
constant by ¢¢ = kzy and using the property ¢ = w/k, we obtain the condition:

plz,t)y=@y = kz—wt=kzy = z=ct+ 2

Thus, the wavefront is the xy-plane intersecting the z-axis at the point z = ct + Zj,
moving forward with velocity c¢. This justifies the term “plane wave.”

A backward-moving wave will have planar wavefronts parametrized by z = —ct + zo,
that is, moving backwards. A wave that is a linear combination of forward and backward
components, may be thought of as having two planar wavefronts, one moving forward,
and the other backward.

The relationships (2.2.5) imply that the vectors {Ey., Hy;, 2} and {Ey_, Hy_, —2} will
form right-handed orthogonal systems. The magnetic field Hy. is perpendicular to the
electric field Ey. and the cross-product Ey. X Hy. points towards the direction of prop-
agation, that is, +Z. Fig. 2.2.1 depicts the case of a forward propagating wave.

Q
&
Q2
R / / /
& > 2

Fig. 2.2.1 Forward uniform plane wave.

The wavelength A is the distance by which the phase of the sinusoidal wave changes
by 27T radians. Since the propagation factor e /%% accumulates a phase of k radians per
meter, we have by definition that kA = 271r. The wavelength A can be expressed via the
frequency of the wave in Hertz, f = w/27r, as follows:

21T 2TTC c
A=—=—=— 2.2.
X f (2.2.8)

If the propagation medium is free space, we use the vacuum values of the parame-
ters {€,u,c,n}, thatis, {€g, Uo, Co, No}. The free-space wavelength and corresponding
wavenumber are: )

T Co w
Aop="—="2, ko=— (2.2.9)
ko f Co

In a lossless but non-magnetic (4 = L) dielectric with refractive index n = \/€/ €y,
the speed of light ¢, wavelength A, and characteristic impedance n are all reduced by a
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scale factor n compared to the free-space values, whereas the wavenumber k is increased
by a factor of n. Indeed, using the definitions ¢ = 1/./lp€ and n = /Ug/€, we have:

c=C -0 ;\:%, k = nko (2.2.10)

Example 2.2.1: A microwave transmitter operating at the carrier frequency of 6 GHz is pro-
tected by a Plexiglas radome whose permittivity is € = 3€g.

The refractive index of the radome is n = \/e/€y = /3 = 1.73. The free-space wavelength
and the wavelength inside the radome material are:

Co 3x108 Ao 5
Ag= 0 - —0.05m=>5 A=20_ 2 _5g
0T F T ex100 m= > cm, n 173 cm

We will see later that if the radome is to be transparent to the wave, its thickness must be
chosen to be equal to one-half wavelength, I = A/2. Thus, [ = 2.9/2 = 1.45 cm. m]

Example 2.2.2: The nominal speed of light in vacuum is ¢y = 3x108 m/s. Because of the rela-
tionship ¢y = Af, it may be expressed in the following suggestive units that are appropriate
in different application contexts:

Co = 5000 km x 60 Hz (power systems)
300 m X 1 MHz (AM radio)
40 m X 7.5 MHz (amateur radio)
3 m X 100 MHz (FM radio, TV)
30 cm X 1 GHz (cell phones)
10 cm X 3 GHz (waveguides, radar)
3 cm X 10 GHz (radar, satellites)
1.5 pm X 200 THz (optical fibers)
500 nm x 600 THz (visible spectrum)

100 nm X 3000 THz (Uv)

Similarly, in terms of length/time of propagation:

co = 36000 km/120msec (geosynchronous satellites)

300 km/msec (power lines)
300 m/usec (transmission lines)
30 cm/nsec (circuit boards)

The typical half-wave monopole antenna (half of a half-wave dipole over a ground plane)
has length A/4 and is used in many applications, such as AM, FM, and cell phones. Thus,
one can predict that the lengths of AM radio, FM radio, and cell phone antennas will be of
the order of 75 m, 0.75 m, and 7.5 cm, respectively.

A more detailed list of electromagnetic frequency bands is given in Appendix B. The precise
value of ¢y and the values of other physical constants are given in Appendix A. [m}

Wave propagation effects become important, and cannot be ignored, whenever the
physical length of propagation is comparable to the wavelength A. It follows from
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Egs. (2.1.9) that the incremental change of a forward-moving electric field in propagating

fromz to z + Az is: \AE, | A
. z
—— =kAz =21 — (2.2.11)
|E| A

Thus, the change in the electric field can be ignored only if Az <« A, otherwise, propa-
gation effects must be taken into account.

For example, for an integrated circuit operating at 10 GHz, we have A = 3 cm, which
is comparable to the physical dimensions of the circuit.

Similarly, a cellular base station antenna is connected to the transmitter circuits by
several meters of coaxial cable. For a 1-GHz system, the wavelength is 0.3 m, which
implies that a 30-m cable will be equivalent to 100 wavelengths.

2.3 Energy Density and Flux

The time-averaged energy density and flux of a uniform plane wave can be determined
by Eqg. (1.8.6). As in the previous section, the energy is shared equally by the electric
and magnetic fields (in the forward or backward cases.) This is a general result for most
wave propagation and waveguide problems.

The energy flux will be in the direction of propagation. For either a forward- or a
backward-moving wave, we have from Eqs. (1.8.6) and (2.2.5):

1 1 1 1 ; : 1
We = —R 76E+Z-Ei‘z]:fR [—eE+e*J’<Z-E*+eJ’<Z]:feE+2
eze[z (1) B2 (2) | = L Re| Je B . JelEo.|
1 1 1 1 1 1
Wm = = R = H+Z'H;’<Z:|:* H+2:* 7AXE+2:7€E+2:W
m= g Re| GHHL(2)-HE (2) | = ulHosl? = Jus |2 Boul = JelBosl? = we

Thus, the electric and magnetic energy densities are equal and the total density is:

1
W=We+ Wy =2W, = Ee|150i|2 (2.3.1)

For the time-averaged Poynting vector, we have similarly:

P = %Re[Ei(z)fo(z)] = % Re[ Eos X (+2 X Eg) ]

Using the BAC-CAB rule and the orthogonality property Z - Eyp. = 0, we find:

P=x+7 €lEys|? (2.3.2)

Thus, the energy flux is in the direction of propagation, that is, +Z. The correspond-
ing energy velocity is, as in the previous section:
P A
V=—=%C2Z (2.3.3)
w

In the more general case of forward and backward waves, we find:
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w = %Re[eE(z)-E* (2)+uH(z)-H*(2)] = %E|E0+|2 + %E\Eo_|2
1 1 1 (2.3.4)
_ - * —5| - 2 .~ 2
P = ZRQ[E(Z)XH (Z)] Z(2n|E0+| 2n|E0_| )

Thus, the total energy is the sum of the energies of the forward and backward com-
ponents, whereas the net energy flux (to the right) is the difference between the forward
and backward fluxes.

2.4 Wave Impedance

For forward or backward fields, the ratio of E(z) to H(z)XZ is constant and equal to
the characteristic impedance of the medium. Indeed, it follows from Eq. (2.2.4) that

E.(z)= +nH. (z) XZ

However, this property is not true for the more general solution given by Egs. (2.2.6).
In general, the ratio of E(z) to H(z) X2 is called the wave impedance. Because of the
vectorial character of the fields, we must define the ratio in terms of the corresponding
Xx- and y-components:

[E(z)], _ Ex(2)
[H(z)xz], Hy(2)
[E(2)], Ey(z)

o0 = H)xa], = He2)

Zx(z) =

(wave impedances) (2.4.1)

Using the cartesian expressions of Eq. (2.2.7), we find:

Ex(z) A,e Kz + A_plkz
Ze(2) = _ _ :
x(#) Hy(z) " A e jkz — A_elkz
E,(2) B.okz 4 B_olkz (wave impedances) (2.4.2)
e _e
VA = _ +€e .
Y(Z) Hx(z) r’ B.eJkz — B_eikz

Thus, the wave impedances are nontrivial functions of z. For forward waves (that is,
with A_ = B_ = 0), we have Zx(z) = Z) (z) = n. For backward waves (A, = B, = 0), we
have Zx(z)= Z,(z)= —n.

The wave impedance is a very useful concept in the subject of multiple dielectric
interfaces and the matching of transmission lines. We will explore its use later on.

2.5 Polarization

Consider a forward-moving wave and let Ey = XA, + y B, be its complex-valued pha-
sor amplitude, so that E(z) = Fye /%% = (X A, + ¥ B, )e /%2 The time-varying field is
obtained by restoring the factor e/®!:
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E(z,t)= (XA, +yB,)elwt-ikz

The polarization of a plane wave is defined to be the direction of the electric field.
For example, if B, = 0, the E-field is along the x-direction and the wave will be linearly
polarized.

More precisely, polarization is the direction of the time-varying real-valued field
E(z,t)= Re[E(z,t)]. At any fixed point z, the vector E(z,t) may be along a fixed
linear direction or it may be rotating as a function of t, tracing a circle or an ellipse.

The polarization properties of the plane wave are determined by the relative magni-
tudes and phases of the complex-valued constants A, B;. Writing them in their polar
forms A, = Ae/®a and B, = Be/%r, where A, B are positive magnitudes, we obtain:

E(z,t)= (X Ae/Pa + yBelPr)elwi=ikz — g ppl(@Wi=kz+da) o g Boi(wi-kz+dp) (5 5 1)

Extracting real parts and setting E (z,t) = Re[E(z,t)] = R Ex(2,t) +V E, (z,1), we
find the corresponding real-valued x, y components:

Ex(z,t) = Acos(wt —kz + ¢g)
(2.5.2)
Ey(z,t) = Becos(wt — kz + ¢p)
For a backward moving field, we replace k by —k in the same expression. To deter-
mine the polarization of the wave, we consider the time-dependence of these fields at
some fixed point along the z-axis, say at z = 0O:

Ex(t) = Acos(wt + ¢py)
(2.5.3)
Ey (t) = Bcos(wt + ¢p)

The electric field vector E(t)= XZEx (1) +¥ E, (t) will be rotating on the xy-plane
with angular frequency w, with its tip tracing, in general, an ellipse. To see this, we
expand Eq. (2.5.3) using a trigonometric identity:

Ex(t) = A[cos wt cos ¢, — sin wt sin P, |

Ey (t) = B[cos wt cos ¢p — sin wt sin ¢y |

Solving for cos wt and sin wt in terms of Ex (t), Ey (t), we find:

£, (t t
coswtsing = Asinqba 0 sin ¢y
B A
E,(t
sin wtsin ¢ = %COS Pa - 230 cos Pp

where we defined the relative phase angle ¢ = ¢, — ¢p.

Forming the sum of the squares of the two equations and using the trigonometric
identity sin® wt + cos? wt = 1, we obtain a quadratic equation for the components Fy
and T, which describes an ellipse on the £y, Ey, plane:



2.5. Polarization 37

Ey(0) E(t) o\ (B Ex(t) L
(YT sin g — XTsmth) + ( yB cos ¢y — ; cosqbb) = sin® ¢
This simplifies into:
5.5 EEy o NN
el + B 2cos ¢ AR - sin“ ¢ (polarization ellipse) (2.5.4)

Depending on the values of the three quantities {A, B, ¢} this polarization ellipse
may be an ellipse, a circle, or a straight line. The electric field is accordingly called
elliptically, circularly, or linearly polarized.

To get linear polarization, we set ¢ = 0 or ¢ = 1T, corresponding to ¢, = ¢pp = 0,
or ¢, = 0, Ppp = —1, so that the phasor amplitudes are Ey = XA +y B. Then, Eq. (2.5.4)
degenerates into:

E:  E__EE, Ex _ Fy\?
Az Tp T2 ap 702 ( * )

representing the straight lines:

E, ==

slope —B/A
The fields (2.5.2) take the forms, in the two cases ¢ = 0 and ¢ = m:

Ey(t)= Acoswt d Ey(t)= Acoswt
E, (t)= Bcos wt an E,(t)= Bcos(wt — 1) = —B cos wt

To get circular polarization, we set A = B and ¢ = +77/2. In this case, the polariza-
tion ellipse becomes the equation of a circle:

2 2
B .5
A2 A?
The sense of rotation, in conjunction with the direction of propagation, defines left-
circular versus right-circular polarization. For the case, ¢, = 0 and ¢, = —717/2, we

have ¢ = ¢p,; — ¢pp = /2 and complex amplitude Ey = A (X — jy). Then,

Ey(t) = Acoswt

Ey (t) = Acos(wt —1/2)= Asinwt

Thus, the tip of the electric field vector rotates counterclockwise on the xy-plane.
To decide whether this represents right or left circular polarization, we use the IEEE
convention|93], which is as follows.
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Curl the fingers of your left and right hands into a fist and point both thumbs towards
the direction of propagation. If the fingers of your right (left) hand are curling in the
direction of rotation of the electric field, then the polarization is right (left) polarized.t

Thus, in the present example, because we had a forward-moving field and the field is
turning counterclockwise, the polarization will be right-circular. If the field were moving
backwards, then it would be left-circular. For the case, ¢ = —711/2, arising from ¢, = 0
and ¢, = 71/2, we have complex amplitude Ey = A (X + jy). Then, Eq. (2.5.3) becomes:

Ey(t) = Acoswt

Ey(t) = Acos(wt + 11/2)= —Asinwt (1)
N
TN

The tip of the electric field vector rotates clockwise on the xy-plane. Since the wave
is moving forward, this will represent left-circular polarization. Fig. 2.5.1 depicts the
four cases of left/right polarization with forward/backward waves.

X right-polarized X left-polarized
forward-moving forward-moving
@) @)
»2 >
: W
X left-polarized x right-polarized
backward-moving backward-moving
E(1) @)
-7 -—F —Z +—i-
y Y

Fig. 2.5.1 Left and right circular polarizations.

To summarize, the electric field of a circularly polarized uniform plane wave will be,
in its phasor form:

E(z)= A(X - j§)e ik (right-polarized, forward-moving)
E(z)= AKX+ ji/)e*sz (left-polarized, forward-moving)
E(z)=AX - jif)ejkz (left-polarized, backward-moving)
E(z)= AKX+ j}?)ejkz (right-polarized, backward-moving)

If A # B, but the phase difference is still ¢ = +711/2, we get an ellipse with major
and minor axes oriented along the x,y directions. Eq. (2.5.4) will be now:

TMost engineering texts use the IEEE convention and most physics texts, the opposite convention.
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A? B2
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~ |
L
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Finally, if A # B and ¢ is arbitrary, then the major/minor axes of the ellipse (2.5.4)
will be rotated relative to the X, y directions. Fig. 2.5.2 illustrates the general case.

f); A fy Z‘L
,,,,,,,,,,,,,, Bl ______ _
| (@
! D ' ‘
BN 0 / Z
—A| O A -
| RN !

Fig. 2.5.2 General polarization ellipse.

It can be shown (see Problem 2.10) that the tilt angle 0 is given by:

2AB
tan29 = m COS¢ (255)

The ellipse semi-axes A’, B’, that is, the lengths OC and OD, are given by:

A = \/;(AZ + B2)+%\/(A2 — B2)2+4A2B2 cos? ¢b
(2.5.6)

B = \/;(AZ + B2)_%\/(A2 — B2)2+4A2B? cos? ¢

where s = sign(A — B). These results are obtained by defining the rotated coordinate
system of the ellipse axes:

E, =ExcosO + E,sin0

(2.5.7)
E, = Eycos @ — Exsin6
and showing that Eq. (2.5.4) transforms into the standardized form:
I-/z f)’}Z
Afz B2 = 1 (2.5.8)

The polarization ellipse is bounded by the rectangle with sides at the end-points
+A, =B, as shown in the figure. To decide whether the elliptic polarization is left- or
right-handed, we may use the same rules depicted in Fig. 2.5.1
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Example 2.5.1: Determine the real-valued electric and magnetic field components and the po-
larization of the following fields specified in their phasor form (given in units of V/m):

E(z)= —-3j%e k2

E(z)= (3% +4V)et/kz
E(z)= (-4% +39y)e /¥

F@ e oap oo
m
N
|

(

= (
E(z)= (
= (

(

= (3e/™3 % 4+ 3y)etike

4% + 3e T4 Y) eIk
3e—jﬂ/8)ﬂ( + 4ej1'r/8 i,)eJrjkz
4eiT/4 % 4 3p-JT/2 ’A,)e—jkz
3e—jrr/2 X+ 4ejrr/4 i,)eJrjkz

Solution: Restoring the e/®! factor and taking real-parts, we find the x, y electric field compo-

nents, according to Eq. (2.5.2):

Ex(z,t)=3cos(wt —kz —11/2),
Ex(z,t)= 3 cos(wt + kz),
Ex(z,t)=4cos(wt —kz — 1),
Ex(z,t)=3cos(wt + kz + 11/3),
Ex(z,t)=4cos(wt —kz),
Ex(z,t)=3cos(wt + kz — 11/8),
Ex(z,t)=4cos(wt —kz + 11/4),
Ey(z,t)=3cos(wt + kz —11/2),

PR e an o

Ey(z,t)=0

Ey(z,t)=4cos(wt + kz)
Ey(z,t)= 3 cos(wt — kz)
Ey(z,t)= 3 cos(wt + kz)
Ey(z,t)= 3cos(wt —kz —11/4)
Ey(z,t)=4cos(wt + kz + 11/8)
Ey(z,t)= 3 cos(wt —kz —11/2)
Ey(z,t)=4cos(wt +kz +11/4)

Since these are either forward or backward waves, the corresponding magnetic fields are
obtained by using the formula H (z,t) = =2 X E (z, t) /n. This gives the x,y components:

(cases a, ¢, e, g):

(casesb, d, f,h): Hy(z,t)=

Hi(z,t)= —%fy(z,n,

1
—Ey(z,0),
n y

Hy(z,t)= %fx(z, )

Hy(z,0)= —%fx<z, )

To determine the polarization vectors, we evaluate the electric fields at z = 0:

a. Ex(t)=3cos(wt—1/2),
b. Ex(t)=3cos(wt),

c. Ex(t)=4cos(wt+ 1),
d. Ex(t)=3cos(wt+1/3),
e. Ex(t)=4cos(wt),

f.  Ey(t)=3cos(wt—1/8),
g. Ex(t)=4cos(wt+1/4),
h. ZE,(t)=3cos(wt—1/2),

Ey(6)=0

Ey (t)= 4 cos(wt)

£y (t)= 3 cos(wt)

E, (t)= 3 cos(wt)

Ty (t) = 3 cos(wt — 11/4)
E, (t)=4cos(wt + 11/8)
Ey (t)= 3 cos(wt —1/2)
Ey (t) = 4 cos(wt + 11/4)

The polarization ellipse parameters A, B, and ¢¢ = ¢, — ¢y, as well as the computed
semi-major axes A’, B', tilt angle 68, sense of rotation of the electric field, and polarization

type are given below:
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case A B ¢ A’ B’ 0 rotation polarization
a. 3 0 -90° 3 0 0° — linear/forward
b 3 4 0° 0 5 —36.87° 7 linear/backward
c 4 3 180° 5 0 —36.87° N linear/forward
d 3 3 60° 3.674 2.121 45° @) left/backward
e 4 3 45° 4.656 1.822 33.79° @) right/forward
f 3 4 —45° 1.822 4.656 —33.79° O right/backward
g 4 3 135° 4.656 1.822 —33.79° @) right/forward
h 3 4 -—135° 1.822 4.656 33.79° O right/backward
In the linear case (b), the polarization ellipse collapses along its A’-axis (A" = 0) and

becomes a straight line along its B-axis. The tilt angle 6 still measures the angle of the A’-
axis from the x-axis. The actual direction of the electric field will be 90° —36.87° = 53.13°,
which is equal to the slope angle, atan(B/A) = atan(4/3) = 53.13°.

In case (c), the ellipse collapses along its B'-axis. Therefore, 0 coincides with the angle of
the slope of the electric field vector, that is, atan(—B/A) = atan(—3/4) = —36.87°. m]

With the understanding that 0 always represents the slope of the A’-axis (wWhether
collapsed or not, major or minor), Egs. (2.5.5) and (2.5.6) correctly calculate all the special
cases, except when A = B, which has tilt angle and semi-axes:

0 =45°, A" =A\1+cos¢p, B =A,1-cos¢ (2.5.9)

The MATLAB function e171ipse.m calculates the ellipse semi-axes and tilt angle, A’,
B’, 0, given the parameters A, B, ¢. It has usage:

[a,b,th] = ellipse(A,B,phi) % polarization ellipse parameters

For example, the function will return the values of the A", B’, 6 columns of the pre-
vious example, if it is called with the inputs:

A [3, 3, 4, 3, 4, 3, 4, 3]";
B [0, 4, 3, 3, 3, 4, 3, 41’;
phi = [-90, 0, 180, 60, 45, -45, 135, -135]’;

To determine quickly the sense of rotation around the polarization ellipse, we use
the rule that the rotation will be counterclockwise if the phase difference ¢ = ¢, — Py
is such that sin ¢ > 0, and clockwise, if sin ¢ < 0. This can be seen by considering the
electric field at time t = 0 and at a neighboring time t. Using Eq. (2.5.3), we have:

F(0) =XAcospa +VBcos oy E0 E©) )
E(t) =xAcos(wt + ¢pg)+yBcos(wt + ¢p) E(1)
The sense of rotation may be determined from the cross-product E(0) X E (t). If

the rotation is counterclockwise, this vector will point towards the positive z-direction,
and otherwise, it will point towards the negative z-direction. It follows easily that:
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E(0)XE(t)= zABsin ¢ sin wt (2.5.10)

Thus, for t small and positive (such that sinwt > 0), the direction of the vector
E(0) < E(t) is determined by the sign of sin ¢.

2.6 Uniform Plane Waves in Lossy Media

We saw in Sec. 1.9 that power losses may arise because of conduction and/or material
polarization. A wave propagating in a lossy medium will set up a conduction current
Jeona = OFE and a displacement (polarization) current Jgisp = jwD = jwegE. Both
currents will cause ohmic losses. The total current is the sum:

Jiot = Jeond + Jaisp = (0 +jweg)E = jweE
where €. is the effective complex dielectric constant introduced in Eq. (1.9.22):
. , LT
JWEc =0 + jJweg = €c=€4—] © (2.6.1)

The quantities o, €; may be complex-valued and frequency-dependent. However, we
will assume that over the desired frequency band of interest, the conductivity o is real-
valued; the permittivity of the dielectric may be assumed to be complex, €45 = 6& — je,’i’.
Thus, the effective €, has real and imaginary parts:

=€ —je' =€y j (e;; N %) (2.6.2)

Power losses arise from the non-zero imaginary part €”’. We recall from Eq. (1.9.25)
that the time-averaged ohmic power losses per unit volume are given by:

2

dP 1 1 144
dl“;ss = ERe[Jtot-E*] = S we |E|

Uniform plane waves propagating in such lossy medium will satisfy Maxwell’s equa-
tions (1.8.2), with the right-hand side of Ampére’s law given by Jiot = J+jwD = jweE.

The assumption of uniformity (0x = 0, = 0), will imply again that the fields E, H are
transverse to the direction z. Then, Faraday’s and Ampeére’s equations become:

:%(U+we;,')|E|2 (2.6.3)

VXE=—jwuH ZX 0,E=—jwuH
- (2.6.4)
V X H = jweE Z X 0,H = jweE

These may be written in a more convenient form by introducing the complex wavenum-
ber k. and complex characteristic impedance n. defined by:

ke = w\JUeEc, nc= /ﬂ (2.6.5)
€c

They correspond to the usual definitions k = w/c = w.+/u€e and n = ./u/€e with
the replacement € — €.. Noting that wu = k:n. and we. = kc/ne, Egs. (2.6.4) may
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be written in the following form (using the orthogonality property Z - E = 0 and the
BAC-CAB rule on the first equation):

d E [ o —jke E
E[ncsz]_[—jkc 0 }[ncHxi] (266

To decouple them, we introduce the forward and backward electric fields:

1
E+:§(E+nCH><i) E=E. +E

1 < 1 (2.6.7)
E_.=_—(E-ncHX2) H= —2x[E, —E_]

2 Ne

Then, Egs. (2.6.6) may be replaced by the equivalent system:
O | Ex | | —Jke O E.
e .

E.(z)= Ep.e™kZ  where 2-Eyp. =0 (2.6.9)

with solutions:

Thus, the propagating electric and magnetic fields are linear combinations of forward
and backward components:

E(z) = Ey,eJkZ 4+ E,_glkez

1 . . (2.6.10)
H(z) = — 7 x [Ey,e 7k — E,_e/ke?]

c

In particular, for a forward-moving wave we have:
. . 1
E(z)= Epe /%Z  H(z)= Hye /**, with 2-E =0, Hy=—2xE (2.6.11)
c

Egs. (2.6.10) are the same as in the lossless case but with the replacements k — k.
and n — n.. The lossless case is obtained in the limit of a purely real-valued €..

Because k. is complex-valued, we define the phase and attenuation constants f and
« as the real and imaginary parts of k., that is,

c=B-jx= w\/m (2.6.12)

We may also define a complex refractive index n. = k./ko that measures k. relative
to its free-space value kg = w/cy = w./lo€p. For a non-magnetic medium, we have:

k¢ €c [€" — je" .
Ne=-—= |—=_|[—*—— =n-JjK 2.6.13
c Ko €o € J ( )

where n, k are the real and imaginary parts of n.. The quantity k is called the extinction
coefficient and n is still called the refractive index. Another commonly used notation is
the propagation constant y defined by:

Y = jke = ot +jB (2.6.14)
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It follows from y = « + jB = jkc = jkone = jko(n — jk) that § = kon and « =
kok. The nomenclature about phase and attenuation constants has its origins in the
propagation factor e /k<Z, We can write it in the alternative forms:

e IkeZ = V7 = o= Zp=JBZ — p—KoKZo=jkonz (2.6.15)

Thus, the wave amplitudes attenuate exponentially with the factor e~ %4, and oscillate
with the phase factor e 7#Z. The energy of the wave attenuates by the factor e 2%Z, as
can be seen by computing the Poynting vector. Because e J%¢Z is no longer a pure phase
factor and n. is not real, we have for the forward-moving wave of Eq. (2.6.11):

P(z)

1 1 1 : .
5 Re[ E(z) xH* (2)] = 5 Re [F Ey X (z % Eg)e—<“+Jﬁ>Ze—<“—JB>Z]
c

1
iiRe(nC‘l) |Egl?e 2% = 2P (0)e ?* =72P(2)

Thus, the power per unit area flowing past the point z in the forward z-direction will be:

P(z)= P(0)e 2% (2.6.16)

The quantity 2 (0) is the power per unit area flowing past the point z = 0. Denoting
the real and imaginary parts of n. by n’,n”, so that, n. = n’ + jn’’, and noting that
|Eo| = |ncHy X Z| = Inc||Hyl|, we may express P (0) in the equivalent forms:

1 _ 1,
P(0)= gRe(ncl) |Egl? = SN |Hy? (2.6.17)

The attenuation coefficient & is measured in nepers per meter. However, a more
practical way of expressing the power attenuation is in dB. Taking logs of Eq. (2.6.16),
we have for the dB attenuation at z, relative to z = 0:

P(z)

Agp(z)= —10log,, [m

] = 20log;o(e) xz = 8.686 xxz (2.6.18)

where we used the numerical value 201og;, e = 8.686. Thus, the quantity xgg = 8.686 x
is the attenuation in dB per meter:

xgap = 8.686 x (dB/m) (2.6.19)

Another way of expressing the power attenuation is by means of the so-called pen-
etration or skin depth defined as the inverse of «:

6= (skin depth) (2.6.20)

1
x

Then, Eq. (2.6.18) can be rewritten in the form:

Aus (2) = 8.686 g (attenuation in dB) (2.6.21)
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This gives rise to the so-called “9-dB per delta” rule, that is, every time z is increased
by a distance §, the attenuation increases by 8.686 ~ 9 dB.

A useful way to represent Eq. (2.6.16) in practice is to consider its infinitesimal ver-
sion obtained by differentiating it with respect to z and solving for «:

_ P’ (2)
P'(z)= —2aP(0)e?* =2aP(z) = «&=-—
(2) (0) (z) 2D (2)
The quantity P, = —P ' represents the power lost from the wave per unit length

(in the propagation direction.) Thus, the attenuation coefficient is the ratio of the power
loss per unit length to twice the power transmitted:

P/
o = loss

= (attenuation coefficient) (2.6.22)
2Ptransm

If there are several physical mechanisms for the power loss, then « becomes the
sum over all possible cases. For example, in a waveguide or a coaxial cable filled with a
slightly lossy dielectric, power will be lost because of the small conduction/polarization
currents set up within the dielectric and also because of the ohmic losses in the walls
of the guiding conductors, so that the total & will be @ = Xgie] + Kwalls-

Next, we verify that the exponential loss of power from the propagating wave is due
to ohmic heat losses. In Fig. 2.6.1, we consider a volume dV = IdA of area dA and
length [ along the z-direction.

] < dA

— —» E A
—» P(0) —> P
— —
,,,,,,,,,,,,,,,,,,,,,, H Z
P

Fig. 2.6.1 Power flow in lossy dielectric.

From the definition of 7 (z) as power flow per unit area, it follows that the power
entering the area dA at z = 0 will be dPj, = P (0)dA, and the power leaving the area
dA at z =1, dPoy = P (I)dA. The difference dPoss = dPin — dPoy = [P (0) =P (1) |dA
will be the power lost from the wave within the volume I dA. Because P (1) = P (0) e 21,
we have for the power loss per unit area:

dPloss

_ _ _ _-2any _ 1 -1 201 _ ,-2al
15 = PO =P ()= P(0) (1 - ) = Re(n!) Bl (1-e )  (2.623)
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On the other hand, according to Eq. (2.6.3), the ohmic power loss per unit volume
will be we’'|E(z)|%/2. Integrating this quantity from z = 0 to z = I will give the total
ohmic losses within the volume [ dA of Fig. 2.6.1. Thus, we have:

1 1
APopmic = %we”J \E(2)|2dzdA = %we” U |Eo|2e20 dz} dA.  or,
0 0

dPohmic
dA
Are the two expressions in Egs. (2.6.23) and (2.6.24) equal? The answer is yes, as
follows from the following relationship among n¢, €”’, « (see Problem 2.12):

we//
= Ax |Eol2 (1 — e2o1) (2.6.24)

rr

we
Re(n;') = v (2.6.25)

Thus, the power lost from the wave is entirely accounted for by the ohmic losses
within the propagation medium. The equality of (2.6.23) and (2.6.24) is an example of
the more general relationship proved in Problem 1.5.

In the limit [ — oo, we have P (1) — 0, so that dPonmic/dA = P (0), which states that
all the power that enters at z = 0 will be dissipated into heat inside the semi-infinite
medium. Using Eq. (2.6.17), we summarize this case:

dp ohmic
dA

- %Re(nc‘l) |Eo|? = %r]’ |Hy|? (ohmic losses) (2.6.26)

This result will be used later on to calculate ohmic losses of waves incident on lossy
dielectric or conductor surfaces, as well as conductor losses in waveguide and transmis-
sion line problems.

Example 2.6.1: The absorption coefficient & of water reaches a minimum over the visible
spectrum—a fact undoubtedly responsible for why the visible spectrum is visible.

Recent measurements [111] of the absorption coefficient show that it starts at about 0.01
nepers/m at 380 nm (violet), decreases to a minimum value of 0.0044 nepers/m at 418
nm (blue), and then increases steadily reaching the value of 0.5 nepers/m at 600 nm (red).
Determine the penetration depth ¢ in meters, for each of the three wavelengths.

Determine the depth in meters at which the light intensity has decreased to 1/10th its
value at the surface of the water. Repeat, if the intensity is decreased to 1/100th its value.

Solution: The penetration depths 6 = 1/« are:
6 =100, 227.3, 2m for « = 0.01, 0.0044, 0.5 nepers/m

Using Eq. (2.6.21), we may solve for the depth z = (A/8.9696)6. Since a decrease of
the light intensity (power) by a factor of 10 is equivalent to A = 10 dB, we find z =
(10/8.9696) 6 = 1.128 §, which gives: z = 112.8, 256.3, 2.3 m. A decrease by a factor of
100 = 102°/10 corresponds to A = 20 dB, effectively doubling the above depths. O
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Example 2.6.2: A microwave oven operating at 2.45 GHz is used to defrost a frozen food having
complex permittivity €, = (4 — j) €o farad/m. Determine the strength of the electric field
at a depth of 1 cm and express it in dB and as a percentage of its value at the surface.
Repeat if €. = (45 — 15j) €y farad/m.

Solution: The free-space wavenumber is kg = w./lio€y = 277f /Co = 211(2.45%10°) / (3x108) =
51.31 rad/m. Using k; = w./Ho€c = Ko~/€c/€p, we calculate the wavenumbers:

ke =B —jox =51.31y4—j = 51.31(2.02 — 0.25j) = 103.41 — 12.73j m"!
ke = B —jox =51.31/45 — 15j = 51.31(6.80 — 1.10j) = 348.84 — 56.61j m"!

The corresponding attenuation constants and penetration depths are:

o = 12.73 nepers/m, d =7.86cm
o = 56.61 nepers/m, 0 =1.77cm

It follows that the attenuations at 1 cm will be in dB and in absolute units:

A =8.6862z/6 = 1.1 dB, 10-4/20 = .88
A = 8.6862z/5 = 4.9 dB, 10-4/20 = 0,57

Thus, the fields at a depth of 1 cm are 88% and 57% of their values at the surface. The
complex permittivities of some foods may be found in [112]. ]

A convenient way to characterize the degree of ohmic losses is by means of the loss
tangent, originally defined in Eq. (1.9.28). Here, we set:

€’ 0+ we;
T=tanf=— =, 4 (2.6.27)
€ wey

Then, €, = €' — je” =€’ (1 — jT)= €;(1 — jT). Therefore, k¢, n. may be written as:

ke = w\uey 1=, ne= [5 a-jn (2.6.28)
d
The quantities ¢q4 = 1/ /p€,; and ng = /u/€,; would be the speed of light and

characteristic impedance of an equivalent lossless dielectric with permittivity €.

In terms of the loss tangent, we may characterize weakly lossy media versus strongly
lossy ones by the conditions T < 1 versus T > 1, respectively. These conditions depend
on the operating frequency w:

o + wey o+ wey
— K1 versus —5— > 1

The expressions (2.6.28) may be simplified considerably in these two limits. Using
the small-x Taylor series expansion (1 +x)1/2~ 1+ x/2, we find in the weakly lossy case
(1 -j7)Y2=~1 - j1/2, and similarly, (1 —jT) /2=~ 1 + jT/2.

On the other hand, if T > 1, we may approximate (1—jT) /2= (—j1)!/2= e=/T/471/2
where we wrote (—j) /2= (e J™/2)1/2= ¢=JT/4  Similarly, (1 — jT) /2~ &/™/41-1/2
Thus, we summarize the two limits:
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1-j%, if T<1
(1-jn)"2 = 2 (2.6.29)
jmiA 12 — (1 1y | L ; o
e T (1-J) 5 if T>1
1 +jg, if T<1
(1 _J--,-)fl/Zz ‘ 1 (2.6.30)
eI T2 = (1 + ) or if T>1

2.7 Propagation in Weakly Lossy Dielectrics

In the weakly lossy case, the propagation parameters k., n. become:

T o+ we
ke=B—-jo=w e’(l—'f)zw e [1-j—-F4
c=B-J Heg J5 Heg J 2we,
, (2.7.1)
r e H ( .T) [ u .0+ wey
= + = —(1+j=) = S |1+j—F7F77
Ne=n +Jn e, J2 €d< J 2w€,
Thus, the phase and attenuation constants are:
’ w 1 u rr 1 124
= W\UE;=—, &K= [F(0+wey;)=-nalo+ we 2.7.2
B JHE, ca 5 ed( a)=5nal a) (2.7.2)

For a slightly conducting dielectric with e['i' = 0 and a small conductivity o, Eq. (2.7.2)

implies that the attenuation coefficient « is frequency-independent in this limit.

Example 2.7.1: Seawater has o = 4 Siemens/m and €5 = 81¢, (so that €; = 81€y, €; = 0.)

Then, ng = \Jea/€p = 9, and ¢4 = co/ng = 0.33 X 108 m/sec and ng = no/ng = 377/9 =
41.89 Q. The attenuation coefficient (2.7.2) will be:

1 1
X = Enda = 541.89 X 4 = 83.78 nepers/m = g = 8.686 x = 728 dB/m

The corresponding skin depthis § = 1/« = 1.19 cm. This result assumes that 0 < wey,
which can be written in the form w > o/¢€g4, or f > fy, where fo = o/ (21T€4). Here, we
have f, = 888 MHz. For frequencies f < f, we must use the exact equations (2.6.28). For
example, we find:

f =1 kHz, ®gg = 1.09 dB/m, 6=7.96m
f =1MHz, Xgg = 34.49 dB/m, 6 =25.18cm
f =1 GHz, g = 672.69 dB/m, 6 =129 cm

Such extremely large attenuations explain why communication with submarines is impos-
sible at high RF frequencies. m}
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2.8 Propagation in Good Conductors

A conductor is characterized by a large value of its conductivity ¢, while its dielectric
constant may be assumed to be real-valued €; = € (typically equal to €y.) Thus, its
complex permittivity and loss tangent will be:

o g o
€Ec=€e—J—=€(1—-j—, = — 2.8.1
¢ T ( Jwe) T~ we ( )

A good conductor corresponds to the limit T > 1, or, 00 > we. Using the approxi-
mations of Egs. (2.6.29) and (2.6.30), we find for the propagation parameters k¢, n:

kC=B—ja=w\/ﬁ\/§(1—1)=\/@(l_ﬂ
, o 1 . .
Ne=n"+jn =\/E\/;(1+J):\/T(1+J)

Thus, the parameters f3, «, § are:

oy |WHO _ ] 2 1
B=«= 5 = fuo 6—0(— wno = Jrfuo (2.8.3)

where we replaced w = 21f. The complex characteristic impedance n. can be written
in the form n. = Rg(1 + j), where R; is called the surface resistance and is given by the
equivalent forms (where n = \/u/€):

we T 1
R. = Y ol 2.8.4
ST\ o "Voo "o o6 (2.8.4)

Example 2.8.1: For a very good conductor, such as copper, we have o~ = 5.8 x 107 Siemens/m.
The skin depth at frequency f is:

(2.8.2)

1 1
S Jmfuo  Jmw-4m-107-5.8-107

f Y2 =0.0661f""2 (finHz)

We find at frequencies of 1 kHz, 1 MHz, and 1 GHz:

f=1kHz, 6 =2.09 mm
f=1MHz, 6 =0.07mm
f=1GHz, 6 =2.09um

Thus, the skin depth is extremely small for good conductors at RF. [m}

Because O is so small, the fields will attenuate rapidly within the conductor, de-
pending on distance like e Y% = e~ *ZgJBZ — 0=2/05-JBZ The factor e %/% effectively
confines the fields to within a distance ¢ from the surface of the conductor.

This allows us to define equivalent “surface” quantities, such as surface current and
surface impedance. With reference to Fig. 2.6.1, we define the surface current density by
integrating the density J(z) = 0E(z)= gEye Y% over the top-side of the volume [dA,
and taking the limit [ — oo :
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Js = J J(z)dz = J OEye Y*dz = gEO, or,
0 0 y

1
. = — E 2.8.5
Js Zs 0 ( )
where we defined the surface impedance Z; = y/o. In the good-conductor limit, Z; is
equal to n.. Indeed, it follows from Egs. (2.8.3) and (2.8.4) that:
Yy _a+jB _

Zy=2 =

(8.4 . .
o o E(l +J)=Rs(1 +j)=nc

Because Hy X Z = Ey/n., it follows that the surface current will be related to the
magnetic field intensity at the surface of the conductor by:

Jo = Hyx 2 =1 X Hy (2.8.6)

where 1 = —Z is the outward normal to the conductor. The meaning of J is that it
represents the current flowing in the direction of Ey per unit length measured along the
perpendicular direction to Ep, that is, the Hy-direction. It has units of A/m.

The total amount of ohmic losses per unit surface area of the conductor may be
calculated from Eq. (2.6.26), which reads in this case:

dp ohmic
dA

1 1
= ERS |Hy|? = ERSIJSI2 (ohmic loss per unit conductor area) (2.8.7)

2.9 Propagation in Oblique Directions

So far we considered waves propagating towards the z-direction. For single-frequency
uniform plane waves propagating in some arbitrary direction in a lossless medium, the
propagation factor is obtained by the substitution:

okz _, o=kt

where k = kk, with k = w /i€ = w/c and Kk is a unit vector in the direction of propa-
gation. The fields take the form:

E(r,t)= Ege/®t-Jkr B R
. . (2.9.1)
H(r,t)= Hye/@t-jkr By
where E,, Hy are constant vectors transverse to k, thatis, k - Ey = k- Hy = 0, such that:
1 - 1~
H()ZikXEb:*kXEo (2.9.2)
wH n

where nn = J/u/€. Thus, {E, H,k} form a right-handed orthogonal system.

The solutions (2.9.1) can be derived from Maxwell’s equations in a straightforward
fashion. When the gradient operator acts on the above fields, it can be simplified into
V — —jk. This follows from:



2.9. Propagation in Oblique Directions 51

V(e k) = jk (e )

After canceling the common factor e/®tJ kT Maxwell’s equations (2.1.1) take the form:

—ij Ey = —jwuHO kX Ey = wuH)y
—jk X Hy = jwekE, k x Hy = —wekEy
= (2.9.3)
k-Ey=0 k-Ey=0
k-Hy=0 k-Hy=0

The last two imply that Ey, Hy are transverse to k. The other two can be decoupled
by taking the cross product of the first equation with k and using the second equation:

kx (kx Ey)= wukx Hy = —w?ue E (2.9.4)

The left-hand side can be simplified using the BAC-CAB rule and k - Ey = 0, that is,
kX (kx Ey)=k(k- Ey)—Ey(k- k)= — (k- k)Ey. Thus, Eq. (2.9.4) becomes:

—(k- k) Ey = —w?’ueE,

Thus, we obtain the consistency condition:

k- k= w?ue (2.9.5)

Defining k = Vk - k = |k|, we have k = w./u€. Using the relationship wu = kn and
defining the unit vector k = k/|k| = k/k, the magnetic field is obtained from:

k X E k X E 1.
= L OZHkXEO

H
0 wu kn

The constant-phase (and constant-amplitude) wavefronts are the planes k - r =
constant, or, k - r = constant. They are the planes perpendicular to the propagation
direction k.

As an example, consider a rotated coordinate system {x’,y’,z’'} in which the z'x’
axes are rotated by angle 0 relative to the original zx axes, as shown in Fig. 2.9.1. Thus,
the new coordinates and corresponding unit vectors will be:

7z ' =zcos0 +xsin0, 7' =7cos0 +Xsin O
X' =xcos0 —zsin 0, X =%cos@ —2sin0 (2.9.6)
Yy =y, v =y

We choose the propagation direction to be the new z-axis, that is, k = 2/, so that the
wave vector k = kk = k2’ will have components kx = kcos @ and ky = ksin 0:

k=kk=k(ZcosO +%ksinf0)= 2k, + Rky

The propagation phase factor becomes:
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v
E § 3
0 k kx k kA
0 oz 0 3 .z
k. g k& g
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H |
, O\ H
yry yy T

Fig. 2.9.1 TM and TE waves.

e—jk-r — e—j(kzz+kxx) _ e—jk(zcos@+xsin9) _ e—jkz’

Because {Ey, Hy, k} form a right-handed vector system, the electric field may have
components along the new transverse (with respect to z’) axes, that is, along x" and y.
Thus, we may resolve Ej into the orthogonal directions:

Ey=%A+9B= (Xcos0 —2sin0)A + VB (2.9.7)

The corresponding magnetic field willbe Hy = kx Ey/n = 2’ x (¥ A+¥yB) /n. Using
the relationships 2’ X% =y and 2’ xy = —%, we find:
1 1

Hy = 1 [yA-%'B] = 1 [y A - (Xcos® — 2sin0)B] (2.9.8)

The complete expressions for the fields are then:

E(r,t) = [(Xcos0 —2sin0)A + y B]e/wi-/k(zcos0+xsin0)

1 o , (2.9.9)
H(r,t) = 0 [¥ A — (Xcos O — 2sin 0) B]e/@!-/k(zcos0+xsin0)

Written with respect to the rotated coordinate system {x’,)’, z’}, the solutions be-
come identical to those of Sec. 2.2:

E(r,t) = [XA+§ Ble/wt-ks

e (2.9.10)
H(r,t) :E[ A — %' B]e/wt-ikz

They are uniform in the sense that they do not depend on the new transverse coor-
dinates x’,y’. The constant-phase planes are z’ = 2" - r = zcos 0 + xsin @ = const.

The polarization properties of the wave depend on the relative phases and ampli-
tudes of the complex constants A, B, with the polarization ellipse lying on the x’y’ plane.

The A- and B-components of E; are referred to as transverse magnetic (TM) and
transverse electric (TE), respectively, where “transverse” is meant here with respect to
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the z-axis. The TE case has an electric field transverse to z; the TM case has a magnetic
field transverse to z. Fig. 2.9.1 depicts these two cases separately.

This nomenclature arises in the context of plane waves incident obliquely on inter-
faces, where the xz plane is the plane of incidence and the interface is the xy plane. The
TE and TM cases are also referred to as having “perpendicular” and “parallel” polariza-
tion vectors with respect to the plane of incidence, that is, the E-field is perpendicular
or parallel to the xz plane.

We may define the concept of transverse impedance as the ratio of the transverse
(with respect to z) components of the electric and magnetic fields. In particular, by
analogy with the definitions of Sec. 2.4, we have:

Ex AcosO
nm= 1 = "7 =ncos@
H,~ 1,
n

n E, B n
=X = =
Hx %BCOSQ cos 0

(2.9.11)

Such transverse impedances play an important role in describing the transfer matri-
ces of dielectric slabs at oblique incidence. We discuss them further in Chap. 6.

2.10 Complex Waves

The steps leading to the wave solution (2.9.1) do not preclude a complex-valued wavevec-
tor k. For example, if the medium is lossy, we must replace {n, k} by {nc, kc}, where
k. = B — j«, resulting from a complex effective permittivity €.. If the propagation
direction is defined by the unit vector Kk, chosen to be a rotated version of Z, then the
wavevector will be defined by k = k. k = (B—jo)k. Because k. = w+/u€e. and k-k = 1,
the vector k satisfies the consistency condition (2.9.5):

k- k=k>=w?ue. (2.10.1)
The propagation factor will be:

e kT _ e—jkcf(-r _ e—(a+jB>l"<-r _ e—aR-re—jBR-r

The wave is still a uniform plane wave in the sense that the constant-amplitude
planes, ok - r = const., and the constant-phase planes, BR - r = const., coincide with
each other—being the planes perpendicular to the propagation direction. For example,
the rotated solution (2.9.10) becomes in the lossy case:

E(r,t) = [ A +§,’B]ejwtfjkcz’ = [%¥A +§,’B]ejwr7(¢x+j5)z’
1. o iwt—ikez' 1 .., "y PR (2.10.2)
= — [y A -%'Ble/vtikeZ — — [§'A — %'B]e/®! (a+jB)z
Ne Ne
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In this solution, the real and imaginary parts of the wavevector k = B — jo& are
collinear, that is, B = Bk and & = « k. There exist solutions having a complex wavevec-
tor k = B — jo& such that B, & are not collinear. The propagation factor becomes now:

ekt — o= (a+jB)r _ p-atr,jBor (2.10.3)

If &, B are not collinear, such a wave will not be a uniform plane wave because the
constant-amplitude planes, & - r = const., and the constant-phase planes, B - r = const.,
will be different. The consistency condition k - k = k2 = (B — jo)? splits into the
following two conditions obtained by equating real and imaginary parts:

. _ . — R2 _ 2
B (B-jew= (B-je? = | f b & X (2.10.4)

With E; chosen to satisfy k- Ey = (B —j&) -Ey = 0, the magnetic field is computed from
Eq. (2.9.2), Hy = kX Ey/wu = (B — jo) XEy/ wp.
Let us look at an explicit construction. We choose B, & to lie on the xz plane of
Fig. 2.9.1, and resolve them as B = Z B, + ZBx and & = Z &, + Z &x. Thus,
k= B —jO( =2 (BZ _jaz)"‘f((ﬁx —j(Xx)= ikz +7A(kx

Then, the propagation factor (2.10.3) and conditions (2.10.4) read explicitly:

e Jkr — o= (0zz+0xx) p—j (Bzz+BxX)

B+ Bi-of— g =B - (2.10.5)

BZO(Z + Bx(xx = B(X

Because k is orthogonal to both y and ¥ X k, we construct the electric field Ej as the
following linear combination of TM and TE terms:

. .k _B-j
E, = k)A+vyB h k=-—= 2.10.
0= (yxkA+yB,  where ke~ B j (2.10.6)
This satisfies k - Ey = 0. Then, the magnetic field becomes:
k X Ey 1 ~
H=—"—"="—[yA- (yxKk)B (2.10.7)
0= "on e [y y |

The vector k is complex-valued and satisfies k - k = 1. These expressions reduce to
Eq. (2.10.2), if k = 2'.

Waves with a complex k are known as complex waves. In applications, they always
appear in connection with some interface between two media. The interface serves either
as a reflecting/transmitting surface, or as a guiding surface.

For example, when plane waves are incident obliquely from a lossless dielectric onto
a planar interface with a lossy medium, the waves transmitted into the lossy medium
are of such complex type. Taking the interface to be the xy-plane and the lossy medium
to be the region z > 0, it turns out that the transmitted waves are characterized by
attenuation only in the z-direction. Therefore, Egs. (2.10.5) apply with «; > 0 and
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ox = 0. The parameter By is fixed by Snell’s law, so that Egs. (2.10.5) provide a system
of two equations in the two unknowns f; and o,. We discuss this further in Chap. 6.

Wave solutions with complex k = B — jo are possible even when the propagation
medium is lossless so that €. = € isreal, and § = w./H€ and « = 0. Then, Egs. (2.10.4)
become BB — & - & = B2 and B - & = 0. Thus, the constant-amplitude and constant-
phase planes are orthogonal to each other.

Examples of such waves are the evanescent waves in total internal reflection, various
guided-wave problems, such as surface waves, leaky waves, and traveling-wave antennas.
The most famous of these is the Zenneck wave, which is a surface wave propagating
along a lossy ground, decaying exponentially with distance above and along the ground.

For a classification of various types of complex waves and a review of several ap-
plications, including the Zenneck wave, see Refs. [451-457]. We will encounter some of
these later on.

The table below illustrates the vectorial directions and relative signs of some possible
types, assuming that &, B lie on the xz plane with the yz plane being the interface plane.

o B |, x| Bz Px| complexwave type

0O N | 0 0 | + — | oblique incidence

1 0 + | + 0 | evanescent surface wave
7 N | + 4+ | + — | Zenneck surface wave

N /7| - 4+ |+ + |leaky wave

2.11 Problems

2.1 A function E(z,t) may be thought of as a function E (T, &) of the independent variables
C =2z —ctand § = z + ct. Show that the wave equation (2.1.6) and the forward-backward
equations (2.1.9) become in these variables:

0%E OE, OE_

ocoe " a7

Thus, E; may depend only on ¢ and E- only on &.

2.2 A source located at z = 0 generates an electromagnetic pulse of duration of T sec, given by
E(0,t)= XEo [u(t)—u(t — T)], where u(t) is the unit step function and E, is a constant.
The pulse is launched towards the positive z-direction. Determine expressions for E(z, t)
and H(z,t) and sketch them versus z at any given t.

2.3 Show that for a single-frequency wave propagating along the z-direction the corresponding
transverse fields E(z), H(z) satisfy the system of equations:

0 E _ 0 —jwu E
oz | Hxz | | —jwe 0 HXZ

where the matrix equation is meant to apply individually to the X,y components of the
vector entries. Show that the following similarity transformation diagonalizes the transition
matrix, and discuss its role in decoupling and solving the above system in terms of forward
and backward waves:



56

2.4

2.5

2.6

2.7

2.8

2.9

2.10
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] [l | R I

where k = w/c, c =1/, /u€, and n = Ju/e.

The visible spectrum has the wavelength range 380-780 nm. What is this range in THz? In
particular, determine the frequencies of red, orange, yellow, green, blue, and violet having
the nominal wavelengths of 700, 610, 590, 530, 470, and 420 nm.

What is the frequency in THz of a typical CO, laser (used in laser surgery) having the far
infrared wavelength of 20 um?

What is the wavelength in meters or cm of a wave with the frequencies of 10 kHz, 10 MHz,
and 10 GHz?

What is the frequency in GHz of the 21-cm hydrogen line observed in the cosmos?

What is the wavelength in cm of the typical microwave oven frequency of 2.45 GHz?

Suppose you start with E(z,t) = %XEye/®'=*Z but you do not yet know the relationship
between k and w (you may assume they are both positive.) By inserting E(z, t) into Maxwell’s
equations, determine the k- relationship as a consequence of these equations. Determine
also the magnetic field H(z, t) and verify that all of Maxwell’s equations are satisfied.

Repeat the problem if E(z,t)= X Eqe/®*/kz and if E(z,t)= y Eqe/@wt-/kz,

Determine the polarization types of the following waves, and indicate the direction, if linear,
and the sense of rotation, if circular or elliptic:

a. E=Ey(X+¥)e ke
b. E=Ey(X—/3y)e ke
c. E=Ey(jx+Vy)eJkz

d. E=Ey(x-2jy)e/kz

E=Ey(x—y)e/k*
E=E)(V/3%-y)e
E=Eo(j%x—y)el
E=Ey(X+2jy)ek”

= @ oo

A uniform plane wave, propagating in the z-direction in vacuum, has the following electric
field:
E(t,z)=2% cos(wt — kz)+4¥y sin(wt — kz)
a. Determine the vector phasor representing ‘E (t, z) in the complex form E = Eye/®t—/kz,
b. Determine the polarization of this electric field (linear, circular, elliptic, left-handed,
right-handed?)

c. Determine the magnetic field # (t, z) in its real-valued form.

Show that in order for the polarization ellipse of Eq. (2.5.4) to be equivalent to the rotated one

of Eq. (2.5.7), one must determine the tilt angle 6 such that the following matrix condition
is satisfied:

1 cos ¢ 1
cosf sind A2 T AB cosf —sin@ | e
—sin@ cos@ cos ¢ 1 sin @ cos@ |~ ST ¢ 0 1
T AB B? B

Show that the required angle 6 is given by Eq. (2.5.5). Then, show that the following condition
is satisfied, where T = tan 0:
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(AZ _BZTZ) (BZ _AZTZ) B
(1-12)2 a

A?B?sin® ¢
Using this property, show that the semi-axes A’, B’ are given by the equations:

e A2 _ B2 B - B2 _ A212
1-12 ° 1-12

Then, transform these equations into the form of Eq. (2.5.6). Finally, show that A’, B” satisfy

the relationships:

A2 + B> = A? + B®>, A'B' = AB|sin¢]|
2.11 Show the cross-product equation (2.5.10). Then, prove the more general relationship:
E(t1)XE(t2)=2ABsin¢ sin(w (t — 1))

Discuss how linear polarization can be explained with the help of this result.

2.12 Using the properties k.1, = wy and k? = w?pe, for the complex-valued quantities k¢, ¢
of Eq. (2.6.5), show the following relationships, where €, = € — je'’ and k. =  — j«:
we// B
R R [ et
e(n’) =5 = o m
2.13 Show that for a lossy medium the complex-valued quantities k. and n. may be expressed as
follows, in terms of the loss angle 0 defined in Eq. (2.6.27):

ke =B —jo = w.ue, (cosg —jsing) (cos@)~172

Nne=n'+jn’ = ﬂ (COSQ +jsing) (cos 0)1/2
€4 2 2

2.14 Itis desired to reheat frozen mashed potatoes and frozen cooked carrots in a microwave oven
operating at 2.45 GHz. Determine the penetration depth and assess the effectiveness of this
heating method. Moreover, determine the attenuation of the electric field (in dB and absolute
units) at a depth of 1 cm from the surface of the food. The complex dielectric constants of
the mashed potatoes and carrots are (see [112]) €. = (65 —j25)€o and €. = (75 — j25) €.

2.15 We wish to shield a piece of equipment from RF interference over the frequency range from
10 kHz to 1 GHz by enclosing it in a copper enclosure. The RF interference inside the
enclosure is required to be at least 50 dB down compared to its value outside. What is the
minimum thickness of the copper shield in mm?

2.16 In order to protect a piece of equipment from RF interference, we construct an enclosure
made of aluminum foil (you may assume a reasonable value for its thickness.) The conduc-
tivity of aluminum is 3.5x107 S/m. Over what frequency range can this shield protect our
equipment assuming the same 50-dB attenuation requirement of the previous problem?

2.17 A uniform plane wave propagating towards the positive z-direction in empty space has an
electric field at z = 0 that is a linear superposition of two components of frequencies w;
and w»:

E(0,1)= X (E,&/®1! + Eyel®2t)

Determine the fields E(z,t) and H(z,t) at any point z.
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2.18 An electromagnetic wave propagating in a lossless dielectric is described by the electric and
magnetic fields, E(z)= XE(z) and H(z)= y H(z), consisting of the forward and backward
components:

E(z) = E,e /%2 { E_pikz
H(z) = %(Leﬁ'kl — E_e/k?)

a. Verify that these expressions satisfy all of Maxwell’s equations.

b. Show that the time-averaged energy flux in the z-direction is independent of z and is
given by:

P, = %Re[E(z)H*(zH = 5 UE: P = E-[)

1
2n
c. Assuming u = o and € = n?ey, so that n is the refractive index of the dielectric, show

that the fields at two different z-locations, say at z = z; and z = z, are related by the
matrix equation:

E(zy) | coskl  jn~'sinkl E(z»)
noH(zy) |~ | jnsinkl coskl noH (z»)
where | = z» — z;, and we multiplied the magnetic field by no = +/lo/no in order to

give it the same dimensions as the electric field.

E 1
d. Let Z(z)= _E@) and Y (z) = ——— be the normalized wave impedance and admit-
noH (z) Z(z)

tance at location z. Show the relationships at at the locations z; and z, :

Z(z2)+jn~!tankl
1+ jnZ(z;)tankl’

Y (z,)+jntankl

7 =
(z1) 1+ jn-1Y(z,)tankl

Y(z1)=

What would be these relationships if had we normalized to the medium impedance,
thatis, Z(z)=E(z)/nH(z)?

2.19 Show that the time-averaged energy density and Poynting vector of the obliquely moving
wave of Eq. (2.9.10) are given by
1 1 1 1
w = 5R€[§€EE‘< + E[JHH*] = EE(‘A|2+ |B‘2)

P LRe[Ex B 1= L (JA]? + IBI?) = (2cos 0 + Xsin0) - (JA[2 + |BJ?)
2 2n 2n

where 2’ = Zcos 0 + Xsin 0 is the unit vector in the direction of propagation. Show that the
energy transport velocity is v=P/w = c2’.

2.20 A uniform plane wave propagating in empty space has electric field:
E(x,z,t) =9 Ege/®leJkx+a)/v2 o = =
Co
a. Inserting E(x,z,t) into Maxwell’s equations, work out an expression for the corre-
sponding magnetic field H(x, z, t).

b. What is the direction of propagation and its unit vector k?
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c. Working with Maxwell’s equations, determine the electric field E(x, z, t) and propaga-
tion direction k, if we started with a magnetic field given by:

H(x,z,t)= § Hye/ e /k(32-x)/2

2.21 A linearly polarized light wave with electric field E, at angle 0 with respect to the x-axis
is incident on a polarizing filter, followed by an identical polarizer (the analyzer) whose
primary axes are rotated by an angle ¢ relative to the axes of the first polarizer, as shown
in Fig. 2.11.1.

.y E()

Fig. 2.11.1 Polarizer-analyzer filter combination.

Assume that the amplitude attenuations through the first polarizer are a,, a, with respect
to the x- and y-directions. The polarizer transmits primarily the x-polarization, so that
a; < a;. The analyzer is rotated by an angle ¢ so that the same gains a;, a, now refer to
the x’- and y’-directions.

a. Ignoring the phase retardance introduced by each polarizer, show that the polarization
vectors at the input, and after the first and second polarizers, are:

Ey =%Xcos6 +ysin0
E, =Xa;cos0 + ya,sin 0
E; =% (a%cos ¢ cos 0 + ayaz sinp sin0) +y’ (a3 cos ¢ sin @ — a,a sin ¢ cos 0)

AN

where {X',y'} are related to {X,y} as in Problem 3.7.

b. Explain the meaning and usefulness of the matrix operations:
a O cos¢ sing a O cos 0 d
0 ap —sin¢ cos¢ 0 a» sin 0 an
cos¢p —sing a O cos¢ sing a O cos 0
sin ¢ cos ¢ 0 a —sin¢ cos¢ 0 a sin 0
c. Show that the output light intensity is proportional to the quantity:
I =(a}cos? @ + a3 sin® ) cos? ¢ + asas sin® ¢ +
+2a,a(a% — a3)cos ¢ sin ¢ cos O sin O

d. If the input light were unpolarized, that is, incoherent, show that the average of the
intensity of part (c) over all angles 0 < 0 < 271, will be given by the generalized Malus’s
law:

- 1
I=3 (a} + a3)cos? ¢ + aiaj sin? ¢

The case a, = 0, represents the usual Malus’ law.
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Propagation in Birefringent Media

3.1 Linear and Circular Birefringence

In this chapter, we discuss wave propagation in anisotropic media that are linearly or cir-
cularly birefringent. In such media, uniform plane waves can be decomposed in two or-
thogonal polarization states (linear or circular) that propagate with two different speeds.
The two states develop a phase difference as they propagate, which alters the total po-
larization of the wave. Such media are used in the construction of devices for generating
different polarizations.

Linearly birefringent materials can be used to change one polarization into another,
such as changing linear into circular. Examples are the so-called uniaxial crystals, such
as calcite, quartz, ice, tourmaline, and sapphire.

Optically active or chiral media are circularly birefringent. Examples are sugar solu-
tions, proteins, lipids, nucleic acids, amino acids, DNA, vitamins, hormones, and virtually
most other natural substances. In such media, circularly polarized waves go through
unchanged, with left- and right-circular polarizations propagating at different speeds.
This difference causes linearly polarized waves to have their polarization plane rotate
as they propagate—an effect known as natural optical rotation.

A similar but not identical effect—the Faraday rotation—takes place in gyroelec-
tric media, which are ordinary isotropic materials (glass, water, conductors, plasmas)
subjected to constant external magnetic fields that break their isotropy. Gyromagnetic
media, such as ferrites subjected to magnetic fields, also become circularly birefringent.

We discuss all four birefringent cases (linear, chiral, gyroelectric, and gyromagnetic)
and the type of constitutive relationships that lead to the corresponding birefringent
behavior. We begin by casting Maxwell’s equations in different polarization bases.

An arbitrary polarization can be expressed uniquely as a linear combination of two
polarizations along two orthogonal directions.? For waves propagating in the z-direction,
we may use the two linear directions {X,Vy}, or the two circular ones for right and left
polarizations {é,,é_}, where é, = X — jy and é_ = % + j$.¥ Indeed, we have the
following identity relating the linear and circular bases:

TFor complex-valued vectors ey, e», orthogonality is defined with conjugation: ef -ex=0.
*Note that é. satisfy: é* - &, =2, 8% . 8. =0, 8, xé_ =2jz and Zx é. = £jé..

60
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1
E=XEx+VE,=¢&,E, +eé_E_|, where Ei=§(

Ex = jEy) (3.1.1)

The circular components E. and E_ represent right and left polarizations (in the
IEEE convention) if the wave is moving in the positive z-direction, but left and right if it
is moving in the negative z-direction.

Because the propagation medium is not isotropic, we need to start with the source-
free Maxwell’s equations before we assume any particular constitutive relationships:

VXxE=—jwB, VXH=jwD, V:-D=0, V-B=0 (3.1.2)

For a uniform plane wave propagating in the z-direction, we may replace the gradient
by V = 2 0,. It follows that the curls VX E=2Z X 0,E and V X H= Z X 0,H will be
transverse to the z-direction. Then, Faraday’s and Ampeére’s laws imply that D, = 0
and B, = 0, and hence both of Gauss’ laws are satisfied. Thus, we are left only with:

ZX 0,E=—jwB

3.1.3
ZX 0;H=jwD ( )

These equations do not “see” the components E,, H,. However, in all the cases that
we consider here, the conditions D, = B, = 0 will imply also that E, = H, = 0. Thus,
all fields are transverse, for example, E = XEx + VE, = €, E, + &é_E_. Equating X,y
components in the two sides of Eq. (3.1.3), we find in the linear basis:

azEx = —ijy, aZEy :ijx ] .
9:Hy = —jwDy, 0,Hy=jwD, (linear basis) (3.1.4)

Using the vector property Z X é. = *jé. and equating circular components, we
obtain the circular-basis version of Eq. (3.1.3) (after canceling some factors of j):

(circular basis) (3.1.5)

3.2 Uniaxial and Biaxial Media

In uniaxial and biaxial homogeneous anisotropic dielectrics, the D—E constitutive rela-
tionships are given by the following diagonal forms, where in the biaxial case all diagonal
elements of the permittivity matrix are distinct:

Dy €c 0 O Ey Dy €ec 0 O Ey
D, [=]0 € 0 E, and D,|=]10 € O E, (3.2.1)
D, 0 0 ¢ E, D, 0 0 €3 E,

For the uniaxial case, the x-axis is taken to be the extraordinary axis with €; = €,
whereas the y and z axes are ordinary axes with permittivities €, = €3 = €,.

The ordinary z-axis was chosen to be the propagation direction in order for the
transverse X,y axes to correspond to two different permittivities. In this respect, the
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uniaxial and biaxial cases are similar, and therefore, we will work with the biaxial case.
Setting Dy = €1Ex and Dy, = €;>E), in Eq. (3.1.4) and assuming B = LioH, we have:

0zEx = —jwuoHy, 0;E, = jwpoHy

0,H, = —jwe Ex, 0,Hyx=jweE, (3.2.2)

Differentiating these once more with respect to z, we obtain the decoupled Helmholtz
equations for the x-polarized and y-polarized components:

a%Ex = —w2u061Ex

3.2.3
0%E, ( )

—w?Uo€Ey

The forward-moving solutions are:

Ex(z)= Aekz, ki1 = w/po€r = kon
Ey (z)= Be‘kaZ, ko = w./Hp€r = kohny
where kg = w./Hp€y = w/cyis the free-space wavenumber and we defined the refractive

indices ny = \/€1/€y and ny = \/€2/€y. Therefore, the total transverse field at z = 0 and
at distance z = [ inside the medium will be:

(3.2.4)

E(0) =%XA+VB
) . . . (3.2.5)
E(l) =%Ae 7kl 4 yBe kel = [ A + y Bel kimke)l] oikil
The relative phase ¢ = (k; — k2)I between the x- and y-components introduced by
the propagation is called retardance:

21l
¢ = (ki — ko)l = (n; —n2)kol = (n; — T’lz)T"T (3.2.6)

where A is the free-space wavelength. Thus, the polarization nature of the field keeps
changing as it propagates.

In order to change linear into circular polarization, the wave may be launched into
the birefringent medium with a linear polarization having equal x- and y-components.
After it propagates a distance I such that ¢ = (n; — n»)kol = 1/2, the wave will have
changed into left-handed circular polarization:

E(0) =A(X+7Y)
] ) ) (3.2.7)
E() =AE+yeP) ekl = A(x +jy)e kil
Polarization-changing devices that employ this property are called retarders and are
shown in Fig. 3.2.1. The above example is referred to as a quarter-wave retarder because
the condition ¢ = 77/2 may be written as (n; — n2)1 = A/4.
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X linearly birefringent X
b4
y ) Yy
: e - o
linear polarization elliptic polarization
X circularly birefringent x .
A o §
¢
> >z
y AN 4
« 1
linear polarization linear polarization

Fig. 3.2.1 Linearly and circularly birefringent retarders.

3.3 Chiral Media

Ever since the first experimental observations of optical activity by Arago and Biot in
the early 1800s and Fresnel’s explanation that optical rotation is due to circular bire-
fringence, there have been many attempts to explain it at the molecular level. Pasteur
was the first to postulate that optical activity is caused by the chirality of molecules.
There exist several versions of constitutive relationships that lead to circular bire-
fringence [260-276]. For single-frequency waves, they are all equivalent to each other.
For our purposes, the following so-called Tellegen form is the most convenient [34]:

D=€E—jxH

B= uH+ jxE (chiral media) (3.3.1)

where x is a parameter describing the chirality properties of the medium.
It can be shown that the reality (for a lossless medium) and positivity of the energy
density function (E* - D+ H* - B) /2 requires that the constitutive matrix

€ —JX
Jx Hu

be hermitian and positive definite. This implies that €, i, x are real, and furthermore,
that |x| < ./H€. Using Egs. (3.3.1) in Maxwell’s equations (3.1.5), we obtain:

ain = 1(1)Bi = 1w(uHi +iji)

_ (3.3.2)
azHi = iwDi = iw(GEi _JXHi)

Defining ¢ = 1/./u€, n = Ju/€e, k = w/c = w./uUe, and the following real-valued
dimensionless parameter a = cx = x /./H€ (so that |a| < 1), we may rewrite Egs. (3.3.2)
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in the following matrix forms:

0 E. | _|Jjka k E.
2 [nHi] _ [ k4 jka} [nHi] (333)
These matrix equations may be diagonalized by appropriate linear combinations. For

example, we define the right-polarized (forward-moving) and left-polarized (backward-
moving) waves for the {E,, H,} case:

Ery = %[E+ _jnH+] E, =Ep+ +EL+
) = 1 (3.3.4)
Ep. = *[E+ +jnH+] H, zj_n[ER+_EL+]

2
It then follows from Eq. (3.3.3) that {Eg, E;, } will satisfy the decoupled equations:

O | Ere | _| ke O Epe | Ery(2)= A, e/ke? 535
0z | Ery | 0 Jk- Ery E;.(z)= B, k-2 .3.

where k., k_ are defined as follows:

ki =k(l+a)=w(/HE +X) (3.3.6)

We may also define circular refractive indices by n. = k. /kg, where kg is the free-
space wavenumber, ko = w./Ho€p. Setting also n = k/ky = \/H€E/ /Ho€Ep, we have:

ki =n.ko, n.=n(l=xa) (3.3.7)

For the {E_, H_} circular components, we define the left-polarized (forward-moving)
and right-polarized (backward-moving) fields by:
Ei_ =—[E_+jnH_] E_=E;_ +Eg-

N 1 (3.3.8)

[E- —jnH-] e L

NI= N

Er_ =

Then, {E;, Eg} will satisfy:
0 | Er.- | | -Jk- 0 Er- Er_(z)=A_e k-2
0z |:ER— ] B [ 0 Jjks } |:ER— ] Z  Fp_(2)=B_ elk+7 (3.3.9)

In summary, we obtain the complete circular-basis fields E. (z):

E.(z) = Er+ (2)+Er+ (2)= A4 e kez 4 B, e/k-z
(3.3.10)

E_(2) =E;_(2)+Egr_(z)= A_eJk-2 4 B_ oik+2

Thus, the E; (z) circular component propagates forward with wavenumber k. and
backward with k_, and the reverse is true of the E_ (z) component. The forward-moving
component of E, and the backward-moving component of E_, thatis, Eg; and Er_, are
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both right-polarized and both propagate with the same wavenumber k. Similarly, the
left-polarized waves E;, and E;_ both propagate with k_.

Thus, a wave of given circular polarization (left or right) propagates with the same
wavenumber regardless of its direction of propagation. This is a characteristic difference
of chiral versus gyrotropic media in external magnetic fields.

Consider, next, the effect of natural rotation. We start with a linearly polarized field
at z = 0 and decompose it into its circular components:

E(0)=RXAy+VA, =&,A, +& A_, with A, = (A +jA,))

1
2
where Ay, A, must be real for linear polarization. Propagating the circular components
forward by a distance I according to Eq. (3.3.10), we find:

E() =é,A, e *l e _A_e kIl
_ [é+A+e7j(k+fk,)l/2 + é_A_ej(k+fk,)l/2]efj(k++k7)l/2 (3.3.11)

= [é+A+e_j¢ + é,A,ej(l)] e‘j(k++k7)l/2

where we defined the angle of rotation:

¢ ==(ky —k_)I =akl (natural rotation) (3.3.12)

N | =

Going back to the linear basis, we find:

e Aed® re_A_el® = (x-jy) % (Ax +jAy) e + (X +j¥) % (Ax — jA,)e/?®
= [Xcosp —ysinp|Ax + [ycos P + Xsinp]A,
=%XAc+7V'A,

Therefore, at z = 0 and z = I, we have:

E(0)= [RAx+VA,] 3313
E() = [% Ay + 3/ Ay etk +O12 (3:3.13)

The new unit vectors X = Xcos ¢p—ysin¢ and ¥ = ¥ cos p+Xsin ¢ arerecognized
as the unit vectors X,y rotated clockwise (if ¢ > 0) by the angle ¢, as shown in Fig. 3.2.1
(for the case Ax # 0, Ay = 0.) Thus, the wave remains linearly polarized, but its
polarization plane rotates as it propagates.

If the propagation is in the negative z-direction, then as follows from Eq. (3.3.10), the
roles of k., and k_ are interchanged so that the rotation angle becomes ¢ = (k_—k,)1/2,
which is the negative of that of Eq. (3.3.12).

If a linearly polarized wave travels forward by a distance I, gets reflected, and travels
back to the starting point, the total angle of rotation will be zero. By contrast, in the
Faraday rotation case, the angle keeps increasing so that it doubles after a round trip
(see Problem 3.10.)
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3.4 Gyrotropic Media

Gyrotropict media are isotropic media in the presence of constant external magnetic
fields. A gyroelectric medium (at frequency w) has constitutive relationships:

Dy € Jjea O Ey
Dy |=|-je2 e O ||E |, B=uH (3.4.1)
D, 0 0 e ||E,

For a lossless medium, the positivity of the energy density function requires that the
permittivity matrix be hermitian and positive-definite, which implies that €1, €2, €3 are
real, and moreover, €; > 0, |€2| < €1, and €3 > 0. The quantity €, is proportional to the
external magnetic field and reverses sign with the direction of that field.

A gyromagnetic medium, such as a ferrite in the presence of a magnetic field, has
similar constitutive relationships, but with the roles of D and H interchanged:

BX Hi leZ 0 Hx
By [=| —juz p1 O Hy, |, D=¢€E (3.4.2)
B, 0 0 M3 H,

where again y; > 0, |u2| < uy, and ps > 0 for a lossless medium.
In the circular basis of Eq. (3.1.1), the above gyrotropic constitutive relationships
take the simplified forms:
D:= (61 x6)E, B. =uH., (gyroelectric) (3.4.3)
B.= (1 =pu2)Hs, D.=€E., (gyromagnetic) o

where we ignored the z-components, which are zero for a uniform plane wave propa-
gating in the z-direction. For example,

Dx = jDy, = (e1Ex + je2Ey) j(€1Ey — jeo Ex) = (€1 + €2) (Ex £ JEy)

Next, we solve Egs. (3.1.5) for the forward and backward circular-basis waves. Con-
sidering the gyroelectric case first, we define the following quantities:

_ | H
, Nz = . (3.4.4)

Using these definitions and the constitutive relations D. = €.E., Egs. (3.1.5) may
be rearranged into the following matrix forms:

0 E. | [ 0 ks« E.
0z [niHi } - |:il<i 0 ] [niHi ] (3.4.5)

These may be decoupled by defining forward- and backward-moving fields as in
Egs. (3.3.4) and (3.3.8), but using the corresponding circular impedances n..:

€+ =€, €, ki=w./UE

I+

1 ) 1 .
Er+ = 5[E+ —jn+Hy] Er- = E[E— +jn-H-]
(3.4.6)
1 , 1 ;
Epy = E[EJ' +jn+H.] Eg- = E[E— —Jn-H-]

TThe term “gyrotropic” is sometimes also used to mean “optically active.”
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These satisfy the decoupled equations:

0 [Ere | _[-jkse 0 Ere | Eps(z)= A, e /kez
oz | Er+ |~ 0 Jk+ Ep Er.(z)= B, e/k+?

_ (3.4.7)
O E-|_[~k 0 |[E-] | E-(@=A e
0z | Er- |~ 0 Jk- Er- Er_(z)= B_ek-2
Thus, the complete circular-basis fields E-. (z) are:
E\(2) = Egy (2) +E[ (2)= A, e /%7 4 B ek+?
. . (3.4.8)
E_(z) = E;_(2)+Fr_(z2)= A_e /%2 L B_olk-2

Now, the E; (z) circular component propagates forward and backward with the same
wavenumber k., while E_ (z) propagates with k_. Eq. (3.3.13) and the steps leading to
it remain valid here. The rotation of the polarization plane is referred to as the Faraday
rotation. If the propagation is in the negative z-direction, then the roles of k, and k_
remain unchanged so that the rotation angle is still the same as that of Eq. (3.3.12).

If a linearly polarized wave travels forward by a distance I, gets reflected, and travels
back to the starting point, the total angle of rotation will be double that of the single
trip, that is, 2¢p = (k+ — k)L

Problems 1.9 and 3.12 discuss simple models of gyroelectric behavior for conduc-
tors and plasmas in the presence of an external magnetic field. Problem 3.14 develops
the Appleton-Hartree formulas for plane waves propagating in plasmas, such as the
ionosphere [277-281].

The gyromagnetic case is essentially identical to the gyroelectric one. Egs. (3.4.5) to
(3.4.8) remain the same, but with circular wavenumbers and impedances defined by:

He =1 =2, Ki=w/€Us, Ni= ”f (3.4.9)

Problem 3.13 discusses a model for magnetic resonance exhibiting gyromagnetic
behavior. Magnetic resonance has many applications—from NMR imaging to ferrite mi-
crowave devices [282-293]. Historical overviews may be found in [291,293].

3.5 Linear and Circular Dichroism

Dichroic polarizers, such as polaroids, are linearly birefringent materials that have widely
different attenuation coefficients along the two polarization directions. For a lossy ma-
terial, the field solutions given in Eq. (3.2.4) are modified as follows:

Ex(z)= Aekiz = Ae~nze-ihiz k) = w. /€ = B — jux; (3.5.1)
Ey(z)= Be Jk2% = Be~®:7¢ J12 | ko = w- /i€ = B — jotn o

where 1, &> are the attenuation coefficients. Passing through a length I of such a
material, the initial and output polarizations will be as follows:
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E(0)=%XA +VB

E(l) = x Ae Jkil 4 yBe kel = (g Ae~ ™! + y Be~2lei$) e-Jhil 5:5.2)

In addition to the phase change ¢ = (1 — 2)1, the field amplitudes have attenuated
by the unequal factors a; = e~ %! and a, = e~ *2!. The resulting polarization will be
elliptic with unequal semi-axes. If ¢, > «, then a, < a; and the y-component can be
ignored in favor of the x-component.

This is the basic principle by which a polaroid material lets through only a preferred
linear polarization. Anideal linear polarizer would have a; = 1 and a, = 0, correspond-
ing to ®; = 0 and x» = oo. Typical values of the attenuations for commercially available
polaroids are of the order of a; = 0.9 and a> = 1072, or 0.9 dB and 40 dB, respectively.

Chiral media may exhibit circular dichroism[262,275], in which the circular wavenum-
bers become complex, k. = B+ — jx. Eq. (3.3.11) reads now:

E(l) =é,A, e *l 1 a_A_ etk
_ [é+A+e—j(k+—k_)l/2 i éiAiej(ka—k_)l/Z]e—j(k++k_)l/2 (3.5.3)
= [é+A+e*W*J‘¢' + éiAielPJrj(l)]e*j(thk—)l/Z

where we defined the complex rotation angle:

b —jw =3 (ke —kl = 3 (B = B -5 (o, — o) (3.5.4)

Going back to the linear basis as in Eq. (3.3.13), we obtain:

E(0)= [RAy+VA,]

E() = [R A, + ;,'A'y]e—j<k++k,>1/2 (3.5.5)
where {%', ¥’} are the same rotated (by ¢) unit vectors of Eq. (3.3.13), and
A, = Aycoshy — jA, sinh
S yeIsy v (3.5.6)

A}, = Ay coshy + jAysinhy

Because the amplitudes Ay, A; are now complex-valued, the resulting polarization
will be elliptical.

3.6 Oblique Propagation in Birefringent Media

Here, we discuss TE and TM waves propagating in oblique directions in linearly birefrin-
gent media. We will use these results in Chap. 7 to discuss reflection and refraction in
such media, and to characterize the properties of birefringent multilayer structures.

Applications include the recently manufactured (by 3M, Inc.) multilayer birefrin-
gent polymer mirrors that have remarkable and unusual optical properties, collectively
referred to as giant birefringent optics (GBO) [241].

Oblique propagation in chiral and gyrotropic media is discussed in the problems.
Further discussions of wave propagation in anisotropic media may be found in [31-33].
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We recall from Sec. 2.9 that a uniform plane wave propagating in a lossless isotropic
dielectric in the direction of a wave vector k is given by:

E(r)= Ee /¥ H(r)= He /%", with k-E=0, H= n£ kxE (3.6.1)
0

where n is the refractive index of the medium n = \/e/€y, no the free-space impedance,
and k the unit-vector in the direction of k, so that,

k=kk, k=Kl =w-/lio€ = nky, kozcgzw Ho€o (3.6.2)
0

and ko is the free-space wavenumber. Thus, F, H, k form a right-handed system.

In particular, following the notation of Fig. 2.9.1, if k is chosen to lie in the xz plane
at an angle 6 from the z-axis, that is, Kk = &sin 0 + Z cos 0, then there will be two inde-
pendent polarization solutions: TM, parallel, or p-polarization, and TE, perpendicular,
or s-polarization, with fields given by

n
(TM or p-polarization): E=Ey(XcosO —zsinf), H= —Eyy

n Mo (3.6.3)
(TE or s-polarization): E=Eyy, H= n— Eop(—%kcosO + zsin0)
0

where, in both the TE and TM cases, the propagation phase factor e /KT is:
e—jk-r — e—j(kzz+kxx) — e—jk()n(zcos 0+xsin0) (3.6.4)

The designation as parallel or perpendicular is completely arbitrary here and is taken
with respect to the xz plane. In the reflection and refraction problems discussed in
Chap. 6, the dielectric interface is taken to be the xy plane and the xz plane becomes
the plane of incidence.

In a birefringent medium, the propagation of a uniform plane wave with arbitrary
wave vector k is much more difficult to describe. For example, the direction of the
Poynting vector is not towards k, the electric field E is not orthogonal to k, the simple
dispersion relationship k = nw/cq is not valid, and so on.

In the previous section, we considered the special case of propagation along an ordi-
nary optic axis in a birefringent medium. Here, we discuss the somewhat more general
case in which the xyz coordinate axes coincide with the principal dielectric axes (so that
the permittivity tensor is diagonal,) and we take the wave vector k to lie in the xz plane
at an angle 0 from the z-axis. The geometry is depicted in Fig. 3.6.1.

Although this case is still not the most general one with a completely arbitrary direc-
tion for k, it does contain most of the essential features of propagation in birefringent
media. The 3M multilayer films mentioned above have similar orientations for their
optic axes [241].

The constitutive relations are assumed to be B = LipH and a diagonal permittivity
tensor for D. Let €1, €2, €3 be the permittivity values along the three principal axes and
define the corresponding refractive indices n; = +/€j/€g, i = 1,2,3. Then, the D-E
relationship becomes:

Dy €6 0 0 [ E ng 0 0 Ey
Dy|=|0 € O ||E |=€| 0 n3 0 ||E (3.6.5)
D, 0 0 e ||E, 0 0 n3||E
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Fig. 3.6.1 Uniform plane waves in a birefringent medium.

For a biaxial medium, the three n; are all different. For a uniaxial medium, we take
the xy-axes to be ordinary, with n; = n, = n,, and the z-axis to be extraordinary, with
nz = n..t The wave vector k can be resolved along the z and x directions as follows:

k=kk=k(Xsin0 + Zcos 0) = Xky + 2k, (3.6.6)
The w-k relationship is determined from the solution of Maxwell’s equations. By

analogy with the isotropic case that has k = nkg = nw/cy, we may define an effective
refractive index N such that:

k=Nkyo=N cg (effective refractive index) (3.6.7)
0

We see below by solving Maxwell’s equations that N depends on the chosen polar-
ization, TM or TE (according to Fig. 3.6.1), and on the wave vector direction 6:

nn
103 , (TM or p-polarization)

N = \/nf sin 0 + n3 cos2 0 (3.6.8)
no, (TE or s-polarization)

For the TM case, we may rewrite the N-0 relationship in the form:

1 29 sin’0
~7 = c052 + sz (effective TM index) (3.6.9)
N ni ns

Multiplying by k? and using ko = k/N, and kyx = ksin 0, k, = k cos €, we obtain the
w-k relationship for the TM case:
2 k2 k2
w_z = -2+ -5  (TM or p-polarization) (3.6.10)
ch ny  nj

Similarly, we have for the TE case:

w? k2
— =3 (TE or s-polarization) (3.6.11)
Co n;

TIn Sec. 3.2, the extraordinary axis was the x-axis.
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Thus, the TE mode propagates as if the medium were isotropic with index n = ny,
whereas the TM mode propagates in a more complicated fashion. If the wave vector k
is along the ordinary x-axis (8 = 90°), then k = ky = n3w/cq (this was the result of
the previous section), and if k is along the extraordinary z-axis (8 = 0°), then we have
k=k; =nw/cop.

For TM modes, the group velocity is not along k. In general, the group velocity
depends on the w-k relationship and is computed as v = 0w/ dk. From Eq. (3.6.10), we
find the x- and z-components:

dw  kyc3 N
= = =Co— Sin @
VX = Bky wnd  'nd st
(3.6.12)
Vv, = 0w _ KzCo =c ﬂcos@
2T ok,  wn? 'n?

The velocity vector vis not parallel to k. The angle 0 that v forms with the z-axis is
given by tan 6 = vy/v;,. It follows from (3.6.12) that:

2
tan 0 = % tan 0 (group velocity direction) (3.6.13)
3

Clearly, 0 + 0if n; + ns. The relative directions of k and v are shown in Fig. 3.6.2.
The group velocity is also equal to the energy transport velocity defined in terms of the
Poynting vector P and energy density w as v = P/w. Thus, v and P have the same
direction. Moreover, with the electric field being orthogonal to the Poynting vector, the
angle 0 is also equal to the angle the E-field forms with the x-axis.

1
E n Py B
] 0
k
0
» 7
H
y

Fig. 3.6.2 Directions of group velocity, Poynting vector, wave vector, and electric field.

Next, we derive Egs. (3.6.8) for N and solve for the field components in the TM
and TE cases. We look for propagating solutions of Maxwell’s equations of the type
E(r)= EeJkT and H(r)= He /¥T Replacing the gradient operator by V — —jk and
canceling some factors of j, Maxwell’s equations take the form:
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V XE=—-jwugH kx E=wuoH
VXH=jwD kx H= —wD
= (3.6.14)
V.-D=0 k-D=0
V-H=0 k-H=0

The last two equations are implied by the first two, as can be seen by dotting both
sides of the first two with k. Replacing k = kk = Nkok, where N is still to be determined,
we may solve Faraday’s law for Hin terms of E:

Ncgf(szquH = |H= Y kxE (3.6.15)
0

N .
no

where we used ng = coup. Then, Ampere’s law gives:

2

Dz—%ka:—iNglixH: kx (Exk) = |kx (Exk)= D

w  Co NoCo €oN?

where we used cono = 1/€o. The quantity k x (ExK) is recognized as the component of
E that is transverse to the propagation unit vector k. Using the BAC-CAB vector identity,
we have k X (E X k)= E — k(k - E). Rearranging terms, we obtain:

1

E—
€0N2

D=k(k-E) (3.6.16)

Because D is linear in E, this is a homogeneous linear equation. Therefore, in order
to have a nonzero solution, its determinant must be zero. This provides a condition
from which N can be determined.

To obtain both the TE and TM solutions, we assume initially that E has all its three
components and rewrite Eq. (3.6.16) component-wise. Using Eq. (3.6.5) and noting that
k- E = Eysin0 + E, cos 0, we obtain the homogeneous linear system:

2
(1—”2>Ey=o (3.6.17)

2
( — n3>EZ = (Exsin® + E, cos 0)cos 0

The TE case has E, # 0 and Ex = E, = 0, whereas the TM case has Ex # 0, E; # 0,
and Ej, = 0. Thus, the two cases decouple.

In the TE case, the second of Egs. (3.6.17) immediately implies that N = n». Setting
E = Eoy and using k X y = —% cos 0 + 2 sin 0, we obtain the TE solution:
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E(r) = Egye kT

N> . (TE) (3.6.18)
H(r) = o Eo(—%cos 0 + zsin@)eJkr
0
where the TE propagation phase factor is:
‘ e Jkr — gikon: (zcos O+xsin 0) (TE propagation factor) (3.6.19)

The TM case requires a little more work. The linear system (3.6.17) becomes now:

2
(1 _ [';’]12)5){ = (Exsin0 + E, cos 0)sin 0

(3.6.20)

2
< - nS)EZ = (Exsin® + E, cos 0)cos 0

Using the identity sin® @ + cos? 6 = 1, we may rewrite Eq. (3.6.20) in the matrix form:

2
cos? 0 — "1 _sinf cos 0 E
N2 ) Xl=0 (3.6.21)
in0cosd sinzo- B |LEz
— SIn U Cos sin’ _NZ

Setting the determinant of the coefficient matrix to zero, we obtain the desired con-
dition on N in order that a non-zero solution Ey, E, exist:

n? n3
cos® 0 — NZ sin® 0 — N2~ sin® 0 cos®* 0 = 0 (3.6.22)

This can be solved for N2 to give Eq. (3.6.9). From it, we may also derive the following
relationship, which will prove useful in applying Snell’s law in birefringent media:

N2 sin’ 6
Ncosf = % Jnd = N2sin? @ =m [1-~ 00 Y (3.6.23)

3 nsj

With the help of the relationships given in Problem 3.16, the solution of the homo-
geneous system (3.6.20) is found to be, up to a proportionality constant:

n: n
Ex=A—>cos®, E,=-A—"sin0 (3.6.24)
n; ns
The constant A can be expressed in terms of the total magnitude of the field Ey =
|E| = \/|Ex|? + |E;|2. Using the relationship (3.7.11), we find (assuming A > 0):

N

\n% + nj — N2

The magnetic field H can also be expressed in terms of the constant A. We have:

A =E (3.6.25)
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H= EIA(XE: N (Xsin @ + zZcos 0) x (XEx + ZE,)
no no
= ﬁ}A/(EX cos6 — F,sin0) = ﬁi/A (E cos? 0 + ML gin? 0) (3.6.26)
no no nm ns
N ninj3 _ A . N1Nn3

- vA -
o N2 ) N

where we used Eq. (3.7.10). In summary, the complete TM solution is:

N n n .
E(r) = E) ——— (5(—3 cos0 — 2+ sin@) e Jkr
\Jni+n§—-N2\ M 13

E nin: .
Hr) = = gk

Mo \/n3 + n% — N2

where the TM propagation phase factor is:

(TM) (3.6.27)

‘ e JkT = p=jkoN(zcos0+xsin0) (TM propagation factor) (3.6.28)

The solution has been put in a form that exhibits the proper limits at 0 = 0° and
90°. It agrees with Eq. (3.6.3) in the isotropic case. The angle that E forms with the x-axis
in Fig. 3.6.2 is given by tan @ = —E,/Ey and agrees with Eq. (3.6.13).

Next, we derive expressions for the Poynting vector and energy densities. It turns
out—as is common in propagation and waveguide problems—that the magnetic energy
density is equal to the electric one. Using Eq. (3.6.27), we find:

E} ninsN (A n

xn— sinf + z n3 cos 9) (3.6.29)

1
P =-Re(ExH*)=
2 3 n;

~ 2no n? +nj — N2

and for the electric, magnetic, and total energy densities:

w _lRe(D'E*)_lE (n?|Ex|? + n3|E,|?) _ 1. EZ%
e~ 5 —40 116X 315z _400n%+n§—N2
1 1 1 n2n2
Wm =~ Re(B- H*)= ~polHyl? = ~€E ——5>— =w 3.6.30
m=5 ( ) 4H0| y| 4 0 Ol’l%+l’l§—N2 e ( )
1 ninj
W=Wo+Wnm =2W, = —€E2 1773
e m e 2 0Lto %-i-l’l‘%—NZ

The vector P is orthogonal to E and its direction is @ given by Eq. (3.6.13), as can be
verified by taking the ratio tan @ = Py/?P,. The energy transport velocity is the ratio of
the energy flux to the energy density—it agrees with the group velocity (3.6.12):

V= P = (o ()?;stin9+2N2C039> (3.6.31)
w ns ni
To summarize, the TE and TM uniform plane wave solutions are given by Egs. (3.6.18)
and (3.6.27). We will use these results in Sects. 7.6 and 7.8 to discuss reflection and re-
fraction in birefringent media and multilayer birefringent dielectric structures. Further
discussion of propagation in birefringent media can be found in [182] and [241-259].
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3.7 Problems

3.1

3.2

3.3

3.4

3.5

3.6

For the circular-polarization basis of Eqg. (3.1.1), show
E=¢e,F, +é E. => 2ZxXE=jé,E.—jé_ E. = (ZXE.=+jE.

Show the component-wise Maxwell equations, Egs. (3.1.4) and (3.1.5), with respect to the
linear and circular polarization bases.

Suppose that the two unit vectors {X, ¥} are rotated about the z-axis by an angle ¢ resulting
inX =%cos¢ +ysing and ¥ = ycos ¢ — Xsin ¢. Show that the corresponding circular
basis vectors é. =X ¥ jy and &, =% ¥ j¥ change by the phase factors: &, = e*/¢é, .
Consider a linearly birefringent 90° quarter-wave retarder. Show that the following input
polarizations change into the indicated output ones:

—

iy
¥y

Mo
Mo P
+ I+

~

ty
£jy -

What are the output polarizations if the same input polarizations go through a 180° half-
wave retarder?

A polarizer lets through linearly polarized light in the direction of the unit vector &, =
Xcos 0, + ysin 6y, as shown in Fig. 3.7.1. The output of the polarizer propagates in the
z-direction through a linearly birefringent retarder of length I, with birefringent refractive
indices ni, ny, and retardance ¢ = (n; — nx)kol.

analyzer g

Fig. 3.7.1 Polarizer-analyzer measurement of birefringence.

The output E(I) of the birefringent sample goes through an analyzing linear polarizer that
lets through polarizations along the unit vector &, = Xcos 0, + ¥ sin 0,. Show that the light
intensity at the output of the analyzer is given by:

Io = &4 - E()|° = |cos 0,080, + e/®sin0,sin 0, |°

For a circularly birefringent sample that introduces a natural or Faraday rotation of ¢ =
(ky+ — k-)1/2, show that the output light intensity will be:

In= &g - E()|* = cos® (0, — 04 — )

For both the linear and circular cases, what are some convenient choices for 6, and 6,?

A linearly polarized wave with polarization direction at an angle @ with the x-axis goes
through a circularly birefringent retarder that introduces an optical rotation by the angle
¢ = (ki — k_)I/2. Show that the input and output polarization directions will be:

XcosO +ysin® — Xcos(0 — ¢p)+ysin(0 — )
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3.8

3.9

3.10

Electromagnetic Waves & Antennas - S. J. Orfanidis

Show that an arbitrary polarization vector can be expressed as follows with respect to a
linear basis {%,V} and its rotated version {X’,V'}:

E=A%x+By=A'%X +B'Y

where the new coefficients and the new basis vectors are related to the old ones by a rotation
by an angle ¢:

A | cos¢p sing A g cos¢p sing b’e

B | | —singp coso B |’ v | | —singp cos¢p v
Show that the source-free Maxwell’s equations (3.1.2) for a chiral medium characterized by
(3.3.1), may be cast in the matrix form, where k = w./U€, n = /u/€, and a = x/./U€:

AR

Show that these may be decoupled by forming the “right” and “left” polarized fields:

Er | | ks 0 Er 1 . 1 .
VX[EL]_[O —k-}[EL]’ where ER—Z(E—J)’)H), EL_Z(E+J,7H)

where k. = k(1 + a). Using these results, show that the possible plane-wave solutions
propagating in the direction of a unit-vector k are given by:

E(r)=Ey(p—j8)e T and E(r)=Eyp+js§)e kT

where k. = k. kand {p, §, k} form a right-handed system of unit vectors, such as {X',¥', 2’}
of Fig. 2.9.1. Determine expressions for the corresponding magnetic fields. What freedom
do we have in selecting {p, S} for a given direction k?

Using Maxwell’s equations (3.1.2), show the following Poynting-vector relationships for an
arbitrary source-free medium:

V. (Ex H*) = jw(D* - E— B- H*)

V -Re(EX H*) = —w Im(D* - E+ B* - H)

Explain why a lossless medium must satisfy the condition V - Re(E x H*) = 0. Show that
this condition requires that the energy function w = (D* - E+ B* - H) /2 be real-valued.
For a lossless chiral medium characterized by (3.3.1), show that the parameters €, u, x are
required to be real. Moreover, show that the positivity of the energy function w > 0 requires
that |x| < \/H€, as well as € > 0 and p > 0.

In a chiral medium, at z = 0 we lauch the fields Eg; (0) and E;_ (0), which propagate by a
distance I, get reflected, and come back to the starting point. Assume that at the point of
reversal the fields remain unchanged, that is, Eg+ (I)= E;+ (I) and E;_ (I)= Eg_ (I). Using
the propagation results (3.3.5) and (3.3.9), show that fields returned back at z = 0 will be:

E;+(0)=Er+ (I)e_jkfl = Eg+ (D) e k-1 = Ery (O)e_j(kJr k)1
Er_(0)= Ex_(I)e*I = E;_()e 7%+ = E;_ (0) e~/ (k++k-)1

Show that the overall natural rotation angle will be zero. For a gyrotropic medium, show
that the corresponding rountrip fields will be:
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E+(0)=Epy (De k-1 = Eg, () eJk-T = Eg, (0) e~ %k+1
Er-(0)= Eg_(DeJ*+! = E;_(I)e/*+! = E;_(0)e~2k-1

Show that the total Faraday rotation angle will be 2¢p = (k. — k_)1.

Show that the x,y components of the gyroelectric and gyromagnetic constitutive relation-
ships (3.4.1) and (3.4.2) may be written in the compact forms:

Dr =€,Er — jeo Z X Er (gyroelectric)
By = uHy — ju» Z X Hr (gyromagnetic)

where the subscript T indicates the transverse (with respect to z) part of a vector, for exam-
ple, Dy = XDx +y Dy,.

Conductors and plasmas exhibit gyroelectric behavior when they are in the presence of an
external magnetic field. The equation of motion of conduction electrons in a constant mag-
netic field is mv = e(E + v X B) —mav, with the collisional damping term included. The
magnetic field is in the z-direction, B = Z By.

Assuming ¢/®! time dependence and decomposing all vectors in the circular basis (3.1.1),
for example, v=€&,v, +é&_v_ + ZVv,, show that the solution of the equation of motion is:

e e
—E. —E,
_ m __m
Vi = - y Vz = .
x + j(w + wg) X+ jw

where wp = eBy/m is the cyclotron frequency. Then, show that the D—E constitutive
relationship takes the form of Eq. (3.4.1) with:

. . Jw3 . Jw?
€. =€ +6 =€ - , €3 =¢€ -
- t=F2 70 w[x+j(w = wp)] 30 w (o + jw)

where wf, = Ne?/me, is the plasma frequency and N, the number of conduction electrons
per unit volume. (See Problem 1.9 for some helpful hints.)

If the magnetic field Hi,y = 2Hy + He/®! is applied to a magnetizable sample, the in-
duced magnetic moment per unit volume (the magnetization) will have the form M, =
2M, + Me/®t where 2 M, is the saturation magnetization due to Z H, acting alone. The
phenomenological equations governing M, including a so-called Landau-Lifshitz damping
term, are given by [290]:

d Mo [43

=y (Mot X Hypt) ——— Mot X (Mior X H,
dt Y (Mo tot) MoH, tot X (Mo tot)

where y is the gyromagnetic ratio and T = 1/ «, a relaxation time constant. Assuming that
|H| < Hg and |[M| < My, show that the linearized version of this equation obtained by
keeping only first order terms in H and M is:

JwM=wpy(ZXH) —wy(ZXM)—xZX [(M-xoH) XZ]

where wy = yMy, wy = yHy, and xo = My/H,. Working in the circular basis (3.1.1), show
that the solution of this equation is:
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X * jwyg
0a+j(wrwy)

H.=x:H: and M, =0

M. =X +11+
Writing B = o (H + M), show that the permeability matrix has the gyromagnetic form of
Eq. 3.4.2) with y; + pp = ps = po(1 + x+) and p3 = po. Show that the real and imaginary

parts of u; are given by [290]:

MoXo | & + wi (w + wg) | o — wy (W — wp)
Re = + - -
(b) = Ho 2 [ o2 + (w + wpy)? 2 + (w — wpy)?
HoXo xXw xXw
I = - +
m (K1) 2 [cx2+(w+wH)2 (x?+(w—wH)2]

Derive similar expressions for Re(u,) and Im (u»).

3.14 A uniform plane wave, Ee /KT and He /KT, is propagating in the direction of the unit vector
k =2 = 2cos0 + zsin 0 shown in Fig. 2.9.1 in a gyroelectric medium with constitutive
relationships (3.4.1).

Show that Egs. (3.6.14)-(3.6.16) remain valid provided we define the effective refractive index
N through the wavevector k = kk, where k = Nko, ko = w./[i€o.

Working in the circular-polarization basis (3.1.1), that is, E = é,E, + é_E_ + ZE,, where
E. = (Ex = JEy) /2, show that Eq. (3.6.16) leads to the homogeneous system:

€ 1 1
lfgsilnzéf?;ﬁ fgsinzé f?sinecosé k.
——sin’ 0 1— —sin?0— < ——sin0 cos O E_|=0 (3.7.1)
E()N2 2 € E
—sin 6 cos 0 —sin 6 cos 0 sin2 @ — — §
GoNZ

where €. = €; * €. Alternatively, show that in the linear-polarization basis:

€1 — €0N?cos? 0 je €oN?sin 0 cos 8 Eyx
—jea €1 — €N? 0 E, |=0 (3.7.2)
€oN?sin 0 cos 0 0 €3 — €oN?sin® 0 E,

For either basis, setting the determinant of the coefficient matrix to zero, show that a non-
zero E solution exists provided that N? is one of the two solutions of:

€3 (€gN? —€,) (egN%2 —€_) 2e. € € — €3
— s h €, = = 3.7.3
€1 (egN? —€3) (egN? — €,) where - €e €. +€_ € ( )

tan® 0 = —

Show that the two solutions for N? are:

(€3 — €5 — €1€3)8in” O + 2€;€3 + \/(e% — €3 — €,€3)2sin* O + 4€3€% cos? 0

NZ
2€0 (€1 sin® 0 + €5 cos2 0)

(3.7.4)

For the special case k = Z (0 = 0°), show that the two possible solutions of Eq. (3.7.1) are:

e6N?*=¢,, k=k,=wy pe;, E,#0, E_=0, E,=0
eN’=¢., k=k_.=wype_, E, =0, E_ 40, E,=0



3.7. Problems

For the case k = % (0 = 90°), show that:
€N’ =¢€3, k=k3=w /e, E, =0, E_=0, E,#0
N2 =¢€,, k=ke=w i€, Ei#0, E-=—§—*E+, E, =0
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For each of the above four special solutions, derive the corresponding magnetic fields H.
Justify the four values of N2 on the basis of Eq. (3.7.3). Discuss the polarization properties of
the four cases. For the “extraordinary” wave k = Kk, show that Dx = 0 and Ex/E, = —j€z /€.

Eq. (3.7.4) and the results of Problem 3.14 lead to the so-called Appleton-Hartree equations

for describing plasma waves in a magnetic field [277-281].

3.15 A uniform plane wave, Ee /KT and He /KT, is propagating in the direction of the unit vector

k =2 = Zcos 0 + Zsin 0 shown in Fig. 2.9.1 in a gyromagnetic medium with constitutive

relationships (3.4.2). Using Maxwell’s equations, show that:

kX E= wB, k-B=0 - H- 1
kxH=-weE, k-E=0 UoN?

B=k(k H) (3.7.5)

where the effective refractive index N is defined through the wavevector k = kk, where
k = Nko, ko = w./Ho€. Working in the circular polarization basis H=é,H, +é_H_+ZH,,

where H. = (Hy = jH,) /2, show that Eq. (3.7.5) leads to the homogeneous system:

1 . 1 1
1—§sin29—ug;[2 1—Esin29 —%sinecosé‘ -
—~sin® 0 1- —sin2@— H= — = sin 6 cos 0 H |=0 (3.7.6)
2 HoN2 2 p
—sin 6 cos 0 —sin 6 cos 0 sin20 — H3_ ?
HoN?

where p. = gy = . Alternatively, show that in the linear-polarization basis:

U1 — HoN? cos? 0 Juo HoN? sin 0 cos 0 H,
—Jju2 My — HoN? 0 Hy | =0 (3.7.7)
UoN?sin 0 cos 6 0 Uz — HoN? sin® 0 H,

For either basis, setting the determinant of the coefficient matrix to zero, show that a non-

zero E solution exists provided that N? is one of the two solutions of:

M3 (MoN? = py) (HoN? — ) QUi pE -3

tan? 0 =
M1 (HoN? — p3) (HoN? — pe) My + Ho U1

Show that the two solutions for N? are:

(U3 — 3 — i p3)sin® 0 + 243 + /(] — 13 — ) 2sin? 0 + 4343 cos? 0

N2 =
2o (Hq sin® @ + 3 cos? 0)

For the special case @ = 0°, show that the two possible solutions of Eq. (3.7.6) are:

HoN? = ., k=ky=w/eps, Hy#0, H.=0, H,=0
UoN°=u_, k=k,=w/en_, H,=0, H_.#0, H,=0

For the special case 6 = 90°, show that:

MoN? =3, k=ks=w /eps, H,=0, H.=0, H, #0
HoN? = pte, k=ke = w fefle, Hi#0, H,=—%H+, . =0

, Wwhere pu, = = (3.7.8)
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For each of the above four special solutions, derive the corresponding electric fields E. Justify
the four values of N° on the basis of Eq. (3.7.8). Discuss the polarization properties of the
four cases. This problem is the dual of Problem 3.14.

3.16 Using Eq. (3.6.9) for the effective TM refractive index in a birefringent medium, show the
following additional relationships:

2 2
sin“ 0 cos- 0
ey =1 (3.7.9)
1M _m
N2 Nz
n . n nmn
08?0+ Lsin?0 = —3 (3.7.10)
n; ns N2
2 2 2 2 2
n n ni+n; — N
—; sin? 0 + —; cos? 0 = % (3.7.11)
ns ni N
2 2
n n
e N
sin® 0 = 5, cos’0= 5 (3.7.12)
ng ns
1- -5 1- =3
ns ny
2 2 2 2
2 ny ny .o 2 n3 n;3 2
cos*0— — =—— sin“ 0, sin“ 0 — =—— cos“ 0 3.7.13
N2 n} N2 n? ( )

Using these relationships, show that the homogeneous linear system (3.6.20) can be simpli-
fied into the form:
ny ns hn3

. ns n .
Ey— sin@ = -E, — cos0, E, cos@ = —Ex — sin0
ns nm m ns



4

Reflection and Transmission

4.1 Propagation Matrices

In this chapter, we consider uniform planes waves incident normally on material inter-
faces. Using the boundary conditions for the fields, we will relate the forward-backward
fields on one side of the interface to those on the other side, expressing the relationship
in terms of a 2x2 matching matrix.

If there are several interfaces, we will propagate our forward-backward fields from
one interface to the next with the help of a 2x2 propagation matrix. The combination of
a matching and a propagation matrix relating the fields across different interfaces will
be referred to as a transfer or transition matrix.

We begin by discussing propagation matrices. Consider an electric field that is lin-
early polarized in the x-direction and propagating along the z-direction in a lossless
(homogeneous and isotropic) dielectric. Setting E(z)= XEx(z)= XE(z) and H(z)=
VH,(z)= Yy H(z), we have from Eq. (2.2.6):

E(z) = Egye % + Ey_e/%% = E_ (2)+E_(2)

1 " " 1 4.1.1)
H(z) = E[E(He‘J Z —Eg_e/¥?] = E[EJ,(z)fE_(z)]
where the corresponding forward and backward electric fields at position z are:
E.(z)= Eg.e /k*
+ ( ) 0+ (4.1.2)

E_(z)= Ey_e/kz

We can also express the fields E. (z) in terms of E(z),H (z). Adding and subtracting
the two equations (4.1.1), we find:
E (z)= _[E(2)+nH(2)]
(4.1.3)

E (2)= ;[E(z)-nH(z)]

N~ N

Egs.(4.1.1) and (4.1.3) can also be written in the convenient matrix forms:

81
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RN P (A L e b |

Two useful quantities in interface problems are the wave impedance at z:

_E(2)

Z(z)= Hz)

(wave impedance)

and the reflection coefficient at position z:

_E (2)

F(z)= E.(2)

(reflection coefficient)

Using Eq. (4.1.3), we have:

1 E
F:&: E(E—T”IH) :E_”:Z n
E, 1 E Z+n
—(E+nH =
2( nH) gtn
Similarly, using Eq. (4.1.1) we find:
.
Z_E E,+E_ n E, n1+1"
== = == -
H LE —E) 171?7 1-T
n E,
Thus, we have the relationships:
1+T(z) Z(z)-n
Z(z)=n——— I'iz)=—"-""—
@=n"Fo | TP 20
Using Eq. (4.1.2), we find:
Jjkz .
I'(z)= E-(2) _ Eo-el” _ I(0)e%kz

E_(z) ~ Eg.eJkz

where I'(0) = Eg_/Ej is the reflection coefficient at z = 0. Thus,
I'(z)=T(0)e¥**  (propagation of I')
Applying (4.1.7) at z and z = 0, we have:

Z(z)-n _ _ 2ikz _ £0)=N ik,
Z(2)+n =TI(z)=T(0)ev* = Z(O)+neJ

This may be solved for Z(z) in terms of Z(0), giving after some algebra:

Z(0)—jntankz )
Z(z)=n—+*——— f7
(z)=n n— JZ(0)tankz (propagation of Z)

(4.1.4)

(4.1.5)

(4.1.6)

(4.1.7)

(4.1.8)

(4.1.9)
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The reason for introducing so many field quantities is that the three quantities
{E; (z),E_(2),I(z)} have simple propagation properties, whereas {E(z),H(z),Z(z)}
do not. On the other hand, {E(z),H (z), Z(z) } match simply across interfaces, whereas
{E.(z),E_(z),I'(z)} do not.

Egs. (4.1.1) and (4.1.2) relate the field quantities at location z to the quantities at
z = 0. In matching problems, it proves more convenient to be able to relate these
quantities at two arbitrary locations.

Fig. 4.1.1 depicts the quantities {E(z),H (z),E, (2),E_(z),Z(z),I (z)} at the two
locations z; and z, separated by a distance I = z, — z;. Using Eq. (4.1.2), we have for
the forward field at these two positions:

E> = Eo+eijkz2, Ey. = EO+€7JkZ1 = E0+eijk(zrl) = ejklE2+
Elr Hl E2’ H2
Ey, E- Eyy, B>
Zlv Fl Zz, FZ
> medium >
-« n <
i ; > 7
Z 2

]
Fig. 4.1.1 Field quantities propagated between two positions in space.

And similarly, F;_ = e /XIE,_. Thus,
Ei. =eXE,, . Fi_ =eJKE,_ (4.1.10)

and in matrix form:
Eip | _[eX o Eyy _ .
|:E1 ] = [ 0 ekl Ey. (propagation matrix) (4.1.11)

We will refer to this as the propagation matrix for the forward and backward fields.
It follows that the reflection coefficients will be related by:

_Ei- _ Ee M

— —2jkl
= E. " Esel =TI5e , or,

I
I =T ge‘zﬂ‘l (reflection coefficient propagation) (4.1.12)

Using the matrix relationships (4.1.4) and (4.1.11), we may also express the total
electric and magnetic fields E;, H; at position z; in terms of E,, H, at position z,:

Ep | |1 1 E. | [ 1 1 ek 0 Ep,
Hi| [n' -n"[{E-| |[n" -n']L 0 eM]||E
11 1 ekl 0 1 nl|| E
2 nt o -nt L0 e M1 -n || He
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which gives after some algebra:

Ey | coskl Jjnsinkl E, . .
[ H, ] = [Jfl_l sinkl  coskl H, (propagation matrix) (4.1.13)

Writing n = no/n, where n is the refractive index of the propagation medium,
Eq. (4.1.13) can written in following form, which is useful in analyzing multilayer struc-
tures and is common in the thin-film literature [176,178,182,193]:

E | cos d jn~'ngsiné E, , )
[H1 ] = [jnnol sins 0SS H, (propagation matrix) (4.1.14)

where 6 is the propagation phase constant, 6 = kl = konl = 21 (nl)/Ag, and nl the
optical length. Eqs. (4.1.13) and (4.1.7), imply for the propagation of the wave impedance:

E> L
Ey  Ejcoskl + jnH; sinkl ECOSHJFMSIHH

T H,  JjE;n-lsinkl + Hocoskl _ n

Zi

E
ncoskl +jH—22 sin kI

which gives:

7 _ Z» coskl + jn sinkl
L= coskl + jZ sinkl

(impedance propagation) (4.1.15)

It can also be written in the form:

Zy + jn tankl . )
Zy=nN——"7"- d t 4.1.1
1=n N+ jZ tankl (impedance propagation) ( 6)

A useful way of expressing Z; is in terms of the reflection coefficient I'». Using (4.1.7)
and (4.1.12), we have:

7 - 1+F1_ 1+F2€72jkl or
l_nl—Fl_ 1—F2€72jkl ’
1 +F2€_2jkl

We mention finally two special propagation cases: the half-wavelength and the quarter-
wavelength cases. When the propagation distance is | = A/2, or any integral multiple
thereof, the wave impedance and reflection coefficient remain unchanged. Indeed, we
have in this case kIl = 27l/A = 211/2 = 1 and 2kl = 2. It follows from Eq. (4.1.12)
that I'y = I'; and hence Z; = Z5.

If on the other hand I = A/4, or any odd integral multiple thereof, then kI = 277/4 =
/2 and 2kl = 1. The reflection coefficient changes sign and the wave impedance
inverts:

1+1, 1-1> 1 n?

I =Te 2Kl — e JT = _T 71 = = = =L
! 2¢ 2€ 2 z ! nl—l"l 771+1_2 r’Zz/r) Zz
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Thus, we have in the two cases:

IZ% = 21222, F1=F2

N n? (4.1.18)
I=— Zy=—, In=-T

4 = 1 7z’ 1 2

4.2 Matching Matrices

Next, we discuss the matching conditions across dielectric interfaces. We consider a
planar interface (taken to be the xy-plane at some location z) separating two dielec-
tric/conducting media with (possibly complex-valued) characteristic impedances n, n’,
as shown in Fig. 4.2.1.1

n n' n n' n n'
E. E} E, |E.=TE, E,=pE"
- -« - - -«
E E. E_=pE, E =TE. E.
pT|p\T! pT|p\T' pT|P\T'

Fig. 4.2.1 Fields across an interface.

Because the normally incident fields are tangential to the interface plane, the bound-
ary conditions require that the total electric and magnetic fields be continuous across
the two sides of the interface:

E=F

H-H (continuity across interface) 4.2.1)

In terms of the forward and backward electric fields, Eq. (4.2.1) reads:

E,+E_=EFE +E_

1 (4.2.2)

1., /
E(E+ -E.) = ?(EJr —E.)

Eq. (4.2.2) may be written in a matrix form relating the fields E. on the left of the
interface to the fields E’. on the right:

E. | 11 p E', . )
[ E ] =2 [ o1 } [ E (matching matrix) (4.2.3)

TThe arrows in this figure indicate the directions of propagation, not the direction of the fields—the field
vectors are perpendicular to the propagation directions and parallel to the interface plane.

and inversely:
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Eol_1[ 1 p [ E . _
[ E }— - [ P ][ E ] (matching matrix) (4.2.4)

where {p, T} and {p’, T’} are the elementary reflection and transmission coefficients
from the left and from the right of the interface, defined in terms of n, n’ as follows:

n-n 2n’
p=—"—, T=-, (4.2.5)
n+n n+n
7 -n 7 2
pr=1= o A (4.2.6)
n+n n+n
Writing n = no/n and n’ = no/n’, we have in terms of the refractive indices:
n-n' 2n
p= S, T= ;
n+n n+n
(4.2.7)
, n -n , 2n’
p = 7 ’ T = 7
n +n n+n

These are also called the Fresnel coefficients. We note various useful relationships:
T=14p, pP=-p, T=1+p =1-p, 1T =1-p? (4.2.8)

In summary, the total electric and magnetic fields E, H match simply across the
interface, whereas the forward/backward fields E . are related by the matching matrices
of Egs. (4.2.3) and (4.2.4). An immediate consequence of Eq. (4.2.1) is that the wave
impedance is continuous across the interface:

E F ,
VA

7 =" ==_=
H H

On the other hand, the corresponding reflection coefficients I' = E_/E, and I’ =
E’ /E', match in a more complicated way. Using Eq. (4.1.7) and the continuity of the
wave impedance, we have:

1+T , 14T
“T 77 =
T Tir
which can be solved to get:
_ p+T an r_ P +TI
1+ pI” 1+ p'T

The same relationship follows also from Eq. (4.2.3):

’

E’ p+I’

E. ~ 1+ pI”
E}

1 ! 7
g pPELED e

_E_+_ I

I =
C(EL+pE) 14p
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To summarize, we have the matching conditions for Z and I":

p+1I r p +T

Z=17 = =
< 1+ pI” < 1+p'T

(4.2.9)

Two special cases, illustrated in Fig. 4.2.1, are when there is only an incident wave
on the interface from the left, so that E’ = 0, and when the incident wave is only from
the right, so that E, = 0. In the first case, we have I" = E’ /E’, = 0, which implies
Z'=n"(1+TI")/(1-TI")=n'. The matching conditions give then:

p+1I

7=7=n. I'= =
s 1+ pI” p

The matching matrix (4.2.3) implies in this case:

£ ]2 25 )

Expressing the reflected and transmitted fields F_, E', in terms of the incident field E,
we have:

E_ =pE,

E, = TE, (left-incident fields) (4.2.10)

This justifies the terms reflection and transmission coefficients for p and 1. In the
right-incident case, the condition E; = 0 implies for Eq. (4.2.4):

AR PR P

These can be rewritten in the form:

E. =p'E.

E. -TE (right-incident fields) (4.2.11)

which relates the reflected and transmitted fields E’,, E_ to the incident field E”. In this
case I' = E_/E, = co and the third of Egs. (4.2.9) gives I'" = E_/E. = 1/p’, which is
consistent with Eq. (4.2.11).

When there are incident fields both from both sides, that is, E,, E’ , we may invoke
the linearity of Maxwell’s equations and add the two right-hand sides of Eqgs. (4.2.10)
and (4.2.11) to obtain the outgoing fields E’,, E_ in terms of the incident ones:

E'. =TE, +p'E_

E- = pE. +T'E. @.2.12)

This gives the scattering matrix relating the outgoing fields to the incoming ones:

E, | |t/ E. ) .
[ E } _[ p T ][ £ } (scattering matrix) (4.2.13)

Using the relationships Eq. (4.2.8), it is easily verified that Eq. (4.2.13) is equivalent
to the matching matrix equations (4.2.3) and (4.2.4).
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4.3 Reflected and Transmitted Power

For waves propagating in the z-direction, the time-averaged Poynting vector has only a
Z-component:
L Re(EH*)
2

A direct consequence of the continuity equations (4.2.1) is that the Poynting vector
is conserved across the interface. Indeed, we have:

P- %Re(ﬁEx?H*) s

P= %Re(EH*): %Re(E’H’*)= P’ (4.3.1)

In particular, consider the case of a wave incident from a lossless dielectric n onto a
lossy dielectric n’. Then, the conservation equation (4.3.1) reads in terms of the forward
and backward fields (assuming E’ = 0):

1

1
_ L 2 2y _
P = o B = E1?) =Re(y

)IEL )2 =P

The left hand-side is the difference of the incident and the reflected power and rep-
resents the amount of power transmitted into the lossy dielectric per unit area. We saw
in Sec. 2.6 that this power is completely dissipated into heat inside the lossy dielectric
(assuming it is infinite to the right.) Using Egs. (4.2.10), we find:

1 1
P = o B2 (1= o1 = Re(5 ) 1B 211 (4.3.2)
This equality requires that:
L 1p2)=Re( L) 712 4.3.3)
n n’

This can be proved using the definitions (4.2.5). Indeed, we have:

— _ 2 _ 2
n_1-p _ gefn)_1-Ilpl® _1-lpl
11+ pl? IT|?

R ”

which is equivalent to Eq. (4.3.3), if nj is lossless (i.e., real.) Defining the incident, re-
flected, and transmitted powers by

1
Pin= 5 |E|?
in = 5 1B

1 1
Pret = §|E7|2 = §|E+|2|P|2 = Tin|p|2

1

’

1
nl

/A n
) |E+|z = Re( 2 ) |E+|2|T|2 = Pin Re(?) |T|2

Then, Eq. (4.3.2) reads Py = Pin — Pres. The power reflection and transmission
coefficients, also known as the reflectance and transmittance, give the percentage of the
incident power that gets reflected and transmitted:
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Pret 2 Py 2 n 2 ny e
oo =lpl5, = =1-|pl"=Re(7)|T|" =Re(—)|T| (4.3.4)
?in ,-Pin ('7 ) ( n )

If both dielectrics are lossless, then p, T are real-valued. In this case, if there are
incident waves from both sides of the interface, it is straightforward to show that the
net power moving towards the z-direction is the same at either side of the interface:

1 1
P=—"(E.?=|E_1?>) = — (E. 1> |E 1) =P 4.3.5
Zn(\ L2 =1E_1?) 2n,(l 12— 1EL1%) (4.3.5)

This follows from the matrix identity satisfied by the matching matrix of Eq. (4.2.3):

1[1 p 1 0 1 p|l n[1 o
Tz[p 1][01][p 1}‘_01] (4.3.6)

n/
If p, T are real, then we have with the help of this identity and Eq. (4.2.3):

_1 e p ey Lpe ey 1O ][ Es
P_Zn(um \E,|)—2n[E+,E,] o -1 || E

_2)7[EJr ’E]TT*[p* 1 ][O —1}[1) 1][}5’_

7i£ S AR 1 0 E’+ _ 1 72 712\ _ /
_Znn/[E+ 1E— ]|: 0 _1 :||: E/ :|_2n/(|E+| |E_| )—?

Example 4.3.1: Glasses have a refractive index of the order of n = 1.5 and dielectric constant
€ = ngy = 2.25¢. Calculate the percentages of reflected and transmitted powers for
visible light incident on a planar glass interface from air.

Solution: The characteristic impedance of glass will be n = no/n. Therefore, the reflection and
transmission coefficients can be expressed directly in terms of n, as follows:

- -1 1- 2
p:n r)():n = I’l’ T=1+p=
n+nyo nil+1 1+n 1+n
For n = 1.5, we find p = —0.2 and T = 0.8. It follows that the power reflection and

transmission coefficients will be
lpl? = 0.04, 1-1pl%>=0.96

That is, 4% of the incident power is reflected and 96% transmitted. m}

Example 4.3.2: A uniform plane wave of frequency f is normally incident from air onto a thick
conducting sheet with conductivity o, and € = €y, 4 = Uy. Show that the proportion
of power transmitted into the conductor (and then dissipated into heat) is given approxi-

mately by
Py _ 4R _ [8we
Pin  No o

Calculate this quantity for f = 1 GHz and copper o = 5.8x107 Siemens/m.
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Solution: For a good conductor, we have /wey/0 < 1. It follows from Eq. (2.8.4) that Rg/ng =
Jweg/20 < 1. From Eq. (2.8.2), the conductor’s characteristic impedance is n. = R (1 +
J). Thus, the quantity n./no = (1 +j)Rs/ng is also small. The reflection and transmission
coefficients p, T can be expressed to first-order in the quantity n./nq as follows:

_ 2Nc :2rlc, p:_r71:71+%
Ne +No No No

Similarly, the power transmission coefficient can be approximated as

1-lpPP=1-|T-1F=1-1-|7> + 2Re(T) = 2Re(T):22R;M = 4n—RS
0 0

where we neglected |T|? as it is second order in n./no. For copper at 1 GHz, we have
Jweg/20 = 2.19x1073, which gives Rs = No/weg/20 = 377%2.19%107> = 0.0082 Q. It
follows that 1 — |p|? = 4R2/ng = 8.76x107°>.

This represents only a small power loss of 8.76x1073 percent and the sheet acts as very
good mirror at microwave frequencies.

On the other hand, at optical frequencies, e.g., f = 600 THz corresponding to green
light with A = 500 nm, the exact equations (2.6.5) yield the value for the character-
istic impedance of the sheet n. = 6.3924 + 6.3888i Q and the reflection coefficient
p = —0.9661 + 0.0328i. The corresponding power loss is 1 — |p|?> = 0.065, or 6.5 percent.
Thus, metallic mirrors are fairly lossy at optical frequencies. [m}

Example 4.3.3: A uniform plane wave of frequency f is normally incident from air onto a thick
conductor with conductivity o, and € = €y, 4 = Ho. Determine the reflected and trans-
mitted electric and magnetic fields to first-order in n./no and in the limit of a perfect
conductor (n¢ = 0).

Solution: Using the approximations for p and T of the previous example and Eq. (4.2.10), we
have for the reflected, transmitted, and total electric fields at the interface:

2
E_ = pE, = (—1+ ”C)E+
No
F, = 1E, = g,
No
2
E=E, +E. =""F —F =F
no

For a perfect conductor, we have 0 — o and n./ny — 0. The corresponding total tangen-
tial electric field becomes zero E = E’ = 0, and p = —1, T = 0. For the magnetic fields, we
need to develop similar first-order approximations. The incident magnetic field intensity
is Hy = E./ng. The reflected field becomes to first order:

1 1 2Nc
H =-—FE =-—pE, =-pH, =(1-°"|H
No 170'0+ P+ ( '70) "

Similarly, the transmitted field is
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1 1 2 2
H,=—F, =—7E =Wy, =0 _Ne gy _ <o H+:2<1—E>H+
Ne c Nc Ne Ne + No Ne + No No

The total tangential field at the interface will be:

H=H++H_=2<1—%)H+=H’+=H’
0

In the perfect conductor limit, we find H = H' = 2H,. As we saw in Sec. 2.6, the fields just
inside the conductor, E’, H',, will attenuate while they propagate. Assuming the interface
is at z = 0, we have:

E\ (z)=E.e %e7B?  H' (z)= H, e **e /B

where & = B = (1 —j) /6, and § is the skin depth § = \/wuo /2. We saw in Sec. 2.6 that
the effective surface current is equal in magnitude to the magnetic field at z = 0, that is,
Js = H',.. Because of the boundary condition H = H' = H',, we obtain the result J¢ = H,
or vectorially, Jy = HX Z = fi X H, where n = —2 is the outward normal to the conductor.
This result provides a justification of the boundary condition J; = fi X H at an interface
with a perfect conductor. O

4.4 Single Dielectric Slab

Multiple interface problems can be handled in a straightforward way with the help of
the matching and propagation matrices. For example, Fig. 4.4.1 shows a two-interface
problem with a dielectric slab n; separating the semi-infinite media n, and np.

—— [ —»

Ny fh,kl np

, '
E, | E E) E;,
R —

-« <
E_ E
P1>T Py5T,

Z 1 ZZ
I, Iy L, I;

Fig. 4.4.1 Single dielectric slab.

Let I, be the width of the slab, k; = w/c; the propagation wavenumber, and A; =
21t/k; the corresponding wavelength within the slab. We have A; = Ay/ny, where Ag is
the free-space wavelength and n; the refractive index of the slab. We assume the incident
field is from the left medium n,, and thus, in medium nj there is only a forward wave.
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Let p1, p2 be the elementary reflection coefficients from the left sides of the two
interfaces, and let T, T»> be the corresponding transmission coefficients:

th—fla, erlb—nl,
N+ Na Ny + M
To determine the reflection coefficient I'; into medium n,, we apply Eq. (4.2.9) to
relate I'; to the reflection coefficient I'] at the right-side of the first interface. Then, we
propagate to the left of the second interface with Eq. (4.1.12) to get:

p1 T1=1+p1, To=1+p2 4.4.1)

_ pi+I pr e ¥kl
14+ pil 1+ pile-2kih

1 (4.4.2)

At the second interface, we apply Eq. (4.2.9) again to relate I'> to I';. Because there
are no backward-moving waves in medium np, we have I', = 0. Thus,

+ I
I, = p2 2 _

1+ pol - P

We finally find for I';:

p1 + pre~akih
L=

T 1+ prpae-kil (4.4.3)

This expression can be thought of as function of frequency. Assuming a lossless
medium n;, we have 2k l; = w(2l;/c1)= wT, where T = 2I,/c; = 2(n1l1)/cy is the
two-way travel time delay through medium n;. Thus, we can write:

+ —jwT
Iy(w)y= Prope" "

= T (4.4.4)

This can also be expressed as a z-transform. Denoting the two-way travel time delay
in the z-domain by z~! = e /@T = ¢~2kil1 we may rewrite Eq. (4.4.4) as the first-order
digital filter transfer function:

p1+ p2z !

r -
1(2) 1+ p1p2z—!

(4.4.5)

An alternative way to derive Eq. (4.4.3) is working with wave impedances, which
are continuous across interfaces. The wave impedance at interface-2 is Z, = Z5, but
Z5 = np because there is no backward wave in medium np. Thus, Z> = np. Using the
propagation equation for impedances, we find:

Zy +jnitankily,  np +jnitank
"m +jZytanki, oy +jnp tank

Zi=27Z=n

Inserting this into I'y = (Zy — ng)/(Z1 + ng) gives Eq. (4.4.3). Working with wave
impedances is always more convenient if the interfaces are positioned at half- or quarter-
wavelength spacings.

If we wish to determine the overall transmission response into medium ny, that is,
the quantity 7 = E,, /E;+, then we must work with the matrix formulation. Starting at
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the left interface and successively applying the matching and propagation matrices, we
obtain:

E.|_1[1 p[Es|_1[1 ][ 0 Ez,
Ei - | 1 E_| 7w |p 1 0 eJkh || Ep
11 p e 0 J1[1 p2]|Esn
| 1 0 e/kbh |4, pp 1 0

where we set E;_ = 0 by assumption. Multiplying the matrix factors out, we obtain:

efkih

E = (1+ p1p2€72ﬂ<111)Eé+
T1T2
eJkih .

Ei_ = (p1 + pare M) Ey
T1T2

These may be solved for the reflection and transmission responses:

r E, - p1 + pre~ kil
e L
Eir 1+ pipre2ikih
, - (4.4.6)
T E;. _ T1Tre /1l
Eir 1+ pipre-2kih
The transmission response has an overall delay factor of e /kilt = ¢=J@T/2 repre-

senting the one-way travel time delay through medium n;.

For convenience, we summarize the match-and-propagate equations relating the field
quantities at the left of interface-1 to those at the left of interface-2. The forward and
backward electric fields are related by the transfer matrix:

Evv |_ 111 p e/kil 0 E>,
Ei- | 7w |, 1 0 ekh E»

. . (4.4.7)
Ev |_ 1 [ elh prehb Ep,
E,_ - ?l ple.jklll e—Jkih Eo_
The reflection responses are related by Eq. (4.4.2):
+ Ipe~%kih
= PL¥o2 (4.4.8)

1+ piTae2kih

The total electric and magnetic fields at the two interfaces are continuous across the
interfaces and are related by Eq. (4.1.13):

E1 _ COSk111 Jr]l Sil’lklll Ez (4.4.9)

Hl B JT]Il Sil’lklll COSklll Hz o
Egs. (4.4.7)-(4.4.9) are valid in general, regardless of what is to the right of the second
interface. There could be a semi-infinite uniform medium or any combination of multiple

slabs. These equations were simplified in the single-slab case because we assumed that
there was a uniform medium to the right and that there were no backward-moving waves.
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For lossless media, energy conservation states that the energy flux into medium n;
must equal the energy flux out of it. It is equivalent to the following relationship between
I’ and T, which can proved using Eq. (4.4.6):

1 . 1 -
— (1 =*) = —IT? (4.4.10)
a Np

Thus, if we call |I'; |2 the reflectance of the slab, representing the fraction of the
incident power that gets reflected back into medium n,, then the quantity

1*|F1|2=@|T|2=@\T|2 (4.4.11)
Np Ng

will be the transmittance of the slab, representing the fraction of the incident power that
gets transmitted through into the right medium ;. The presence of the factors ng, np
can be can be understood as follows:

1

—|E5, |2
P transmitted _ 2Np _ Na |T‘2
Pincident 1 |E1+|2 Np

2nq

4.5 Reflectionless Slab

The zeros of the transfer function (4.4.5) correspond to a reflectionless interface. Such
zeros can be realized exactly only in two special cases, that is, for slabs that have either
half-wavelength or quarter-wavelength thickness. It is evident from Eq. (4.4.5) that a
zero will occur if p; + p»z~! = 0, which gives the condition:

4 = okih _ _P2 (4.5.1)
P1

Because the right-hand side is real-valued and the left-hand side has unit magnitude,
this condition can be satisfied only in the following two cases:

7z = e%kilh — 1 P2 = —pP1, (half-wavelength thickness)

z = e¥kili = _q, P2 = p1, (quarter-wavelength thickness)

The first case requires that 2k;1; be an integral multiple of 27t, that is, 2k,1; = 2mrTr,
where m is an integer. This gives the half-wavelength condition I, = mA /2, where A,

is the wavelength in medium-1. In addition, the condition p, = —p; requires that:
Ny — M Na— M
_ = = — = = =Np
mam 2T TP T e m fla =1

that is, the media to the left and right of the slab must be the same. The second pos-
sibility requires e%*1h = —1, or that 2k,I; be an odd multiple of T, that is, 2k, =
(2m + 1) 1r, which translates into the quarter-wavelength condition I; = (2m+1)A,/4.
Furthermore, the condition p, = p; requires:

nb_nlzpzzpl:nl_na

=
Ny +m N+ Na

= NaNp
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To summarize, a reflectionless slab, I'; = 0, can be realized only in the two cases:

A
half-wave: L=m=t, ni arbitrary, ng=np

2 (4.5.2)
quarter-wave: I; = (2m + 1)%, N1 = +/NaNb, Na,Np arbitrary

An equivalent way of stating these conditions is to say that the optical length of
the slab must be a half or quarter of the free-space wavelength Ay. Indeed, if n; is the
refractive index of the slab, then its optical length is n;1;, and in the half-wavelength
case we have n1l; = nimA,/2 = mAy/2, where we used A; = Ag/n;. Similarly, we have
nil; = (2m+ 1)Ay/4 in the quarter-wavelength case. In terms of the refractive indices,
Eq. (4.5.2) reads:

half-wave: nily

[
3
|

n; arbitrary, ng = nyp
20 (4.5.3)
quarter-wave: nl; = (2m + I)Z’ n; = /Ngny, Hng,ny arbitrary

The reflectionless matching condition can also be derived by working with wave
impedances. For half-wavelength spacing, we have from Eq. (4.1.18) Z, = Z> = np. The
condition I'; = 0 requires Z; = ng, thus, matching occurs if n, = np. Similarly, for the
quarter-wavelength case, we have Z, = n%/Z> = n3/np = na.

We emphasize that the reflectionless response I'; = 0 is obtained only at certain slab
widths (half- or quarter-wavelength), or equivalently, at certain operating frequencies.
These operating frequencies correspond to wT = 2mrr, or, wT = (2m + 1), that is,
w =2mtmt/T = mwoy, or, w = (2m + 1) wy/2, where we defined wq = 217/T.

The dependence on I; or w can be seen from Eq. (4.4.5). For the half-wavelength
case, we substitute p» = —p; and for the quarter-wavelength case, p>» = p;. Then, the
reflection transfer functions become:

1-— -1
Ii(z)= pl(iZZ) , (half-wave)
1-piz-1
L (4.5.4)
1+2z~
I'(z) = 7‘? (+ p%i*l) , (quarter-wave)
where z = e¥kili = @J©T The magnitude-square responses then take the form:
202 (1 - 2k;1 202 (1 — T
% = P1(2 cos (2ky 1))4 = p1(2 cos @ )4, (half-wave)
1 -2picos(2kily)+p7 1—-2picoswT + pj
(4.5.5)
202 (1 + 2kl 202 (1 + T
II1]% = pi(1+cos(2kiLh)) _ 2,1+ coswT) ,  (quarter-wave)

1+ 2p3cos(2kily) +pf 1+ 2picoswT + p}

These expressions are periodic in I; with period A;/2, and periodic in w with period
wo = 21t/T. In DSP language, the slab acts as a digital filter with sampling frequency
wyp. The maximum reflectivity occurs at z = —1 and z = 1 for the half- and quarter-
wavelength cases. The maximum squared responses are in either case:
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4p3

I = P
1 Imax (1+p%)2

Fig. 4.5.1 shows the magnitude responses for the three values of the reflection co-
efficient: |p;| = 0.9, 0.7, and 0.5. The closer p; is to unity, the narrower are the reflec-
tionless notches.

A I 1(w)I2 half-wavelength AT 1(w)|2 quarter-wavelength
14 1+
(a)

- ‘ . ‘ ‘ e w

0 w, w, 3&)0 2w, 5‘000 3w, 0 w, d)o 3w, 2&)0 5w, 3&)0

2 2 2 2 2 2

Fig. 4.5.1 Reflection responses |I'(w)|%. (a) |p1] = 0.9, (b) [p1] = 0.7, (¢) |p1| = 0.5.

It is evident from these figures that for the same value of p;, the half- and quarter-
wavelength cases have the same notch widths. A standard measure for the width is the
3-dB width, which for thge half-wavelength case is twice the 3-dB frequency w3, that
is, Aw = 2ws3, as shown in Fig. 4.5.1 for the case |p;| = 0.5. The frequency ws is
determined by the 3-dB half-power condition:

1
I (w3) |? = 5 1Ty 120
or, equivalently:

4p3
(1+p7)2

2p2(1 — cos w3T)
1-2p3coswsT + p}

_1
)

Solving for the quantity cos w3 T = cos(AwT/2), we find:

AwT 2p°
w ): p14 P tan(
2 1+p}

AwT) 1-pf

COoSs =
( 4 1+ p3

(4.5.6)

If p‘% is very near unity, then 1 — p% and Aw become small, and we may use the
approximation tan x =~ x to get:

AwT 1-p7 1-p3
4 1+p5 2

which gives the approximation:
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AwT = 2(1 - p?) (4.5.7)

This is a standard approximation for digital filters relating the 3-dB width of a pole
peak to the radius of the pole [52]. For any desired value of the bandwidth Aw), Eq. (4.5.6)
or (4.5.7) may be thought of as a design condition that determines p;.

Fig. 4.5.2 shows the corresponding transmittances 1 — |I'; (w) | of the slabs. The
transmission response acts as a periodic bandpass filter. This is the simplest exam-
ple of a so-called Fabry-Perot interference filter or Fabry-Perot resonator. Such filters
find application in the spectroscopic analysis of materials. We discuss them further in
Chap. 5.

A 1T (w)l? half-wavelength A 1—IT(w)l? quarter-wavelength
14 “ 1+
(©)
(@)
‘ I ‘ > W ‘ ‘ N
0w, wy 3w, 20, 5w, 3w, 0w, w, 3w, 2w, 5w, 3w,
2 2 2 2 2 2

Fig. 4.5.2 Transmittance of half- and quarter-wavelength dielectric slab.

Using Eq. (4.5.5), we may express the frequency response of the half-wavelength
transmittance filter in the following equivalent forms:

L !
1-2p?coswT +p} 1+ Fsin®(wT/2)

(4.5.8)
where the F is called the finesse in the Fabry-Perot context and is defined by:

2p}

7= (1 - p?)2

The finesse is a measure of the peak width, with larger values of F corresponding
to narrower peaks. The connection of F to the 3-dB width (4.5.6) is easily found to be:

AwT, 1-p? 1
t = = 4.5.9
an( 4 ) 1+p2 2+ 7F (4:5.9)

Quarter-wavelength slabs may be used to design anti-reflection coatings for lenses,
so that all incident light on a lens gets through. Half-wavelength slabs, which require that
the medium be the same on either side of the slab, may be used in designing radar domes
(radomes) protecting microwave antennas, so that the radiated signal from the antenna
goes through the radome wall without getting reflected back towards the antenna.
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Example 4.5.1: Determine the reflection coefficients of half- and quarter-wave slabs that do not
necessarily satisfy the impedance conditions of Eq. (4.5.2).

Solution: The reflection response is given in general by Eq. (4.4.6). For the half-wavelength case,
we have e¥k1l1 = 1 and we obtain:

nl_na+rlb—’71
PrtpP2 _ Mm+Na Npb+M _Np—Na _Na—Nyp

1:1+p1pz 1+uu_nb+na Ng + Ny
Ni+Nalp+m

This is the same as if the slab were absent. For this reason, half-wavelength slabs are
sometimes referred to as absentee layers. Similarly, in the quarter-wavelength case, we

have e%*1hi = _1 and find:
2 2
ry = PL—p2 _ l’l;-"la"lh _ nanh_n}
L=pip2  Ni+nNalp  Nahp + 03
The slab becomes reflectionless if the conditions (4.5.2) are satisfied. ]

Example 4.5.2: Antireflection Coating. Determine the refractive index of a quarter-wave antire-
flection coating on a glass substrate with index 1.5.

Solution: From Eq. (4.5.3), we have with n, = 1 and np = 1.5:

ny, = \/ngnp = 1.5 =1.22

The closest refractive index that can be obtained is that of cryolite (NazAlFg) with n; =
1.35 and magnesium fluoride (MgF,) with n; = 1.38. Magnesium fluoride is usually pre-
ferred because of its durability. Such a slab will have a reflection coefficient as given by
the previous example:

PL=p> _Ni=MNally _NaMp—ni L5-138 .o

to N2+ nanp  Nanp +n2 1.5+ 1.382

C1-pip2

with reflectance |I'|> = 0.014, or 1.4 percent. This is to be compared to the 4 percent
reflectance of uncoated glass that we determined in Example 4.3.1.

Fig. 4.5.3 shows the reflectance |I'(A) |? as a function of the free-space wavelength A. The
reflectance remains less than one or two percent in the two cases, over almost the entire
visible spectrum.

The slabs were designed to have quarter-wavelength thickness at A¢ = 550 nm, that is, the
optical length was n,1; = Ay/4, resultingin I; = 112.71 nm and 99.64 nm in the two cases
of n; = 1.22 and n; = 1.38. Such extremely thin dielectric films are fabricated by means
of a thermal evaporation process [176,178].

The MATLAB code used to generate this example was as follows:

n=[1, 1.22, 1.50]; L = 1/4; refractive indices and optical length
lambda = Tinspace(400,700,101) / 550; visible spectrum wavelengths
Gammal = multidiel(n, L, Tambda); reflection response of slab
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Antireflection Coating on Glass

5
4t Nglass = 1.50

2

@ — n; =122

2

5 3t ---n =138

< uncoated glass

3]

= e e
1+

0 ‘ ;
400 450 500 550 600 650 700
A (nm)

Fig. 4.5.3 Reflectance over the visible spectrum.
The syntax and use of the function multidiel is discussed in Sec. 5.1. The dependence

of I' on A comes through the quantity kyl; = 21r(nyl;)/A. Since nyl; = Ag/4, we have
klll = 057TA()/A O

Example 4.5.3: Thick Glasses. Interference phenomena, such as those arising from the mul-

tiple reflections within a slab, are not observed if the slabs are “thick” (compared to the
wavelength.) For example, typical glass windows seem perfectly transparent.

If one had a glass plate of thickness, say, of I = 1.5 mm and index n = 1.5, it would have
optical length nl = 1.5x1.5 = 2.25 mm = 225x10* nm. At an operating wavelength
of Ag = 450 nm, the glass plate would act as a half-wave transparent slab with nl =
10*(Ao/2), that is, 10* half-wavelengths long.

Such plate would be very difficult to construct as it would require that I be built with
an accuracy of a few percent of Ay/2. For example, assuming n(Al)= 0.01(A(/2), the
plate should be constructed with an accuracy of one part in a million: Al/l = nAl/ (nl) =
0.01/10* = 1075, (That is why thin films are constructed by a carefully controlled evapo-
ration process.)

More realistically, a typical glass plate can be constructed with an accuracy of one part in a
thousand, Al/l = 1073, which would mean that within the manufacturing uncertainty Al,
there would still be ten half-wavelengths, nAA = 1073 (nl) = 10(Ay/2).

The overall power reflection response will be obtained by averaging |I'1 | over several A /2
cycles, such as the above ten. Because of periodicity, the average of |I'; |2 over several cycles
is the same as the average over one cycle, that is,

- 1 ®o
T = L Ty () 2 dw
0

wo
where wq = 211/T and T is the two-way travel-time delay. Using either of the two expres-
sions in Eq. (4.5.5), this integral can be done exactly resulting in the average reflectance
and transmittance:

1-p? 2
—-—PA__n (4.5.10)
1+p; n2+1

2pi

P = :
11| 1+ p2

1 -T2




100 Electromagnetic Waves & Antennas - S. J. Orfanidis

where we used p; = (1 —n)/(1 + n). This explains why glass windows do not exhibit a
frequency-selective behavior as predicted by Eq. (4.5.5). For n = 1.5, we find 1 — |1 |2 =
0.9231, that is, 92.31% of the incident light is transmitted through the plate.

The same expressions for the average reflectance and transmittance can be obtained by
summing incoherently all the multiple reflections within the slab, that is, summing the
multiple reflections of power instead of field amplitudes. The timing diagram for such
multiple reflections is shown in Fig. 4.6.1.

Indeed, if we denote by p, = p% andpi=1-p,=1- p%, the power reflection and trans-
mission coefficients, then the first reflection of power will be p,. The power transmitted
through the left interface will be p,; and through the second interface p? (assuming the
same medium to the right.) The reflected power at the second interface will be p;p, and
will come back and transmit through the left interface giving p?p;-.

Similarly, after a second round trip, the reflected power will be p?p3, while the transmitted
power to the right of the second interface will be p?p2, and so on. Summing up all the
reflected powers to the left and those transmitted to the right, we find:

pipr :i
1-p; 1l+pr

IT112 = pr + Pipr + PIPE+PiP + - - =Pr +

2
T 1-pr
1-TT =02+ +p2pt 4 e = pr  _
[T Pt + PPy t PPy 1*}?;2’ 1+ p,

where we used p; = 1 — p,. These are equivalent to Egs. (4.5.10). m]

Example 4.5.4: Radomes. A radome protecting a microwave transmitter has € = 4€o and is
designed as a half-wavelength reflectionless slab at the operating frequency of 10 GHz.
Determine its thickness.

Next, suppose that the operating frequency is 1% off its nominal value of 10 GHz. Calculate
the percentage of reflected power back towards the transmitting antenna.

Determine the operating bandwidth as that frequency interval about the 10 GHz operating
frequency within which the reflected power remains at least 30 dB below the incident
power.

Solution: The free-space wavelengthis Ay = ¢o/fo = 30 GHz cm/10 GHz = 3 cm. The refractive
index of the slab is n = 2 and the wavelength inside it, A; = Ag/n = 3/2 = 1.5 cm. Thus,
the slab thickness will be the half-wavelength I; = A;/2 = 0.75 cm, or any other integral
multiple of this.

Assume now that the operating frequency is w = wg + dw, where wqg = 217fy = 270/T.
Denoting 6 = dw/wg, we can write w = wq(1 + &). The numerical value of § is very
small, 6 = 1% = 0.01. Therefore, we can do a first-order calculation in . The reflection
coefficient p; and reflection response I are:

n-no 05-1 1 _p(1-zYH  p(1—eeT)

= = =—=, T = :
n+no 0.5+1 3 1) 1-piz-! 1 - pie-joT

P

where we used n = ng/n = no/2. Noting that wT = weT (1 + 6)= 271 (1 + ), we can
expand the delay exponential to first-order in 6:

771 = p 0T — p2mj(1408) _ o—2Mjp=2Tj6 _ ,—2Tj6 ~, 1 _ 27TJ6
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Thus, the reflection response becomes to first-order in o:

- P1 (1 -(1- 27T_]5)) p12Tr16 - p127Tj($

I - = - - ~ -
YT oi-pi(-2mis)  1-pf+pl2mis 1-p}

where we replaced the denominator by its zeroth-order approximation because the numer-
ator is already first-order in 6. It follows that the power reflection response will be:

|1— |2 _ p%(ZT(‘&)Z
T a-phe
1
Evaluating this expression for § = 0.01 and p; = —1/3, we find |T'|> = 0.00049, or

0.049 percent of the incident power gets reflected. Next, we find the frequency about
wy at which the reflected power is A = 30 dB below the incident power. Writing again,
w = wo+ 0w = wy (1l + 0) and assuming 6 is small, we have the condition:

p% (27T5) 2 _ fPreﬂ

_ 1 pr _
= =10"4/10 S = — Fl 10-4/20
(1 —P%)Z Pinc

|\ |2 = =
! 2mlpy

Evaluating this expression, we find 6 = 0.0134, or dw = 0.0134w,. The bandwidth will
be twice that, Aw = 26w = 0.0268wy, or in Hz, Af = 0.0268f, = 26.8 MHz. [m}

Example 4.5.5: Because of manufacturing imperfections, suppose that the actual constructed
thickness of the above radome is 1% off the desired half-wavelength thickness. Determine
the percentage of reflected power in this case.

Solution: This is essentially the same as the previous example. Indeed, the quantity 0 = wT =
2k1l; = 2wl,/c; can change either because of w or because of I;. A simultaneous in-
finitesimal change (about the nominal value 8¢ = wT = 277) will give:

60 ow oL
- LAt ]

69=2(6w)11/c1+2w0(611)/cl > 0=— =
90 wo Il

In the previous example, we varied w while keeping I; constant. Here, we vary I, while
keeping w constant, so that § = 6l,/1;. Thus, we have 68 = 6,6 = 21d. The correspond-
ing delay factor becomes approximately z = e~ /0 = ¢ 7(@m+0) — 1 _ j§0 = 1 — 271j6.
The resulting expression for the power reflection response is identical to the above and its
numerical value is the same if 6 = 0.01. [m}

Example 4.5.6: Because of weather conditions, suppose that the characteristic impedance of
the medium outside the above radome is 1% off the impedance inside. Calculate the per-
centage of reflected power in this case.

Solution: Suppose that the outside impedance changes to n, = no + 6n. The wave impedance
at the outer interface will be Z» = n, = ng + 6n. Because the slab length is still a half-
wavelength, the wave impedance at the inner interface will be Z; = Z, = ng + 6n. It
follows that the reflection response will be:

r=Z1=M _noton=no __on ___ on
Zi+no No+don+ne 2no+6n  2no

where we replaced the denominator by its zeroth-order approximation in 6n. Evaluating
at 6n/ng = 1% = 0.01, we find I'y = 0.005, which leads to a reflected power of |I'1|?> =
2.5%107°, or, 0.0025 percent. O
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4.6 Time-Domain Reflection Response

We conclude our discussion of the single slab by trying to understand its behavior in
the time domain. The z-domain reflection transfer function of Eq. (4.4.5) incorporates
the effect of all multiple reflections that are set up within the slab as the wave bounces
back and forth at the left and right interfaces. Expanding Eq. (4.4.5) in a partial fraction
expansion and then in power series in z~! gives:

p1+ p2z7! 11 (1-p) c 2 1.1 ,-
Mz=——""—=—-——" "—=p1+ > (1-p))(-p)"'phzT"
' L+ pipozt  pi pi L+pipazt O ,;1 pUL=PIT P2

Using the reflection coefficient from the right of the first interface, p; = —p1, and the
transmission coefficients T; = 1+ p; and T) = 1 + p} = 1 — p;, we have T1T] = 1 — p?.
Then, the above power series can be written as a function of frequency in the form:

IMi(w)=p1+ > Tty (p)" oz = pr+ > Tty (py) " oY e IOt
n=1 n=1

where we set z7! = e J®T_ Tt follows that the time-domain reflection impulse response,
that is, the inverse Fourier transform of I'1 (w), will be the sum of discrete impulses:

Ii()=pi50)+ > Tt (P 1P 8 (t — nT) (4.6.1)
n=1
This is the response of the slab to a forward-moving impulse striking the left inter-
face att = 0, that s, the response to the input Eq 4 (t) = 6 (t). The first term p; 6 (t) is the
impulse immediately reflected at t = 0 with the reflection coefficient p;. The remaining
terms represent the multiple reflections within the slab. Fig. 4.6.1 is a timing diagram
that traces the reflected and transmitted impulses at the first and second interfaces.

-~ [ ————»

1 t=0 T,
P > t=102
t=T 0h
T, | =311
t=2T I X VW
TiT P | t=5T12
t= 3T \‘ T2Tlp22p;2

' 3412
Ty T1P; Py T1,023p1'3

Fig. 4.6.1 Multiple reflections building up the reflection and transmission responses.

The input pulse 6 (t) gets transmitted to the inside of the left interface and picks up
a transmission coefficient factor 7. In T/2 seconds this pulse strikes the right interface
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and causes a reflected wave whose amplitude is changed by the reflection coefficient p»
into T1P2.

Thus, the pulse T1p26 (t — T/2) gets reflected backwards and will arrive at the left
interface T/2 seconds later, that is, at time t = T. A proportion T; of it will be transmit-
ted through to the left, and a proportion p] will be re-reflected towards the right. Thus,
at time t = T, the reflected pulse into the left medium will be T, T} p26 (t — T), and the
re- reflected pulse T1p1p26 (t — T).

The re-reflected pulse will travel forward to the right interface, arriving there at time
t = 3T /2 getting reflected backwards picking up a factor p,. This will arrive at the left
at time t = 2T. The part transmitted to the left will be now 1,7} p]p36 (t — 2T), and
the part re-reflected to the right Tlp'lngé (t—2T). And so on, after the nth round trip,
the pulse transmitted to the left will be 71T} (p7)" " 'p%6(t — nT). The sum of all the
reflected pulses will be I'; (t) of Eq. (4.6.1).

In a similar way, we can derive the overall transmission response to the right. It is
seenin the figure that the transmitted pulse at time t = nT+ (T/2) willbe T1 T2 (p1)"p5.
Thus, the overall transmission impulse response will be:

T ()= > TiT2(p)"pE5(t —nT - T/2)
n=0
It follows that its Fourier transform will be:
T ()= Z T To (pfl)npiz‘lefjanefij/Z
n=0
which sums up to Eq. (4.4.6):

T1Tre-JwT/2 T Toe—JwT/2
T(w)= —12 __ = 12 : (4.6.2)
1= pyp2e 7@l 1+ pyprejeol

For an incident field E, (t) with arbitrary time dependence, the overall reflection
response of the slab is obtained by convolving the impulse response I'y (t) with Ey; (t).
This follows from the linear superposition of the reflection responses of all the frequency
components of Eq, (t), that is,

El—(t):J Fl(w)EH(w)ejwtdfw, where E1+(t):J EH(w)ejwtdfw
— 27T — 27T

Then, the convolution theorem of Fourier transforms implies that:

Elf(t):f r1<w>EH<w>efwf”21—‘jT’ - j [ () Er (t = )t 4.63)

Inserting (4.6.1), we find that the reflected wave arises from the multiple reflections
of Eq, (t) as it travels and bounces back and forth between the two interfaces:

E1-(0)= p1Ere (O + > 11Ty (p) ™ ' pB Ers (t = nT) (4.6.4)
n=1
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For a causal waveform E; . (t), the summation over n will be finite, such that at each
time t > 0 only the terms that have t — nT > 0 will be present. In a similar fashion, we
find for the overall transmitted response into medium ny :

E, ()= J: T(t)E+ (t=t)dt = Z T1T2(p)"PY E1+ (t —nT —T/2) (4.6.5)

n=0

We will use similar techniques later on to determine the transient responses of trans-
mission lines.

4.7 Two Dielectric Slabs

Next, we consider more than two interfaces. As we mentioned in the previous section,
Egs. (4.4.7)-(4.4.9) are general and can be applied to all successive interfaces. Fig. 4.7.1
shows three interfaces separating four media. The overall reflection response can be
calculated by successive application of Eq. (4.4.8):

p1 + e~ %kl p2 + I3~ %kale
1= o o 2= T
1+ p1lpe-2kilh? 1 + poTze—2ikele

o [ —pta— [, —»
Na '71,k1 ’72, k2 np
El+ E1'+ E2+ E2'+ E3+ E3,+

B e e I =

B S - - -

E_| E_ E_| E, E,

P P, Ps
Z, Z, Zy
I, ny L, I, I, I

Fig. 4.7.1 Two dielectric slabs.

If there is no backward-moving wave in the right-most medium, then I'; = 0, which
implies I'; = p3. Substituting I'» into I'1 and denoting z; = e%kih z, = e2kelz we
eventually find:

Lt p221" + prpap3zyt + p3zi'zy!

L+ p1pozy’ + papszy’ + p1pszyizy!

The reflection response I'; can alternatively be determined from the knowledge of
the wave impedance Z; = E;/H; at interface-1:

(4.7.1)

1:Z1—na
Z1 +Ng
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The fields E1, H; are obtained by successively applying Eq. (4.4.9):

El _ COSk]I] Jr]] sink111 Ez
H; - JI’]II sink111 COSk111 H>
_ |: COSklll Jr]l Sil’lklll ] |: COSlez _])’]2 sink212 ] |: E3 ]

jnitsinkil;  cosk;l; Jjn>tsinkal,  coskol, H;

But at interface-3, E5 = E4 = E5, and H; = Z3'E3 = n;,'E},, because Z3 = np.
Therefore, we can obtain the fields E;, H; by the matrix multiplication:

El _ COSklll J’h sink111 COSkglz JI’]2 sink212 1 E,

Hy | | jnytsink;l;  coskily Jjnstsinkal,  coskoly n,t |3

Because Z; is the ratio of E; and H;, the factor E;+ cancels out and can be set equal
to unity.

Example 4.7.1: Determine I'; if both slabs are quarter-wavelength slabs. Repeat if both slabs
are half-wavelength and when one is half- and the other quarter-wavelength.

Solution: Because I; = A;/4 and I, = A,/4, we have 2k,l; = 2k,l> = T, and it follows that
Zy = Zp = —1. Then, Eq. (4.7.1) becomes:

r = P1— P2 — P1P2pP3 + P3
1—=p1p2—p2p3 + p1P3

A simpler approach is to work with wave impedances. Using Z3 = np, we have:

2 2 2
ni N1 N1 ni
71 = — = — = = /1= —= Ny
' iz m T m

Inserting this into I'y = (Z; — ng)/(Zy + ng), we obtain:

o= Minb = N3na
1= 72 2
nine + N2Na
The two expressions for I'; are equivalent. The input impedance Z; can also be obtained

by matrix multiplication. Because k1, = kI, = 11/2, we have cosk;l; = 0 and sink;l; =1
and the propagation matrices for E;, H; take the simplified form:

E.|_[ o Jjm 0 gno || 1| | -mmt |
H, Jnit o |t o npt |7 —menitnpt | TR

Theratio E,/H; gives the same answer for Z; as above. When both slabs are half-wavelength,
the impedances propagate unchanged: Z, = Z, = Z3, but Z3 = np.

If n, is half- and n, quarter-wavelength, then, Z, = Z, = n3/Z3 = n3/np. And, if the
quarter-wavelength is first and the half-wavelength second, Z, = n3/Z = n3/Z3 = n%/np.
The corresponding reflection coefficient I'; is in the three cases:

ry = Np — Na I = ’73 Nanp LTI = ’7; Nanp
Np + Na n; + Nalvp ni + Nalbp

These expressions can also be derived by Eq. (4.7.1), or by the matrix method. [m}
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The frequency dependence of Eq. (4.7.1) arises through the factors z;, z», which can
be written in the forms: z; = e/®Tt and z, = ¢/®T2 where T = 21,/c; and T> = 2L, /¢
are the two-way travel time delays through the two slabs.

A case of particular interest arises when the slabs are designed to have the equal
travel-time delays so that T; = T» = T. Then, defining a common variable z = z; =
Z> = /T we can write the reflection response as a second-order digital filter transfer
function:

Iz Pt p2(1+p1p3)zt + p3z?

1+ pa(p1+p3)z=t + prp3z=2

In the next chapter, we discuss further the properties of such higher-order reflection
transfer functions arising from multilayer dielectric slabs.

(4.7.2)

4.8 Problems

4.1 Fill in the details of the equivalence between Eq. (4.2.2) and (4.2.3), that is,

1 E++E,=El++E, (e[ e|[E
E(E+ —E_) = ?(E:r —E’,) E_ - T pP 1 E’

4.2 Fill in the details of the equivalences stated in Eq. (4.2.9), that is,

7-7 o =Pt L p_P*l
1+ pI” 1+pT

Show that if there is no left-incident field from the right, then I' = p, and if there is no
right-incident field from the left, then, I = 1/p’. Explain the asymmetry of the two cases.

4.3 Let p, T be the reflection and transmission coefficients from the left side of an interface and
let p’, T’ be those from the right, as defined in Eq. (4.2.5). One of the two media may be
lossy, and therefore, its characteristic impedance and hence p, T may be complex-valued.
Show and interpret the relationships:

1-|pl?= Re(#)l'rl2 =Re(T*T')

4.4 Show that the reflection and transmission responses of the single dielectric slab of Fig. 4.4.1
are given by Eq. (4.4.6), that is,

P11+ poe¥kih _E). TiTeekib
1+ p1pae=2kih

B Ei. 1+ p1pre-2kih

Moreover, using these expressions show and interpret the relationship:
1 1
(1= IrP) = TP
Na Np

4.5 A 1-GHz plane wave is incident normally onto a thick copper plate (o = 5.8x10” S/m.) Can
the plate be considered to be a good conductor at this frequency? Calculate the percentage
of the incident power that enters the plate. Calculate the attenuation coefficient within the
conductor and express it in units of dB/m. What is the penetration depth in mm?
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With the help of Fig. 4.5.1, argue that the 3-dB width Aw is related to the 3-dB frequency
w3 by Aw = 2w3 and Aw = wy — 2ws, in the cases of half- and quarter-wavelength slabs.
Then, show that w3 and Aw are given by:

cosws3T = =+

2p? tn(AwT>— 1-p?

1+pt’ 4 ) 1+pf

A fiberglass (e = 4€() radome protecting a microwave antenna is designed as a half-wavelength
reflectionless slab at the operating frequency of 12 GHz.

a. Determine three possible thicknesses (in cm) for this radome.

b. Determine the 15-dB and 30-dB bandwidths in GHz about the 12 GHz operating fre-
quency , defined as the widths over which the reflected power is 15 or 30 dB below the
incident power.

A 5 GHz wave is normally incident from air onto a dielectric slab of thickness of 1 cm and
refractive index of 1.5, as shown below. The medium to the right of the slab has an index of
2.25.

a. Write an analytical expression of the reflectance |I'(f)|? as a function of frequency
and sketch it versus f over the interval 0 < f < 15 GHz. What is the value of the
reflectance at 5 GHz?

b. Next, the 1-cm slab is moved to the left by a distance of 3 cm, creating an air-gap
between it and the rightmost dielectric. Repeat all the questions of part (a).

c. Repeat part (a), if the slab thickness is 2 cm.

€ | €1 € € | €1 €o €
1 —» 1 —»
I <+— I <+—
3cm
fe—> fe—>
lem lem

Consider a two-layer dielectric structure as shown in Fig. 4.7.1, and let ng, n, n,, np be the
refractive indices of the four media. Consider the four cases: (a) both layers are quarter-
wave, (b) both layers are half-wave, (c) layer-1 is quarter- and layer-2 half-wave, and (d) layer-1
is half- and layer-2 quarter-wave. Show that the reflection coefficient at interface-1 is given
by the following expressions in the four cases:

2 2 2 2
Nan5 — NpN; Ma—=Np . _ Malp =N ns — Ngnp

r=-—42 271 =4 =42 1 L= —
Nanj + npni’ Ng + hp’ Nahp + N3’ n3 + nanp

Consider the lossless two-slab structure of Fig. 4.7.1. Write down all the transfer matrices
relating the fields E;., i = 1,2,3 at the left sides of the three interfaces. Then, show the
energy conservation equations:

1 1 1 1,
a(|E1+|2 —|Ei-I?) = E(IEMZ —|Eo-|?) = E“EMZ —|E5-1?) = i |E7.|°
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4.11 An alternative way of representing the propagation relationship Eq. (4.1.12) is in terms of the
hyperbolic w-plane variable defined in terms of the reflection coefficient I', or equivalently,
the wave impedance Z as follows:

I'=e? & Z=ncoth(w) (4.8.1)
Show the equivalence of these expressions. Writing I'1 = e 2"1 and I'» = e~2%2, show that
Eq. (4.1.12) becomes equivalent to:

wy = Wy + jkI (propagation in w-domain) (4.8.2)

This form is essentially the mathematical (as opposed to graphical) version of the Smith
chart and is particularly useful for numerical computations using MATLAB.



>

Multilayer Structures

Higher-order transfer functions of the type of Eq. (4.7.2) can achieve broader reflection-
less notches and are used in the design of thin-film antireflection coatings, dielectric
mirrors, and optical interference filters [176-238,294-327], and in the design of broad-
band terminations of transmission lines [362-372].

They are also used in the analysis, synthesis, and simulation of fiber Bragg gratings
[328-348], in the design of narrow-band transmission filters for wavelength-division
multiplexing (WDM), and in other fiber-optic signal processing systems [358-361].

They are used routinely in making acoustic tube models for the analysis and synthe-
sis of speech, with the layer recursions being mathematically equivalent to the Levinson
lattice recursions of linear prediction [373-379]. The layer recursions are also used in
speech recognition, disguised as the Schur algorithm.

They also find application in geophysical deconvolution and inverse scattering prob-
lems for oil exploration [380-389].

The layer recursions—known as the Schur recursions in this context—are intimately
connected to the mathematical theory of lossless bounded real functions in the z-plane
and positive real functions in the s-plane and find application in network analysis, syn-
thesis, and stability [393-407].

5.1 Multiple Dielectric Slabs

The general case of arbitrary number of dielectric slabs of arbitrary thicknesses is shown
in Fig. 5.1.1. There are M slabs, M + 1 interfaces, and M + 2 dielectric media, including
the left and right semi-infinite media n, and ny.

The incident and reflected fields are considered at the left of each interface. The
overall reflection response, I'1 = E;_/E;, can be obtained recursively in a variety of
ways, such as by the propagation matrices, the propagation of the impedances at the
interfaces, or the propagation of the reflection responses.

The elementary reflection coefficients p; from the left of each interface are defined
in terms of the characteristic impedances or refractive indices as follows:

ni—Ni-1 _ Ni-1 — N

pi = = , i=1,2,...,M+1 (5.1.1)
ni + Ni-1 nj-1 + n;j

109
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1 2 3 i i+1 M M+1
Na m n> n; Ny nNp
b b li I
ky ky k; Ky
— — — — — — —»> Epa,+
< - -< | - < | < <
Ey+ Ery| E3s Eir| Ejtq+ Eyst| Eml,x
P1 P2 P3 pi Pit Pm| Pm+l
Z Zy VA Z; Ziny Zy Zyi+1
E E, 15 E; Eiy Ey  Eyn
H, H, H; H; H;y, Hy, Hy

Fig. 5.1.1 Multilayer dielectric slab structure.

where n; = no/n;, and we must use the convention ny = n, and ny+; = np, so that
p1 = (ng—ny)/(ng+ny) and py+1 = (M — nNp) / (np + nyp). The forward/backward
fields at the left of interface i are related to those at the left of interface i + 1 by:

FaE | [

where T; = 1 + p; and k;l; is the phase thickness of the ith slab, which can be expressed
in terms of its optical thickness n;l; and the operating free-space wavelength by k;l; =
21t (n;l;) /A. Assuming no backward waves in the right-most medium, these recursions
are initialized at the (M + 1) st interface as follows:
1 1
= E.
:| TM+1 [pMH :| M1+

— 1 1 PM+1
TMm+1 | PM+1 1

It follows that the reflection responses I'; = E;_/E;, will satisfy the recursions:

ejkili pie*jkili

o kil (5.1.2)

piejkili :|1 iZM,M_l,...,l

E1’\4+1,+
0

EM+1,+
Epi1,-

_ pi+ ekl

- 1+piri+1e’2ﬂ<ili i=M,M-1,...,1

(5.1.3)

1

and initialized by I'yy+1 = pm+1. Similarly the recursions for the total electric and
magnetic fields, which are continuous across each interface, are given by:

Ei _ COSkili jniSil’lkili i Ei+1 -
|:Hi ] = [Jnil snkid, | coskil, Hoo | i=MM=1, 0 (5.1.4)
and initialized at the (M + 1) st interface as follows:
EM+1 _ i 1 El
Hyer | | ’7[;1 M+1,+

It follows that the impedances at the interfaces, Z; = E;/Hj, satisfy the recursions:
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Zis1 +jnitankl;

, I=M,M-1,...,1 5.1.5
"Ni +jZis tankil; : ( )

i=

and initialized by Zy+1 = np. The objective of all these recursions is to obtain the
overall reflection response I'; into medium n.

The MATLAB function multidiel implements the recursions (5.1.3) for such a multi-
dielectric structure and evaluates I'; and Z; at any desired set of free-space wavelengths.
Its usage is as follows:

[Gammal,Z1l] = multidiel(n,L,lambda); % multilayer dielectric structure

where n, L are the vectors of refractive indices of the M + 2 media and the optical
thicknesses of the M slabs, that is, in the notation of Fig. 5.1.1:

n=[ng,n,ny,...,nm,npl, L=[ml,nl,...,nyly]

and A is a vector of free-space wavelengths at which to evaluate I';. Both the optical
lengths L and the wavelengths A are in units of some desired reference wavelength, say
Ao, typically chosen at the center of the desired band. The usage of multidiel was
illustrated in Example 4.5.2. Additional examples are given in the next sections.

The layer recursions (5.1.2)-(5.1.5) remain essentially unchanged in the case of oblique
incidence (with appropriate redefinitions of the impedances n;) and are discussed in
Chap. 6.

Next, we apply the layer recursions to the analysis and design of antireflection coat-
ings and dielectric mirrors.

5.2 Antireflection Coatings

The simplest example of antireflection coating is the quarter-wavelength layer discussed
in Example 4.5.2. Its primary drawback is that it requires the layer’s refractive index to
satisfy the reflectionless condition n; = ,/ngnp.

For a typical glass substrate with index n, = 1.50, we have n; = 1.22. Materials with
n; near this value, such as magnesium fluoride with n; = 1.38, will result into some,
but minimized, reflection compared to the uncoated glass case, as we saw in Example
4.5.2.

The use of multiple layers can improve the reflectionless properties of the single
quarter-wavelength layer, while allowing the use of real materials. In this section, we
consider three such examples.

Assuming a magnesium fluoride film and adding between it and the glass another
film of higher refractive index, it is possible to achieve a reflectionless structure (at a
single wavelength) by properly adjusting the film thicknesses [178,203].

With reference to the notation of Fig. 4.7.1, we have n; = 1, n; = 1.38, n, to be
determined, and np = Ngass = 1.5. The reflection response at interface-1 is related to
the response at interface-2 by the layer recursions:

p1+ erfzjk‘h P2 + pse*ZJkZIZ

1+ pilre2kil? 1 + papze2kalz



112 Electromagnetic Waves & Antennas - S. J. Orfanidis

The reflectionless condition is Iy = 0 at an operating free-space wavelength A. This

requires that p; + I';e 21l = 0, which can be written as:
. T
ekl — 22 (5.2.1)
P1

Because the left-hand side has unit magnitude, we must have the condition [I';| =
|p1l, or, [I2|2 = p?, which is written as:

p2 + pse”Hk:l:
1+ papze-2ikel:

_ p% + p% + 2p2p3 cos 2kols _ ,02
1+p%p§ + 2pop3 cos 2kal, !

This can be solved for cos 2k>I>:

2 2 52 2 2
1+ - +

cos 2kal, = PLLF P2P3) (pg r3)
2p2p3(1 = p7)

Using the identity, cos 2kzl» = 2 cos? kol> — 1, we also find:

P (1 — pap3)?—(p2 — p3)?
4pop3 (1 - pi)

cos? kolp =
(5.2.2)
(P2 + p3)°—pi (1 + p2p3)?
4prp3(1 — p3)

It is evident from these expressions that not every combination of pi, p», p3 will
admit a solution because the left-hand sides are positive and less than one. If we assume
that n, > n; and n, > ny, then, we will have p, < 0 and p3 > 0. Then, it is necessary
that the numerators of above expressions be negative, resulting into the conditions:

Sil’l2 kzlz

2 2
pP3 t P2 P3 — P2
1+ p2p3 1—-p2p3

The left inequality requires that \/np < n; < np, which is satisfied with the choices
n; = 1.38 and np = 1.5. Similarly, the right inequality is violated—and therefore there
is no solution—if ./np < Ny < ny./Np, which has the numerical range 1.22 < n, < 1.69.

Catalan [178,203] used bismuth oxide (Bi,O3) with n, = 2.45, which satisfies the
above conditions for the existence of solution. With this choice, the reflection coeffi-
cients are p; = —0.16, p» = —0.28, and p3 = 0.24. Solving Eq. (5.2.2) for k»I> and then
Eq. (5.2.1) for ky1,, we find:

<p%<’

ki1l; = 2.0696, k»l> = 0.2848 (radians)
Writing k1, = 21t (n11l) /Ao, we find the optical lengths:
I’l]ll = 0.3294/\0, I’lzlg = 0.0453/\0

Fig. 5.2.1 shows the resulting reflection response I'; as a function of the free-space
wavelength A, with Ay chosen to correspond to the middle of the visible spectrum,
Ao = 550 nm. The figure also shows the responses of the single quarter-wave slab of
Example 4.5.2.

The reflection responses were computed with the help of the MATLAB function muT-
tidiel. The MATLAB code used to implement this example was as follows:
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Antireflection Coatings on Glass

— air | 1.38 | 2.45 | glass
--- air | 1.38 | glass
air | 1.22 | glass

17, (W12 (percent)

0 ‘ ‘ ; ‘
400 450 500 550 600 650 700
A (nm)

Fig. 5.2.1 Two-slab reflectionless coating.

na=1; nb=1.5; nl=1.38; n2=2.45;
n = [na,nl,n2,nb]; Ta0 = 550;
r n2r(n);

€ = sqrt((r(LA2*(1-r(2)*r(3))A2 - (r(2)-r(3))A2)/4*r2)*r(3)*(1-r(1)A2)));
k212 = acos(c);

G2 = (r(2)+r(3)*exp(-2%j*k212))/(A + r(2)*r(3)*exp(-2*j*k212));

k111 = (angle(G2) - pi - angle(r(1)))/2;

if k111 <0, k111 = k111 + 2*pi; end

L = [k111,k212]1/2/p1;

la = linspace(400,700,101);

Ga = abs(multidiel(n, L, 1a/1a0)).A2 * 100;
Gb = abs(multidiel([na,nl,nb], 0.25, 1a/1a0)).A2 * 100;
Gc = abs(multidiel([na,sqrt(nb),nb], 0.25, Ta/T1a0)).A2 * 100;

plot(la, Ga, la, Gb, 1a, Go);

The dependence on A comes through the quantities k;1; and kI, for example:

I’l]ll 03294)\0
kil =2m—— =2mm—"F——
1 A A
Essentially the same method is used in Sec. 11.6 to design 2-section series impedance
transformers. The MATLAB function twosect of that section implements the design.
It can be used to obtain the optical lengths of the layers, and in fact, it produces two
possible solutions:

0.3294 0.0453
Li> = twosect(1, 1/1.38, 1/2.45, 1/1.5)= [ ]

0.1706 0.4547

where each row represents a solution, so that L; = nil;/A¢ = 0.1706 and L, =
nalo /Ay = 0.4547 is the second solution. The arguments of twosect are the inverses
of the refractive indices, which are proportional to the characteristic impedances of the
four media.
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Although this design method meets its design objectives, it results in a narrower
bandwidth compared to that of the ideal single-slab case. Varying n, has only a minor
effect on the shape of the curve. To widen the bandwidth, and at the same time keep
the reflection response low, more than two layers must be used.

A simple approach is to fix the optical thicknesses of the films to some prescribed
values, such as quarter-wavelengths, and adjust the refractive indices hoping that the
required index values come close to realizable ones [178,204]. Fig. 5.2.2 shows the
two possible structures: the quarter-quarter two-film case and the quarter-half-quarter
three-film case.

ng | 1N ny np Ng | N ny n3 np
ml= | mph= mli= | nph=| n3l3=
Aold | Ag/4 Aold | A2 | Agld

P P2 P3 P1 P2 p3 P4
7 7, Z 7, L, 7y 7

Fig. 5.2.2 Quarter-quarter and quarter-half-quarter antireflection coatings.

The behavior of the two structures is similar at the design wavelength. For the
quarter-quarter case, the requirement Z; = n, implies:
2 2
_m ni n

1—Zz=n%/z3=’7§rlb=na

which gives the design condition (see also Example 4.7.1):

na = ", (5.2.3)

The optical thicknesses are nil; = nyl, = Ag/4. In the quarter-half-quarter case,
the half-wavelength layer acts as an absentee layer, that is, Z, = Z3, and the resulting
design condition is the same:

2 2 2 2
n _m ni n1
=== = np =
T2z iz T
yielding in the condition:

2

n
Ny = % np (5.2.4)

n;

The optical thicknesses are now nil; = nsly = Ag/4 and nyxl, = Ag/2. Conditions
(5.2.3) and (5.2.4) are the same as far as determining the refractive index of the second
quarter-wavelength layer. In the quarter-half-quarter case, the index n, of the half-
wavelength film is arbitrary.
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In the quarter-quarter case, if the first quarter-wave film is magnesium fluoride with

n; = 1.38 and the glass substrate has ngss = 1.5, condition (5.2.3) gives for the index
for the second quarter-wave layer:

2 2
1.382 % 1.50
ny = \/”””’ - \/ - 1.69 (5.2.5)
Ng 1.0

The material cerium fluoride (CeF3) has an index of n, = 1.63 at Ap = 550 nm and
can be used as an approximation to the ideal value of Eq. (5.2.5). Fig. 5.2.3 shows the
reflectances |I'; |2 for the two- and three-layer cases and for the ideal and approximate
values of the index of the second quarter-wave layer.

Quarter—-Quarter Coating

Quarter-Half-Quarter Coating

\ — air | 1.38 | 1.63 | glass ' — air | 1.38 ] 2.20 | 1.63 | glass

3\ ---air|138]169|glass | | L) --- air | 1.38]2.20 | 1.69 | glass
\ air | 1.22 | glass

\ air | 1.22 | glass

17 (A)12 (percent)
17 (M1? (percent)

0 . RN e ; . 0 . L = - - ’j/
400 450 500 550 600 650 700 400 450 500 550 600 650 700
A (nm) A (nm)

Fig. 5.2.3 Reflectances of the quarter-quarter and quarter-half-quarter cases.

The design wavelength was Ay = 550 nm and the index of the half-wave slab was
n, = 2.2 corresponding to zirconium oxide (ZrO,). We note that the quarter-half-quarter
case achieves a much broader bandwidth over most of the visible spectrum, for either
value of the refractive index of the second quarter slab.

The reflectances were computed with the help of the function muTtidiel. The typ-
ical MATLAB code was as follows:

1a0 = 550; la = Tinspace(400,700,101);
Ga = 100*abs(multidiel([1,1.

38,2.2
Gb = 100*abs(multidiel([1,1.38,2.2
Gc = 100*abs(multidiel([1,1.22,1.5

,1.63,1.5], [0.25,0.5,0.25], 1a/Ta0)).A2;
,1.69,1.5], [0.25,0.5,0.25], Ta/1a0)).A2;
, 1, 0.25, Ta/1a0)).A2;

plot(la, Ga, la, Gb, la, Gc);

These and other methods of designing and manufacturing antireflection coatings for
glasses and other substrates can be found in the vast thin-film literature. An incomplete

set of references is [176-236]. Some typical materials used in thin-film coatings are given
below:
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material n material n

cryolite (Na3AlFg) 1.35 || magnesium fluoride (MgF,) | 1.38
Silicon dioxide SiO» 1.46 || polystyrene 1.60
cerium fluoride (CeF3) | 1.63 || lead fluoride (PbF;) 1.73
Silicon monoxide SiO 1.95 || zirconium oxide (ZrO») 2.20
zinc sulfide (ZnS) 2.32 || titanium dioxide (TiO>) 2.40
bismuth oxide (Bi»O3) | 2.45 || silicon (Si) 3.50
germanium (Ge) 4.20 || tellurium (Te) 4.60

Thin-film coatings have a wide range of applications, such as displays; camera lenses,
mirrors, and filters; eyeglasses; coatings for energy-saving lamps and architectural win-
dows; lighting for dental, surgical, and stage environments; heat reflectors for movie
projectors; instrumentation, such as interference filters for spectroscopy, beam split-
ters and mirrors, laser windows, and polarizers; optics of photocopiers and compact
disks; optical communications; home appliances, such as heat reflecting oven windows;
rear-view mirrors for automobiles.

5.3 Dielectric Mirrors

The main interest in dielectric mirrors is that they have extremely low losses at optical
and infrared frequencies, as compared to ordinary metallic mirrors. On the other hand,
metallic mirrors reflect over a wider bandwidth than dielectric ones and from all incident
angles. However, omnidirectional dielectric mirrors are also possible and have recently
been constructed [317,318]. The omnidirectional property is discussed in Sec. 7.4. Here,
we consider only the normal-incidence case.

A dielectric mirror (also known as a Bragg reflector) consists of identical alternating
layers of high and low refractive indices, as shown in Fig. 5.3.1. The optical thicknesses
are typically chosen to be quarter-wavelength long, that is, ngly = nyly = Ag/4 at some
operating wavelength A(. The standard arrangement is to have an odd number of layers,
with the high index layer being the first and last layer.

f-Fse— F —se— F —s— F —b— F —sfe—F,—

Ng | g | ng | ng | ng | ng | ng | ng | ng | ng |,

/PRI S VAR VS VAR S A
—» —» —» —» >

Erx - - - - - < Eior
Eyy Eyy E6+ Egy Eyo+

pil Pl -p| p| -p| | -P| P -P| P
Zy, Z, Zy Z, Zg Zg Z10=Zyns2

[ NI »

Fig. 5.3.1 Nine-layer dielectric mirror.

Fig. 5.3.1 shows the case of nine layers. If the number of layers is M = 2N + 1, the
number of interfaces will be 2N + 2 and the number of media 2N + 3. After the first
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layer, we may view the structure as the repetition of N identical bilayers of low and high
index. The elementary reflection coefficients alternate in sign as shown in Fig. 5.3.1 and
are given by

p= M =L —p = L= A p1 = Ma = R p2 = i = Mo (5.3.1)
ng + np ny + ng ng + ny ng + np
The substrate n, can be arbitrary, even the same as the incident medium n,. In
that case, p» = —p;. The reflectivity properties of the structure can be understood by
propagating the impedances from bilayer to bilayer. For the example of Fig. 5.3.1, we
have for the quarter-wavelength case:

2 2 2 4 6 8
n n n n
e () e () 7 () 5 (2
Z3 Ny ng ng ng ng
Therefore, after each bilayer, the impedance decreases by a factor of (nr/ng)?2.
After N bilayers, we will have:

ny \ 2N
Zy = (—) np (5.3.2)
np

Using Z; = nf{/Zz, we find for the reflection response at Ag:

_Z1—Na

Iy = = 5.3.3
A A . <@>2N n’, ( )
ny Nanp

It follows that for large N, I'; will tend to —1, that is, 100 % reflection.

Example 5.3.1: For nine layers, 2N + 1 = 9, or N = 4, and nyg = 2.32, ny = 1.38, and n,; =
np = 1, we find:

8
(252 2

r=— 38/ 59942 = |Iy12=098.84 percent

2.32\8
14 (=22 ) 2.322
<1.38> 3

For N = 8, or 17 layers, we have I'1 = —0.9999 and |I';|% = 99.98 percent. If the substrate
is glass with n, = 1.52, the reflectances change to |I';|2 = 98.25 percent for N = 4, and
|I'1|? = 99.97 percent for N = 8. O

To determine the bandwidth around A for which the structure exhibits high reflec-
tivity, we work with the layer recursions (5.1.2). Because the bilayers are identical, the
forward/backward fields at the left of one bilayer are related to those at the left of the
next one by a transition matrix F, which is the product of two propagation matrices of
the type of Eq. (5.1.2). The repeated application of the matrix F takes us to the right-most
layer. For example, in Fig. 5.3.1 we have:

E>. Ey. > | Ee+ 3| Es+ 4| E1o+
- F -F - F —F
R R P RS
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where F is the matrix:

1 elkil pe—jkLlL 1 eJkulu _pe_ijlH
- m pejkLlL e_jkLlL E _peijIH e—ijlH (534)

Defining the phase thicknesses 6y = kyly and 6; = kil;, and multiplying the
matrix factors out, we obtain the expression for F:

F

1 eJ(6u+0L) _ 20j(6H—5L) —2ipeJ%H gin §
[ p Jpe = S oL (5.3.5)

T1- P2 2jpeldH sin 8 e JOn+dr) _ p2p-j(6H—01)

By an additional transition matrix F; we can get to the left of interface-1 and by an
additional matching matrix F, we pass to the right of the last interface:

E1+ _ E2+ _ 4 E10+ _ 4 E;0+ 1
[51] =F [Ez] =FF Eio. = F1F*F, 0 |
where F; and F» are:

F :i ejk.HlH ple'—ijlH _i 1 pz_
1 T pleJkHIH e_JkHIH ’ Ty p2 1

Fp =
where T1 = 1+ p1, T2 = 1 + p», and p,, p2 were defined in Eq. (5.3.1). More generally,
for 2N + 1 layers, or N bilayers, we have:

E2+ N E2N+2 + E1+ N EéN+2 +
=F ’ , =F,F"F ’ 5.3.7
[Ez } Eonio,- Ey - ! 2 0 ( )

Thus, the properties of the multilayer structure are essentially determined by the
Nth power, F N of the bilayer transition matrix F. In turn, the behavior of F N is deter-
mined by the eigenvalue structure of F.

Let {A,A_} be the two eigenvalues of F and let V be the eigenvector matrix. Then,
the eigenvalue decomposition of F and FN willbe F = VAV~! and FN = VANV~! where
A = diag{A4,A_}. Because F has unit determinant, its two eigenvalues will be inverses
of each other, thatis, A_ = 1/A,,or, A;A_ = 1.

The eigenvalues A. are either both real-valued or both complex-valued with unit
magnitude. We can represent them in the equivalent form:

(5.3.6)

Ay =Kl A_ = UKl (5.3.8)

where [ is the length of each bilayer, I = I} + Ig. The quantity K is referred to as the
Bloch wavenumber. If the eigenvalues A. are unit-magnitude complex-valued, then K
is real. If the eigenvalues are real, then K is pure imaginary, say K = —j«, so that
AL = ethI — et(xl.

The multilayer structure behaves very differently depending on the nature of K. The
structure is primarily reflecting if K is imaginary and the eigenvalues A. are real, and
it is primarily transmitting if K is real and the eigenvalues are pure phases. To see this,
we write Eq. (5.3.7) in the form:
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E>, N1 | E2N+2,+ 1| E2+ Nir—1 | E2N+2,+
= VAV ’ > V =A"V ’ , or,
[Ez— ] Eonia - E>- Eoniz -
Vo, _ AN Vonio,+
Vz_ V2N+2,—
where we defined

Voy _y! E>, Vonio,+ _yl Eonio v
Voo E,_ |’ Vonyo,— Eonio,-
We have Vo, = ANVonyo: and Voo = ANVonio - = AZNVon4o,— because AV is
diagonal. Thus,

Vonizs = ANV, = e KNy, 0 Vonio - = ANV, = /KNy, (5.3.9)

The quantity N1 is recognized as the total length of the bilayer structure, as depicted
in Fig. 5.3.1. It follows that if K is real, the factor A7N = e=/KN! acts as a propagation
phase factor and the fields transmit through the structure.

On the other hand, if K is imaginary, we have A;N = ¢~ Nl and the fields attenuate
exponentially as they propagate into the structure. In the limit of large N, the trans-
mitted fields attenuate completely and the structure becomes 100% reflecting. For finite
but large N, the structure will be mostly reflecting.

The eigenvalues A. switch from real to complex, as K switches from imaginary to
real, for certain frequency or wavenumber bands. The edges of these regions determine
the bandwidths over which the structure will act as a mirror.

The eigenvalues are determined from the characteristic polynomial of F, given by
the following expression which is valid for any 2x2 matrix:

det(F —AI)= A% — (trF)A + detF (5.3.10)

where I is the 2x2 identity matrix. Because (5.3.5) has unit determinant, the eigenvalues
are the solutions of the quadratic equation:

M- (rF)A+1=A%2-2aA+1=0 (5.3.11)

where we defined a = (tr F) /2. The solutions are:

AL =ax+vVa? -1 (5.3.12)

where it follows from Eq. (5.3.5) that a is given by:

_p2 _
a ltrF _ cos(0yg + 6r)—p-cos(dyg — Or)
2 1-p2

(5.3.13)

Using A, = eXl =g+ Va2 —1 = a + j/1 — a2, we also find:
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a=cosKl = K= %acos(a) (5.3.14)

The sign of the quantity a? — 1 determines whether the eigenvalues are real or com-
plex. The eigenvalues switch from real to complex—equivalently, K switches from imag-
inary to real—when a® = 1, or, a = +1. These critical values of K are found from
Eq. (5.3.14) to be:

K = %acos(i1)= g (5.3.15)
where m is an integer. The lowest value is K = 17/I and corresponds to a = —1 and to
A, = e/l = oJ™ = _1. Thus, we obtain the bandedge condition:

_ cos(8y + 01)—p?cos(dy — 6F) 1
= L =
It can be manipulated into:
+ —
cosZ(éH > 6L) = p? cosz(w) (5.3.16)

The dependence on the free-space wavelength A or frequency f = co/A comes
through 6y = 2m(nyly)/A and 6 = 2m(nyly)/A. The solutions of (5.3.16) in A
determine the left and right bandedges of the reflecting regions.

These solutions can be obtained numerically with the help of the MATLAB function
omniband, discussed in Sec. 7.4. An approximate solution, which is exact in the case of
quarter-wave layers, is given below.

If the high and low index layers have equal optical thicknesses, ngly = nily, such as
when they are quarter-wavelength layers, or when the optical lengths are approximately
equal, we can make the approximation cos((6y — 61)/2) = 1. Then, (5.3.16) simplifies
into:

cos?(2H T 0L 2+ 0Ly _ 2 (5.3.17)
with solutions:
COS(6H+6L) —+p N 5H+(SL _ T((nHIH+nLIL) =aCOS(ip)

2 2 A

The solutions for the left and right bandedges and the bandwidth in A are:

A = Tl +l) o mngly fcd) sy (5.3.18)
acos(—p) acos(p)

Similarly, the left/right bandedges in frequency are f; = co/A and f> = co/A1:

acos(p) _ acos(—p)
Cmwuly +nily)” " " w(ngly + nylp)

fi=c (5.3.19)
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Noting that acos(—p) = 11/2 + asin(p) and acos(p)= 11/2 — asin(p), the frequency
bandwidth can be written in the equivalent forms:

acos(—p)—acos(p) 2 asin(p)
mply +ncly) 0 w(ngly + ngly)

Af =fa—f1=co (5.3.20)

Relative to some desired wavelength Ag = co/f), the normalized bandwidths in
wavelength and frequency are:

AA w(nglyg + nily) 1 1
— = — .3.21
Ao Ao [acos(p) acos(—p) } (5.3.21)
Af 2Ag asin(p)
—_ = 5.3.22
fo tm(nglg +nclp) ( )
Similarly, the center of the reflecting band . = (f} + f2) /2 is:
fe_ A (5.3.23)

fo  2(muly +nly)
If the layers have equal quarter-wave optical lengths at A, that is, nyly = nyl; =
Ao/4, then, f. = fo and the matrix F takes the simplified form:

1 e —p2  _2jpeJdsind
T 1-p2| 2jpeldsing e ¥ - p?
where 6 = 6y = 6; = 2w (ngly) /A =21 (Ag/4) /A = (1T/2)Ao/A = (11/2)f /fy. Then,
Egs. (5.3.21) and (5.3.22) simplify into:

A?\n[ 1 1 ] Af

Ao 2 | acos(p) acos(—p)

(5.3.24)

fo % asin(p) (5.3.25)

Example 5.3.2: Dielectric Mirror With Quarter-Wavelength Layers. Fig. 5.3.2 shows the reflec-
tion response |I';|? as a function of the free-space wavelength A and as a function of
frequency f = co/A. The high and low indices are ny = 2.32 and n; = 1.38, correspond-
ing to zinc sulfide (ZnS) and magnesium fluoride. The incident medium is air and the
substrate is glass with indices n, = 1 and n, = 1.52. The left graph depicts the response
for the cases of N = 2,4, 8 bilayers, or 2N + 1 = 5,9,17 layers, as defined in Fig. 5.3.1.
The design wavelength at which the layers are quarter-wavelength long is Ao = 500 nm.

The reflection coefficient is p = 0.25 and the ratio ny/n; = 1.68. The wavelength band-
width calculated from Eq. (5.3.25) is AA = 168.02 nm and has been placed on the graph at
an arbitrary reflectance level. The left/right bandedges are A; = 429.73, A, = 597.75 nm.
The bandwidth covers most of the visible spectrum. As the number of bilayers N increases,
the reflection response becomes flatter within the bandwidth AA, and has sharper edges
and tends to 100%. The bandwidth AA represents the asymptotic width of the reflecting
band.

The right figure depicts the reflection response as a function of frequency f and is plotted
in the normalized variable f/f,. Because the phase thickness of each layer is 6 = 1tf/2f,
and the matrix F is periodic in &, the mirror behavior of the structure will occur at odd
multiples of fj (or odd multiples of 17/2 for §.) As discussed in Sec. 5.6, the structure acts
as a sampled system with sampling frequency fs = 2f), and therefore, fy = fs/2 plays the
role of the Nyquist frequency.
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Fig. 5.3.2 Dielectric mirror with quarter-wavelength layers.

The typical MATLAB code used to generate these graphs was:

na =1; nb = 1.52; nH = 2.32; nL = 1.38; refractive indices

LH = 0.25; LL = 0.25; optical thicknesses in units of Ag
1a0 = 500; A in units of nm

rho = (nH-nL)/(nH+nL); reflection coefficient p

1a2 = pi*(LL+LH)*1/acos(rho) * 1a0; right bandedge

1al = pi*(LL+LH)*1/acos(-rho) * 1a0; left bandedge

Dla = Tla2-Tal; bandwidth

N = 8; number of bilayers

n = [na, nH, repmat([nL,nH], 1, N), nb]; indices for the layers A|H (LH)N |G
L = [LH, repmat([LL,LH], 1, N)]; lengths of the layers H (LH)N

la = linspace(300,800,501); plotting range is 300 < A < 800 nm
Gla = 100*abs(multidiel(n,L,1a/1a0)).A2; reflectance as a function of A

figure; plot(la,Gla);

f = Tinspace(0,6,1201); frequency plot over 0 < f < 6fg
Gf = 100*abs(multidiel(n,L,1./f)).A2; reflectance as a function of [
figure; plot(f,Gf);

Note that the function repmat replicates the LH bilayer N times. The frequency graph
shows only the case of N = 8. The bandwidth Af, calculated from (5.3.25), has been
placed on the graph. The maximum reflectance (evaluated at odd multiples of f) is equal
to 99.97%. o

Example 5.3.3: Dielectric Mirror with Unequal-Length Layers. Fig. 5.3.3 shows the reflection
response of a mirror having unequal optical lengths for the high and low index films.

The parameters of this example correspond very closely to the recently constructed om-
nidirectional dielectric mirror [317], which was designed to be a mirror over the infrared
band of 10-15 um. The number of layers is nine and the number of bilayers, N = 4. The in-
dices of refraction are ng = 4.6 and ny = 1.6 corresponding to Tellurium and Polystyrene.
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Fig. 5.3.3 Dielectric mirror with unequal optical thicknesses.

Their ratio is ny /ny = 2.875 and the reflection coefficient, p = 0.48. The incident medium
and substrate are air and NaCl (n = 1.48.)

The center wavelength is taken to be at the middle of the 10-15 um band, that is, Ay =
12.5 um. The lengths of the layers are I = 0.8 and I; = 1.65 um, resulting in the
optical lengths (relative to Ag) ngly = 0.2944A, and nyl; = 0.2112Ao. The wavelength
bandwidth, calculated from Eq. (5.3.21), is AA = 9.07 um. The typical MATLAB code for
generating the figures of this example was as follows:

1a0 = 12.5;

na = 1; nb = 1.48; NaCl substrate

nH = 4.6; nL = 1.6; Te and PS

TH = 0.8; 1L = 1.65; physical lengths If, I}

LH = nH*TH/1a0, LL = nL*1L/7a0; optical lengths in units of Ag
rho = (nH-nL)/(nH+nL); reflection coefficient p

T1a2 = pi*(LL+LH)*1/acos(rho) * 1a0; right bandedge

1al = pi*(LL+LH)*1/acos(-rho) * 1a0; left bandedge

Dla = la2-Tal; bandwidth

la = linspace(5,25,401); equally-spaced wavelengths
N = 4;

n = [na, nH, repmat([nL,nH], 1, N), nb]; refractive indices of all media
L = [LH, repmat([LL,LH], 1, N)]; optical lengths of the slabs
G = 100 * abs(multidiel(n,L,la/1a0)).A2; reflectance

plot(la,G);

The bandwidth AA shown on the graph is wider than that of the omnidirectional mirror
presented in [317], because our analysis assumes normal incidence only. The condition
for omnidirectional reflectivity for both TE and TM modes causes the bandwidth to narrow
by about half of what is shown in the figure. The reflectance as a function of frequency
is no longer periodic at odd multiples of f, because the layers have lengths that are not
equal to Ag/4. The omnidirectional case is discussed in Example 7.4.3.
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The maximum reflectivity achieved within the mirror bandwidth is 99.99%, which is better
than that of the previous example with 17 layers. This can be explained because the ratio
ng/ny is much larger here. [m}

Although the reflectances in the previous two examples were computed with the help
of the MATLAB function multidiel, it is possible to derive closed-form expressions for
I'y that are valid for any number of bilayers N. Applying Eq. (5.1.3) to interface-1 and
interface-2, we have:

p1 + e ¥%uT,
L=

= "~ < 5.3.26
1+ pre=2/9uT, ( )

where I'y = E»_/E>,, which can be computed from the matrix equation (5.3.7). Thus,
we need to obtain a closed-form expression for I'>.
It is a general property of any 2x2 unimodular matrix F that its Nth power can

be obtained from the following simple formula, which involves the Nth powers of its
eigenvalues A.:t

N _ 3N N-1 _ y\N-1
FN _ (H)F_(H>I:WNF_WN‘II (5.3.27)
+ - + -

where Wy = (AY — AY) /(A4 — A_). To prove it, we note that the formula holds as a
simple identity when F is replaced by its diagonal version A = diag{A,A_}:

AN _ /\N /\N—l _ AN—I
N_ |2+ - N s S
A _(7\+—/\>A ( AL A )I (5.3.28)

Eq. (5.3.27) then follows by multiplying (5.3.28) from left and right by the eigenvector
matrix V and using F = VAV~ and FN = VANV !, Defining the matrix elements of F
and FN by

[a B v [Ax By
F—[B* A*] F _[Bj’\‘, A;,J, (5.3.29)

it follows from (5.3.27) that:

AN = AWN —Wn-1, Byn=BWx (5.3.30)
where we defined:
J(6u+0L) _ p2pj(0n—0L) ine—JOH gi
a=¢ pe , g _2pelising; (5.3.31)
1-— p2 1— pz

Because F and FN are unimodular, their matrix elements satisfy the conditions:

|AI> - [BI* =1, |AN|*>-IBNI*=1 (5.3.32)

The first follows directly from the definition (5.3.29), and the second can be verified
easily. It follows now that the product FNF, in Eq. (5.3.7) is:

TThe coefficients Wy are related to the Chebyshev polynomials of the second kind Uy, (x) through
Wn = Un—1(a)= sin(N acos(a))/+/1 — a2 = sin(NKI)/ sin(KI).



5.3. Dielectric Mirrors 125

FNE, — 1 | AN +p2Bn BN+ p2AN
2 To B?\} + pzA?\} AK] + sz?\}

Therefore, the desired closed-form expression for the reflection coefficient I'; is:

By +p2 Ay B*Wn + p2(A*WN — W) (5.3.33)
AN + p2Bpn AWN —WN_1 + p2BWyN "

2

Suppose now that a® < 1 and the eigenvalues are pure phases. Then, Wy are oscil-
latory as functions of the wavelength A or frequency f and the structure will transmit.

On the other hand, if f lies in the mirror bands, so that a? > 1, then the eigenvalues
will be real with |[A;| > 1 and |A_| < 1. In the limit of large N, Wy and Wx_, will
behave like:

Ay
A —A’

N-1
AL

Wy = As — A

WN-1—

In this limit, the reflection coefficient I'>» becomes:

B* + py (A* — A7)

- A — AII + p2B
where we canceled some common diverging factors from all terms. Using conditions
(5.3.32) and the eigenvalue equation (5.3.11), and recognizing that Re(A) = a, it can be
shown that this asymptotic limit of I', is unimodular, |I'>| = 1, regardless of the value
of p.

This immediately implies that I'; given by Eq. (5.3.26) will also be unimodular, |I'{| =
1, regardless of the value of p;. In other words, the structure tends to become a perfect
mirror as the number of bilayers increases.

Next, we discuss some variations on dielectric mirrors that result in (a) multiband
mirrors and (b) longpass and shortpass filters that pass long or short wavelengths, in
analogy with lowpass and highpass filters that pass low or high frequencies.

I

(5.3.34)

Example 5.3.4: Multiband Reflectors. The quarter-wave stack of bilayers of Example 5.3.2 can
be denoted compactly as AH (LH)8G (for the case N = 8), meaning ’air’, followed by a
“high-index” quarter-wave layer , followed by four “low/high” bilayers, followed by the
“glass” substrate.

Similarly, Example 5.3.3 can be denoted by A (1.18H) (0.85L 1.18H)“G, where the layer
optical lengths have been expressed in units of Ay/4, that is, nyl; = 0.85(A¢/4) and
}’IHIH = 1.18()\0/4).

Another possibility for a periodic bilayer structure is to replace one or both of the L or
H layers by integral multiples thereof [180]. Fig. 5.3.4 shows two such examples. In the
first, each H layer has been replaced by a half-wave layer, that is, two quarter-wave layers
2H, so that the total structure is A (2H) (L 2H)®G, where ng,np,ng,n;, are the same as in
Example 5.3.2. In the second case, each H has been replaced by a three-quarter-wave layer,
resulting in A (3H) (L 3H)3G.

The mirror peaks at odd multiples of f, of Example 5.3.2 get split into two or three peaks
each. ]
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Fig. 5.3.4 Dielectric mirrors with split bands.

Example 5.3.5: Shortpass and Longpass Filters. By adding an eighth-wave low-index layer, that

100

17 (12 (percent)

is, a (0.5L), at both ends of Example 5.3.2, we can decrease the reflectivity of the short
wavelengths. Thus, the stack AH (LH)8G is replaced by A (0.5L)H (LH)8(0.5L)G.

For example, suppose we wish to have high reflectivity over the [600, 700] nm range and
low reflectivity below 500 nm. The left graph in Fig. 5.3.5 shows the resulting reflectance
with the design wavelength chosen to be Ay = 650 nm. The parameters ng, hy, Ny, Ny are
the same as in Example 5.3.2

A(0.5L)H (LH)8(0.5L)G A(0.5H) L (HL)8(0.5H)G
100f
8ot 2 sof
Q
2
[
60F S 60r
e
40t < 0
J
20¢ 20
)‘0
%0 400 500 e00 700 800 900 S0 a0 500 600 700 800 900
A (nm) A (nm)

Fig. 5.3.5 Short- and long-pass wavelength filters.

The right graph of Fig. 5.3.5 shows the stack A (0.5H)L(HL)®(0.5H) G obtained from the
previous case by interchanging the roles of H and L. Now, the resulting reflectance is low
for the higher wavelengths. The design wavelength was chosen to be Ay = 450 nm. It can
be seen from the graph that the reflectance is high within the band [400, 500] nm and low
above 600 nm.

Superimposed on both graphs is the reflectance of the original AH (LH)8G stack centered
at the corresponding A, (dotted curves.)
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Both of these examples can also be thought of as the periodic repetition of a symmetric
triple layer of the form A (BCB)NG. Indeed, we have the equivalences:

A(0.5L)H(LH)®(0.5L)G = A(0.5LHO0.5L)°G
A(0.5H)L(HL)®(0.5H)G = A(0.5HL0.5H)°G

The symmetric triple combination BCB can be replaced by an equivalent single layer, which
facilitates the analysis of such structures [178,206-208,210]. [m}

5.4 Propagation Bandgaps

There is a certain analogy between the electronic energy bands of solid state materials
arising from the periodicity of the crystal structure and the frequency bands of dielectric
mirrors arising from the periodicity of the bilayers. The high-reflectance bands play the
role of the forbidden energy bands (in the sense that waves cannot propagate through
the structure in these bands.) Such periodic dielectric structures have been termed
photonic crystals and have given rise to the new field of photonic bandgap structures,
which has grown rapidly over the past ten years with a large number of potential novel
applications [301-327].

Propagation bandgaps arise in any wave propagation problem in a medium with
periodic structure [294-300]. Waveguides and transmission lines that are periodically
loaded with ridges or shunt impedances, are examples of such media [424-428].

Fiber Bragg gratings, obtained by periodically modulating the refractive index of
the core (or the cladding) of a finite portion of a fiber, exhibit high reflectance bands
[328-348]. Quarter-wave phase-shifted fiber Bragg gratings (discussed in the next sec-
tion) act as narrow-band transmission filters and can be used in wavelength multiplexed
communications systems.

Other applications of periodic structures with bandgaps arise in structural engineer-
ing for the control of vibration transmission and stress [349-351], in acoustics for the
control of sound transmission through structures [352-357], and in the construction of
laser resonators and periodic lens systems [429,430]. A nice review of wave propagation
in periodic structures can be found in [295].

5.5 Narrow-Band Transmission Filters

The reflection bands of a dielectric mirror arise from the N-fold periodic replication of
high/low index layers of the type (HL)N, where H, L can have arbitrary lengths. Here,
we will assume that they are quarter-wavelength layers at the design wavelength Ay.

A quarter-wave phase-shifted multilayer structure is obtained by doubling (HL)N
to (HL)N (HL)N and then inserting a quarter-wave layer L between the two groups,
resulting in (HL)NL(HL)N. We are going to refer to such a structure as a Fabry-Perot
resonator (FPR)—it can also be called a quarter-wave phase-shifted Bragg grating.

An FPR behaves like a single L-layer at the design wavelength A. Indeed, noting that
at Ay the combinations LL and HH are half-wave or absentee layers and can be deleted,
we obtain the successive reductions:
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(HLNL(HL)N - (HL)N-'HLLHL(HL)N-!
— (HL)N-'HHL(HL)N-!
-~ (HL)N-'L(HL)N-!

Thus, the number of the HL layers can be successively reduced, eventually resulting
in the equivalent layer L (at Ag):

(HLNLHL)N - (HL)N'L(HL)N! - (HL)N2LHL)N? - ... = L

Adding another L-layer on the right, the structure (HL)NL(HL)NL will act as 2L,
that is, a half-wave absentee layer at Ay. If such a structure is sandwiched between the
same substrate material, say glass, then it will act as an absentee layer, opening up a
narrow transmission window at A, in the middle of its reflecting band.

Without the quarter-wave layers L present, the structures G|(HL)N (HL)N|G and
G|(HL)N|G act as mirrors,t but with the quarter-wave layers present, the structure
G|(HL)NL(HL)NL|G acts as a narrow transmission filter, with the transmission band-
width becoming narrower as N increases.

By repeating the FPR (HL)NL(HL)YN several times and using possibly different
lengths N, it is possible to design a very narrow transmission band centered at Ay having
a flat passband and very sharp edges.

Thus, we arrive at a whole family of designs, where starting with an ordinary dielec-
tric mirror, we may replace it with one, two, three, four, and so on, FPRs:

0. GI(HL)M|G

1. GI(HLYMLHL)MILIG

2. GIHLMLHL)N|(HL)NLHL)N:|G

3. GIHLYMLHL)N|(HL)N:L(HL)N | (HL)N:L(HL)™?|L|G

4. GI(HL)MLHL)N [(HL)N:L(HL)N2|(HL)NsL (HL)N3 | (HL)N*L(HL)N4|G
(5.5.1)

Note that when an odd number of FPRs (HL)NL(HL)Y are used, an extra L layer
must be added at the end to make the overall structure absentee. For an even number
of FPRs, this is not necessary.

Such filter designs have been used in thin-film applications [181-187] and in fiber
Bragg gratings, for example, as demultiplexers for WDM systems and for generating very-
narrow-bandwidth laser sources (typically at A¢ = 1550 nm) with distributed feedback
lasers [338-348]. We discuss fiber Bragg gratings in Sec. 10.4.

In a Fabry-Perot interferometer, the quarter-wave layer L sandwiched between the
mirrors (HL)N is called a “spacer” or a “cavity” and can be replaced by any odd multiple
of quarter-wave layers, for example, (HL)™N (5L) (HL)"N.

TG denotes the glass substrate.
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Several variations of FPR filters are possible, such as interchanging the role of H
and L, or using symmetric structures. For example, using eighth-wave layers L/2, the
following symmetric multilayer structure will also act like as a single L at Ag:

N N
(E H£> I <£ HE)
2 2 2 2
To create an absentee structure, we may sandwich this between two L/2 layers:
N N
L (£H£> I <£H£> L
2\2 2 2 2 2

This can be seen to be equivalent to (HL)N (2L) (LH)YN, which is absentee at Ag.
This equivalence follows from the identities:

L(L_IL\N _ NI
s (GH3) = um;

L INNL L
“H- | Z=2(HLV
(2 2) 2 2( )

(5.5.2)

Example 5.5.1: Transmission Filter Design with One FPR. This example illustrates the basic
transmission properties of FPR filters. We choose parameters that might closely emu-
late the case of a fiber Bragg grating for WDM applications. The refractive indices of the
left and right substrates and the layers were: n; = n, = 1.52, n; = 1.4, and nyg = 2.1. The
design wavelength at which the layers are quarter wavelength is taken to be the standard
laser source Ag = 1550 nm.

First, we compare the cases of a dielectric mirror (HL)" and its phase-shifted version using
a single FPR (cases 0 and 1 in Eq. (5.5.1)), with number of layers N; = 6. Fig. 5.5.1 shows the
transmittance, that is, the quantity (1— |I'; (A) |?) plotted over the range 1200 < A < 2000

nm.
Fabry—Perot Resonator Phase-Shifted FPR
100f 100f { J7an!
= = | A
g 5 | — GHLPO.6L)(HLPLG
© 80 © 80f Y === G(HLP(3L)(HLPLG
g ;g/ i G(HL)*G
° ol —— G(HLL(HLSLG || o aol } !
2 &0 --- G(HL)°G 2 eory; . !
© @ n
= + "
= a0 = aof ] ;
€ IS " X
@ 7] 0" /
c = " !
€ o € 5l " /
= [ A '
0 I ’
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Fig. 5.5.1 Narrowband FPR transmission filters.

We observe that the mirror (case 0) has a suppressed transmittance over the entire reflect-
ing band, whereas the FPR filter (case 1) has a narrow peak at Ay. The asymptotic edges of
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the reflecting band are calculated from Eq. (5.3.18) tobe A} = 1373.9nm and A, = 1777.9
nm, resulting in a width of Al = 404 nm. The MATLAB code used to generated the left
graph was:

na = 1.52; nb = 1.52; nH = 2.1; nL
LH = 0.25; LL = 0.25;

1.4;

1a0 = 1550;
Ta = linspace(1200, 2000, 8001);

N1 = 6;

nl = repmat([nH,nL],1,N1);

L1 = repmat([LH,LL],1,N1);

n = [na, nl, nbl;

L = L1;

GO = 100*(1 - abs(multidiel(n,L,l1a/1a0)).A2);

% optical thicknesses

% 1200 < A < 2000 nm

nl = [repmat([nH,nL],1,N1), nL, repmat([nH,nL],1,N1)];
L1 = [repmat([LH,LL],1,N1), LL, repmat([LH,LL],1,N1)];

n = [na, nl, nL, nbl;
L = [L1, LL];
Gl = 100%(1 - abs(multidiel(n,L,Ta/Ta0)).A2);

plot(la,Gl,1a,G0);

% no phase shift

% one phase shift

The location of the peak can be shifted by making the phase-shift different from A /4. This
can be accomplished by changing the optical thickness of the middle L-layer to some other
value. The right graph of Fig. 5.5.1 shows the two cases where that length was chosen to

be nrl; = (0.6)A¢/4 and (1.3)Ag/4, corresponding to phase shifts of 54° and 117°.

O

Example 5.5.2: Transmission Filter Design with Two FPRs. Fig. 5.5.2 shows the transmittance
of a grating with two FPRs (case 2 of Eq. (5.5.1)). The number of bilayers were N; = N, = 8
in the first design, and N; = N, = 9 in the second.

Transmittance (percent)

Two-FPR Transmission Filter

100f

80r

60

40r

Full Reflecting Band

)‘0
.- — N;=9,N,=9 |1 100f
| --- Np=8,N,=8 =
3
© 80
[
e
8 60f
c
=
2 0l AN i
g 40
[%2]
c
o
£ 20f 1
- \\
== L Soo-- 0 L L
1549 1549.5 1550 1550.5 1551 1200 1400 1600 1800
A (nm) A (nm)

Fig. 5.5.2 Narrow-band transmission filter made with two FPRs.

2000

The resulting transmittance bands are extremely narrow. The plotting scale is only from
1549 nm to 1551 nm. To see these bands in the context of the reflectance band, the
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transmittance (for Ny = N, = 8) is plotted on the right graph over the range [1200, 2000]
nm, which includes the full reflectance band of [1373.9,1777.9] nm.

Using two FPRs has the effect of narrowing the transmittance band and making it somewhat
flatter at its top. [m}

Example 5.5.3: Transmission Filter Design with Three and Four FPRs. Fig. 5.5.3 shows the trans-

Transmittance (percent)

Transmittance (percent)

1001

80r

60

401

20r

mittance of a grating with three FPRs (case 3 of Eq. (5.5.1)). A symmetric arrangement of
FPRs was chosen such that N3 = N;.

Three—FPR Filter with Equal Lengths Three—FPR Filters with Unequal Lengths
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Fig. 5.5.3 Transmission filters with three FPRs of equal and unequal lengths.

The left graph shows the transmittances of the two design cases Ny = N, = N3 = 8 and
N; = Ny = N3 =9, so that all the FPRs have the same lengths. The transmission band is
now flatter but exhibits some ripples. To get rid of the ripples, the length of the middle
FPR is slightly increased. The right graph shows the case Ny = N3 = 8 and N, = 9, and
the case Ny = N3 = 9 and N, = 10.

Fig. 5.5.4 shows the case of four FPRs (case 4 in Eq. (5.5.1).) Again, a symmetric arrangement
was chosen with N; = Ny and N, = Nj.
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Fig. 5.5.4 Transmission filters with four FPRs of equal and unequal lengths.
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The left graph shows the two cases of equal lengths Ny = N, = N3 = Ny = 8 and
N} = N» = N3 = Ny = 9. The right graphs shows the case Ny = Ny = 8and N, = Ny = 9,
and the case N; = Ny = 9 and N, = N3 = 10. We notice again that the equal length cases
exhibit ripples, but increasing the length of the middle FPRs tends to eliminate them. The
typical MATLAB code for generating the case N; = Ny = 9 and N» = N3 = 10 was as
follows:

na 1.52; nb = 1.52; nH = 2.1; nL = 1.4;
LH = 0.25; LL = 0.25;

1a0 = 1550;

la Tinspace(1549, 1551, 501);

N1 = 9; N2 = 10; N3 = N2; N4 = N1;

nl = [repmat([nH,nL],1,N1), nL, repmat([nH,nL],1,N1)];
n2 = [repmat([nH,nL],1,N2), nL, repmat([nH,nL],1,N2)];
n3 = [repmat([nH,nL],1,N3), nL, repmat([nH,nL],1,N3)];
n4 = [repmat([nH,nL],1,N4), nL, repmat([nH,nL],1,N4)];
L1 = [repmat([LH,LL],1,N1), LL, repmat([LH,LL],1,N1)];
L2 = [repmat([LH,LL],1,N2), LL, repmat([LH,LL],1,N2)];

L3 = [repmat([LH,LL],1,N3), LL, repmat([LH,LL],1,N3)];
L4 = [repmat([LH,LL],1,N4), LL, repmat([LH,LL],1,N4)];

n [na, nl, n2, n3, n4, nb];
L = [L1, L2, L3, L4];

G = 100*(1 - abs(multidiel(n,L,T1a/1a0)).A2);
plot(la,G);

The resulting transmittance band is fairly flat with a bandwidth of approximately 0.15 nm,
as would be appropriate for dense WDM systems. The second design case with N; = 8
and N, = 9 has a bandwidth of about 0.3 nm.

The effect of the relative lengths N, N, on the shape of the transmittance band has been
studied in [344-346]. The equivalence of the low/high multilayer dielectric structures to
coupled-mode models of fiber Bragg gratings has been discussed in [335]. [m}

5.6 Equal Travel-Time Multilayer Structures

Here, we discuss the specialized, but useful, case of a multilayer structure whose layers
have equal optical thicknesses, or equivalently, equal travel-time delays, as for exam-
ple in the case of quarter-wavelength layers. Our discussion is based on [373] and on
[380,381].

Fig. 5.6.1 depicts such a structure consisting of M layers. The media to the left and
right are n, and np and the reflection coefficients p; at the M + 1 interfaces are as in
Eq. (5.1.1). We will discuss the general case when there are incident fields from both the
left and right media.

Let Ty denote the common two-way travel-time delay, so that,
2m 2n»lo B B 2nply

=T (5.6.1)
Co Co Co
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Fig. 5.6.1 Equal travel-time multilayer structure.

Then, all layers have a common phase thickness, that is, fori =1,2,...,M:
wn;il; 1
S =kili = —" = ZwT; (5.6.2)
Co 2
where we wrote k; = w/c; = wnj/cyo. The layer recursions (5.1.2)-(5.1.5) simplify

considerably in this case. These recursions and other properties of the structure can be
described using DSP language.

Because the layers have a common roundtrip time delay T, the overall structure will
act as a sampled system with sampling period T and sampling frequency fs = 1/T;. The
corresponding “Nyquist frequency”, fo = fs/2, plays a special role. The phase thickness
0 can be expressed in terms of f and f, as follows:

r
fo
Therefore, at f = f; (and odd multiples thereof), the phase thickness will be 11/2 =

(217) /4, that is, the structure will act as quarter-wave layers. Defining the z-domain
variable:

‘z = %0 = @0Ts = p2kili ‘ (5.6.3)

we write Eq. (5.1.2) in the form:

Eiy z2 [ 1 piz! Eii1,+ .
= _ ' , I=MM-1,...,1 5.6.4
|:Ei— } T | Pz} Ei,- (664
We may rewrite it compactly as:
Ei(z)=Fi(2)Ei;1(2) (5.6.5)
where we defined:
zZ12[ 1 piz? Eii(z)
Fi(z)= Ei(z)= .6.
I(Z) Ti |: pl Z_l ’ 1 (Z) Ejf (Z) (5 6 6)

The transition matrix F;(z) has two interesting properties. Defining the complex
conjugate matrix F;(z) = F;(z~!), we have:
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1-p; ~
Pi Js = ni IJ3
L+ pi ni (5.6.7)

Fi(z)= J1Fi(2)

where J1, J; are the 2x2 matrices:t

0 1 1 0
]1=[1 0], J3=[O 1} (5.6.8)

In proving Eq. (5.6.7), we used the result (1—p?) /T2 = (1—p;) /(1 +pi)=ni-1/n; =
n;/nj—1. The first of Egs. (5.6.7) implies energy conservation, that is, the energy flux into
medium i is equal to the energy flux into medium i + 1, or,

Fi(2)TJ3Fi(2)=

1 _ _ 1
(EitEis —Ei_Ei-)= —

(Ei+l,+Ei+l,+ _Ei+1,—Ei+l,—) (5.6.9)
2ni-1 2n;

This can be expressed compactly in the form:
=T
Eiy1J3Ein1

E/ J3E = M

which follows from Eq. (5.6.7):

ni

T T 1 =T
E; J3E; = E; \Fl J3FiEiq = ;7—1 E;;1J3Ein1
1

The second of Egs. (5.6.7) expresses time-reversal invariance and allows the con-
struction of a second, linearly independent, solution of the recursions (5.6.5):

. _ Ei_ _ _ _ .
Ei = J1Ei = [E:—+ } = J1Fi(2)Eiy1 = Fi(z2) J1Eiv1 = Fi(2)Ei

The recursions (5.6.5) may be iterated now to the rightmost interface. By an addi-
tional boundary match, we may pass to the right of interface M + 1:

E; = Fi(2)Fis1(2) - - - Fp(2) Fy1Eppiq

where we defined the last transition matrix as

1 1
Farer = Pr+1 (5.6.10)
TM+1 | PM+1 1

More explicitly, we have:

E;, _Z(M+17i)/2 1 piz? 1 pis127!
Eio |~ Vi pi z7! Pi+1 z 1

. 1 puz’! 1 PM+1 EI,\4+1,+
Pm z! PM+1 1 E]/\4+1,—

TThey are recognized as two of the three Pauli spin matrices.

(5.6.11)
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where we defined v; = T;Tj+1 - TMTm+1. We introduce the following definition for
the product of these matrices:

Ai(z) Ci(z) | |1 piz7! 1 puz! I pma
= _1 s 1 (5.6.12)
Bi(z) Di(z) pi z Py Z PM+1 1
Because there are M + 1 — i matrix factors that are first-order in z~!, the quantities

Ai(z2), Bj(z), Ci(z), and D;(z) will be polynomials of order M + 1 — i in the variable
z~1. We may also express (5.6.12) in terms of the transition matrices F;(z):

[Aim Ci(2)

Bi(z) Di(2) } =z M BiE(2) - Fu(2) Py (5.6.13)

It follows from Eq. (5.6.7) that (5.6.13) will also satisfy similar properties. Indeed, it
can be shown easily that:

M+1
Gi(2)"J3Gi(2)= 07J3,  where of = [] (1-pp)
mei (5.6.14)

GR(z)=11Gi(z) ]h
where G;(z) and its reverse sz (z) consisting of the reversed polynomials are:
A cio R | Af(2) CR(2)
Gi(z)= [Bi(Z) Di(z) ] i (2)= [B? (z) DR(z) (5.6.15)

The reverse of a polynomial is obtained by reversing its coefficients, for example, if
A (z) has coefficient vector a = [ao, a1, d», d3 ], then AR (z) will have coefficient vector
ak = [as,a»,a1,a0]. The reverse of a polynomial can be obtained directly in the z-
domain by the property:

AR(z2)=z79A(z" )= z794(z)
where d is the degree of the polynomial. For example, we have:

A(Z) =dgy + alz‘l + 6122_2 + 6132_3

ARy =as+asz ' + a1z % +apz 2 =273 ap + a1z + axz® + asz°) = 273 A (2)

Writing the second of Egs. (5.6.14) explicitly, we have:
Af(z) Cr | [0 1][Ai@ Ci2) ][0 1] [Di(z2) Bi(2)
BR(z) DR(z) | |1 0| Bi(z) Di(z) |[|1 o | Ci(2) Ai(2)
This implies that the polynomials C;(z), D;(z) are the reverse of B;(z), A;(z), that

is, Ci(z)= BX(z), Di(z) = AR(z). Using this result, the first of Egs. (5.6.14) implies the
following constraint between A;(z) and B;(z):

Ai(2)Ai(2)-Bi(2)Bi(2) = 0} (5.6.16)
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Thus, the product of matrices in Eq. (5.6.12) has the form:
Ai(z) BR(z) 1 piz7! 1 puz7! 1 PM+1
b _ ~ e 2 (5.6.17)
Bi(z) A{(2) pi Z PyM Z PM+1 1
This definition implies also the recursion:

[Ai(z) BF(z)}_[l p"z_ll][A"“(Z) Bﬁlm] (5.6.18)

Bi(z) AR(z) pi Z Bii(z) AR (2)
Therefore, each column will satisfy the same recursion:*
Ai(2) 1 piz7' || A1 (2) .
[B;(z) } = [pi ;_1 B:; (z) | (forward recursion) (5.6.19)
fori=M,M —1,...,1, and initialized by the Oth degree polynomials:
Ap+1(2) 1
= 5.6.20
[ Buar(2) |~ | powor (5620
Eq. (5.6.11) reads now:
Eis _ 7 (M+1-0)/2 Ai(2) Bi(z) E}:\4+1’+ (5.6.21)
Ei- Vi Bi(z) A () EM+1,—

Setting i = 1, we find the relationship between the fields incident on the dielectric
structure from the left to those incident from the right:

Eyy _ ZzM72 A (2) Blf (2) E],VI+1,+
[El—] v [31(2) AR(z) || Eppar o (5.6.22)

where vi = T;T2 - Ty+1. The polynomials A;(z) and B, (z) have degree M and
are obtained by the recursion (5.6.19). These polynomials incorporate all the multiple
reflections and reverberatory effects of the structure.

In referring to the overall transition matrix of the structure, we may drop the sub-
scripts 1 and M + 1 and write Eq. (5.6.22) in the more convenient form:

E, Miz [ A(z) BR(z) E, .
|:E } = ZT [ Bé) AR é) } [ET } (transfer matrix) (5.6.23)

Fig. 5.6.2 shows the general case of left- and right-incident fields, as well as when
the fields are incident only from the left or only from the right.

For both the left- and right-incident cases, the corresponding reflection and trans-
mission responses I', T and I, T’ will satisfy Eq. (5.6.23):

1| zM?21 A(z) BR(z2) T
Il v | Bz AR(2) 0

0| zM2|A(z) BR(z) ||TI
T |~ v | B(z) AR(2) 1

TForward means order-increasing: as the index i decreases, the polynomial order M + 1 — i increases.

(5.6.24)
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Ey—» — Ef
E < N Na| - nM«EL
r
L= ni|na| - UMAT , np|na| - TIM4
I <— T - — |

Fig. 5.6.2 Reflection and transmission responses of a multilayer structure.

Solving for I', T, we find:

_ B(2) vz M2
I'(z)= A2 T(z)= A (5.6.25)
Similarly, we find for I'’, 7":
, 3 BR (Z) , B szfM/Z
I'(z)=- Az) T (2)= 714(2) (5.6.26)

where the constants v and v’ are the products of the left and right transmission coeffi-
cients T; = 1 + p; and T; = 1 — p;, that is,

M+1 M+1 M+1 M+1
v=[]mi=[]Q+p), vV =[]Ti=]]0-p) (5.6.27)
i=1 i=1 i=1 i=1
In deriving the expression for 7, we used the result (5.6.16), which for i = 1 reads:
_ M+1 ’
A(z)A(z)-B(2)B(z)= 0%,  where o= [](1-p}) (5.6.28)
i=1

Because AR (z)= z7M A (z), we can rewrite (5.6.28) in the form:

A(z2)AR(2)-B(2)BR (z)= 0%z7™ (5.6.29)

Noting that vv’ = ¢ and that

;o M+l
L:l—[ l—Pi:nnH:@
v iy l+pi 0onmi o’

we may replace v and v’ by the more convenient forms:

v=o [T v _g [la (5.6.30)
Na nNp

Then, the transmission responses 7 and 7’ can be expressed as:
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—-M/2
T@=_["Tw, T@="T@), Tz=2% (5.6.31)
Na Np A(z)

The magnitude squared of T (z) represents the transmittance, that is, the ratio of
the transmitted to incident powers, whereas 7 is the corresponding ratio of the electric
fields. Indeed, assuming E” = 0, we have 7 = E’, /E. and find:

b

|E' 2
P transmitted _ 2np i — Na |f“[’|2 = |T|2 (5.6.32)
Pincident 1 |E_*_|2 Ny

where we used Eq. (5.6.31). Similarly, if the incident fields are from the right, then
assuming E; = 0, the corresponding transmission coefficient willbe 7' = E_/E’ , and
we find for the left-going transmittance:

1 2
P} ansmi 2Na [E-| Nb
trz;\nsrmtted _ 111 =12 |T’|2 = |T|2 (5.6.33)
Pincident — |EL|2 Na
2Ny

Egs. (5.6.32) and (5.6.33) state that the transmittance is the same from either side of
the structure. This result remains valid even when the slabs are lossy.

The frequency response of the structure is obtained by setting z = ¢/®“Ts. Denoting
A (e/®Ts) simply by A (w), we may express Eq. (5.6.28) in the form:

|A(w)]? - |B(w)|* = 0° (5.6.34)

This implies the following relationship between reflectance and transmittance:

(I ()P + 1T (w) = 1] (5.6.35)

Indeed, dividing Eq. (5.6.34) by |A (w) |? and using Eq. (5.6.31), we have:

B(w) :

| A(w)

1 = 1-[I(w)]* =T (w)?

2 0.2 O.e—jMwa/Z
A2 | A(w)

Scattering Matrix

The transfer matrix in Eq. (5.6.23) relates the incident and reflected fields at the left
of the structure to those at the right of the structure. Using Egs. (5.6.25), (5.6.26), and
(5.6.29), we may rearrange the transfer matrix (5.6.23) into a scattering matrix form that
relates the incoming fields E., E” to the outgoing fields E_, E’,. We have:

[gi } = [ é:((zz)) 3:, ((ZZ)) } [?r ] (scattering matrix) (5.6.36)

The elements of the scattering matrix are referred to as the S-parameters and are
used widely in the characterization of two-port (and multi-port) networks at microwave
frequencies.
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We discuss S-parameters in Sec. 12.1. It is a common convention in the literature to
normalize the fields to the impedances of the left and right media (the generator and
load impedances), as follows:

F, = 1 Ei:EirlaH’ ;:L ;:M (5.6.37)
VNa 2/Ma YL 2Mp

Such normalized fields are referred to as power waves [515]. Using the results of Eq.
(5.6.31), the scattering matrix may be written in terms of the normalized fields in the
more convenient form:

E- Iz T |[Z. £,
[fl}:[nz) r'(z)“ff_]=5(2>[f_] (5.6.38)

so that S(z) is now a symmetric matrix:

S(2)= [F(z) T(2)

T(z) TI'(2) } (scattering matrix) (5.6.39)

One can verify also that Egs. (5.6.25), (5.6.26), and (5.6.28) imply the following uni-
tarity properties of S(z):

STS(z)=1, S(w)'S(w)=1I, (unitarity) (5.6.40)

where I is the 2x2 identity matrix, $(z)= S(z~!), and S(w) denotes S(z) with z =
e/@Ts g0 that S(w)T becomes the hermitian conjugate S (w) = S (w)*T.

The unitarity condition is equivalent to the power conservation condition that the
net incoming power into the (lossless) multilayer structure is equal to the net outgoing
reflected power from the structure. Indeed, in terms of the power waves, we have:

Pout = Z}M E|? + 2—,17b|E;|2 = JIE P+ IE P

,1 * */ E- ,l * */7 ¢t T+ ,l * */ f+
_Z[T_,f+][f,+}—2[f+,f£_]55 e —2[f+,f£_]1 o
1 1 1 1

SNEL P+ SIEL P = o |Es P+ ——|EL | = P

2| +] 2| Z 2na| +] an\ Z in

Layer Recursions

Next, we discuss the layer recursions. The reflection responses at the successive in-
terfaces of the structure are given by similar equations to (5.6.25). We have I';(z)=
Bi(z)/A;(z) at the ith interface and I'j;1(z)= Bii1(2)/A;41(z) at the next one. Us-
ing Eq. (5.6.19), we find that the responses I'; satisfy the following recursion, which is
equivalent to Eq. (5.1.3):

. =17,
Ii(z)= pi+2z Tiy1(2)

=——-|, I=MM-1,...,1 (5.6.41)
1+ piz7 T4 (2)
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It starts at I'p+1(Zz)= pm+1 and ends with I'(z)= I'1 (z). The impedances at the
interfaces satisfy Eq. (5.1.5), which takes the specialized form in the case of equal phase
thicknesses:

Zin (s)+n;s

Zi(s)= , I=M,M-1,...,1 (5.6.42)
: i ni +8Zix1(8)

where we defined the variable s via the bilinear transformation:

‘o 1-z1
1+2z71

(5.6.43)

Note that if z = %9, then s = jtané. It is more convenient to think of the impedances
Zi(s) as functions of the variable s and the reflection responses I';(z) as functions of
the variable z.

To summarize, given the characteristic impedances {n4, ni,...,Nm, Ny}, equiva-
lently, the refractive indices {ny, ni,...,ny} of a multilayered structure, we can com-
pute the corresponding reflection coefficients {p1, p2,..., pm+1} and then carry out the
polynomial recursions (5.6.19), eventually arriving at the final Mth order polynomials
A(z) and B(z), which define via Eq. (5.6.25) the overall reflection and transmission
responses of the structure.

Conversely, given the final polynomials A (z)= A(z) and B, (z)= B(z), we invert
the recursion (5.6.19) and “peel off” one layer at a time, until we arrive at the rightmost
interface. In the process, we extract the reflection coefficients {p1, p2,...,Pm+1}, as
well as the characteristic impedances and refractive indices of the structure.

This inverse recursion is based on the property that the reflection coefficients appear
in the first and last coefficients of the polynomials B; (z) and A;(z). Indeed, if we define
these coefficients by the expansions:

M+1-i M+1-i
Bi(z)= > bimz™, Ai(z)= > ai(m)z ™
m=0 m=0

then, it follows from Eq. (5.6.19) that the first coefficients are:

bi(0)=pi, ai(0)=1 (5.6.44)

whereas the last coefficients are:

biM+1-1)=pys1, aiM+1-1)= py+1pi (5.6.45)

Inverting the transition matrix in Eq. (5.6.19), we obtain the backward recursion:*

Ain1(2) _ 1 1 —pi Ai(z) )
|:Bi+1(Z) ] =1_ Piz [—piz Z} [Bi(z) ] (backward recursion) (5.6.46)

TBackward means order-decreasing: as the index i increases, the polynomial order M + 1 — i decreases.
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fori=1,2,...,M,where p; = b;(0). This recursion starts with the knowledge of A; (z)
and B; (z). We note that each step of the recursion reduces the order of the polynomials
by one, until we reach the Oth order polynomials Ap;+1(z)= 1 and Bpy+1(2) = prp+1-

The reverse recursions can also be applied directly to the reflection responses I'; (z)
and wave impedances Z; (s). It follows from Eq. (5.6.41) that the reflection coefficient p;
can be extracted from I'; (z) if we set z = oo, thatis, p; = I'j(c0). Then, solving Eq. (5.1.3)
for I'i;1 (z), we obtain:

I'i(z)-p;
1-pili(z) |
Similarly, it follows from Eq. (5.6.42) that the characteristic impedance n; can be

extracted from Z;(s) by setting s = 1, which is equivalent to z = o under the transfor-
mation (5.6.43). Thus, n; = Z;(1) and the inverse of (5.6.42) becomes:

I'ian(z)=z i=1,2,....M (5.6.47)

~Zi(s)—sni

Ziv1(8)= , 1=1,2,....M 5.6.48
ir1(8)=n; i — SZi(s) ( )

The necessary and sufficient condition that the extracted reflection coefficients p;
and the media impedances n; are realizable, that is, |p;| < 1 or n; > 0, is that the
starting polynomial A (z) be a minimum-phase polynomial in z~!, that is, it must have
all its zeros inside the unit circle on the z-plane. This condition is in turn equivalent to
the requirement that the transmission and reflection responses T (z) and I' (z) be stable
and causal transfer functions.

The order-increasing and order-decreasing recursions Egs. (5.6.19) and (5.6.46) can
also be expressed in terms of the vectors of coefficients of the polynomials A;(z) and
Bi(z). Defining the column vectors:

ai(O) bi(o)
a;(1) b;i(1)
aj = . , i = .
ai(M-i.-l—l') bi(M+l—i)

we obtain for Eq. (5.6.19), withi=M,M —-1,...,1:

i 0
a; = [agl]+pi[b_+l}
1
a; 0
bi=Pi|: lgl:|+|:bi+1:|

and initialized at ay;+1 = [1] and by 1 = [pm+1]. Similarly, the backward recur-
sions (5.6.46) are initialized at the Mth order polynomials a; = a and b; = b. For
i=1,2,...,Mand p; = b;(0), we have:

Air1 | _ &= pibi
0 1-p;

0 _ —pia; + b;
b 1-p?

(forward recursion) (5.6.49)

(backward recursion) (5.6.50)
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Example 5.6.1: Determine the number of layers M, the reflection coefficients at the M + 1
interfaces, and the refractive indices of the M + 2 media for a multilayer structure whose
overall reflection response is given by:

B(z) —0.1-0.188z"' —0.3527% + 0.5273
A(z) ~ 1-0.1z"! —0.064z-2 — 0.052-3

I'(z)=

Solution: From the degree of the polynomials, the number of layers is M = 3. The starting
polynomials in the backward recursion (5.6.50) are:

1.000 ~0.100

~0.100 ~0.188

a=a=| _goea |0 TP o350
~0.050 0.500

From the first and last coefficients of by, we find p; = —0.1 and p4 = 0.5. Setting i = 1,
the first step of the recursion gives:

1.000 0.000
a _a - p1by _ -0.120 0 _ Py +b; _ —-0.200
0ol 1- o ~ | -0.100 |’ b | 1- p3 ~ | -0.360
0.000 0.500
Thus,
1.000 —0.200
a =| —-0.120 |, by = —0.360
—0.100 0.500
The first coefficient of b, is p» = —0.2 and the next step of the recursion gives:
1.0 0.0
az | ap—poby 0.2 0 [ —prapt+hby 0.4
01" 1-p% | 50w |T 1-pF |
P2 0.0 2 0.5
Thus,

1.0 —0.4
a3=[70.2]’ b3=[ 0.5]

The last step of the recursion for i = 3 is not necessary because we have already determined
ps = 0.5. Thus, the four reflection coefficients are:

[p1,p2,p3,p4]=[-0.1,-0.2,-0.4,0.5]

The corresponding refractive indices can be obtained by solving Eq. (5.1.1), that is, n; =
ni_1 (1 — p;)/ (1 + p;). Starting with i = 1 and ny = n, = 1, we obtain:

[ng,ni,n2,n3,n,1=[1,1.22,1.83,4.28,1.43]

The same results can be obtained by working with the polynomial version of the recursion,
Eq. (5.6.46). o
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Example 5.6.2: Consider the quarter-quarter antireflection coating shown in Fig. 5.2.2 with
refractive indices [ng,ny,np,ny]= [1,1.38,1.63,1.50]. Determine the reflection coef-
ficients at the three interfaces and the overall reflection response I'(z) of the structure.

Solution: In this problem we carry out the forward layer recursion starting from the rightmost
layer. The reflection coefficients computed from Eq. (5.1.1) are:

[p1, P2, p3]= [-0.1597,—0.0831,0.0415]

Starting the forward recursion with a3 = [1] and b3 = [p3]= [0.0415], we build the first
order polynomials:

Tas 01 [1oooo] 0.0000 ] [ 1.0000
&= [ 0 } TP [bg } - [0.0000} * 0'0831)[0.0415 } - [ —0.0034}
R ol 1.0000 ] _ [ 0.0000 ] [ -0.0831
b: = p2 [ 0 } N [bg } = 0'0831)[0.0000} N [0.0415 } B [ 0.0415 }

Then, we build the 2nd order polynomials at the first interface:

. 0 1.0000 o 0 ~0.1597
a=|7+m = 00098 |, bi=p| 2|+ = | —0.0825
0 b, —0.0066 0 b 0.0415

Thus, the overall reflection response is:

I'(z)=T1(z)= Bi(z)  —0.1597 — 0.0825z7' + 0.0415z7>
ST A T 1+ 0.0098271 — 0.00662-2

Applying the reverse recursion on this reflection response would generate the same reflec-
tion coefficients pq, p2, p3. [m}

Example 5.6.3: Determine the overall reflection response of the quarter-half-quarter coating of
Fig. 5.2.2 by thinking of the half-wavelength layer as two quarter-wavelength layers of the
same refractive index.

Solution: There are M = 4 quarter-wave layers with refractive indices:
[ng, ni,n2,n3,ng, npl=[1,1.38,2.20,2.20,1.63,1.50]
The corresponding reflection coefficients are:
[p1, 02, P3, P4, P5]1= [—0.1597,-0.2291,0,0.1488,0.0415]

where the reflection coefficient at the imaginary interface separating the two halves of
the half-wave layer is zero. Starting the forward recursion with as = [1], bs = [ps]=
[0.0415], we compute the higher-order polynomials:

[=], 0] _[roooo] _ Tas] [o07_[o.1488
A= o [TP4 by | 7| 00062 |0 TP 0 bs | | 0.0415
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. 0 1.0000 ] . 0 [ 0.0000
a3=[5]+p3[b4}= 0.0062 |, b3=p3[6‘]+[b4 = | 0.1488
0.0000 0.0415
1.0000 -0.2291
_[a], 0]_| ooo62| _ Ta] [07]_]|-00014
L= o [TP2py [T —00341 |0 P2TP2 0 bs | T | 0.1488
| —0.0095 | 0.0415 |
1.0000 | [ —0.1597 |
N 0 0.0428 N o ~0.2300
o | +on|p, [ =] 00330 |, bi=pi | T {+] | =] 00040
~0.0333 0.1503
| —0.0066 | 0.0415 |

Thus, the reflection response will be:

Bi(z) _ —0.1597 — 0.2300z"! + 0.0040z"2 + 0.1502z3 + 0.0415z"*
Ai(z) ~ 1+0.04282z1 - 0.0339272 — 0.03332z3 — 0.00662*

I'(z)=

We note that because p3 = 0, the polynomials A3(z) and A4(z) are the same and B3 (z)
is simply the delayed version of B4(z), thatis, B3 (z)= z7'B4(2). [}

Example 5.6.4: Given the reflection coefficients {p1, p2, p3, P4} of a three-layer structure, de-
rive the polynomials A;(z), B;(z) at all stagesi = 1,2, 3,4.

Solution: Starting with A4 (z) = 1 and B4 (z) = py4, the forward recursions (5.6.19) are:

A3(2)= Ay (2)+p32 1By (2)= 1 + p3psz™!
B3(2)= p3A4(2)+271B4(2) = p3 + psz™!

Ay (2)=A3(2)+p227'B3(2)= 1+ (p2p3 + p3P1) 271 + popsz™?
By (z)= p2A3(2)+z7'B3(2) = p2 + (p3 + p2p3ps) 271 + psz?

Finally, A1 (z)= Az (z2) +p1z 'B>(z) and By (2) = p1A2(2) +z7 B> (z) give:

A1(Z2)=14 (p1p2 + P2p3 + P3Pa) 271 + (P1P3 + P2pa + P1P2P3P4) 272 + p1paz™
Bi(2)= p1+ (P2 + p1P2p3 + P1P3P4) Z7 1 + (P3 + P1P2P4s + P2P3P4)Z72 + psz ™3

As expected, the first and last coefficients of A;(z) are 1 and p;p4 and those of B;(z) are
pi and py.

An approximation that is often made in practice is to assume that the p;s are small and
ignore all the terms that involve two or more factors of p;. In this approximation, we have
for the polynomials and the reflection response I'(z) = B, (z) /A, (2):

Al(Z): 1

BiD)=p1 4zt 4 pazt 4 pazd Z LA Pz sz ka2
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This is equivalent to ignoring all multiple reflections within each layer and considering only
a singlereflection at each interface. Indeed, the term p,z~! represents the wave reflected at
interface-2 and arriving back at interface-1 with a roundtrip delay of z~'. Similarly, p3z~2
represents the reflection at interface-3 and has a delay of z~2 because the wave must make
aroundtrip of two layers to come back to interface-1, and p4z~3 has three roundtrip delays
because the wave must traverse three layers. [m}

The two MATLAB functions frwrec and bkwrec implement the forward and back-
ward recursions (5.6.49) and (5.6.50), respectively. They have usage:

[A,B] = frwrec(r); forward recursion - from r to A, B
[r,A,B] = bkwrec(a,b); backward recursion - from a, b to r

The input ¥ of frwrec represents the vector of the M + 1 reflection coefficients and
A, B are the (M + 1)x (M + 1) matrices whose columns are the polynomials a; and b;
(padded with zeros at the end to make them of length M + 1.) The inputs a, b of bkwrec
are the final order-M polynomials a,b and the outputs r, A, B have the same meaning
as in frwrec. We note that the first row of B contains the reflection coefficients r.

The auxiliary functions r2n and n2r allow one to pass from the reflection coefficient
vector r to the refractive index vector n, and conversely. They have usage:

n = r2n(r); reflection coefficients to refractive indices
r = n2r(n); refractive indices to reflection coefficients

As an illustration, the MATLAB code:

a=1[1, -0.1, -0.064, -0.05];
b = [-0.1, -0.188, -0.35, 0.5];
[r,A,B] = bkwrec(a,b);

n = r2n(r);

r = n2r(n);

will generate the output of Example 5.6.1:

r =
-0.1000 -0.2000 -0.4000 0.5000

A =
1.0000 1.0000 1.0000 1.0000
-0.1000 -0.1200 -0.2000 0
-0.0640 -0.1000 0 0
-0.0500 0 0 0

B =
-0.1000 -0.2000 -0.4000 0.5000
-0.1880 -0.3600 0.5000 0
-0.3500 0.5000 0 0
0.5000 0 0 0

1.0000 1.2222 1.8333 4.2778 1.4259
-0.1000 -0.2000 -0.4000 0.5000

Conversely, if the above r is the input to frwrec, the returned matrices A, B will be
identical to the above. The function r2n solves Eq. (5.1.1) for n; and always assumes that
the refractive index of the leftmost medium is unity. Once the n; are known, the function
multidiel may be used to compute the reflection response at any set of frequencies or
wavelengths.
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5.7 Applications of Layered Structures

In addition to their application in dielectric thin-film and radome design, layered struc-
tures and the corresponding forward and backward layer recursions have a number of
applications in other wave propagation problems, such as the design of broadband ter-
minations of transmission lines, the analysis and synthesis of speech, geophysical signal
processing for oil exploration, the probing of tissue by ultrasound, and the design of
acoustic reflectors for noise control.

It is remarkable also that the same forward and backward recursions (5.6.49) and
(5.6.50) are identical (up to reindexing) to the forward and backward Levinson recursions
of linear prediction [373], with the layer structures being mathematically equivalent to
the analysis and synthesis lattice filters. This connection is perhaps the reason behind
the great success of linear prediction methods in speech and geophysical signal pro-
cessing.

Moreover, the forward and backward layer recursions in their reflection forms, Egs.
(5.6.41) and (5.6.47), and impedance forms, Egs. (5.6.42) and (5.6.48), are the essential
mathematical tools for Schur’s characterization of lossless bounded real functions in the
z-plane and Richard’s characterization of positive real functions in the s-plane and have
been applied to network synthesis and to the development of transfer function stability
tests, such as the Schur-Cohn test [393-407].

In all wave problems there are always two associated propagating field quantities
playing the roles of the electric and magnetic fields. For forward-moving waves the
ratio of the two field quantities is constant and equal to the characteristic impedance of
the particular propagation medium for the particular type of wave.

For example, for transmission lines the two field quantities are the voltage and cur-
rent along the line, for sound waves they are the pressure and particle volume velocity,
and for seismic waves, the stress and particle displacement.

A transmission line connected to a multisegment impedance transformer and a load
is shown in Fig. 5.7.1. The characteristic impedances of the main line and the seg-
ments are Z, and Z1, ..., Zy, and the impedance of the load, Z;. Here, the impedances
{Za,Z4,...,Zm, Zp}, play the same role as {ng, N1,...,NM, Ny} in the dielectric stack
case.

Loy by lu

. Vi—>
main line Zg4 V.o Zy Z>

Fig. 5.7.1 Multisegment broadband termination of a transmission line.

The segment characteristic impedances Z; and lengths I; can be adjusted to obtain
an overall reflection response that is reflectionless over a wideband of frequencies [362-
372]. This design method is presented in Sec. 5.8.
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In speech processing, the vocal tract is modeled as an acoustic tube of varying cross-
sectional area. It can be approximated by the piece-wise constant area approximation
shown in Fig. 5.7.2. Typically, ten segments will suffice.

The acoustic impedance of a sound wave varies inversely with the tube area, Z =
pc/ A, where p, ¢, and A are the air density, speed of sound, and tube area, respectively.
Therefore, as the sound wave propagates from the glottis to the lips, it will suffer reflec-
tions every time it encounters an interface, that is, whenever it enters a tube segment

of different diameter.
» e

Ay A, Aj Ay As  —» speech

ﬂ

glottis lips

Fig. 5.7.2 Multisegment acoustic tube model of vocal tract.

Multiple reflections will be set up within each segment and the tube will reverberate
in a complicated manner depending on the number of segments and their diameters.
By measuring the speech wave that eventually comes out of the lips (the transmission
response,) it is possible to remove, or deconvolve, the reverberatory effects of the tube
and, in the process, extract the tube parameters, such as the areas of the segments, or
equivalently, the reflection coefficients at the interfaces.

During speech, the configuration of the vocal tract changes continuously, but it does
so at mechanical speeds. For short periods of time (typically, of the order of 20-30
msec,) it may be considered to maintain a fixed configuration. From each such short
segment of speech, a set of configuration parameters, such as reflection coefficients,
is extracted. Conversely, the extracted parameters may be used to re-synthesize the
speech segment.

Such linear prediction based acoustic tube models of speech production are routinely
used in the analysis and synthesis of speech, speech recognition, speaker identification,
and speech coding for efficient data transmission, such as in wireless phones.

The seismic problem in geophysical signal processing is somewhat different. Here,
it is not the transmitted wave that is experimentally available, but rather the overall
reflected wave. Fig. 5.7.3 shows the typical case.

An impulsive input to the earth, such as an explosion near the surface, will set up
seismic elastic waves propagating downwards. As the various earth layers are encoun-
tered, reflections will take place. Eventually, each layer will be reverberating and an over-
all reflected wave will be measured at the surface. With the help of the backward recur-
sions, the parameters of the layered structure (reflection coefficients and impedances)
are extracted and evaluated to determine the presence of a layer that contains an oil
deposit.

The application of the backward recursions has been termed dynamic predictive de-
convolution in the geophysical context [380-392]. An interesting historical account of
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reflection
impulse response
¢ f surface
layer 1
layer 2
layer M
¢ rock bottom
transmission

response
Fig. 5.7.3 Seismic probing of earth’s multilayer structure.

the early development of this method by Robinson and its application to oil exploration
and its connection to linear prediction is given in Ref. [386]. The connection to the con-
ventional inverse scattering methods based on the Gelfand-Levitan-Marchenko approach
is discussed in [387-392].

Fiber Bragg gratings (FBG), obtained by periodically modulating the refractive index
of the core (or the cladding) of a finite portion of a fiber, behave very similarly to di-
electric mirrors and exhibit high reflectance bands [328-348]. The periodic modulation
is achieved by exposing that portion of the fiber to intense ultraviolet radiation whose
intensity has the required periodicity. The periodicity shown in Fig. 5.7.4 can have arbi-
trary shape—not only alternating high/low refractive index layers as suggested by the
figure. We discuss FBGs further in Sec. 10.4.

WDM input fiber Bragg grating WDM output

a— N periods —»
Al Ay Az
1 [T T I T I A
. I ‘ T
Ay one period core
cladding

LI
A As
S

Al4
t«— N periods —» a— N periods —»

At Az Ag — RN NN —
<J‘—L quarter-wave phase-shifted grating

A A3

Az

Fig. 5.7.4 Fiber Bragg gratings acting as bandstop or bandpass filters.

Quarter-wave phase-shifted fiber Bragg gratings act as narrow-band transmission
filters and can be used as demultiplexing filters in WDM and dense WDM (DWDM) com-
munications systems. Assuming as in Fig. 5.7.4 that the inputs to the FBGs consist of
several multiplexed wavelengths, A1,A2,As,..., and that the FBGs are tuned to wave-
length A,, then the ordinary FBG will act as an almost perfect reflector of A,. If its
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reflecting band is narrow, then the other wavelengths will transmit through. Similarly,
the phase-shifted FBG will act as a narrow-band transmission filter allowing A, through
and reflecting the other wavelengths if they lie within its reflecting band.

A typical DWDM system may carry 40 wavelengths at 10 gigabits per second (Gbps)
per wavelength, thus achieving a 400 Gbps bandwidth. In the near future, DWDM sys-
tems will be capable of carrying hundreds of wavelengths at 40 Gbps per wavelength,
achieving terabit per second rates [348].

5.8 Chebyshev Design of Reflectionless Multilayers

In this section, we discuss the design of broadband reflectionless multilayer structures of
the type shown in Fig. 5.6.1 , or equivalently, broadband terminations of transmission
lines as shown in Fig. 5.7.1, using Collin’s method based on Chebyshev polynomials
[362-372,201,220].

As depicted in Fig. 5.8.1, the desired specifications are: (a) the operating center
frequency f of the band, (b) the bandwidth Af, and (c) the desired amount of attenuation
A (in dB) within the desired band, measured with respect to the reflectance value at dc.

A

Ir¢p)l?

A dB

- Af

R S S A S e

Fig. 5.8.1 Reflectance specifications for Chebyshev design.

Because the optical thickness of the layers is 6 = wTs/2 = (11/2) (f/fy) and van-
ishes at dc, the reflection response at f = 0 should be set equal to its unmatched value,
that is, to the value when there are no layers:

2 2
T2 = p2 = (2= "Na :(7”“_”’”) 5.8.1
[I'(0)] Po (’7a+’7b N, + ny ( )

Collin’s design method [362] assumes |I'(f') |? has the analytical form:

272
R = G Tu)

= 2 5.8.2
1+ T2, (x) (5:8:2)

, X =2Xgcosd = Xqcos |

T
2f,)

where Ty (x) = cos(M acos (x) ) is the Chebyshev polynomial (of the first kind) of order
M. The parameters M, e, X are fixed by imposing the desired specifications shown in
Fig. 5.8.1.
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Once these parameters are known, the order-M polynomials A(z),B(z) are deter-
mined by spectral factorization, so that |I'(f) |2 = |B(f)|2/]A(f)|%. The backward layer
recursions, then, allow the determination of the reflection coefficients at the layer inter-
faces, and the corresponding refractive indices. Setting f = 0, or 6 = 0, or cosé = 1, or
X = Xo, we obtain the design equation:

22 2
e;Ty (Xo) e
ro?=-—t>x" =9 =p? 5.8.3
O = 22 () “T+e8 - P (5.8.3)
where we defined eg = e; Ty (Xo). Solving for eg, we obtain:
) (ng — np)?
ef = 5 = (5.8.4)
1-pg5 4ngny

Chebyshev polynomials T (x) are reviewed in more detail in Sec. 19.8 that discusses
antenna array design using the Dolph-Chebyshev window. The two key properties of
these polynomials are that they have equiripple behavior within the interval -1 <x <1
and grow like x™ for |x| > 1; see for example, Fig. 19.8.1.

By adjusting the value of the scale parameter xg, we can arrange the entire equiripple
domain, —1 < x < 1, of Ty (x) to be mapped onto the desired reflectionless band
[f1,f21, where f1, > are the left and right bandedge frequencies about fj, as shown in
Fig. 5.8.1. Thus, we demand the conditions:

xocos(n—fz) =-1,  xpcos(

=1
2fo

mf1
2f0)

These can be solved to give:

1 1
g—]foz = acos(—x—o) = g + asin(x—o)
(5.8.5)
mho_ acos(i) =1 —asin(i)
2f() X0 2 X0
Subtracting, we obtain the bandwidth Af = f> — f:
™ Af , < 1 )
——— = 2asin| — (5.8.6)
2 fo Xo
We can now solve for the scale parameter x( in terms of the bandwidth:
1
X = TAf (5.8.7)
sm(— —)
4 fo

It is evident from Fig. 5.8.1 that the maximum value of the bandwidth that one can
demand is Af .« = 2fo. Going back to Eg. (5.8.5) and using (5.8.6), we see that f; and
f> lie symmetrically about fy, such that f; = fo — Af/2 and f»> = fo + Af /2.

Next, we impose the attenuation condition. Because of the equiripple behavior over
the Af band, it is enough to impose the condition at the edges of the band, that is, we
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demand that when f = f1, or x = 1, the reflectance is down by A dB compared to its dc
value:

Q%Tﬁfl) _ e%, ~A/10
1+e3T3,(1) 1+é3

IT(f1) 1% = |T'(0)|>1074/10

But, Tp (1) = 1. Therefore, we obtain an equation for e%:

2

2
e e
o= 010740 (5.8.8)
1+er 1+ej

Noting that ep = e; T (Xp), we solve Eq. (5.8.8) for the ratio Ty (xg) = eg/e;:

Ta (xo) = cosh (M acosh(xp)) = /(1 + €3) 104110 — 2 (5.8.9)

where we used the definition Ty (Xo) = cosh(M acosh(xg)) because xy > 1. Solving
(5.8.9) for M, we obtain:

| M = ceil (Mexact) | (5.8.10)

where

acosh <\/(1 + e3)10A/10 — e(";)

Mexact = (5.8.11)

acosh (xg)

Because M yqcr is rounded up to the next integer, the attenuation will be somewhat
larger than required. In summary, we calculate eg, Xy, M from Egs. (5.8.4), (5.8.7), and
(5.8.10). Finally, e; is calculated from:

___ € _ €o
"~ Tm(xo) cosh(Macosh(xg))

€1 (5.8.12)

Next, we construct the polynomials A (z) and B(z). It follows from Egs. (5.6.25) and
(5.6.31) that the reflectance and transmittance are:

2
rpr = B0 TR =1 -irer

Comparing these with Eq. (5.8.2), we obtain:

o2

TIAD 12

[A(f)1? = 0?1 + 5T (xocos §) |
(5.8.13)
[B(f)|? = 0%e5T3; (xo cos S)

The polynomial A (z) is found by requiring that it be a minimum-phase polynomial,
that is, with all its zeros inside the unit circle on the z-plane. To find this polynomial,
we determine the 2M roots of the right-hand-side of |A(f)|? and keep only those M
that lie inside the unit circle. We start with the equation for the roots:
021+ eiT3 (x0c0s8)] =0 = Ty(xgcosd)= iei

1
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Because Ty (xg cos &) = cos(M acos (xq cos §) ), the desired M roots are given by:

acos(—ei) + mTr
1

xocosém:cos< M ), m=0,1,...,.M -1 (5.8.14)
Indeed, these satisfy:
_ J __J .
cos (M acos (xg cos 6p,)) = cos|acos(—~-) + mm | = —~ cosmT = =
[} (5] (]

Solving Eq. (5.8.14) for 6,,, we find:

acos(—ei) +mTr

5m=acos[—cos< L )] , m=0,1,....M—1 (5.8.15)
X0 M

Then, the M zeros of A (z) are constructed by:

o= e®n], m =01, M1 56,10

These zeros lie inside the unit circle, |z;,| < 1. (Replacing —j/e; by +j/e; in
Eq. (5.8.15) would generate M zeros that lie outside the unit circle; these are the ze-
ros of A (z).) Finally, the polynomial A (z) is obtained by multiplying the root factors:

M-1
A= [0 -zmzHY=1+a1z ' +apz >+ +ayz ™ (5.8.17)
m=0

Once A(z) is obtained, we may fix the scale factor o> by requiring that the two
sides of Eq. (5.8.13) match at f = 0. Noting that A (f) at f = 0 is equal to the sum of the
coefficients of A (z) and that e; T (Xg) = eg, we obtain the condition:

2

M-1
M-1 Z am
Z am m=0

m=0 A1+ 6(2)

Either sign of o leads to a solution, but its physical realizability requires that we
choose the negative sign if n; < np, and the positive one if n; > nyp.

The polynomial B (z) can now be constructed by taking the square root of the second
equation in (5.8.13). Again, the simplest procedure is to determine the roots of the right-
hand side and multiply the root factors. The root equations are:

=0?(1+ef) = o== (5.8.18)

0%e3T3 (xgcos8) =0 = Ty (xpcos8)=0

with M roots:

S = acos(i Cos(w

=0,1,...,M -1 5.8.19
X0 i )» m ( )
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The z-plane roots are z,, = e%m m =0,1,...,M — 1. The polynomial B(z) is now
constructed up to a constant by by the product:

M-1
B(z)=bo [[ (1 —zmz™}) (5.8.20)
m=0
As before, the factor by is fixed by matching Eq. (5.8.13) at f = 0. Because 0, is
real, the zeros z,, will all have unit magnitude and B(z) will be equal to its reverse
polynomial, BR (z)= B(z).
Finally, the reflection coefficients at the interfaces and the refractive indices are
obtained by sending A (z) and B(z) into the backward layer recursion.
The above design steps are implemented by the MATLAB functions chebtr, chebtr2,
and chebtr3 with usage:

[n,a,b] = chebtr(na,nb,A,DF); Chebyshev multilayer design
[n,a,b,A] = chebtr2(na,nb,M,DF); specify order and bandwidth
[n,a,b,DF] = chebtr3(na,nb,M,A); specify order and attenuation

The inputs are the refractive indices ng,, np of the left and right media, the desired at-
tenuation in dB, and the fractional bandwidth AF = Af/f,. The output is the refractive
index vectorn = [ng, ny, Ny,..., N, Np] and the reflection and transmission polynomi-
als b and a. In chebtr2 and chebtr3, the order M is given. To clarify the design steps,
we give below the essential source code for chebtr:

e0 sqrt((nb-na)A2/(4*nb*na));

x0 = 1/sin(DF*pi/4);

M = ceil(acosh(sqrt((e0A2+1)*10A(A/10) - e0A2))/acosh(x0));
el = e0/cosh(M*acosh(x0));

m=0:M-1;

delta = acos(cos((acos(-j/el)+pi*m)/M)/x0);

z = exp(2*j*delta); zeros of A(z)

a = real(poly(z)); coefficients of A (z)

sigma = sign(na-nb)*abs(sum(a))/sqrt(1+e0A2); scale factor o

deTta = acos(cos((m+0.5)*pi/M)/x0);

z = exp(2*j*delta); zeros of B(z)

b = real(poly(z)); unscaled coefficients of B (z)
b0 = sigma * e0 / abs(sum(b));

b = b0 * b; rescaled B(z)

r = bkwrec(a,b); backward recursion

n =na * r2n(r); refractive indices

Example 5.8.1: Broadband antireflection coating. Design a broadband antireflection coating on
glass with n, = 1, np, = 1.5, A = 20 dB, and fractional bandwidth AF = Af/f, = 1.5.
Then, design a coating with deeper and narrower bandwidth having parameters A = 30
dB and AF = Af/fy = 1.0.

Solution: The reflectances of the designed coatings are shown in Fig. 5.8.2. The two cases have
M = 8 and M = 5, respectively, and refractive indices:
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n=[1,1.0309,1.0682,1.1213,1.1879,1.2627,1.3378,1.4042,1.4550, 1.5]
n=1[1,1.0284,1.1029,1.2247,1.3600, 1.4585, 1.5]

The specifications are better than satisfied because the method rounds up the exact value
of M to the next integer. These exact values were Mexact = 7.474 and Meyaer = 4.728, and
were increased to M = 8 and M = 5.

A=20dB A=30dB

0.5 1 15 25 3 35 4

2
£/f,

Fig. 5.8.2 Chebyshev designs. Reflectances are normalized to 0 dB at dc.

The desired bandedges shown on the graphs were computed from f;/fy = 1 — AF/2 and
fi/fo =1+ AF/2. The designed polynomial coefficients a, b were in the two cases:

 1.0000 T r—0.0152 7
0.0046 ~0.0178 10000 0.0140
0.0041 ~0.0244

0.0074 -0.0350
0.0034 ~0.0290

0.0051 ~0.0526

a=|0.0025|, b=]| —0.0307 | and a= , b=

0.0027 ~0.0526
0.0017 ~0.0290

0.0010 -0.0350
0.0011 —0.0244 0.0002 00140
0.0005 ~0.0178 : :

| 0.0002 | | —0.0152 |

The zeros of the polynomials a were in the two cases:

+ o
03078, 227,03 po112 = a5

zZ= o and z=| 0.1564£180°
0.3266« +158.76 0.1678 2 + 116.30°

0.3331£ +116.34°

They lie inside the unit circle by design. The typical MATLAB code used to generate these
examples was:

na =1; nb =1.5; A= 20; DF = 1.5;
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= chebtr(na,nb,A,DF);

S
I

M = length(n) - 2;

f = Tinspace(0,4,1601);

L = 0.25 * ones(1,M);

GO = (na-nb)A2 / (na+nb)A2;

G = abs(multidiel(n,L,1./f)).A2;

plot(f, 10*10910(G/G0));

The reflectances were computed with the function multidiel. The optical thickness inputs
to muTtidiel were all quarter-wavelength at fj. [m}

We note, in this example, that the coefficients of the polynomial B(z) are symmetric
about their middle, that is, the polynomial is self-reversing BX (z) = B(z). One conse-
quence of this property is that the vector of reflection coefficients is also symmetric
about its middle, that is,

[plspZJ"'!lepM+l] = [pM+1:pM:---:p2,pl] (5821)

or, pi = Pm+2-i, fori =1,2,...,M + 1. These conditions are equivalent to the following
constraints among the resulting refractive indices:

NiNp42-j = NgNp & P = Py+2-i|, 1=1,2,...,M+1 (5.8.22)

These can be verified easily in the above example. The proof of these conditions
follows from the symmetry of B(z). A simple argument is to use the single-reflection
approximation discussed in Example 5.6.4, in which the polynomial B (z) is to first-order
in the p;s:

1 M

B(z)=p1+p2z"" + -+ +pMs1Z"

If the symmetry property p; = pa+2-; were not true, then B(z) could not satisfy the
property BR (z) = B(z). A more exact argument that does not rely on this approximation
can be given by considering the product of matrices (5.6.17).

Finally, we discuss the design of broadband terminations of transmission lines shown
in Fig. 5.7.1. Because the media admittances are proportional to the refractive indices,
n;' = ningL, we need only replace n; by the line characteristic admittances:

[na!nly"'ynM!nb] - [Yalyls---!YM)Yh]

where Y,, Yj, are the admittances of the main line and the load and Y, the admittances of
the segments. Thus, the vector of designed admittances can be obtained by the MATLAB
call:

Y = chebtr(Ya, Yb, A, DF);

We also have the property (5.8.22), YiYymi2-i = Y Yy, o1, ZiZyi2o-i = ZgZp, for
i=1,2,...,M+1,where Y; =1/Z;.
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In this design method, one does not have any control over the resulting refractive
indices n; or admittances Y;. This can be problematic in the design of antireflection coat-
ings because there do not necessarily exist materials with the designed n;s. However,
one can replace or “simulate” any value of the refractive index of a layer by replac-
ing the layer with an equivalent set of three layers of available indices and appropriate
thicknesses [176-236].

This is not as big a problem in the case of transmission lines, because one can easily
design a line segment of a desired impedance by adjusting the geometry of the line, for
example, by changing the diameters of a coaxial cable or the width of a parallel-wire or
microstrip line.

5.9 Problems

5.1 Three identical fiberglass slabs of thickness of 3 ¢m and dielectric constant € = 4¢, are
positioned at separations d; = d» = 6 cm, as shown below. A wave of free-space wavelength
of 24 cm is incident normally onto the left slab.

a. Determine the percentage of reflected power.

b. Repeat if the slabs are repositioned such that d; = 12 cm and d» = 6 cm.

air | € air € air € air
1 —»
I' «—
d, d>
P
3cm

5.2 Four identical dielectric slabs of thickness of 1 cm and dielectric constant € = 4¢€, are posi-
tioned as shown below. A uniform plane wave of frequency of 3.75 GHz is incident normally
onto the leftmost slab.

a. Determine the reflectance |I'|? as a percentage.

b. Determine |I'|? if slabs A and C are removed and replaced by air.

c. Determine |I'|? if the air gap B between slabs A and C is filled with the same dielectric,
so that ABC is a single slab.

€ |€ 4| B |C
1
I =

Z1 7, 7374 Zs Zs VANA]

lem  4cm 2cm 4cm

5.3 Show that the antireflection coating design equations (5.2.2) can be written in the alternative
forms:
2 2
n; (np — ng) (N — Nahp)
ng(ns —np) (nj —ni)

(n3 — nany) (n3n, — ning)
ng(n3 — n3) (n3 — ni)

cos? kol, = , sin®kol, =
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5.4

5.5

5.6

5.7

5.8

Problems 157

Making the assumptions that n, > ny > ng, n, > np, and n, > ng, show that for the design
to have a solution, the following conditions must be satisfied:

np
n > /ngny and np > n; l—n
a

Show that the characteristic polynomial of any 2X2 matrix F is expressible in terms of the
trace and the determinant of F as in Eq. (5.3.10), that is,

det(F —AI)= A2 — (tr F)A + detF

Moreover, for a unimodular matrix show that the two eigenvalues are A. = e** where
« = acosh(a) and a = tr F/2.

Show that the bandedge condition a = —1 for a dielectric mirror is equivalent to the condition
of Eq. (5.3.16). Moreover, show that an alternative condition is:
n n
o M

1
cos Oy cos O — 3 (7

)sinéﬂ sind; = —1
ng ny

Stating with the approximate bandedge frequencies given in Eq. (5.3.19), show that the band-
width and center frequency of a dielectric mirror are given by:
2fp asin(p)

_p _ g _ cloasm{p) _fitf fo
Af =1 fl_n(LH+LL)' fe="", T 2(Lg+Lp)

where Ly = ngly/Ag, Ly = nilp/Ag, and Ay is a normalization wavelength, and f, the
corresponding frequency fo = co/Ag.

Computer Experiment: Antireflection Coatings. Compute and plot over the 400-700 nm
visible band the reflectance of the following antireflection coatings on glass, defined by the
refractive indices and normalized optical thicknesses:

n=1[1,1.3815], L=1[0.25]

n=11,1.38,1.63,1.5], L =1[0.25,0.50]
n=[1,1.38,2.2,1.63,1.5], L =[0.25,0.50,0.25]
n=[1,1.38,2.08,1.38,2.08,1.5], L = [0.25,0.527,0.0828,0.0563]

po o

The normalization wavelength is Ag = 550 nm. Evaluate and compare the coatings in terms
of bandwidth. Cases (a-c) are discussed in Sec. 5.2 and case (d) is from [183].

Computer Experiment: Dielectric Sunglasses. A thin-film multilayer design of dielectric sun-
glasses was carried out in Ref. [738] using 29 layers of alternating TiO, (ng = 2.35) and SiO;
(ny = 1.45) coating materials. The design may be found on the web page:
www.sspectra.com/designs/sunglasses.html.

The design specifications for the thin-film structure were that the transmittance be: (a) less
than one percent for wavelengths 400-500 nm, (b) between 15-25 percent for 510-790 nm,
and (c) less than one percent for 800-900 nm.

Starting with the high-index layer closest to the air side and ending with the high-index layer
closest to the glass substrate, the designed lengths of the 29 layers were in nm (read across):

21.12 32.41 73.89 123.90 110.55 129.47

63.17 189.07 68.53 113.66 62.56 59.58

27.17 90.29 44.78 73.58 50.14 94.82

60.40 172.27 57.75 69.00 28.13 93.12
106.07 111.15 32.68 32.82 69.95
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Form the optical lengths n;l; and normalize them L; = n;l;/A(, such that the maximum
optical length is a quarter wavelength at Ag. What is the value of Ay in nm? Assuming the
glass substrate has index n = 1.5, compute and plot the reflectance and transmittance over
the band 400-900 nm.

5.9 Computer Experiment: Dielectric Mirror. Reproduce all the results and graphs of Example
5.3.2. In addition, carry out the computations for the cases of N = 16, 32 bilayers.
In all cases, calculate the minimum and maximum reflectance within the high-reflectance
band. For one value of N, calculate the reflectance using the closed-form expression (5.3.33)
and verify that it is the same as that produced by multidiel.

5.10 Computer Experiment: Dielectric Mirror. Reproduce all the results and graphs of Example
5.3.3. Repeat the computations and plots when the number of bilayers is N = 8, 16. Repeat
for N = 4,8, 16 assuming the layers are quarter-wavelength layers at 12.5 ym. In all cases,
calculate the minimum and maximum reflectance within the high-reflectance band.

5.11 Computer Experiment: Shortpass and Longpass Filters. Reproduce all the results and graphs
of Example 5.3.5. Redo the experiments by shifting the short-pass wavelength to Ag = 750
nm in the first case, and the long-pass wavelength to Ay = 350 nm in the second case. Plot
the reflectances over the extended band of 200-1000 nm.

5.12 Computer Experiment: Wide Infrared Bandpass Filter. A 47-layer infrared bandpass filter
with wide transmittance bandwidth was designed in Ref. [738]. The design may be found
on the web page www.sspectra.com/designs/irbp.html.

The alternating low- and high-index layers were ZnS and Ge with indices 2.2 and 4.2. The
substrate was Ge with index 4. The design specifications were that the transmittance be: (a)
less than 0.1% for wavelengths 2-3 um, (b) greater than 99% for 3.3-5 um, and (c) less than
0.1% for 5.5-7 um.

Starting with a low-index layer near the air side and ending with a low-index layer at the
substrate, the layer lengths were in nm (read across):

528.64 178.96 250.12 123.17 294.15 156.86 265.60 134.34
266.04 147.63 289.60 133.04 256.22 165.16 307.19 125.25
254.28 150.14 168.55 68.54 232.65 12548 238.01 138.25
268.21 98.28 133.58 125.31 224.72 40.79 564.95 398.52
710.47 360.01 724.86 353.08 718.52 358.23 709.26 370.42
705.03 382.28 720.06 412.85 761.47 48.60 97.33

Form the optical lengths n;l; and normalize them L; = n;l;/Ag, such that the maximum
optical length is a quarter wavelength at Ay. What is the value of Ay in um? Compute and
plot the reflectance and transmittance over the band 2-7 um.
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Oblique Incidence

6.1 Oblique Incidence and Snell’s Laws

With some redefinitions, the formalism of transfer matrices and wave impedances for
normal incidence translates almost verbatim to the case of oblique incidence.

By separating the fields into transverse and longitudinal components with respect
to the direction the dielectrics are stacked (the z-direction), we show that the transverse
components satisfy the identical transfer matrix relationships as in the case of normal
incidence, provided we replace the media impedances n by the transverse impedances
nr defined below.

Fig. 6.1.1 depicts plane waves incident from both sides onto a planar interface sepa-
rating two media €, €. Both cases of parallel and perpendicular polarizations are shown.

In parallel polarization, also known as p-polarization, 7r-polarization, or TM po-
larization, the electric fields lie on the plane of incidence and the magnetic fields are

AX AX
E_ H_
N\ N
0 N AT
0 0 o’ H
k! k.

€€ "
TM, parallel, p-polarization TE, perpendicular, s-polarization

Fig. 6.1.1 Oblique incidence for TM- and TE-polarized waves.
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perpendicular to that plane (along the y-direction) and transverse to the z-direction.

In perpendicular polarization, also known as s-polarization,? o-polarization, or TE
polarization, the electric fields are perpendicular to the plane of incidence (along the
y-direction) and transverse to the z-direction, and the magnetic fields lie on that plane.

The figure shows the angles of incidence and reflection to be the same on either side.
This is Snell’s law of reflection and is a consequence of the boundary conditions.

The figure also implies that the two planes of incidence and two planes of reflection
all coincide with the xz-plane. This is also a consequence of the boundary conditions.

Starting with arbitrary wavevectors k: = Xkx+ + YV Kky+ + 2k,+ and similarly for K.,
the incident and reflected electric fields at the two sides will have the general forms:

E+e—jk+-r’ E,efjk"r, E+e—jk+-r, E’,eijk*'r

The boundary conditions state that the net transverse (tangential) component of the
electric field must be continuous across the interface. Assuming that the interface is at
z = 0, we can write this condition in a form that applies to both polarizations:

Erie kT L Ep e kT — FL oIkt L B oK) at z=0 (6.1.1)

where the subscript T denotes the transverse (with respect to z) part of a vector, that is,
Er =2 X (EXZ)=E— ZE,. Setting z = 0 in the propagation phase factors, we obtain:

ET+e—j(kx+x+ky+y) + ET,e‘j(kX*”kV*)’) — EJT+e—j(k;+X+k,’,+y) + E’Tfe_j(k;‘*”k;’*y) (6.1.2)

For the two sides to match at all points on the interface, the phase factors must be
equal to each other for all x and y:

o) RxiX+kyy) — o=J(kx-Xtky-y) — o=j (K X 4Ky ¥) — o=f(Kix+kj_y) (phase matching)

and this requires the x- and y-components of the wave vectors to be equal:

Kye = kno = Kl\ = K

o (6.1.3)
kys = ky_ =K}, =kj_

If the left plane of incidence is the xz-plane, so that k., = 0, then all y-components
of the wavevectors will be zero, implying that all planes of incidence and reflection will
coincide with the xz-plane. In terms of the incident and reflected angles 0., 0’,, the
conditions on the x-components read:

ksin0, =ksin0_ =k’sin0’, =k’ sin0_ (6.1.4)

These imply Snell’s law of reflection:

0,=0_=0

0, -0 =0 (Snell’s law of reflection) (6.1.5)

Tfrom the German word senkrecht for perpendicular.
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And also Snell’s law of refraction, that is, k sin @ = k’ sin 8’. Setting k = nkq, k' = n'kq,
and kg = w/cp, we have:

’

s_m 9, -n (Snell’s law of refraction) (6.1.6)
sin 0 n

nsin0 = n’sine" =

It follows that the wave vectors shown in Fig. 6.1.1 will be explicitly:
k=k; =kX+k;Z=ksinO0x+kcos0Oz

k. =kxXx—k;z=ksin0x —kcosOz
(6.1.7)
K=K, =kx+k,z=k'sin0' x+k'cos0' 2

K. =kx-k,z=k'sin0'x—k'cos0’ 2

The net transverse electric fields at arbitrary locations on either side of the interface
are given by Eq. (6.1.1). Using Eq. (6.1.7), we have:

Er(x,z)= Ep,e/* T 4 Er_e kT = (ET+e_ijZ + ET_eijz)e_jk"X
, o . . ) (6.1.8)
Er(x,2)= Ep ek 4 Fp e KT = (E, e/K7 4 . e/ki?) /KX
In analyzing multilayer dielectrics stacked along the z-direction, the phase factor
e Jkx = o=JKX will be common at all interfaces, and therefore, we can ignore it and
restore it at the end of the calculations, if so desired. Thus, we write Eq. (6.1.8) as:

Er(z)= Er, e /X% 4 Ep_elke?
o o, (6.1.9)
ET (Z) = EJT+e_JkZZ + EJTfeJkZZ

In the next section, we work out explicit expressions for Eq. (6.1.9)

6.2 Transverse Impedance

The transverse components of the electric fields are defined differently in the two po-
larization cases. We recall from Sec. 2.9 that an obliquely-moving wave will have, in
general, both TM and TE components. For example, according to Eq. (2.9.9), the wave
incident on the interface from the left will be given by:

E.(r) = [(Xcos® —2sin@)A, +yB,Je kT
1 : (6.2.1)
H. (r) = E[i’ﬁh — (kcos @ —2sin0) B, ]e Tk T

where the A, and B, terms represent the TM and TE components, respectively. Thus,
the transverse components are:

Er,(x,z) = [KA, cos 0 + y B, Je ™/ kextka2)
(6.2.2)

—_

Hri(X,2z) = — [A A, —XB, cos g]e*j(kxx+kzz)

S
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Similarly, the wave reflected back into the left medium will have the form:

E (r) = [(%cos @ +2sin0)A_ +yB_Je kT

—

(6.2.3)

H (r) = —[-yA + (kcos0 + 2sin0)B_Je kT

S =

with corresponding transverse parts:

Er_(x,z) = [RA_cos @ + yB_]e /kwx-ks2)

1 . (6.2.4)
Hr_ (x,z) = E [~y A_ +%XB_cos Q]e—J(kxX—kZZ)

Defining the transverse amplitudes and transverse impedances by:

ATi =Ai COSQ, BTi =Bi

(6.2.5)
Ny =ncoso, Nte= —,
cos 0

and noting that A7~ /Ny = A+/n and Br+/nte = B+ cos 6/n, we may write Eq. (6.2.2)
in terms of the transverse quantities as follows:

Er.(x,z) = [RAT: +§’BT+]e’J(kxx+kzZ)

A B . (6.2.6)
Hr.(x,z) = [y aT+ ¢ ﬁ]eﬁ(kxwkzz)

N N1E

Similarly, Eq. (6.2.4) is expressed as:

Er-(x,2) = [XAr_ + yBr_]e ™/ (kx—k:2)

AT_ Br_ . (6.2.7)
Hr_ (x,z) = [~y 51— + 8 21 e J (knxkz2)

Nm nTEe

Adding up Egs. (6.2.6) and (6.2.7) and ignoring the common factor e /<X, we find for
the net transverse fields on the left side:

E7r(z) = XEmm(2) + Y E7e(2)
A A (6.2.8)
Hr(z) = YHm(z)—XH7e(2)
where the TM and TE components have the same structure provided one uses the ap-
propriate transverse impedance:

Em(2) = Apie /N7 + Ap_e/”

1 . . (6.2.9)
Hry(2) = —— [Ar.e07 — Ar_elt?]
nmm

Erg(2) = Brie /%7 + Br_e/**

1 . . (6.2.10)
Hrp(z) = —[Bree " — Br_e/t’]
nre



6.2. Transverse Impedance 163

We summarize these in the compact form, where E7 stands for either E1p or Eg:

Er(z) = ETJreiijZ + ET,eijz
(6.2.11)

1 . .
Hr(z) = | [Eree™/ —Er-e/’]
T

The transverse impedance nr stands for either nmy or nrE:

6.2.12
n TE, perpendicular, s-polarization ( )

{ ncos@, TM, parallel, p-polarization
nr=

cos 0’

Because n = n,/n, it is convenient to define also a transverse refractive index
through the relationship nt = no/nr. Thus, we have:

n
, TM, parallel, p-polarization
nr = <| cos 0 P bb (6.2.13)

ncos @, TE, perpendicular, s-polarization

For the right side of the interface, we obtain similar expressions:
Ep(z) = Eyp, e /X% + E)_elke?

1 o o (6.2.14)
H(z) = P (Ef, e ke — Ef._elki?)
T

n’ cos @', TM, parallel, p-polarization

. / (6.2.15)
nr CO’Z 0 TE, perpendicular, s-polarization

’

n
_—, TM, parallel, p-polarization
ny =1 cos@’ P PP (6.2.16)

n’ cos @', TE, perpendicular, s-polarization

where E7-, stands for A7, = A, cos 0’ or B}, = B,.

For completeness, we give below the complete expressions for the fields on both
sides of the interface obtained by adding Egs. (6.2.1) and (6.2.3), with all the propagation
factors restored. On the left side, we have:

E(r) = Epm(r) +E7£(1)

(6.2.17)
H(r) = Hpy(r) —Hre (1)
where
Em(r) = (Xcos 0 —2sin0)A,e kT 4+ (Rcos 0 + 2sin0)A_e/*T
Hpy(r) = ?%(A+e—jk+.r _ A,e_jk*'r)
/ j (6.2.18)
Epp(r) =Y (B_*_e*JkJr'r +B_efjk,-r)
1 ' |
His() = | [~ (Xcos 0 ~ 25in0)B.e /4T + (kcos 0 + 2sin 0) Be /4]



164 Electromagnetic Waves & Antennas - S. J. Orfanidis
The transverse parts of these are the same as those given in Egs. (6.2.9) and (6.2.10).
On the right side of the interface, we have:

E'(r) = Eqy(r) +E7g(r)

, , , (6.2.19)
H' (r)= Hpy(r) —Hpp(r)

Epy(r) = (Xcos ' —2sin@')A’ e kT 4 (Rcos @' +2sin@')A e /k-T

Hjpy(xr) =y — (Al e 7Kt — A7 gTKoT)

3/~

Ejp(r) =y (B, e %™ + B’ e7/KoT)
[-(Xcos@ —2sin@')B,e /KT 4+ (Rcos O +2sin@’)B e /K- 7]

(6.2.20)

6.3 Propagation and Matching of Transverse Fields

Eq. (6.2.11) has the identical form of Eq. (4.1.1) of the normal incidence case, but with
the substitutions:

n-nr, erjkz R erjkzz _ erjkzcos@ (6.3.1)

Every definition and concept of Chap. 4 translates into the oblique case. For example,
we can define the transverse wave impedance at position z by:

Zr(z)= Er(z) _ ET+e*J'kzZ +ET_ejkzZ
"= Hr(z) =" Epeikiz — Ey_elkuz

and the transverse reflection coefficient at position z:

(6.3.2)

Er_ (Z) ET,eJ'kZZ 2ik
r = = — = ['1(0)eV** 6.3.3
7(2) Eri(z) ~ Erse ik 7(0) (6.3.3)

They are related as in Eq. (4.1.7):

1+T V4 -
T(2) Ir(z)= 7(2)-nt
1-I1(z) Zr(z)+nr
The propagation matrices, Egs. (4.1.11) and (4.1.13), relating the fields at two posi-
tions 71, Z» within the same medium, read now:

Eri || ek 0 Eroy : .
[En } = [ 0 ekl Ero. (propagation matrix) (6.3.5)

Zr(zZ)=nr (6.3.4)

Ery | _ cosk,l Jjnrsink,l Ep; . .
[Hn } = [J"’ITI sink,1 cosk,l Hpo (propagation matrix) (6.3.6)
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where | = z, — z;. Similarly, the reflection coefficients and wave impedances propagate
as:

Zro +jnr tan kI

I'ry = [ppe 2kl 6.3.7
T1 T2€ , N1+ JjZ1 tank,l ( )

Zt1 = N1

The phase thickness 6 = kIl = 21r(nl) /A of the normal incidence case, where A is
the free-space wavelength, is replaced now by:

6, =k, =klcosO = ZTTF nl cos 0 (6.3.8)

At the interface z = 0, the boundary conditions for the tangential electric and mag-
netic fields give rise to the same conditions as Egs. (4.2.1) and (4.2.2):

Er =Ep, Hr=H} (6.3.9)

and in terms of the forward/backward fields:

Ery +Er_ = E%Jr + E%,

1 1 , , (6.3.10)
. (ET+ —ET—) = (ET+ - ET—)
nr nr
which can be solved to give the matching matrix:
E 1 1 E
[ E;t ] - [ pr plT ] [ E? ] (matching matrix) (6.3.11)
where pr, TT are transverse reflection coefficients, replacing Eq. (4.2.5):
N —nNr _nr—ngy
pT = / = /
nr+nr nr—nr
(Fresnel coefficients) (6.3.12)
2T]’T 2HT
T = = 7
nr+nr nr—~nr

where T = 1 + pr. We may also define the reflection coefficients from the right side
of the interface: p7 = —pr and 77 = 1 + p7 = 1 — p7. Egs. (6.3.12) are known as the
Fresnel reflection and transmission coefficients.

The matching conditions for the transverse fields translate into corresponding match-
ing conditions for the wave impedances and reflection responses:

, pr+TI7 , _ pr+IT
Zr =27 I'r=——7- I'y=—7—- 6.3.13

If there is no left-incident wave from the right, that is, E” = 0, then, Eq. (6.3.11) takes

the specialized form:
Ery 1 [ 1 pr Er,
= — .3.14
[Er] Tr[ﬂr 1 ” 0 (©319

which explains the meaning of the transverse reflection and transmission coefficients:
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_ Er _ E,T +
= ’ T =
ETy Ery
The relationship of these coefficients to the reflection and transmission coefficients
of the total field amplitudes depends on the polarization. For TM, we have Et. =
A, cos0 and ET, = A’ cos @', and for TE, Er. = B. and E}, = B'.. For both cases,
it follows that the reflection coefficient pr measures also the reflection of the total
amplitudes, that is,

pr (6.3.15)

A _cos® A B_

M= 5 5 = ; TE= 55—
p A cos® A, p B,
whereas for the transmission coefficients, we have:

Al cos@" cosf Al . _BL
A,cosO cosO A’ = B,

T =

In addition to the boundary conditions of the transverse field components, there are
also applicable boundary conditions for the longitudinal components. For example, in
the TM case, the component E, is normal to the surface and therefore, we must have
the continuity condition D, = D/, or €E, = €'E,. Similarly, in the TE case, we must
have B, = B,. It can be verified that these conditions are automatically satisfied due to
Snell’s law (6.1.6).

The fields carry energy towards the z-direction, as well as the transverse x-direction.
The energy flux along the z-direction must be conserved across the interface. The cor-
responding components of the Poynting vector are:

1 1
P, = 5Re[EXH;k - EyHY], Px= 5 Re[EyH} — E,H;]

For TM, we have P, = Re[EXH)"j]/2 and for TE, P, = —Re[E,H)]/2. Using the
above equations for the fields, we find that 2, is given by the same expression for both
TM and TE polarizations:

cos @ cos 0
P, = ALl =1A_1%), or,
o= G (AL = 1A) o

Using the appropriate definitions for E7. and nr, Eq. (6.3.16) can be written in terms

of the transverse components for either polarization:

(IB+1? = |B_1?) (6.3.16)

1
P, = - (IEr+|* = |Er—|?) (6.3.17)
2nr
As in the normal incidence case, the structure of the matching matrix (6.3.11) implies

that (6.3.17) is conserved across the interface.

6.4 Fresnel Reflection Coefficients

We look now at the specifics of the Fresnel coefficients (6.3.12) for the two polarization
cases. Inserting the two possible definitions (6.2.13) for the transverse refractive indices,
we can express pr in terms of the incident and refracted angles:
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’

n n

p cos@ cos@®  hcosO —n’cosO
™ = =
n n’ ncos 0’ + n’ cos 0

+
cos® cosO’

(6.4.1)

ncos® —n’ cos @’
ncos 0 + n’ cos 0’

PTE =

We note that for normal incidence, & = 6’ = 0, they both reduce to the usual
reflection coefficient p = (n — n’)/(n + n’).t Using Snell’s law, nsin @ = n’ sin 6’, and
some trigonometric identities, we may write Egs. (6.4.1) in a number of equivalent ways.
In terms of the angle of incidence only, we have:

2 I\ 2
) —sin% 0 — n—) cos 0
Pt™M = n
2 7N\ 2
n—) —sin% 0 + n—) cos 0
n n
(6.4.2)
2
cos 0 — (n_) — sin?
V\n
PTE =
nl
cos 0 + — ] —sin® 0
n

Note that at grazing angles of incidence, 8 — 90°, the reflection coefficients tend to
prv — 1 and prg — —1, regardless of the refractive indices n, n’. One consequence of
this property is in wireless communications where the effect of the ground reflections
causes the power of the propagating radio wave to attenuate with the fourth (instead
of the second) power of the distance, thus, limiting the propagation range (see Example
18.3.5.)

We note also that Egs. (6.4.1) and (6.4.2) remain valid when one or both of the media
are lossy. For example, if the right medium is lossy with complex refractive index n; =
n' — jk’, then, Snell’s law, nsin @ = n; sin 0’, is still valid but with a complex-valued 6’
and (6.4.2) remains the same with the replacement n’ — ng. The third way of expressing
the ps is in terms of 6, 8" only, without the n, n’:

_ sin20’ —sin20  tan(0' - 0)
™™ §in20’ +sin20 tan(0’ + 0)
(6.4.3)
_ sin(0’ - 0)
PTE = sin(0” + 0)

Fig. 6.4.1 shows the special case of an air-dielectric interface. If the incident wave is
from the air side, then Eq. (6.4.2) gives with n = 1, n’ = ng, where ngy is the (possibly
complex-valued) refractive index of the dielectric:

TSome references define pry with the opposite sign. Our convention was chosen because it has the
expected limit at normal incidence.
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\\n3 — sin® 0 — n3 cos 0 cos 0 — +/n5 — sin® 0
prv = y PTES= (6.4.4)
\[n5 — sin? @ + n3 cos 0 cos 0 +,/n3 — sin® 0

If the incident wave is from inside the dielectric, then we set n = ng and n’ = 1:

\Jnz* —sin® 0 — ng? cos 0 cos 0 — \lnz* — sin® O
Ptm = 5 ) y PTE= > (6.4.5)
\ng° —sin® 0 + ny* cos 0 cos 0 + \/ng* — sin® 0

ny ng

air air
0 0

Fig. 6.4.1 Air-dielectric interfaces.

The MATLAB function fresnel calculates the expressions (6.4.2) for any range of
values of 0. Its usage is as follows:

[rtm,rte] = fresnel(na,nb,theta); % Fresnel reflection coefficients

6.5 Total Internal Reflection

As the incident angle 6 varies over 0 < @ < 90°, the angle of refraction 8’ will have a
corresponding range of variation. It can be determined by solving for 8’ from Snell’s
law, nsin@ = n’sin0’:

sin0’ = % sin 0 (6.5.1)

If n < n’ (we assume lossless dielectrics here,) then Eq. (6.5.1) implies that sin 0’ =
(n/n’)sin@ < sin @, or 0’ < 0. Thus, if the incident wave is from a lighter to a denser
medium, the refracted angle is always smaller than the incident angle. The maximum
value of 0’, denoted here by 67, is obtained when 6 has its maximum, 8 = 90°:

4

’ n . .
sin 0, = Py (maximum angle of refraction) (6.5.2)
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0. 90°
90° Oc
nin' n |\n'
n<n' n>n'

Fig. 6.5.1 Maximum angle of refraction and critical angle of incidence.

Thus, the angle ranges are 0 < 0 < 90° and 0 < 0’ < 0. Fig. 6.5.1 depicts this case,
as well as the case n > n’'.

On the other hand, if n > n’, and the incident wave is from a denser onto a lighter
medium, then sin®’ = (n/n’)sin@® > sin, or 8’ > 0. Therefore, 8’ will reach the
maximum value of 90° before 0 does. The corresponding maximum value of 0 satisfies
Snell’s law, nsin 0, = n’ sin(1r/2)= n’, or,

’

sinf. = % (critical angle of incidence) (6.5.3)

This angle is called the critical angle of incidence. If the incident wave were from the
right, 6. would be the maximum angle of refraction according to the above discussion.

If 0 < O, there is normal refraction into the lighter medium. But, if 8 exceeds 6,
the incident wave cannot be refracted and gets completely reflected back into the denser
medium. This phenomenon is called total internal reflection. Because n’/n = sin 0., we
may rewrite the reflection coefficients (6.4.2) in the form:

+/sin® 0. — sin® @ — sin® O, cos 0 cos 0 — +/sin? O, — sin® 9

PtM = y PTE=
+/sin? 6, — sin® O + sin® 0. cos 0 cos 0 + +/sin? O, — sin® O

When 0 < 0., the reflection coefficients are real-valued. At 0 = 6., they have the
values, pry = —1 and pr = 1. And, when 0 > 0., they become complex-valued with
unit magnitude. Indeed, switching the sign under the square roots, we have in this case:

Jja/sin® O — sin® O, — sin® O, cos O cos @ — j4/sin® O — sin® @,

Pt™M = y PTE=
Jja/sin® @ — sin® O, + sin® O cos O cos 0 + j/sin® 6 — sin? O,

Both expressions are the ratios of a complex number by its conjugate, and therefore,
they are unimodular, |pv| = |p1e| = 1, for all values of 6 > 0.. The interface becomes
a perfect mirror, with zero transmittance into the lighter medium.

When 6 > 0, the fields on the right side of the interface are not zero, but do not
propagate away to the right. Instead, they decay exponentially with the distance z. There
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is no transfer of power (on the average) to the right. To understand this behavior of the
fields, we consider the solutions given in Egs. (6.2.18) and (6.2.20), with no incident field
from the right, that is, with A” = B’ = 0.

The longitudinal wavenumber in the right medium, k/,, can be expressed in terms of
the angle of incidence 6 as follows. We have from Eq. (6.1.7):

2 2 _ 12 _ 212
ks + kg = ke = n°kg
2 2 ;
k,* +ky'® =k'? = n"?k}
Because, k; = kx = k sin 6 = nkg sin 0, we may solve for k/, to get:
k2 = n'"?k3 — k2 = n'?k3 — k3 = n"°k3 — n’k3sin® 0 = k3 (n'> — n®sin® 0)

or, replacing n’ = nsin 0., we find:

k;? = n’k3 (sin® 0, — sin® 0) (6.5.4)

If 6 < 0., the wavenumber k/, is real-valued and corresponds to ordinary propa-
gating fields that represent the refracted wave. But if 8 > 0., we have k;? < 0 and k/,
becomes pure imaginary, say k, = —j«;,. The z-dependence of the fields on the right of
the interface will be:

e Kz = o772 ! = nkgy/sin® @ — sin® O

Such exponentially decaying fields are called evanescent waves because they are
effectively confined to within a few multiples of the distance z = 1/ &, (the penetration
length) from the interface.

The maximum value of &, or equivalently, the smallest penetration length 1/ &, is
achieved when 6 = 90°, resulting in:

o = Nkoy/1 — sin® O, = nkg cos O, = kovn2 — n’2

Inspecting Egs. (6.2.20), we note that the factor cos 8’ becomes pure imaginary be-
cause cos? @’ =1 —sin’0’ =1 — (n/n')%sin? 0 = 1 — sin® 0/ sin® 0. < 0, for 0 = O..
Therefore for either the TE or TM case, the transverse components Er and Hr will
have a 90° phase difference, which will make the time-average power flow into the right
medium zero: P, = Re(ErH%)/2 = 0.

Example 6.5.1: Determine the maximum angle of refraction and critical angle of reflection for
(a) an air-glass interface and (b) an air-water interface. The refractive indices of glass and
water at optical frequencies are: Ngjass = 1.5 and Ayater = 1.333.

Solution: There is really only one angle to determine, because if n = 1 and n’ = Ngjags, then
sin(0.)= n/n’ = 1/Ngass, and if 1 = Nglass and n’ = 1, then, sin(0.)= n’'/n = 1/Ngass-
Thus, 0, = 0.:

1
—asin | — ) = 41.8°
0. asm(LS) 8
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For the air-water case, we have:

Gczemn1(1333

) = 48.6°

The refractive index of water at radio frequencies and below is Nyater = 9 approximately.
The corresponding critical angle is 6. = 6.4°. [m}

Example 6.5.2: Prisms. Glass prisms with 45° angles are widely used in optical instrumentation
for bending light beams without the use of metallic mirrors. Fig. 6.5.2 shows two examples.

45¢ 459

Fig. 6.5.2 Prisms using total internal reflection.

In both cases, the incident beam hits an internal prism side at an angle of 45°, which is
greater than the air-glass critical angle of 41.8°. Thus, total internal reflection takes place
and the prism side acts as a perfect mirror. [m}

Example 6.5.3: Optical Manhole. Because the air-water interface has 6, = 48.6°, if we were to
view a water surface from above the water, we could only see inside the water within the
cone defined by the maximum angle of refraction.

Conversely, were we to view the surface of the water from underneath, we would see the

air side only within the critical angle cone, as shown in Fig. 6.5.3. The angle subtended by
this cone is 2x48.6 = 97.2°.

air

water

Fig. 6.5.3 Underwater view of the outside world.

The rays arriving from below the surface at an angle greater than 6. get totally reflected.
But because they are weak, the body of water outside the critical cone will appear dark.
The critical cone is known as the “optical manhole” [53]. [m}

Example 6.5.4: Apparent Depth. Underwater objects viewed from the outside appear to be
closer to the surface than they really are. The apparent depth of the object depends on
our viewing angle. Fig. 6.5.4 shows the geometry of the incident and refracted rays.
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. 0
air x
water ’3 4

Ay
L Z
,,,,,, .

Fig. 6.5.4 Apparent depth of underwater object.

Let 0 be the viewing angle and let z, z’ be the actual and apparent depths. Our perceived
depth corresponds to the extension of the incident ray at angle 6. From the figure, we
have: z = xcot 0’ and z" = x cot 0. It follows that:

, cot@ sin 0’ cos 0

= 7 =
cot 9’ sin 0 cos 6’

Using Snell’s law sin 8/ sin 8’ = n’'/n = Nyater, We eventually find:

, cos 0
=7

ng\'ater - Sinz 0

At normal incidence, we have z’' = z/HAyater = 2/1.333 = 0.752Z.

Reflection and refraction phenomena are very common in nature. They are responsible for
the twinkling and aberration of stars, the flattening of the setting sun and moon, mirages,
rainbows, and countless other natural phenomena. Four wonderful expositions of such
effects are in Refs. [53-56]. See also the web page [737]. ]

Example 6.5.5: Optical Fibers. Total internal reflection is the mechanism by which light is
guided along an optical fiber. Fig. 6.5.5 shows a step-index fiber with refractive index
ny surrounded by cladding material of index n. < ny.

N Mg | Re cladding
N

fiber

Fig. 6.5.5 Launching a beam into an optical fiber.

If the angle of incidence on the fiber-cladding interface is greater than the critical angle,
then total internal reflection will take place. The figure shows a beam launched into the
fiber from the air side. The maximum angle of incidence 8, must be made to correspond to
the critical angle 6. of the fiber-cladding interface. Using Snell’s laws at the two interfaces,
we have:
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n n
sin@, = L sinf,, sinf.=-°<
Ng ny
Noting that 0 = 90° — 0., we find:
l’lf nf

, \nj —né

sin@; = —- cos@, = /1 —sin’ . = ~———

Ng Ng Ng

For example, with n, = 1, ny = 1.49, and n. = 1.48, we find 6. = 83.4° and 6, = 9.9°. The
angle 0, is called the acceptance angle, and the quantity NA = Jn; — nZ, the numerical
aperture of the fiber. O

Example 6.5.6: Fresnel Rhomb. The Fresnel rhomb is a glass prism depicted in Fig. 6.5.6 that
acts as a 90° retarder. It converts linear polarization into circular. Its advantage over the
birefringent retarders discussed in Sec. 3.1 is that it is frequency-independent or achro-
matic.

circularly
¥ polarized

linearly
polarized ~"9p°

Fig. 6.5.6 Fresnel rhomb.

Assuming a refractive index n = 1.51, the critical angle is 8, = 41.47°. The angle of the
rhomb, 6 = 54.6°, is also the angle of incidence on the internal side. This angle has been
chosen such that, at each total internal reflection, the relative phase between the TE and
TM polarizations changes by 45°, so that after two reflections it changes by 90°.

The angle of the rhomb can be determined as follows. For 6 > 0., the reflection coefficients
can be written as the unimodular complex numbers:

1—-jx 1 - jxn? \/sin® @ — sin® 0.
_ , __Lojxn® R T e 6.5.5
PTE - P 1+ jxn? X 080 ( )

where sin 0. = 1/n. It follows that:

p1E = e 2WTE , = o/T=2j¥M

PtM

where 15, Y 1y are the phase angles of the numerators, that is,
tan Y =X, tan@m = xn°
The relative phase change between the TE and TM polarizations will be:

PTE _ AW M=2jw TE=jT0
PtM

It is enough to require that @y — Y1 = 71/8 because then, after two reflections, we will
have a 90° change:
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2
ZTE = T (ZTE> = pIT/2=2)T _ piT/2
™ ™

From the design condition ¢ 1, — Y 1 = 71/8, we obtain the required value of x and then
of 0. Using a trigonometric identity, we have:

tan Yy — tan Y e xn? —x T
tan - = = =tan(—
(W = @) l+tanymtanPrp 1+ n2x? ( 8 )
This gives the quadratic equation for x:
1 1 1 cos? 0
2 (1-=)x+— =x° — 2% X +sin’0. =0 (6.5.6)

X T an(m/8) n n ~ tan(11/8)

Inserting the two solutions of (6.5.6) into Eq. (6.5.5), we may solve for sin 8, obtaining two

possible solutions for 0:
2 2
sin@ = | X s Oc (6.5.7)
X2 +1

We may also eliminate x and express the design condition directly in terms of 0:

0\sin? 0 — sin? 0,
cos 04/sin sin Cztan(z) (6.5.8)

sin”® @ 8

However, the two-step process is computationally more convenient. For n = 1.51, we find
the two roots of Eq. (6.5.6): x = 0.822 and x = 0.534. Then, (6.5.7) gives the two values
0 = 54.623° and O = 48.624°. The rhomb could just as easily be designed with the second

value of 0.
For n = 1.50, we find the angles 6 = 53.258° and 50.229°. For n = 1.52, we have
0 = 55.458° and 47.553°. See Problem 6.5 for an equivalent approach. [m}

6.6 Brewster Angle

The Brewster angle is that angle of incidence at which the TM Fresnel reflection coef-
ficient vanishes, pry = 0. The TE coefficient prg cannot vanish for any angle 0, for
non-magnetic materials. A scattering model of Brewster’s law is discussed in [237].
Fig. 6.6.1 depicts the Brewster angles from either side of an interface.

The Brewster angle is also called the polarizing angle because if a mixture of TM
and TE waves are incident on a dielectric interface at that angle, only the TE or perpen-
dicularly polarized waves will be reflected. This is not necessarily a good method of
generating polarized waves because even though prr is non-zero, it may be too small
to provide a useful amount of reflected power. Better polarization methods are based
on using (a) multilayer structures with alternating low/high refractive indices and (b)
birefringent and dichroic materials, such as calcite and polaroids.

The Brewster angle 0p is determined by the condition, pry = 0, in Eq. (6.4.2). Setting
the numerator of that expression to zero, we have:
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'DTM: 0
*
Pin=0
A O O Ny~
05 s
nin' n|n'

Fig. 6.6.1 Brewster angles.

7N\ 2 7N\ 2
(n—> —sin? 0p = (1) cos Op (6.6.1)
n n

After some algebra, we obtain the alternative expressions:

’ 14

sin0Op = _n < |[tan0Op = % (Brewster angle) (6.6.2)

Vn? + n’?

Similarly, the Brewster angle 0 from the other side of the interface is:

sin 0 " s tan 9 _n

B n? 4 ne B '

The angle 0} is related to 0 by Snell’s law, n’ sin 03 = nsin g, and corresponds

to zero reflection from that side, p7,, = —prm = 0. A consequence of Eq. (6.6.2) is that
0p = 90° — 05, or, O + 05 = 90°. Indeed,

(Brewster angle) (6.6.3)

sin Op n’  sin0p
=tanfp = — = ——;
cos Op n sin 0%

which implies cos 0 = sin 0%, or O = 90° — 0%. The same conclusion can be reached
immediately from Eq. (6.4.3). Because, 03 — 0 # 0, the only way for the ratio of the
two tangents to vanish is for the denominator to be infinity, that is, tan(0 + 0p) = oo,
or, 05 + 05 = 90°.

As shown in Fig. 6.6.1, the angle of the refracted ray with the would-be reflected ray
is 90°. Indeed, this angle is 180° — (05 + 05)= 180° — 90° = 90°.

The TE reflection coefficient at O can be calculated very simply by using Eq. (6.6.1)
into (6.4.2). After canceling a common factor of cos 0g, we find:

7N 2
n
1- <7) 2 2
n’> —n
pre(0p) = :, 7= e (6.6.4)
1+ (")
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Example 6.6.1: Brewster angles for water. The Brewster angles from the air and the water sides
of an air-water interface are:

1.333 ,
0p = atan (T) =53.1°, 0= atan( =36.9°

135)
1.333

We note that 05 + 05 = 90°. AtRF, the refractive index is Nyater = 9 and we find 65 = 83.7°
and 0 = 6.3°. We also find pr(0p)= —0.2798 and |p1e(03)|*> = 0.0783/ Thus, for TE

waves, only 7.83% of the incident power gets reflected at the Brewster angle. m]

Example 6.6.2: Brewster Angles for Glass. The Brewster angles for the two sides of an air-glass
interface are:

1.5 , 1
0 = atan(T) =56.3°, 0= atan<ﬁ> = 33.7°

Fig. 6.6.2 shows the reflection coefficients |pr(0) |, |p7£(0)| as functions of the angle of
incidence 0 from the air side, calculated with the MATLAB function fresnel.

Air to Glass Glass to Air

Fig. 6.6.2 TM and TE reflection coefficients versus angle of incidence.

Both coefficients start at their normal-incidence value |p| = |(1 — 1.5)/(1 + 1.5)| = 0.2
and tend to unity at grazing angle & = 90°. The TM coefficient vanishes at the Brewster
angle 0p = 56.3°.

The right graph in the figure depicts the reflection coefficients [p’(0) |, 1p7(0")| as
functions of the incidence angle 6’ from the glass side. Again, the TM coefficient vanishes
at the Brewster angle 0 = 33.7°. The typical MATLAB code for generating this graph was:

na =1; nb =1.5;

[thb,thc] = brewster(na,nb); % calculate Brewster angle
th = Tinspace(0,90,901); % equally-spaced angles at 0.1° intervals
[rte,rtm] = fresnel(na,nb,th); % Fresnel reflection coefficients

plot(th,abs(rtm), th,abs(rte));

The critical angle of reflection is in this case 0, = asin(1/1.5)= 41.8°. As soon as 0’
exceeds 0, both coefficients become complex-valued with unit magnitude.
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The value of the TE reflection coefficient at the Brewster angle is prg = —p’ = —0.38,
and the TE reflectance |pre|> = 0.144, or 14.4 percent. This is too small to be useful for
generating TE polarized waves by reflection.

Two properties are evident from Fig. 6.6.2. One is that |ppy| < |pre| for all angles of
incidence. The other is that 0 < 0. Both properties can be proved in general. O

Example 6.6.3: Lossy dielectrics. The Brewster angle loses its meaning if one of the media is
lossy. For example, assuming a complex refractive index for the dielectric, ngy = n — jk,
we may still calculate the reflection coefficients from Eq. (6.4.4). It follows from Eq. (6.6.2)
that the Brewster angle 0p will be complex-valued.

Fig. 6.6.3 shows the TE and TM reflection coefficients versus the angle of incidence 6 (from
air) for the two cases ng = 1.50 — 0.15j and ng = 1.50 — 0.30j and compares them with
the lossless case of ngy = 1.5. (The values for k were chosen only for plotting purposes
and have no physical significance.)

Lossy Dielectric

---TE
lossless

Ny = 1.50 —0.15]

Lossy Dielectric

---TE
lossless

ng = 1.50 - 0.30]

6.7

Fig. 6.6.3 TM and TE reflection coefficients for lossy dielectric.

The curves retain much of their lossless shape, with the TM coefficient having a minimum
near the lossless Brewster angle. The larger the extinction coefficient k, the larger the
deviation from the lossless case. In the next section, we discuss reflection from lossy
media in more detail. =]

Complex Waves

In this section, we discuss some examples of complex waves that appear in oblique
incidence problems. We consider the cases of (a) total internal reflection, (b) reflection
from and refraction into a lossy medium, and (c) the Zenneck surface wave. Further
details may be found in [451-457] and [622].

Because the wave numbers become complex-valued, e.g., k = B — jo, the angle of
refraction and possibly the angle of incidence may become complex-valued. To avoid
unnecessary complex algebra, it proves convenient to recast impedances, reflection co-
efficients, and field expressions in terms of wavenumbers. This can be accomplished by
making substitutions such as cos @ = k,/k and sin 0 = ky/k.
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Using the relationships kn = wu and k/n = we, we may rewrite the TE and TM
transverse impedances in the forms:
n_ _nk_wu nk; kg

NE= 050~ k, ~ Kk, Nmy=ncosd === =" (6.7.1)

We consider an interface geometry as shown in Fig. 6.1.1 and assume that there are
no incident fields from the right of the interface. Snell’s law implies that ky = k;, where
kx = ksin@ = w./Ho€ sin 9, if the incident angle is real-valued.

Assuming non-magnetic media from both sides of an interface (u = y’ = pg), the TE
and TM transverse reflection coefficients will take the forms:

N7E— N1E _ k, -k _ Ny — N1m _ ke — k€

= ’ - 7 2 - 7 f (672)
prt Nee+nme ks +kz pm N+ N kze + k€
The corresponding transmission coefficients will be:
2k, 2k’e
T =14+ =—= T =14+ = — z 6.7.3
TE PTE K, + K, ™ P™ Koe + ke ( )

We can now rewrite Egs. (6.2.18) and (6.2.20) in terms of transverse amplitudes and
transverse reflection and transmission coefficients. Defining Eg = A, cos 0 or Eg = B
in the TM or TE cases and replacing tan @ = ky/k,, tan 0" = k;/k}, = kx/k,,, we have for
the TE case for the fields at the left and right sides of the interface:

E(r) = YEo[e /X% + prpel*:?]em/kxx

H(r) = nE—O [(—x + % z) e ke 4 pory (x + % z) ef"zz] eIk

TE z Z (6 74)
E'(r) = § Ty Ege ki e Tk -
, E R
H (r) = TTE, 0 (—x+ X z) e IkoZ gJkxx
Nrte kz
and for the TM case:
& kx —Jjkzz & kx . jk,z —Jjkxx
Er) =Ey|(x——2|e " + ppy X+ —2) /% | e/
Kk, k,
. Eo —jk,z ik,z7 ,—jkxX
H(r) =y — e/ — ppye/™? Je /%
ntm
(6.7.5)

, ke N
E(r)=TTMEO<X—ﬁZ>e Jk7z o —jkxx
z

H (1) = g T2 E0 oz gt
Nrm
Equations (6.7.4) and (6.7.5) are dual to each other, as are Egs. (6.7.1). They transform
into each other under the duality transformation E — H, H - —E, € — u, and 4 — €.
See Sec. 16.2 for more on the concept of duality.
In all of our complex-wave examples, the transmitted wave will be complex with
K =kex+kjz=B —ja' = (Bx—jox)X+ (B, —j,) 2. This must satisfy the constraint
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kK - K = w?upe’. Thus, the space dependence of the transmitted fields will have the
general form:

e Kz g ikix — i (B, =J0,)2 o= (Bx=Jox)X — o= (&2 00X) =] (Byz+BrX) (6.7.6)

For the wave to attenuate at large distances into the right medium, it is required
that «;, > 0. Except for the Zenneck-wave case, which has ax > 0, all other cases will
have oy = 0, corresponding to a real-valued angle of incidence 0, such that k; = kx =
Bx = w./Ho€ sin O. Fig. 6.7.1 shows the constant-amplitude and constant-phase planes
within the transmitted medium defined, respectively, by:

&,Z + OyX = const., B,z + Bxx = const. (6.7.7)

As shown in the figure, the corresponding angles ¢ and  that the vectors B’ and
o’ form with the z-axis are given by:

X
tan¢ = B—’f ,  tany = — (6.7.8)

z Xz

X4

0 NN

k

amplitude planes

€| €'

Fig. 6.7.1 Constant-phase and constant-amplitude planes for the transmitted wave.

Total Internal Reflection

We already discussed this case in Sec. 6.5. Here, we look at it from the point of view of
complex-waves. Both media are assumed to be lossless, but with € > €’. The angle of
incidence 0 will be real, so that k; = ky = ksin 0 and k, = k cos 0, with k = w /€.
Setting k., = B, — j&,, we have the constraint equation:

k2 +k? =k = w’uoesin®@ + (B, —ju,)%= w?poe’

which separates into the real and imaginary parts:

/2_

72— &2 = w?ug (e — esin® 0) = k?(sin® O, — sin® 0)

B, =0
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where we set sin? 0. = €’ /€ and k? = w?pupe. This has two solutions: (a) &}, = 0 and
B2 = k*(sin? 0. — sin® 0), valid when 0 < 0, and (b) B, = 0 and «}? = k*(sin® 0 —
sin? 0.), valid when 0 = 0..

Case (a) corresponds to ordinary refraction into the right medium, and case (b), to
total internal reflection. In the latter case, the TE and TM reflection coefficients (6.7.2)
are the unimodular complex numbers:

k; -k, k;+jo, ke — k€' kz€" + jo€e
PT1E = ;= AR PtmM = 77 , = = , .7
k;+ky k;—jog kze + kz€ kz€ —joze
The complete expressions for the fields are given by Egs. (6.7.4) or (6.7.5). The prop-
agation phase factor in the right medium will be in case (b):

efjk;zefjkxx - e*(x;zefjkxx

Thus, the constant-phase planes are the constant-x planes (¢p = 90°), or, the yz-
planes. The constant-amplitude planes are the constant-z planes (¢ = 0°), or, the xy-
planes, as shown in Fig. 6.7.2.

amplitude planes

€E|€

Fig. 6.7.2 Constant-phase and constant-amplitude planes for total internal reflection.

Oblique Incidence on a Lossy Medium

Here, we assume a lossless medium on the left side of the interface and a lossy one, such
as a conductor, on the right. The effective dielectric constant €’ of the lossy medium is
specified by its real and imaginary parts, as in Eq. (2.6.2):

7 ’ . r o ’ .7
€ =€;—J (ed + 5) = €p —J€r (6.7.9)

Equivalently, we may characterize the lossy medium by the real and imaginary parts
of the wavenumber k’, using Eq. (2.6.12):

k' =B —jo' = w4Juo€ = w/lo (€x — j€T) (6.7.10)

In the left medium, the wavenumber is real with components ky = ksin0, k, =
k cos 0, with k = w . /Hp€. In the lossy medium, the wavenumber is complex-valued with
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components k}, = ky and k;, = B/, — jot,. Using Eq. (6.7.10) in the condition k' - k' = k'?,
we obtain:
kK2 +k?=Kk? = K+ (B,—jo,)’= (B —jux’)? (6.7.11)

which separates into its real and imaginary parts:

2 2 _ p2 2 2
z_(xz_B - & _kx

., y (6.7.12)
BZO(Z = B (48
The solutions of these two equations leading to a non-negative o, are:
1/2 1/2
, D? +4p?x'> + D , D? +4p?x’> - D
Bz = [ 32 } , oG = [ Bz ] (6.7.13)

where D = B2 — o' — k2 = B'?> — ' —k? sin® 0. These two equations define completely
the reflection coefficients (6.7.2) and field solutions for both TE and TM waves given by
Egs. (6.7.4) and (6.7.5). For MATLAB implementation, it is simpler to solve Eq. (6.7.11)
directly as a complex equation:

k, =B, —j, = \/k’2 —ki = \/wzqu’ — k% = \/wzuo(e;2 - jep) —kz (6.7.14)
Within the lossy medium the transmitted fields will have space-dependence:
efjk’zzefjkxx - ef(x’zzefj(B’Zerkxx)
The fields attenuate exponentially with distance z. The constant phase and ampli-
tude planes are shown in Fig. 6.7.3.

X4 phase planes

e

L amplitude planes

€€’
Fig. 6.7.3 Constant-phase and constant-amplitude planes for refracted wave.

For the reflected fields, the TE and TM reflection coefficients are given by Egs. (6.7.2).
If the incident wave is linearly polarized having both TE and TM components, the corre-
sponding reflected wave will be elliptically polarized because the ratio pr/p 1 is now
complex-valued. Indeed, using the relationships k3 +k2 = w? o€ and k2 +Kk? = w? o€’
in pry of Eq. (6.7.2), it can be shown that (see Problem 6.5):

pv _ kok, —ki ki —ksinOtan@ B —jo, — ksin6 tan 6
pre kyky +k3  ky+ksinOtan@ = By — jo, + ksin 0 tan 0

(6.7.15)
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In the case of a lossless medium €’, Eq. (6.7.13) gives B, = w-/uo (€’ — €sin® 0) and

o, = 0, resulting in the usual expressions (6.4.2) for the reflection coefficients. For the
case of a very good conductor, we find approximately:

7 / ’ ’ w“OO- . (02
B, =0, =B =~ = ,/T, provided e > 1 (6.7.16)

In this case, the angle of refraction ¢ for the phase vector B’ becomes almost zero
so that, regardless of the incidence angle 0, the phase planes are almost parallel to the
constant-z amplitude planes. Using Eq. (6.7.16), we have:

tan ¢ = ky  w./Ho€sinG 2((;)6 sin 0

B,  Jwpoo/2

which is very small regardless of 0. For example, for copper (0 = 5.7x107 S/m) at 10
GHz, and air on the left side (€ = €g), we find vV2we/o = 1.4x1074.

Example 6.7.1: Fig. 6.7.4 shows the TM and TE reflection coefficients as functions of the inci-
dent angle 0, for an air-sea water interface at 100 MHz and 1 GHz. For the air side we
have € = €( and for the water side: €' = 81€y — jo/w, with ¢ = 4 S/m, which gives
€ = (81—-71.9j)€g at 1 GHz and €’ = (81 — 719j) €g at 100 MHz.

Air-Water at 1 GHz Air-Water at 100 MHz

Fig. 6.7.4 TM and TE reflection coefficients for air-water interface.

At 1 GHz, we calculate k' = w./uoe’ = B’ — jo' = 203.90 — 77.45j rad/m and k' =
B’ —jo’ = 42.04 — 37.57j rad/m at 100 MHz. The following MATLAB code was used to
carry out the calculations, using the formulation of this section:

ep0 = 8.854e-12; mul = 4*pi*le-7;

sigma = 4; f = 1e9; w = 2*pi*f;

ea = ep0; eb = 81*ep0 - j*sigma/w;

ka = w*sqrt(mu0*ea); kb = w*sqrt(muO*eb); % Eq. (6.7.10)
th = Tinspace(0,90,901); thr = pi*th/180;

kax = ka*sin(thr); kaz = ka*cos(thr);
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kbz = sqrt(wA2*muO*eb - kax.A2); % Eq. (6.7.14)

rte = abs((kaz - kbz)./(kaz + kbz)); % Eq. (6.7.2)
rtm = abs((kbz*ea - kaz*eb)./(kbz*ea + kaz*eb));

plot(th,rtm, th,rte);

The TM reflection coefficient reaches a minimum at the pseudo-Brewster angles 84.5° and
87.99, respectively for 1 GHz and 100 MHz.

The reflection coefficients pry and p7x can just as well be calculated from Eq. (6.4.2), with
n=1andn’ = ./€'/€y, where for 1 GHz we have n’ = \/81 — 71.9j = 9.73 — 3.69j, and for
100 MHz, n’ = /81 — 719j = 20.06 — 17.92j. [m]

Zenneck Surface Wave

For a lossy medium €’, the TM reflection coefficient cannot vanish for any real incident

angle 0 because the Brewster angle is complex valued: tan 0p = v€'/€ = /(€ — jeI) /€.
However, pry can vanish if we allow a complex-valued 0, or equivalently, a complex-
valued incident wavevector k = B — j«&, even though the left medium is lossless. This
leads to the so-called Zenneck surface wave [33,451,457,622].
The corresponding constant phase and amplitude planes in both media are shown
in Fig. 6.7.5. On the lossless side, the vectors B and « are necessarily orthogonal to each
other, as discussed in Sec. 2.10.

XA

phase planes

phase planes 0

oS amplitude planes

amplitude planes—" €€
Fig. 6.7.5 Constant-phase and constant-amplitude planes for the Zenneck wave.

We note that the TE reflection coefficient can never vanish (unless u # u’) because
this would require that kj, = k,, which together with Snell’s law k; = ky, would imply
that k = k', which is impossible for distinct media.

For the TM case, the fields are given by Eq. (6.7.5) with ppy = 0 and Ty = 1. The
condition ppy = O requires that k,e = k€', which may be written in the equivalent form
k,k? = k,k'%. Together with k2 + k2 = k? and k2 + k}? = k’?, we have three equations
in the three complex unknowns Ky, k,, k,. The solution is easily found to be:
kk’ k? , k2

=——, k= 77—+ (6.7.17)

k= Jaarr K= e BT garke



184 Electromagnetic Waves & Antennas - S. J. Orfanidis

where k = w. /g€ and k' = ' — jo' = w-/Ug€’. These may be written in the form:
Vee' € , €

ky =w /Uy ——, k;=w /Uly—, k,=w. /Uy ——

¥ Ho Jere ? Ho Jeve z Ho Jeve

Using kj, = ky, the space-dependence of the fields at the two sides are as follows:

(6.7.18)

o (kxx+kzz) — o= (@xX+&z2) 5 =] (BxX+B22) , forz<0
e—j(k;x+k;z) _ e—((xxx-#(xgz)e—j(ﬁxx+ﬁgz) , for z> 0

Thus, in order for the fields not to grow exponentially with distance and to be con-
fined near the interface surface, it is required that:

x>0, &;,<0, &,>0 (6.7.19)
These conditions are guaranteed with the sign choices of Eq. (6.7.18). This can be
verified by writing
€ =|€le
e+€ =le+€le
e ‘ €
€e+¢€ €e+¢€

’

—-Jj(6-61)

e

and noting that 6, = 6 — 6; > 0, as follows by inspecting the triangle formed by the
three vectors €, €', and € + €'. Then, the phase angles of ky, k,, k, are —82/2, §,/2, and
— (62 + 61/2), respectively, thus, implying the condition (6.7.19).

Although the Zenneck wave attenuates both along the x- and z-directions, the atten-
uation constant along x tends to be much smaller than that along z. For example, in the
weakly lossy approximation, we may write €’ = € (1 —jT), where T = €;/€; < 1 is the
loss tangent of €’. Then, we have the following first-order approximations in T:

, T 1 1 T €g
I = 1—-7j— = 1—i—
ve \/;( J2>’ Ve+¢€ /e+e}<< J2€+e;;)

These leads to the first-order approximations for ky and k:

€¢;, T € € T €
k :w\/ RI 1-j= 7 y k = W,/ 1+j— RI
* Ho e+eR< J2€+€R) ? Ho /€+€§z< 2€+6R)
It follows that:

€€R T € € T €y Oy

€
- Ky = —W./Upg—F——cx——"7 = = —
€Eter2eter’ H ctey 2€€R lot, | €r

oy = w+/Ho

Typically, €; > €, implying that &y < |&,|. For example, for an air-water interface
we have at microwave frequencies €% /€ = 81, and for an air-ground interface, € /€ = 6.

If both media are lossless, then both k and k' are real and Egs. (6.7.17) yield the
usual Brewster angle formulas, that is,

ke K Ve ,_kx kW€
tangB_kz_k_\/E’ tan@B—k,Z_k,_\/?



6.8. Geometrical Optics 185

Example 6.7.2: For the data of the air-water interface of Example 6.7.1, we calculate the follow-
ing Zenneck wavenumbers at 1 GHz and 100 MHz using Eq. (6.7.18):

f=1GHz | f =100 MHz
kx = Bx —jotx = 20.89 — 0.064j | ky = Bx —jotx = 2.1 — 0.001;j
k, = B, —jxx, = 1.88 + 0.71j k, = B, —j&x, = 0.06 + 0.05j

Kk, = B, — j, = 202.97 — 77.80j | k, = B, — jot, = 42.01 — 37.59j

The units are in rads/m. As required, & is negative. We observe that oy < || and that
the attenuations are much more severe within the lossy medium. [m}

6.8 Geometrical Optics

Geometrical optics and the concepts of wavefronts and rays can be derived from Maxwell’s
equations in the short-wavelength or high-frequency limit.

We saw in Chap. 2 that a uniform plane wave propagating in a lossless isotropic
dielectric in the direction of a wave vector k = kk = nkgk is given by:

E(r)= Eye/nkokr  p(p)= HyeJnkokr R .E =0, Hy= n£ kxE (6.8.1)
0

where n is the refractive index of the medium n = \/€/¢€, ko and n are the free-space
wavenumber and impedance, and Kk, the unit-vector in the direction of propagation.

The wavefronts are defined to be the constant-phase plane surfaces S (r)= const.,
where S(r) = nk - r. The perpendiculars to the wavefronts are the optical rays.

In an inhomogeneous medium with a space-dependent refractive index n(r), the
wavefronts and their perpendicular rays become curved, and can be derived by consid-
ering the high-frequency limit of Maxwell’s equations. By analogy with Egs. (6.8.1), we
look for solutions of the form:

E(r)= Ey(r) e /}oS® - H(r)= Hy(r) e /koS® (6.8.2)

where we will assume that kg is large and that Ey, Hy are slowly-varying functions of r.
This means that their space-derivatives are small compared to ko or to 1/A. For example,
|V X Ey| < ko.

Inserting these expressions into Maxwell’s equations and assuming g = gy and € =
n2ey, we obtain:

VXE= eijkos (V X Ey —_]k()VS X EO) = —jwuoHy e*jkoS
V x H= e 5 (V x Hy — jkoVS x Hy) = jn’weoEy e koS

Assuming |V X Ey| < |kgV S X Ey|, and similarly for Hy, and dropping the common
phase factor e /oS we obtain the high-frequency approximations:

—JkoVS X Ey = —jwpoHy
—jk()VS X Hy =jl’l2w€()E0



186 Electromagnetic Waves & Antennas - S. J. Orfanidis

~ 1
Replacing kg = w./Ug€p, and defining the vector k = EVS’ we find:

Ho= " kxE, E=-"kxH (6.8.3)

no n

These imply the transversality conditions k-E) =k-Hy=0. The consistency of
the equations (6.8.3) requires that k be a unit vector. Indeed, using the BAC-CAB rule,
we have:

kx (kx E)=k(k - E)—Eo(k - k)= —Eo(k - k) = %f(xHo - _E
Thus, we obtain the unit-vector condition, known as the eikonal equation:
k-k=1 = |VS|?=n? (eikonal equation) (6.8.4)

This equation determines the wavefront phase function S(r). The rays are the per-
pendiculars to the constant-phase surfaces S (r) = const., so that they are in the direction
of VS or k. Fig. 6.8.1 depicts these wavefronts and rays.

ray

wavefronts

Fig. 6.8.1 Wavefront surfaces and rays.

The ray passing through a point r on the surface S(r)= S4, will move ahead by a
distance dr in the direction of the gradient VS. The length of dr is dI = (dr - dr) /2.
The vector dr/dl is a unit vector in the direction of V.S and, therefore, it must be equal
to k. Thus, we obtain the defining equation for the rays:

dr . dr 1 dr

The eikonal equation determines S, which in turn determines the rays. The ray
equation can be expressed directly in terms of the refractive index by eliminating S.
Indeed, differentiating (6.8.5), we have:

d dr d dr 1

where, in differentiating along a ray, we used the expression for d/dl:
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d dr
i~ dl-
But, V(VS - VS) = 2(VS - V)VS, which follows from the differential identity
Eq. (C.12) of the Appendix. Therefore,

v (6.8.6)

d (,dry _1 1 _lgmye L
i (n dl) = n(VS V)VS = 2nV(VS VvS) = 2nV(n )= o 2nVn, or,

(e
dl dl

The vectors Ey, Hy, k form a right-handed system as in the uniform plane-wave case.
The energy density and flux are:

) =Vn (ray equation) (6.8.7)

1 1 1
We = —Re[Z€E- E*] = ~€on?| B>
e 2 [2 ] 40 |0|

1 , 1 n? , 1 .
Wm = —HolHol|* = leo ? |Eol® = ~eon?|Eo|* = we
0

4 4
(6.8.8)
W= We+Wp = —€on?|El?
n 2
P = -Re[EXH*] = — Kk |E|
2no
Thus, the energy transport velocity is:
y-P _Cog (6.8.9)
W n

The velocity v depends on r, because n and k do.

6.9 Fermat’s Principle

An infinitesimal movement by dI along a ray will change the wavefront phase function
by dS = ndl. Indeed, using Eq. (6.8.6) and the eikonal equation we find:
as dr 1 1
2 yYyS=-VS-VS=-n?= 6.9.1
dl = dr VST VS VS =, men 6.9-1)
Integrating along a ray path from a point A on wavefront S(r)= S4 to a point B on
wavefront S (r) = S, as shown in Fig. 6.8.1, gives rise to the net phase change:

B B
Sp—8Sa = J ds = J ndl (6.9.2)
A A

The right-hand side is recognized as the optical path length from A to B. It is propor-
tional to the travel time of moving from A to B with the ray velocity v given by Eq. (6.8.9).
Indeed, we have dl = v- kdt = codt/n, or, dS = ndl = cydt. Thus,

B

tp
SB—SAZJ ndl = cy dt = co(tg — ta) (6.9.3)
A ta
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Fermat’s Principle states that among all possible paths connecting the two points A
and B, the geometrical optics ray path is the one the minimizes the optical path length
(6.9.3), or equivalently, the travel time between the two points. The solution to this
minimization problem is the ray equation (6.8.7).

Any path connecting the points A and B may be specified parametrically by the curve
r(T), where the parameter T varies over an interval Ty < T < Tg. The length dl may be
written as:

dl = (dr-dr)"? = (t-¥)"*d7, where I= j—i (6.9.4)

Then, the functional to be minimized is:
B B 1/2
J ndl = J L(r,t)dTt, where L(r,i)=n(r) (i 1) (6.9.5)
A TA

The minimization of Eq. (6.9.5) may be viewed as a problem in variational calculus
with Lagrangian function L. Its solution is obtained from the Euler-Lagrange equations:

d (0L oL
dt (g) = ar (6.9.6)
See [408-410] for a review of such methods. The required partial derivatives are:

oL _on, .2 0L _ .. .12 dro. o1
8r_8r(r P) 7, af—nr(r I) —ndT(r I)

The Euler-Lagrange equations are then:

d ﬂ._.fl/Z)_@._.l/Z
dt (n dt (F - ) ~or (k- 1) o

12 d ﬂ._.—uz)_al
(- 1) P (n P (i) = o (6.9.7)

Using dl = (i - 1'*)1/2 dT, we may rewrite these in terms of the length variable dl,
resulting in the same equations as (6.8.7), that is,

% (n %) = aa—’; (6.9.8)

A variation of Fermat’s principle states that the phase change between two wave-
front surfaces is independent of the choice of the ray path taken between the surfaces.
Following a different ray between points A" and B’, as shown in Fig. 6.8.1, gives the same
value for the net phase change as between the points A and B:

B B
Sg—Sa = J ndl = J ndl’ (6.9.9)
N ,

This form is useful for deriving the shapes of parabolic reflector and hyperbolic lens
antennas discussed in Chap. 17.

It can also be used to derive Snell’s law of reflection and refraction. Fig. 6.9.1 shows
the three families of incident, reflected, and refracted plane wavefronts on a horizontal
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CAL N N, reflected
incident \ . wavefronts
wavefronts / NN
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e -~ refracted
By 4 wavefronts

Fig. 6.9.1 Snell’s laws of reflection and refraction.

interface between media n, and ny, such that the incident, reflected, and refracted rays
are perpendicular to their corresponding wavefronts.

For the reflection problem, we consider the ray paths between the wavefront surfaces
ApA; and A;A). Fermat’s principle implies that the optical path length of the rays
AOA’, ApAy, and A, A} will be the same. This gives the condition:

Ng(lg +1)=naL =ngl” = L=1I'

where L and L’ are the lengths of the rays AgAg and A»Aj5. It follows that the two
triangles AgA,A5 and AgAyA) will be congruent. and therefore, their angles at the
vertices Ag and A} will be equal. Thus, 6, = 07,.
For the refraction problem, we consider the ray paths AOB, AgBg, and A;B; between
the wavefronts AgA; and BoB;. The equality of the optical lengths gives now:
L, np

Naglg + nply = nply =ngl, => — =
Lb Ng

But, the triangles AgA1B; and AygBoB; have a common base AyB;. Therefore,

Lo _ sin 0,4
L, sin0Op

Thus, we obtain Snell’s law of refraction:

Lg sinf; np

L, sin0p, ng

= NgsinO,; = np sin 0y

6.10 Ray Tracing

In this section, we apply Fermat’s principle of least optical path to derive the ray curves
in several integrable examples of inhomogeneous media.
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ZA . A . q
decreasing n(z) T increasing n(z) T
ray
ray
4 dl
/ di 0|d
a7 . ?
/ 0 dx dx
0
0 X X 0 X x
B medium n,, o medium n,
a a

Fig. 6.10.1 Rays in an inhomogeneous medium.

As a special case of Eq. (6.9.8), we consider a stratified half-space z > 0, shown in
Fig. 6.10.1, in which the refractive index is a function of z, but not of x.

Let O be the angle formed by the tangent on the ray at point (X, z) and the vertical.
Then, we have from the figure dx = dl sin 0 and dz = dl cos 6. Because on/ox = 0, the
ray equation (6.9.8) applied to the x-coordinate reads:

d ( dx dx o
di (nﬁ> =0 = nm =const. = nsin@ = const. (6.10.1)

This is the generalization of Snell’s law to an inhomogeneous medium. The constant
may be determined by evaluating it at the entry point z = 0 and x = 0. We take the
constant to be n, sin 6,4. Thus, we write (6.10.2) as:

‘ n(z)sin0(z)= ngsin 0, (generalized Snell’s law) (6.10.2)

The z-component of the ray equation is, using dz = dlI cos 0:

d dz dn d dn
di (na> =1 = oS 9£ (ncos @) = iz (6.10.3)
This is a consequence of Eq. (6.10.2). To see this, we write:
ncos@ = \/n2 —n2sin? @ = \/n2 — njsin® 0,4 (6.10.4)

Differentiating it with respect to z, we obtain Eq. (6.10.3). The ray in the left Fig. 6.10.1
is bending away from the z-axis with an increasing angle 0 (z). This requires that n(z)
be a decreasing function of z. Conversely, if n(z) is increasing as in the right figure,
then 6 (z) will be decreasing and the ray will curve towards the z-axis.

Thus, we obtain the rule that a ray always bends in the direction of increasing n(z)
and away from the direction of decreasing n(z).

The constants n, and 0, may be taken to be the launch values at the origin, that
is, n(0) and 6 (0). Alternatively, if there is a discontinuous change between the lower
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and upper half-spaces, we may take n,, 0, to be the refractive index and incident angle
from below.

The ray curves can be determined by relating x and z. From Fig. 6.10.1, we have
dx = dztan 0, which in conjunction with Egs. (6.10.2) and (6.10.4) gives:

X _ tan6 = ”sz __Masinfa (6.10.5)
dz ncos \/nz (z)—nZ sin2 0,
Integrating, we obtain:
o ,
Ma S Ya dz (ray curve) (6.10.6)

zZ
X =J
0 \/nz(z’)fnﬁ sin? 0,

An object at the point (x, z) will appear to an observer sitting at the entry point O
as though it is at the apparent location (X, z;), as shown in Fig. 6.10.1. The apparent or
virtual height will be z; = x cot 04, which can be combined with Eq. (6.10.6) to give:

Nng cos 04

JO \/n2 (z')—ngsin? 0,4

Zg = dz' (virtual height) (6.10.7)

The length z,; can be greater or less than z. For example, if the upper half-space is
homogeneous with n, < ng, then z, > z. If np, > ng, then z,; < z, as was the case in
Example 6.5.4.

Next, we discuss a number of examples in which the integral (6.10.6) can be done
explicitly to derive the ray curves.

Example 6.10.1: Ionospheric Refraction. Radio waves of frequencies typically in the range of

about 4-40 MHz can be propagated at large distances such as 2000-4000 km by bouncing
off the ionosphere. Fig. 6.10.2 depicts the case of a flat ground.

decreasing n(z)T

ionosphere

virtual
height

i

ground l«——— skip distance ——»]

Fig. 6.10.2 Ionospheric refraction.

The atmosphere has a typical extent of 600 km and is divided in layers: the troposphere up
to 10 km, the stratosphere at 10-50 km, and the ionosphere at 50-600 km. The ionosphere
is further divided in sublayers, such as the D, E, F;, and F; layers at 50-100 km, 100-150
km, 150-250 km, and 250-400 km, respectively.
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The ionosphere consists mostly of ionized nitrogen and oxygen at low pressure. The
ionization is due to solar radiation and therefore it varies between night and day. We
recall from Sec. 1.9 that a collisionless plasma has an effective refractive index:

e(w w3 Ne?
=Wy O, Ne (6.10.8)
€ w €Eom

The electron density N varies with the time of day and with height. Typically, N increases
through the D and E layers and reaches a maximum value in the F layer, and then decreases
after that because, even though the solar radiation is more intense, there are fewer gas
atoms to be ionized.

Thus, the ionosphere acts as a stratified medium in which n(z) first decreases with height
from its vacuum value of unity and then it increases back up to unity. We will indicate the
dependence on height by rewriting Eq. (6.10.8) in the form:

f3(z)
f2
If the wave is launched straight up and its frequency f is larger than the largest [}, then it

will penetrate through the ionosphere be lost. But, if there is a height such that f = f, (2),
then at that height n(z)= 0 and the wave will be reflected back down.

_ N(z)e?
" 4m2eom

n*(z)=1- N 1 ¢9) (6.10.9)

If the wave is launched at an angle 0, then it follows from Snell’s law that while the
refractive index n (z) is decreasing, the angle of refraction 6 (z) will be increasing and the
ray path will bend more and more away from z-axis as shown on the left of Fig. 6.10.1.
Below the ionosphere, we may assume that the atmosphere has refractive index n, = 1.
Then, the angle 0 (z) may be written as:

2 qin2 .2
. ns sin® 0, sin“ 0,

sin® 0 (z) = = - 6.10.10

="z F2(2) (6.10.10)
_ Iz

Because sin 6 (z) is required to be less than unity, we obtain the restriction:
5 (2)
sin®0, <1 - fpfz fp(2)<fcosOq (6.10.11)

If there is a height, say Zmax, at which this becomes an equality, fp (Zmax) = [ €0s 0,4, then
Eq. (6.10.10) would imply that sin 0 (Zay) = 1, or that 0 (Zmax) = 90°. At that height, the
ray is horizontal and it will proceed to bend downwards, effectively getting reflected from
the ionosphere.

If f is so large that Eq. (6.10.11) is satisfied only as a strict inequality, then the wave will
escape through all the layers of the ionosphere. Thus, there is a maximum frequency, the
so called maximum usable frequency (MUF), that will guarantee a reflection. There is also a
lowest usable frequency (LUF) below which there is too much absorption of the wave, such
as in the D layer, to be reflected at sufficient strength for reception.

As an oversimplified, but analytically tractable, model of the ionosphere we assume that
the electron density increases linearly with height, up to a maximal height z;,.x. Thus, the
quantities f7 (z) and n?(z) will also depend linearly on height:
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2
f2(2)= fgmzi, n2(z)=1- e ZZ , for 0<2 < Zma (6.10.12)
max max

Over the assumed height range 0 < z < Z,ax, the condition (6.10.11) must also be satisfied.
This restricts further the range of z. We have:

2 a2
fp(2)= ,f,axzi <flcost0, = < [T cos”0a (6.10.13)

max Zmax fi x%lax
If the right-hand side is greater than unity, so that f cos 8; > fmax, then there is no height
z at which (6.10.11) achieves an equality, and the wave will escape. But, if f cos 04 < fmax,
then there is height, say z,, at which the ray bends horizontally, that is,

2 ~ra? 2 ~ra?
Zo _ [*cos® 04 I Zmaxf* €cos* 04 (6.10.14)
= —F 0= "% .10,
2 2
Zmax max max

The condition f cos 0, < fmax can be written as f < fyur, where the MUF is in this case,
fmur = fmax/ cos 84. The integral (6.10.6) can be done explicitly resulting in:

2 Zmax Sin% 04

X
a2

[cos 04— . /cos2 0, — a? L] (6.10.15)

Zmax

where we defined a = finax/f. Solving for z in terms of x, we obtain:

1 ]
Z-20== % (x — X0)° (6.10.16)

where
_ 2ZmaxSin 04 cos 04

a2

_ ZmaxSIN? 04

. F 0

X0

Therefore, the ray follows a downward parabolic path with vertex at (X, Zy) and focal

length F, as shown in Fig. 6.10.3. O
Z A
)
2x)
’ ! -
Qa 9(1

Fig. 6.10.3 Parabolic ray.

Example 6.10.2: Mirages. Temperature gradients can cause several types of mirage effects that
are similar to ionospheric refraction. On a hot day, the ground is warmer than the air above
it and therefore, the refractive index of the air is lower at the ground than a short distance
above. (Normally, the air pressure causes the refractive index to be highest at the ground,
decreasing with height.)
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Because n(z) decreases downwards, a horizontal ray from an object near the ground will
initially be refracted downwards, but then it will bend upwards again and may arrive at an
observer as though it were coming from below the ground, causing a mirage. Fig. 6.10.4
depicts a typical case. The ray path is like the ionospheric case, but inverted.

Such mirages are seen in the desert and on highways, which appear wet at far distances.
Various types of mirages are discussed in [53-55,737].

As a simple integrable model, we may assume that n(z) increases linearly with height z,
that is, n(z) = ny + Kz, where K is the rate of increase per meter. For heights near the
ground, this implies that n?(z) will also increase linearly:

= (W= g+ 2nos (6.10.17)

We consider a ray launched at a downward angle 6, from an object with (X, z) coordinates
(0,h), as shown. Let n?z = né + 2ngkh be the refractive index at the launch height. For
convenience, we assume that the observer is also at height h. Because the ray will travel
downward to points z < h, and then bend upwards, we integrate the ray equation over the
limits [z, h] and find:

h . .
N, sin 0 N, sin 0
X = J a r a dZ! — a a
z \In2(z’) —nZsin’ 0, MoK

where we used the approximation n?(z) = n3 + 2ngkz in the integral. Solving for z in
terms of x, we obtain the parabolic ray:

[na cos O, — \/nﬁ cos2 0,4 + 2nok (z — h)]

X(x — 2xg) N d nisinf,cosfq F n2sin? 0,

z=h+

4F ’ 070 NoK ’ 2N K
where d is the distance to the observer and F is the focal length. The apex of the parabola

is at x = Xo = d/2 at a height z, given by:

zo=h--% > z—z—i(x—x)2
0T T 4F 07 4F 0

» observer

+
h
v

V=

warm ground

mirage V -

Fig. 6.10.4 Mirage due to a temperature gradient.

The launch angle that results in the ray being tangential to ground is obtained by setting
the apex height to zero, z, = 0. This gives a condition that may be solved for 0,:

Xo = V4Fh = sin0,="° - p=1 xO:,/iK"O (6.10.18)

Ng T2k
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The corresponding d = 2Xx, is the maximum distance of the observer from the object for
which a ray can just touch the ground. |

Example 6.10.3: Atmospheric Refraction [53-55]. Because of the compression of gravity, the
density of the atmosphere! and its refractive index n are highest near the ground and
decrease exponentially with height. A simplified model [261], which assumes a uniform
temperature and constant acceleration of gravity, is as follows:

n(z)=1+ (ng—1)e ?he (6.10.19)

The refractive index on the ground is approximately ny = 1.0003 (it also has some de-
pendence on wavelength, which we ignore here.) The characteristic height h. is given by
h. = RT/Mg, where R, T, M, g are the universal gas constant, temperature in absolute
units, molecular mass of the atmosphere and acceleration of gravity:

J M = 0.020 <8

m
, s =9.8 =
K mole mole g

R =8.31 &2

For a temperature of T = 303K, or 30°C, we find a height of h. = 8.86 km. At a height of
a few hg, the refractive index becomes unity.

The bending of the light rays as they pass through the atmosphere cause the apparent
displacement of a distant object, such as a star, the sun, or a geosynchronous satellite.
Fig. 6.10.5 illustrates this effect. The object appears to be closer to the zenith.

atmosphere

T decreasing n(z)

=

ground

Fig. 6.10.5 Atmospheric refraction.

The look-angle 0 at the ground and the true angle of the object 0, are related by Snell’s
law n; sin @; = ng sin 6. But at large distances (many multiples of h.), we have n; = 1.
Therefore,

sin 07 = ngsin g (6.10.20)

The refraction angle is ¥ = 6; — 8. Assuming a small ¥, we may use the approximation
sin(@g + r)= sin @ + ¥ cos 0. Then, Eq. (6.10.20) gives the approximate expression:

¥ = (no—1)tan 0

The maximum viewing angle in this model is such that ng sin 0y = sin 8; = 1, correspond-
ing to ; = 90° and 6, = asin(1/ng) = 88.6°, for ny = 1.0003.

TThe troposphere and some of the stratosphere, consisting mostly of molecular nitrogen and oxygen.



196 Electromagnetic Waves & Antennas - S. J. Orfanidis

The model assumes a flat Earth. When the curvature of the Earth is taken into account, the
total atmospheric refraction near the horizon, that is, near 6y = 90°, is about 0.65° for a
sea-level observer [53]. The setting sun subtends an angle of about 0.5°. Therefore, when
it appears about to set and its lower edge is touching the horizon, it has already moved
below the horizon.

The model of Eq. (6.10.19) may be integrated exactly. The ray curves are obtained from
Eq. (6.10.6). Setting n, = ng, 6, = 0 and using the definition (6.10.20), we obtain:

- 5) —atann (52)] =tanes [z hen (050 |
x-hctanel[atanh<B) atanh(B0 =tan6; |z + h¢ In Ay + Bo (6.10.21)

where the quantities A, B, Ay, By are defined as follows:

A=n(z)-sin’0,, Ao = ng — sin® 0,
B = cos 0,4/n2(z) —sin® 64, By = cos 01,/n3 — sin® 0,

Thus, Ay, Bg are the values of A, B at z = 0. It can be shown that A > B and therefore, the
hyperbolic arc-tangents will be complex-valued. However, the difference of the two atanh
terms is real and can be transformed into the second expression in (6.10.21) with the help
of the result A2 — B2 = (A3 — B3)e~2%/he,

In the limit of z > h,, the quantities A, B tend to A; = B; = cos? 0. and the ray equation
becomes the straight line with a slope of tan 6;:

M) (6.10.22)

x=(z+z)tan0;, 2z, =h, ln<A0+B0

This asymptotic line is depicted in Fig. 6.10.5, intercepting the z-axis at an angle of ;. O

Example 6.10.4: Bouguer’s Law. The previous example assumed a flat Earth. For a spherical
Earth in which the refractive index is a function of the radial distance r only, that is, n(r),
the ray tracing procedure must be modified.

Snell’s law n (z) sin € (z) = ng sin 6 must be replaced by Bouguer’s law [182], which states
that the quantity rn (r)sin 6 remain constant:

rn(r)sin @ (r)= ron(ro)sin 0, (Bouguer’s law) (6.10.23)

where 0 (r) is the angle of the tangent to the ray and the radial vector. This law can be
derived formally by considering the ray equations in spherical coordinates and assuming
that n(r) depends only on r [409].

A simpler derivation is to divide the atmosphere in equal-width spherical layers and assume
that the refractive index is homogeneous in each layer. In Fig. 6.10.6, the layers are defined
by the radial distances and refractive indices r;,n;, i = 0,1,2,....

For sufficiently small layer widths, the ray segments between the points Ay, Ay, A>,...
are tangential to the radial circles. At the interface point A3, Snell’s law gives n; sin ¢, =
n3 sin 03. On the other hand, from the triangle OA; A3, we have the law of sines:

ro r3 r3

sing,  sin(m—0,)  sin0;

= ¥p Sin 92 =1r3 sin ¢2

Combining with Snell’s law, we obtain:
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0]

Fig. 6.10.6 Ray tracing in spherically stratified medium.

roNny sin92 = 3Ny Sind)z = r3n3 sin 93

Thus, the product r;n; sin 0; is the same for alli = 0,1, 2,.... Defining an effective refrac-
tive index by neg (r) = n(r)r/ro, Bouguer’s law may be written as Snell’s law:

Netr () sin O (r) = ng sin 0

where we have the initial value neg (Fo) = noro/ro = hy. m}

Example 6.10.5: Standard Atmosphere over Flat Earth. For radiowave propagation over ground,
the International Telecommunication Union (ITU) [417,418] defines a “standard” atmo-
sphere with the values ny = 1.000315 and h. = 7.35 km, in Eq. (6.10.19).

For heights of about one kilometer, such that z < h., we may linearize the exponential,
e ?/hc =1 — z/h,, and obtain the refractive index for the standard atmosphere:

no—1 315x 1076 8.1
n(z)=nyg—Kz|, K= = =4.2857 X 10 6.10.24
e~ 7355100 m! o (61024)

This is similar to Eq. (6.10.17), with the replacement Kk — —k. Therefore, we expect the
rays to be parabolic bending downwards as in the case of the ionosphere. A typical ray
between two antennas at height h and distance d is shown in Fig. 6.10.7.

Assuming an upward launch angle 0, and defining the refractive index n, at height h
through n? = n3 — 2ngkh, we obtain the ray equations by integrating over [h, z]:

z N, sin 0,4 , Ngsinf,
X = dz' =
h \[n2(z')—n3sin? 0, NoK

where we used n?(z) = n3 — 2nokz. Solving for z, we obtain the parabola:

[na cos 0, — \/nﬁ cos2 0,4 — 2nok (z — h)]
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z decreasing n(z) f

V=

ground O X0 d

Fig. 6.10.7 Rays in standard atmosphere over a flat Earth.

X (X — 2xg) N d n%sin0,4cos0, F n2sin® 0,
-, 0= = , =
4F

=h
2 Nnok 2NnoK

where d is the distance to the observer and F is the focal length. The apex of the parabola
is at x = Xo = d/2 at a height z, given by:
2
X 1
=h+ 2% CZp= —— (X —xp)2

Zo aF > Z-2 iF (x — xp)
The minus sign in the right-hand side corresponds to a downward parabola with apex at
the point (xg, Zg). O

Example 6.10.6: Standard Atmosphere over Spherical Earth. We saw in Example 6.10.4 that
in Bouguer’s law the refractive index n () may be replaced by an effective index n, (r)=
n(r)r/ro. Applying this to the case of the Earth with ¥y = R and ¥ = R + z, where R is
the Earth radius and z the height above the surface, we have n, (z)= n(z) (R + z) /R, or,

ne(z)= ”(Z)<1 + %) = (HO*KZ)(lJr 1%)

Thus, the spherical Earth introduces the factor (1 + z/R), which increases with height and
counteracts the decreasing n(z). Keeping only linear terms in z, we find:

n

For the average Earth radius R = 6370 km and the ITU values of ny and k given in
Eq. (6.10.24), we find that the effective k. is positive:

Ke=1.1418 X 107" m™* (6.10.26)
Making the approximation n?(z) = n(z) + 2nyK.z will result in parabolic rays bending up-
wards as in Example 6.10.2.

Often, an equivalent Earth radius is defined by k., = ny/R, so that the effective refractive
index may be assumed to arise only from the curvature of the equivalent Earth:

Ne (Z)=No + KeZ = Ny (1+ i)
R,
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In units of R, we have:

R, Ny No
e _ = ——— =1.367 .10.27
R KeR no — KR 3673 (6.10.27)

which is usually replaced by R, = 4R/3. In this model, the refractive index is assumed to
be uniform above the surface of the equivalent Earth, n(z) = ny.

The ray paths are determined by considering only the geometrical effect of the spherical
surface. For example, to determine the maximum distance X, at which a ray from a trans-
mitter at height h just grazes the ground, we may either use the results of Eq. (6.10.18), or
consider a straight path that is tangential to the equivalent Earth, as shown in Fig. 6.10.8.

z A

increasing n(z) “ A d B

o X0 ground equivalent Earth

Fig. 6.10.8 Rays over a spherical Earth.

Setting Kk, = ng/R, in Eq. (6.10.18), we obtain:

2noh
Xo = KO = y2hR, (6.10.28)

e

On the other hand, because h < R, the arc length X, = (OB) may be taken to be a straight
line in Fig. 6.10.8. Applying the Pythagorean theorem to the two orthogonal triangles OAB
and CAB we find that:

x3+h*>=d*>=(h+R,)>-R>=h*+2hR, = x3=2hR,
which is the same as Eq. (6.10.28). ]

Example 6.10.7: Graded-Index Optical Fibers. In Example 6.5.5, we considered a step-index
optical fiber in which the rays propagate by undergoing total internal reflection bouncing
off the cladding walls. Here, we consider a graded-index fiber in which the refractive index
of the core varies radially from the center value ny to the cladding value n. at the edge of
the core. Fig. 6.10.9 shows the geometry.

As a simple model, we assume a parabolic dependence on the radial distance. We may
write in cylindrical coordinates, where a is the radius of the core:

2 2

Ny — N

- (6.10.29)
g

2 2 2 P° 2
n(p)=nf<1—A ;), A° =
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gl

PL Po \/\/\/
9, graded-index core
cladding

Fig. 6.10.9 Graded-index optical fiber.

Inserting this expression into Eq. (6.10.6), and changing variables from z,x to p, z, the
integral can be done explicitly resulting in:

;- asin0, asin( pA ) (6.10.30)

A acos 9,

Inverting the arc-sine, we may solve for p in terms of z obtaining the following sinusoidal
variation of the radial coordinate, where we also changed from the incident angle 0, to
the initial launch angle ¢¢ = 90° — 0,:

sin(kKz) K= —— (6.10.31)
acos ¢g

_ tangy A
Tk

For small launch angles ¢y, the oscillation frequency becomes independent of ¢y, that is,
Kk = A/(acos ¢g)=~ A/a. The rays described by Eq. (6.10.31) are meridional rays, that is,
they lie on a plane through the fiber axis, such as the xz- or yz-plane.

There exist more general ray paths that have nontrivial azimuthal dependence and prop-
agate in a helical fashion down the guide [411-416]. [}

6.11 Problems

6.1 The matching of the tangential components of the electric and magnetic fields resulted in
Snell’s laws and the matching matrix Eq. (6.3.11). In both the TE and TM polarization cases,
show that the remaining boundary conditions B, = B}, and D, = D/, are also satisfied.

6.2 Show that the Fresnel coefficients (6.4.2) may be expressed in the forms:

sin26” —sin20  tan(6’ - 60) sin(0’ — 0)

sin20’ +sin20 ~ tan(0’ + 0) "’ P = sin(0’ + 6)

™ =

6.3 Show that the refractive index ratio n’/n can be expressed in terms of the ratio v = pry/p7e
and the incident angle 6 by:

n’ 1+r\2 ., ]
— =sinf [1 + (—) tanze}
n 1-r

This provides a convenient way of measuring the refractive index n’ from measurements of
the Fresnel coefficients [259]. It is valid also for complex n'.
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6.4 It is desired to design a Fresnel rhomb such that the exiting ray will be elliptically polarized
with relative phase difference ¢ between its TE and TM components. Let sin@. = 1/n be
the critical angle within the rhomb. Show that the rhomb angle replacing the 54.6° angle in
Fig. 6.5.6 can be obtained from:

cos? 0. + \/COS4 0. — 4sin® O, tan? (¢p/4)
2tan? (¢p/4)+cos? 0. + \/cos4 0. — 4sin® O, tan? (¢ /4)

sin® 0 =

Show ¢ is required to satisfy tan(¢p/4)< (n —n=1) /2.
6.5 Show the relationship (6.7.15) for the ratio ppy/pre by first proving and then using the
following identities in the notation of Eq. (6.7.4):

(K, + k,) (K2 + k,k,) = k2K, + k’°k,

Using (6.7.15), show that when both media are lossless, the ratio pr/p e can be expressed
directly in terms of the angles of incidence and refraction, 6 and 0":

prv _ cos(0+0)
pre cos(0—0)

Using this result argue that |py| < |pre| at all angles 6. Argue also that Op + 05 = 90°,
for the Brewster angles. Finally, show that for lossless media with € > €', and angles of
incidence 0 > 0., where sin 0. = /€’ /€, we have:

P jm-s-sinﬂtan@
P j\/mfsinetane

Explain how this leads to the design equation (6.5.8) of the Fresnel rhomb.

6.6 Let the incident, reflected, and transmitted waves at an interface be:
E.(r)=Ee %™ E (N=Ee/* T, F@)=Ee k"

where k. = kyX + k, 2 and k' = kyX + k2. Show that the reflection and transmission
coefficients defined in Egs. (6.7.1)-(6.7.5) can be summarized compactly by the following
vectorial relationships, which are valid for both the TE and TM cases:

ke x (Eyxk:) 2k,
k2 Tk, k)

E.
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Multilayer Film Applications

7.1 Multilayer Dielectric Structures at Oblique Incidence

Using the matching and propagation matrices for transverse fields that we discussed
in Sec. 6.3, we derive here the layer recursions for multiple dielectric slabs at oblique
incidence.

Fig. 7.1.1 shows such a multilayer structure. The layer recursions relate the various
field quantities, such as the electric fields and the reflection responses, at the left of
each interface.

A T e S e e R e
ng ni ny n; nyy np
EVT,M+1,+
o
0 o
. Ermq1,+
Erivi+|  Erm: Hekil
Pri Pt Pr3 Pri| Pri+1 Prm| PTM+1
1 2 3 i i+l .. M M+1

Fig. 7.1.1 Oblique incidence on multilayer dielectric structure.

We assume that there are no incident fields from the right side of the structure.
The reflection/refraction angles in each medium are related to each other by Snell’s law
applied to each of the M + 1 interfaces:

Ngsin@, = n;jsinf; = npsinfy |, i=1,2,...,M (7.1.1)

It is convenient also to define by Eq. (6.3.8) the propagation phases or phase thick-
nesses for each of the M layers, that is, the quantities §; = k;l;. Using k;; = koh; cos 0;,
where kg is the free-space wavenumber, kg = w/co = 21f/co = 211/A, we have for
i=1,2,...,M:

202
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n2 sin® 0
Ra 510 Za (7.1.2)

w 21T 21T
0i = — njlicos 0; = — n;ljcos 0; = T\ lin; |1 —
i

Co A n

where we used Eq. (7.1.1) to write cos 0; = \/1 —sin? @; = \/1 — n3 sin? 9a/n12. The
transverse reflection coefficients at the M + 1 interfaces are defined as in Eq. (5.1.1):

nri-1 — Nri

, i=1,2,....M+1 (7.1.3)
nri-1 + Nrj

PTi =

where we set N9 = Nrg, as in Sec. 5.1. and nrm+1 = n7p. The transverse refractive
indices are defined in each medium by Eq. (6.2.13):

o
L TM polarization )
nri=4 cos0; , i=al,2,...,.M,b (7.1.4)
njcos 0;, TE polarization

To obtain the layer recursions for the electric fields, we apply the propagation matrix
(6.3.5) to the fields at the left of interface i + 1 and propagate them to the right of the
interface i, and then, apply a matching matrix (6.3.11) to pass to the left of that interface:

Erie | _ 1 | 1 pri eloi 0 Etiv1,+
Eri_ Tri | Pri 1 0 e o ETiv1,-

Multiplying the matrix factors, we obtain:

Etiy 1 eld  prie=Ioi Etiv1,+ .
= — i s T , I=MM-1,...,1 7.1.5
|:ETi— Tri | prief® e E7iv1,- ( )

This is identical to Egs. (5.1.2) with the substitutions k;l; — &; and p; — pri. The
recursion is initialized at the left of the (M + 1) st interface by performing an additional
matching to pass to the right of that interface:

Er e+ _ 1 1 PT.M+1 Erarin (7.1.6)
Erpms1,- TrM+1 | PT.M+1 1 0 o

It follows now from Eq. (7.1.5) that the reflection responses, I'r; = Eti—/ETj+, will
satisfy the identical recursions as Eq. (5.1.5):

pri + Iripie” 0 .
I'ri = ’ - i=M,M-1,...,1 7.1.7
Ti 1 + pTiFT‘[+1372J6" ] ] 1] 1] ( )

and initialized at I'ry+1 = pT,M+1. Similarly, we obtain the following recursions for
the total transverse electric and magnetic fields at each interface (they are continuous
across each interface):

E7i cosS;  jnrisind; Etin1 ,
=1 . 1. ’ , I=MM-1,...,1 7.1.8
[Hﬂ} [JUTI-I sind;  cosd; Hr i1 ( )
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where n; are the transverse characteristic impedances defined by Eq. (6.2.12) and re-
lated to the refractive indices by nr; = no/nri. The wave impedances, Z1; = E1i/HTj,
satisfy the following recursions initialized by Z1 y+1 = n1p:

. Zriv1 +Jjnritano;
"Nri +JjZr,is1 tan §;

ZTi:n y i:M,M—].,...,]. (719)

The MATLAB function multidiel that was introduced in Sec. 5.1 can also be used
in the oblique case with two extra input arguments: the incidence angle from the left
and the polarization type, TE or TM. Its full usage is as follows:

[Gammal,Z1] = multidiel(n,L,lambda,theta,pol); % multilayer dielectric structure

where theta is the angle 6 = 6, and po1 is one of the strings ’te’ or ’tm’. If the angle
and polarization arguments are omitted, the function defaults to normal incidence for
which TE and TM are the same. The other parameters have the same meaning as in
Sec. 5.1.

In using this function, it is convenient to normalize the wavelength A and the optical
lengths n;l; of the layers to some reference wavelength Ag. The frequency [ will be
normalized to the corresponding reference frequency fo = co/Ap.

Defining the normalized thicknesses L; = n;lj/Ag, so that n;l; = L;A, and noting
that Ag/A = f/fy, we may write the phase thicknesses (7.1.2) in the normalized form:

A
5i = ZWTOL,-COSQ,- = 27Tf£L,-c0591- . i=1,2,....M (7.1.10)
0
Typically, but not necessarily, the L; are chosen to be quarter-wavelength long at
Ao, that is, L; = 1/4. This way the same multilayer design can be applied equally well
at microwave or at optical frequencies. Once the wavelength scale Aq is chosen, the
physical lengths of the layers I; can be obtained from I; = LiAg/n;.

7.2 Single Dielectric Slab

Many features of oblique incidence on multilayer slabs can be clarified by studying the
single-slab case, shown in Fig. 7.2.1. Assuming that the media to the left and right are
the same, n, = ny, it follows that 6, = 0, and also that p; = —p72. Moreover, Snell’s
law implies n, sin 6, = n; sin 0.

Because there are no incident fields from the right, the reflection response at the
left of interface-2 is: I'rp = pr2 = —pr1. It follows from Eq. (7.1.7) that the reflection
response at the left of interface-1 will be:

pr1+ prae” ¥ pri(1-e %)
I'm = o 2 p-2jo
1+ pripree~ <% 1 - pFe-2o

(7.2.1)

This is analogous to Eq. (4.5.4). According to Eq. (7.1.10), the phase thickness can be
written in the following normalized form, where L, = n;l,/Ay:
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— [ —f
ng nj np
Op
Ou 0,
Pri P12
1 2

Fig. 7.2.1 Oblique incidence on single dielectric slab.

01 = 217@121 cos0; = 21TLL1 cos 0, = 1TL (7.2.2)
A fo f1
_ fo
fi = 2L, cos 0, (7:2.3)

At frequencies that are integral multiples of f1, f = mf}, the reflection response
vanishes because 26; = 2mw(mf1)/f1 = 2wm and e~%% = 1. Similarly, at the half-
integral multiples, f = (m + 0.5) f1, the response is maximum because e 201 = 1,

Because f1 depends inversely on cos 01, then as the angle of incidence 6, increases,
cos 01 will decrease and f; will shift towards higher frequencies. The maximum shift
will occur when 0 reaches its maximum refraction value 0. = asin(n,/n;) (assuming
ng < Nyp.)

Similar shifts occur for the 3-dB width of the reflection response notches. By the
same calculation that led to Eq. (4.5.9), we find for the 3-dB width with respect to the
variable &1:

2
tan(—A51> _l-r ple
2 L+ p7

Setting Ad, = TAf/f1, we solve for the 3-dB width in frequency:

2
Af = 2—101 atan (1_02T1) (7.2.4)
m L+ p7

The left/right bandedge frequencies are f; + Af /2. The dependence of Af on the
incidence angle 0, is more complicated here because pr, also depends on it.

In fact, as 0, tends to its grazing value 6, — 90°, the reflection coefficients for
either polarization have the limit |pr| — 1, resulting in zero bandwidth Af. On the
other hand, at the Brewster angle, 0,3 = atan(n;/ng,), the TM reflection coefficient
vanishes, resulting in maximum bandwidth. Indeed, because atan(1)= 771/4, we have
Af max = 2f1atan(1) /T = f1/2.
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Fig. 7.2.2 illustrates some of these properties. The refractive indices were n, = np =
1 and n; = 1.5. The optical length of the slab was taken to be half-wavelength at the
reference wavelength Ay, so that ny1; = 0.5A¢, or, L; = 0.5.

6, =75° ‘ 6, = 85°
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Fig. 7.2.2 TE and TM reflectances of half-wavelength slab.

The graphs show the TE and TM reflectances |I't; (f)|? as functions of frequency
for the angles of incidence 8, = 75° and 6, = 85°. The normal incidence case is also
included for comparison.

The corresponding refracted angles were 01 = asin(n, asin(0,) /n;) = 40.09° and
01 = 41.62°. Note that the maximum refracted angle is 01, = 41.81°, and the Brewster
angle, 0,3 = 56.31°.

The notch frequencies were f; = fo/(2L1 cos 01)= 1.31fy and f; = 1.34f, for the
angles 8, = 75° and 85°. At normal incidence we have f; = fo/(2L1) = fo, because
L; =0.5.

The graphs also show the 3-dB widths of the notches, calculated from Eq. (7.2.4).
The reflection responses were computed with the help of the function multidiel with
the typical MATLAB code:

na

1; nb
nl 1.

1;
5; L1 =

o

0.5;

f = Tinspace(0,3,401);

theta = 75;

GO = abs(multidiel([na,nl,nb], L1, 1./f)).A2;

Ge = abs(multidiel([na,nl,nb], L1, 1./f, theta, ’te’)).A2;
Gm = abs(multidiel([na,nl,nb], L1, 1./f, theta, 'tm’)).A2;

The shifting of the notch frequencies and the narrowing of the notch widths is evi-
dent from the graphs. Had we chosen 0, = 0,5 = 56.31°, the TM response would have
been identically zero because of the factor pr; in Eq. (7.2.1).

The single-slab case is essentially a simplified version of a Fabry-Perot interferometer
[182], used as a spectrum analyzer. At multiples of f7, there are narrow transmittance
bands. Because f7 depends on f/ cos 01, the interferometer serves to separate different
frequencies [y in the input by mapping them onto different angles 6.
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7.3 Antireflection Coatings at Oblique Incidence

Antireflection coatings are typically designed for normal incidence and then used over
a limited range of oblique incidence, such as up to about 30°. As the angle of incidence
increases, the antireflection band shifts towards lower wavelengths or higher frequen-
cies. Any designed reflection zeros at normal incidence are no longer zeros at oblique
incidence.

If a particular angle of incidence is preferred, it is possible to design the antireflection
coating to match that angle. However, like the case of normal design, the effectiveness
of this method will be over an angular width of approximately 30° about the preferred
angle.

To appreciate the effects of oblique incidence, we look at the angular behavior of
our normal-incidence designs presented in Figs. 5.2.1 and 5.2.3.

The first example was a two-layer design with refractive indices n, = 1 (air), n; =
1.38 (magnesium fluoride), n, = 2.45 (bismuth oxide), and np = 1.5 (glass). The de-
signed normalized optical lengths of the layers were L; = 0.3294 and L, = 0.0453 at
Ag = 550 nm.

Fig. 7.3.1 shows the TE and TM reflectances |I't; (A)|? as functions of A, for the
incidence angles 6 = 0°,20°,30°,40°.

TE polarization TM polarization

1 +1(A)1? (percent)
171 (M\)1? (percent)
N

550 600 650 700 400 450 500 550 600 650 700
A (nm) A (nm)

Fig. 7.3.1 Two-layer antireflection coating at oblique incidence.

We note the shifting of the responses towards lower wavelengths. The responses
are fairly acceptable up to about 20°-30°. The typical MATLAB code used to generate
these graphs was:

n=[1, 1.38, 2.45, 1.5]; L = [0.3294, 0.0453];
1a0 = 550; la = Tinspace(400,700,101); pol="te’;

GO = abs(multidiel(n, L, Ta/1a0)).A2 * 100;

G20 = abs(multidiel(n, L, 1a/1a0, 20, pol1)).A2 * 100;
G30 = abs(multidiel(n, L, T1a/1a0, 30, pol)).A2 * 100;
G40 = abs(multidiel(n, L, 1a/1a0, 40, pol1)).A2 * 100;

plot(la, [GO; G20; G30; G401);
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As we mentioned above, the design can be matched at a particular angle of incidence.
As an example, we choose 0, = 30° and redesign the two-layer structure.

The design equations are still (5.2.2) and (5.2.1), but with the replacement of n;,
pi by their transverse values nrj, pri, and the replacement of kI, kI, by the phase
thicknesses at A = A, thatis, 61 = 27rL; cos 01 and 6> = 21tL, cos 0». Moreover, we
must choose to match the design either for TE or TM polarization.

Fig. 7.3.2 illustrates such a design. The upper left graph shows the TE reflectance
matched at 30°. The designed optical thicknesses are in this case, L = 0.3509 and
L, = 0.0528. The upper right graph shows the corresponding TM reflectance, which
cannot be matched simultaneously with the TE case.

The lower graphs show the same design, but now the TM reflectance is matched at
30°. The designed lengths were L; = 0.3554 and L, = 0.0386.

TE matched at 30°

TM unmatched at 30°
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Fig. 7.3.2 Two-layer antireflection coating matched at 30 degrees.

The design steps are as follows. First, we calculate the refraction angles in all media
from Eq. (7.1.1), 8; = asin(n, sin8,/n;), fori = a, 1,2, b. Then, assuming TE polariza-
tion, we calculate the TE refractive indices for all media ny; = njcos 0, i =a,1,2,b.

Then, we calculate the transverse reflection coefficients pr; from Eq. (7.1.3) and use
them to solve Eq. (5.2.2) and (5.2.1) for the phase thicknesses 81, d». Finally, we calcu-
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late the normalized optical lengths from L; = §;/ (21 cos 0;), i = 1,2. The following
MATLAB code illustrates these steps:

1.38, 2.45, 1.5];

n = [1,
= 30; thi = asin(na*sin(pi*tha/180)./n);

tha

nt = n.*cos(thi);
r = n2r(nt);

% for TM use nt = n./cos(thi)

c = sqre((r()A2*(1-r(2)*r(3))A2 - (r(2)-r(3))A2)/(4*r(2)*r(3)*(1-r(1)A2)));
de2 = acos(c);

G2 = (r(2)+r(3)*exp(-2*%j*de2))/(1 + r(2)*r(3)*exp(-2*j*de2));

del = (angle(G2) - pi - angle(r(1)))/2;

if del <0, del = del + 2*pi; end

-

= [del,de2]/2/pi;
L = L./cos(thi(2:3));

1a0 = 550; la = Tinspace(400,700,401);

G30 = abs(multidiel(n, L, la/1a0, 30,
G20 = abs(multidiel(n, L, 1a/1a0, 20, ’te’)).A2 * 100;
G40 = abs(multidiel(n, L, T1a/1a0, 40, ’te’)).A2 * 100;
GO = abs(multidiel(n, L, Ta/1a0)).A2 * 100;

"te’)).A2 * 100;

plot(la, [G30; G20; G40; GO1);

Our second example in Fig. 5.2.3 was a quarter-half-quarter 3-layer design with re-

fractive indices n; = 1 (air), n; = 1.38 (magnesium fluoride), n, = 2.2 (zirconium oxide),
n3 = 1.63 (cerium fluoride), and ny, = 1.5 (glass). The optical lengths of the layers were
Ll = L3 = 0.25 and L2 = 0.5.

Fig. 7.3.3 shows the TE and TM reflectances |I't1 (A)|? as functions of A, for the

incidence angles 6 = 0°,20°, 30°, 40°.

1751 (A\)]1? (percent)

TE polarization TM polarization

171 W)1? (percent)

STy - L = 0 -
450 500 550 600 650 700 400 450 500 550 600 650 700
A (nm) A (nm)

Fig. 7.3.3 Three-layer antireflection coating at oblique incidence.

The responses are fairly acceptable up to about 20°-30°, but are shifted towards

lower wavelengths. The typical MATLAB code used to generate these graphs was:
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n=[1, 1.38, 2.2, 1.63, 1.5]; L = [0.25, 0.50, 0.25];

Ta0 = 550; Ta = Tinspace(400,700,401);

GO = abs(multidiel(n, L, T1a/1a0)).A2 * 100;

G20 = abs(multidiel(n, L, T1a/1a0, 20, ’te’)).A2 * 100;
G30 = abs(multidiel(n, L, la/1a0, 30, 'te’)).A2 * 100;
G40 = abs(multidiel(n, L, T1a/1a0, 40, ’te’)).A2 * 100;

plot(la, [GO; G20; G30; G401);

7.4 Omnidirectional Dielectric Mirrors

Until recently, it was generally thought that it was impossible to have an omnidirectional
dielectric mirror, that is, a mirror that is perfectly reflecting at all angles of incidence
and for both TE and TM polarizations. However, such mirrors are possible and have
recently been manufactured [317,318] and the conditions for their existence clarified
[317-321].

We consider the same dielectric mirror structure of Sec. 5.3, consisting of alternating
layers of high and low index. Fig. 7.4.1 shows such a structure under oblique incidence.
There are N bilayers and a total of M = 2N + 1 single layers, starting and ending with
a high-index layer.

f— IH 4**11_4’{

ng ny ny ny np ny np ny np
X
2 Op
0/ Vo7 o M 0 o) O 0/ x
Op
Pty Pr| -Pr Pr| -Pr Pr| -Pr P2
1 2 3

Fig. 7.4.1 Dielectric mirror at oblique incidence.
The incidence angles on each interface are related by Snell’s law:

Nasin@,; = ng sinOy = ny sin0; = ny sin Oy (7.4.1)

The phase thicknesses within the high- and low-index layers are in normalized form:

5H=21TLLHCOSQH, oL =27T£LLCOSQL (7.4.2)
fo fo

where Ly = ngly /Ao, Lr = nplp/Ag are the optical thicknesses normalized to some Ay,
and fy = co/Ag. Note also, cos 0; = \/1 —nisin®0,/n?,i=H,L.
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A necessary (but not sufficient) condition for omnidirectional reflectivity for both
polarizations is that the maximum angle of refraction 0y max inside the first layer be
less than the Brewster angle 0p of the second interface, that is, the high-low interface,
so that the Brewster angle can never be accessed by a wave incident on the first interface.
If this condition is not satisfied, a TM wave would not be reflected at the second and all
subsequent interfaces and will transmit through the structure.

Because sin @y max = Na/Ny and tan@p = ny/ng, or, sinfp = n//n% + n?, the
condition Oy max < O, or the equivalent condition sin @ gy max < sin O3, can be written

as Ng/ny < np/\\né + ni, or

ngnpg
\né +ni

We note that the exact opposite of this condition is required in the design of multi-
layer Brewster polarizing beam splitters, discussed in the next section.

In addition to condition (7.4.3), in order to achieve omnidirectional reflectivity we
must require that the high-reflectance bands have a common overlapping region for all
incidence angles and for both polarizations.

To determine these bands, we note that the entire discussion of Sec. 5.3 carries
through unchanged, provided we use the transverse reflection coefficients and trans-
verse refractive indices. For example, the transverse version of the bilayer transition
matrix of Eq. (5.3.5) will be:

ng < (7.4.3)

1 ej((SH+(SL) — p%ej((stﬁL) _2jpTeﬁi6H sin 6].
Fr = 1-— p% 2jpreld sin§; e~ J(6u+oL) _ pzTe*J((sU*(SL) (7.44)
where pr = (ngr — nrr)/ (Nt + nrr) and:
"H "nL (TM polarization)
nyr =4 €osOy nir =1 cosor o (7.4.5)
ny cos Oy ny cos 01 (TE polarization)
Explicitly, we have for the two polarizations:
ny cos 0 — ny cos Oy nyg cos Oy — ng cos 0,
pPm = y PTE= (7.4.6)
nyg cos 0; + ny cos Oy ny cos Oy + ny cos 0,
The trace of Fr is as in Eq. (5.3.13):
cos(8y + 61) —pZcos(Sy — &
a4 (0g +61) pTz (6 —01) (7.4.7)
1-p7

The eigenvalues of the matrix Fr are A, = e*/X! where K = acos(a)/land ! = Iy +I;.
The condition a = —1 determines the bandedge frequencies of the high-reflectance
bands. As in Eq. (5.3.16), this condition is equivalent to:
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5H+6L 2 (5H*5L)

2 = 02 enc2
cos” ( 5 ) = pg cos 5 (7.4.8)

Defining the quantities L. = Ly cos Oy + Ly cos 01 and the normalized frequency
F = f/fy, we may write:

@ = nfﬁ (LycosOy +LpcosfOr)=mFL- (7.4.9)
0

Then, taking square roots of Eq. (7.4.8), we have:
cos(mmFL,)= =|pr|cos(mTFL_)

The plus sign gives the left bandedge, F; = f1/fo, and the minus sign, the right
bandedge, F» = f>/fo. Thus, F1, F» are the solutions of the equations:

cos(mmFLy) = |pr|cos(mtFL_)

(7.4.10)
cos(mFyLy) = —|pr|cos(mrF,L_)
The bandwidth and center frequency of the reflecting band are:
A pp=F,—F, le_p -Fith (7.4.11)
fo fo 2

The corresponding bandwidth in wavelengths is defined in terms of the left and right
bandedge wavelengths:

7\0 Co
A =—=—, Ao = — =,
'""F T f ‘"R A
An approximate solution of Eq. (7.4.10) can be obtained by setting L_ = 0 in the
right-hand sides of Eq. (7.4.10):

AT Y W S (7.4.12)

cos(mmFLy)=|pr|, cos(mmF,L:)=—|pT| (7.4.13)
with solutions:
F, = 2coslprh — p _ acos(=lprl) (7.4.14)
7TL+ 7TL+

Using the trigonometric identities acos(+|pr|)= 1/2 F asin(|pr|), we obtain the
bandwidth and center frequency:

Afoasin(lprl) o _fitfe_ fo

Af = fr — f1 = -
f=f-h L, > T

(7.4.15)

It follows that the center wavelength will be A, = ¢o/fc = 2L+ A or,

\ Ae = 2L, Ao = 2(Igng cos O + I ny cos 01) (7.4.16)
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At normal incidence, we have A, = 2 (Igny + Iy ny ). For quarter-wavelength designs
at Ao at normal incidence, we have L, = 1/4 + 1/4 = 1/2, so that A, = Ay.

The accuracy of the approximate solution (7.4.14) depends on the ratiod = L_/L,.
Even if at normal incidence the layers were quarter-wavelength with Ly = L; = 0.25,
the equality of Ly and L; will no longer be true at other angles of incidence. In fact, the
quantity d is an increasing function of 0,. For larger values of d, the exact solution of
(7.4.10) can be obtained by the following iteration:

initialize with F; = F» = 0,
fori=0,1,..., Njter, do:
1

Fy = acos(|pr|cos(mmFL_)) (7.4.17)
Ll
F> = 7T2+ acos(—|pr|cos(mrF,L_))

Evidently, the i = O iteration gives the zeroth-order solution (7.4.14). The iteration
converges extremely fast, requiring only 3-4 iterations Nj,;. The MATLAB function
omniband implements this algorithm. It has usage:

[F1,F2]
[F1,F2]

omniband(na,nH,nL,LH,LL,theta,pol,Niter) % bandedge frequencies
omniband(na,nH,nL,LH,LL, theta,pol) % equivalent to Niter = 0

where theta is the incidence angle in degrees, po1 is one of the strings "te’ or *tm’ for
TE or TM polarization, and Niter is the desired number of iterations. If this argument
is omitted, only the i = 0 iteration is carried out.

It is straightforward but tedious to verify the following facts about the above solu-
tions. First, f1, f» are increasing functions of 6, for both TE and TM polarizations. Thus,
the center frequency of the band f; = (f1 +f>) /2 shifts towards higher frequencies with
increasing angle 0,. The corresponding wavelength intervals will shift towards lower
wavelengths.

Second, the bandwidth Af = f> — f1 is an increasing function of 6, for TE, and a
decreasing one for TM polarization. Thus, as 0, increases, the reflecting band for TE
expands and that of TM shrinks, while their (slightly different) centers f. shift upwards.

In order to achieve omnidirectional reflectivity, the TE and TM bands must have a
common overlapping intersection for all angles of incidence. Because the TM band is
always narrower than the TE band, it will determine the final common omnidirectional
band.

The worst case of overlap is for the TM band at 90° angle of incidence, which must
overlap with the TM/TE band at 0°. The left bandedge of this TM band, f7 75 (90°), must
be less than the right bandedge of the 0° band, f> (0°). This is a sufficient condition for
omnidirectional reflectivity.

Thus, the minimum band shared by all angles of incidence and both polarizations
will be [f1,rm (90°), f2(0°) ], having width:

Af min = [2(0%) —f1,7m (90°) (minimum omnidirectional bandwidth) (7.4.18)
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In a more restricted sense, the common reflecting band for both polarizations and
for angles up to a given 8, will be [f1,7:m(04), f2,7m (0°) ] and the corresponding band-
width:

Af (0a)=[2(0°) —f1,rm (0a) (7.4.19)

In addition to computing the bandwidths of either the TM or the TE bands at any
angle of incidence, the function omniband can also compute the above common band-
widths. If the parameter po1 is equal to ’tem’, then F1, F» are those of Egs. (7.4.18) and
(7.4.19). Its extended usage is as follows:

[F1,F2] = omniband(na,nH,nL,LH,LL,theta,’ tem’) % Eq. (7.4.19)
[F1,F2] = omniband(na,nH,nL,LH,LL,90,  tem’) % Eq. (7.4.18)
[F1,F2] = omniband(na,nH,nL,LH,LL) % Eq. (7.4.18)

Next, we discuss some simulation examples that will help clarify the above remarks.

Example 7.4.1: The first example is the angular dependence of Example 5.3.2. In order to flatten
out and sharpen the edges of the reflecting bands, we use N = 30 bilayers. Fig. 7.4.2 shows
the TE and TM reflectances |I't; (A) |? as functions of the free-space wavelength A, for the
two angles of incidence 6, = 45° and 80°.

Fig. 7.4.3 depicts the reflectances as functions of frequency f. The refractive indices were
ng = 1, ng = 2.32, np = 1.38, np, = 1.52, and the bilayers were quarter-wavelength
Ly = L = 0.25 at the normalization wavelength Ay = 500 nm.

The necessary condition (7.4.3) is satisfied and we find for the maximum angle of refraction
and the Brewster angle: O max = 25.53° and 0p = 30.75° Thus, we have 0 max < 5.

Reflectance at 45° Reflectance at 80°
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Fig. 7.4.2 TM and TE reflectances for ny = 2.32, ny = 1.38.

On each graph, we have indicated the corresponding bandwidth intervals calculated with
omniband. The indicated intervals are for 0° incidence, for TE and TM, and for the common
band Eq. (7.4.19) at 6,. We observe the shifting of the bands towards higher frequencies,
or lower wavelengths, and the shrinking of the TM and expanding of the TE bands, and the
shrinking of the common band.

At 459, there is still sufficient overlap, but at 80°, the TM band has shifted almost to the
end of the 0° band, resulting in an extremely narrow common band.
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Fig. 7.4.3 TM and TE frequency responses for ny = 2.32, ny = 1.38.

The arrows labeled . and f. represent the (TM) band center frequencies at 0° and 45° or
80°. The calculated bandedges corresponding to 90° incidence were A; = Ag/F2 1m (0°) =
429.73 nm and A; = Ag/Fy,7m (90°) = 432.16 nm, with bandwidth AA = A, — A = 2.43

nm. Thus, this structure does exhibit omnidirectional reflectivity, albeit over a very narrow
band. The MATLAB code used to generate these graphs was:

na=1; nb = 1.52; nH = 2.32; nL = 1.38;
LH = 0.25; LL = 0.25;

1a0 = 500;
la = linspace(300,800,501);

th = 45; N = 30;

n = [na, nH, repmat([nL,nH], 1, N), nb];

L = [LH, repmat([LL,LH], 1, N)I;

Ge 100*abs(multidiel(n,L,Ta/1a0, th, ’te’)).A2;
Gm = 100*abs(multidiel(n,L,1a/1a0, th, "tm’)).A2;
GO = 100*abs(multidiel(n,L,1a/Ta0)).A2;

plot(la,Gm, 1a,Ge, 1a,G0);

[F10,F20] omniband(na,nH,nL,LH,LL, 0, ’'te’);
[Fle,F2e] omniband(na,nH,nL,LH,LL, th,’te’);
[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’);
[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’);

Because the reflectivity bands shrink with decreasing ratio ny/ng, if we were to slightly
decrease ny, then the TM band could be made to shift beyond the end of the 0° band and
there would be no common overlapping reflecting band for all angles. We can observe this
behavior in Fig. 7.4.4, which has ny = 2, with all the other parameters kept the same.

At 45° there is a common overlap, but at 80°, the TM band has already moved beyond the 0°
band, while the TE band still overlaps with the latter. This example has no omnidirectional

reflectivity, although the necessary condition (7.4.3) is still satisfied with 0 max = 30° and
Op = 34.61°.
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Frequency Response at 45°

Frequency Response at 80°
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Fig. 7.4.4 TM and TE reflectances for ny = 2, n; = 1.38.

On the other hand, if we were to increase ny, all the bands will widen, and so will the
final common band, resulting in an omnidirectional mirror of wider bandwidth. Fig. 7.4.5
shows the case of ny = 3, exhibiting a substantial overlap and omnidirectional behavior.
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Fig. 7.4.5 TM and TE reflectances for ny = 3, n; = 1.38.

The minimum band (7.4.18) was [F;,F,]= [1.0465,1.2412] corresponding to the wave-
length bandedges A; = Ag/F, = 402.84 nm and A, = A¢/F; = 477.79 nm with a width of
AN = Ay — A = 74.95 nm, a substantial difference from that of Fig. 7.4.2. The bandedges

were computed with Nj; = 0 in Eq. (7.4.17); with Nj; = 3, we obtain the more accurate
values: [Fq,F>]= [1.0505,1.2412].

To illustrate the dependence of the TE and TM bandwidths on the incident angle 6,, we
have calculated and plotted the normalized bandedge frequencies F, (8,), F»> (0,) for the
range of angles 0 < 0, < 90° for both polarizations. The left graph of Fig. 7.4.6 shows the
case ng = 3, ny = 1.38, and the right graph, the case ny = 2, n; = 1.38.

We note that the TE band widens with increasing angle, whereas the TM band narrows. At
the same time, the band centers move toward higher frequencies. In the left graph, there
is a common band shared by both polarizations and all angles, that is, the band defined
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Fig. 7.4.6 TM/TE bandgaps versus angle for ng = 3, ny = 1.38 and ny = 2, n; = 1.38.

by F,(0°), and F; v (90°). For the right graph, the bandedge F; v (0,) increases beyond
F,(0°) for angles 0, greater than about 61.8°, and therefore, there is no omnidirectional
band. The calculations of F; (0,), F»(6,) were done with omniband with Njr = 3. [m}

Example 7.4.2: In Fig. 7.4.7, we study the effect of changing the optical lengths of the bilayers
from quarter-wavelength to Ly = 0.3 and Ly = 0.1. The main result is to narrow the
bands. This example, also illustrates the use of the iteration (7.4.17). The approximate
solution (7.4.15) and exact solutions for the 80° bandedge frequencies are obtained from
the two MATLAB calls:

[F1,F2] = omniband(na,nH,nL,LH,LL,80, tem’,0);
[F1,F2] omniband(na,nH,nL,LH,LL,80, tem’,3);

with results [F,F>]= [1.0933,1.3891] and [F,,F,]= [1.1315,1.3266], respectively.

Three iterations produce an excellent approximation to the exact solution. [m}
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Fig. 7.4.7 Unequal length layers Ly = 0.30, L; = 0.15.
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Example 7.4.3: Here, we revisit Example 5.3.3, whose parameters correspond to the recently
constructed omnidirectional infrared mirror [317]. Fig. 7.4.8 shows the reflectances as
functions of wavelength and frequency at 8, = 45° and 80° for both TE and TM polar-
izations. At both angles of incidence there is a wide overlap, essentially over the desired
10-15 pum band.

The structure consisted of nine alternating layers of Tellurium (ng = 4.6) and Polystyrene
(ny = 1.6) on aNaCl substrate (n, = 1.48.) The physical lengths were Iy = 0.8 and I} = 1.6
um. The normalizing wavelength was Ay = 12.5 um. The optical thicknesses in units of
Ao were Ly = 0.2944 and L; = 0.2112.

Reflectance at 45° Reflectance at 80°

171 (W)1? (percent)
171 W)1? (percent)

17+1(F)1? (percent)
171 ()17 (percent)

Fig. 7.4.8 Nine-layer Te/PS omnidirectional mirror over the infrared.

The bandedges at 0° were [Fy, F»]= [0.6764,1.2875] with center frequency F.o = 0.9819,
corresponding to wavelength Ao = Ag/F. = 12.73 um. Similarly, at 45°, the band centers
for TE and TM polarizations were F. g = 1.0272 and F.rm = 1.0313, resulting in the
wavelengths A, 7p = 12.17 and A7 = 12.12 ym (shown on the graphs are the TE centers
only.)

The final bandedges of the common reflecting band computed from Eq. (7.4.18) were
[Fy,F>]= [0.8207,1.2875], resulting in the wavelength bandedges A1 = Ag/F> = 9.71
and A, = Ag/F; = 14.95 pum, with a width of AA = A, — A; = 5.24 um and band center
(A1 4+ A2)/2 =12.33 um (the approximation (7.4.15) gives 5.67 and 12.4 um.) The graphs
were generated by the following MATLAB code:
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1a0 = 12.5; la = linspace(5,25,401);

na=1; nb = 1.48; nH = 4.6; nL = 1.6;

TH = 0.8; 1L = 1.65; LH = nH*1H/1a0; LL = nL*1L/Ta0;
th = 45;

N = 4;

n = [na, nH, repmat([nL,nH], 1, N), nb];

L = [LH, repmat([LL,LH], 1, N)J;

Ge = 100*abs(multidiel(n,L,1a/1a0, th, 'te’)).A2;

Gm = 100*abs(multidiel(n,L,1a/1a0, th, 'tm’)).A2;

GO = 100*abs(multidiel(n,L,T1a/T1a0)).A2;

plot(la,Gm, 1a,Ge, 1a,G0);

Ni = 5;

[F10,F20] = omniband(na,nH,nL,LH,LL, 0, ’'te’, Ni); band at 0°
[Fle,F2e] = omniband(na,nH,nL,LH,LL, th,’te’, Ni); TE band
[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’, Ni); TM band
[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’ ,Ni); Eq. (7.4.19)
[F1,F2] = omniband(na,nH,nL,LH,LL, 90,’tem’,Ni); Eq. (7.4.18)

Finally, Fig. 7.4.9 shows the same example with the number of bilayers doubled to N = 8.

The mirror bands are flatter and sharper, but the widths are the same. [m}
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Fig. 7.4.9 Omnidirectional mirror with N = 8.

Example 7.4.4: The last example has parameters corresponding to the recently constructed
omnidirectional reflector over the visible range [318]. The refractive indices were n, = 1,
ny = 2.6 (ZnSe), np 1.34 (Na3AlF cryolite), and n, = 1.5 (glass substrate.) The layer
lengths were Iy = I; = 90 nm. There were N = 9 bilayers or 2N + 1 = 19 layers, starting
and ending with ny.

With these values, the maximum angle of refraction is 6 max = 22.27° and is less than the
Brewster angle 0p = 27.27°.

The normalizing wavelength was taken to be Ay = 620 nm. Then, the corresponding optical
lengths were Ly = nyl;/Ag = 0.1945 and Ly = nyly /Ao = 0.3774. The overall minimum
omnidirectional band is [A,A2]= [605.42, 646.88] nm. It was computed by the MATLAB
call to omniband with N; = 5 iterations:
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[F1,F2] = omniband(na,nH,nL,LH,LL,90, tem’ ,Ni);
lal = 1a0/F2; 1a2 = 1a0/F1;

(The values of A1, A do not depend on the choice of Ag.) Fig. 7.4.10 shows the reflectance
at 45° and 80°. The upper panel of graphs has N = 9 bilayers as in [318]. The lower panel
has N = 18 bilayers or 38 layers, and has more well-defined band gaps. The two arrows in
the figures correspond to the values of A, A, of the minimum omnidirectional band. O
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Fig. 7.4.10 Omnidirectional mirror over visible band.

7.5 Polarizing Beam Splitters

The objective of an omnidirectional mirror is to achieve high reflectivity for both polar-
izations. However, in polarizers, we are interested in separating the TE and TM polariza-
tions. This can be accomplished with a periodic bilayer structure of the type shown in
Fig. 7.4.1, which is highly reflecting only for TE and highly transmitting for TM polariza-
tions. This is the principle of the so-called MacNeille polarizers [184,188,191,210,213,228-
234].

If the angle of incidence 6, is chosen such that the angle of refraction in the first
high-index layer is equal to the Brewster angle of the high-low interface, then the TM
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component will not be reflected at the bilayer interfaces and will transmit through. The
design condition is 0y = Op, or sin @y = sin O, which gives:

ngny
\né +ni

This condition can be solved either for the angle 9, or for the index n, of the incident
medium:

Ngsin@, = ngsinO@y = nysinfp = (7.5.1)

Npng Ngng
2 2| o0 |Ma= — 2 2
N3 + ng sin O 4+/nf + Ni

In either case, the feasibility of this approach requires the opposite of the condition
(7.4.3), that is,

sinf4 = (7.5.2)

npng

% +n?

If the angle 6, is set equal to the convenient value of 45°, then, condition Eq. (7.5.2)
fixes the value of the refractive index n, to be given by:

Ng > (7.5.3)

V2ngng

Ng = ———
\né + ni

Fig. 7.5.1 depicts such a multilayer structure sandwiched between two glass prisms
with 45° angles. The thin films are deposited along the hypotenuse of each prism and

the prisms are then cemented together. The incident, reflected, and transmitted beams
are perpendicular to the prism sides.

(7.5.4)

b TE polarized

Glass gL %

TM polarized

unpolarized

45°

459

Glass

Fig. 7.5.1 Polarizing beam splitter.

Not many combinations of available materials satisfy condition (7.5.4). One possible
solution is Banning’s [191] with ng = 2.3 (zinc sulfide), n; = 1.25 (cryolite), and n,; =
1.5532. Another solution is given in Clapham, et al, [213], with ng = 2.04 (zirconium
oxide), ny = 1.385 (magnesium fluoride), and n,; = 1.6205 (a form of dense flint glass.)
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Fig. 7.5.2 shows the TE and TM reflectances of the case ng = 2.3 and ny = 1.25. The
incident and output media had n,; = np = 1.5532. The maximum reflectivity for the TE
component is 99.99%, while that of the TM component is 3% (note the different vertical
scales in the two graphs.)

The number of bilayers was N = 5 and the center frequency of the TE band was
chosen to correspond to a wavelength of A, = 500 nm. To achieve this, the normal-
izing wavelength was required to be Ag = 718.38 nm. The layer lengths were quarter-
wavelengths at Ay. The TE bandwidth calculated with omniband is also shown.

The Brewster angles inside the high- and low-index layers are 0y = 28.52° and
01 = 61.48°. As expected, they satisfy 0y + 07 = 90°.
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Fig. 7.5.2 Polarizer with ny = 2.3 and n; = 1.25.

Fig. 7.5.3 shows the second case having ny = 2.04, ny = 1.385, n; = np = 1.6205.
The normalizing wavelength was Ay = 716.27 nm in order to give A = 500 nm. This
case achieves a maximum TE reflectivity of 99.89% and TM reflectivity of only 0.53%.
The typical MATLAB code generating these examples was:

TE Reflectance TM Reflectance

1T W) 1? (percent)
S ©

17t W1? (percent)

[

VAVAVAV/ENd

300 400 500 600 700 800 300 400 500 600 700 800
A (nm) A (nm)

Fig. 7.5.3 Polarizer with ny = 2.04 and n; = 1.385.
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nH = 2.3; nL = 1.25;
LH = 0.25; LL = 0.25;
na = nH*nL/sqrt(nHA2+nLA2)/sin(pi/4); nb=na;

[fle,f2e] = omniband(na,nH,nL,LH,LL,th, te’,5);

Tlac = 500;

1a0 = lac*(fle+f2e)/2; because A¢ = Ag/F¢
la = linspace(300,800,301);

N 5;

n [na, nH, repmat([nL,nH], 1, N), nb];

L [LH, repmat([LL,LH], 1, N)I;

Ge = 100*abs(multidiel(n,L,1a/1a0, th, 'te’)).A2;
Gm = 100*abs(multidiel(n,L,la/1a0, th, 'tm’)).A2;

plot(la,Ge);

7.6 Reflection and Refraction in Birefringent Media

Uniform plane wave propagation in biaxial media was discussed in Sec. 3.6. We found
that there is an effective refractive index N such that k = Nkg = Nw/co. The index N,
given by Eq. (3.6.8), depends on the polarization of the fields and the direction of the
wave vector. The expressions for the TE and TM fields were given in Egs. (3.6.18) and
(3.6.27).

Here, we discuss how such fields get reflected and refracted at planar interfaces
between biaxial media. Further discussion can be found in [182] and [241-259].

Fig. 6.1.1 depicts the TM and TE cases, with the understanding that the left and
right biaxial media are described by the triplets of principal indices n = [ny, np, ns]
and n’ = [nf, ny,n5], and that the E-fields are not perpendicular to the corresponding
wave vectors in the TM case. The principal indices are aligned along the xyz axes, the
xy-plane is the interface plane, and the xz-plane is the plane of incidence.

The boundary conditions require the matching of the electric field components that
are tangential to the interface, that is, the components Ey in the TM case or Ej in TE.
It proves convenient, therefore, to re-express Eq. (3.6.27) directly in terms of the Ey
component and Eq. (3.6.18) in terms of E|,.

For the TM case, we write E = XEx + ZE, = Ex(X — 2 tan 0), for the electric field of
the left-incident field, where we used E, = —Ey tan 0. Similarly, for the magnetic field
we have from Eq. (3.6.26):

N N E
H= —vVy(Eycos0 —E,sin0@)= — yEycos 0 (1 - —Ztan9>
No No E

X

N n? N n3 cos? 0 + n? sin® 0
=~ 9EccosO |1+ -3tan*0 | = —~ yExcos O | — 5 151
No ns No ns cos? 0

ning ) Ex ni

—ﬁAE cosO | —>21 | ==X
floy ¥ N2n3 cos? 0 no Ncos6

where we replaced E,/Ex = — tan 6=— (n%/n%)tan 0 and used Eq. (3.7.10). Thus,
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n? -
E(r) = Ey (f(— z— tan@) e Jkr

n;

) (TM) (7.6.1)

Ex ni . ik Ex o ik

H == — Jkr _ =X Jkr

x) no N cos 0 ¢ r’TMye
Similarly, we may rewrite the TE case of Eq. (3.6.18) in the form:
E(r) = Eyye /KT

(TE) (7.6.2)

E . E .
H(r) = X nycos0(—x+ 2tan Q) e kT = =Y (—g + 2tan 0) e kT
nNo nre

The propagation phase factors are:

e~ JkT = o=JKoxXNsin0—jkozN cos 0 (TM and TE propagation factors) (7.6.3)

Unlike the isotropic case, the phase factors are different in the TM and TE cases
because the value of N is different, as given by Eq. (3.6.8), or,

ninsg L
— - , (TM or p-polarization)
N = \/nf sin® 0 + nj cos? 0 (7.6.4)
no, (TE or s-polarization)

In Egs. (7.6.1) and (7.6.2), the effective transverse impedances are defined by ny =
Ey/Hy and nrg = —E,/Hy, and are given as follows:

N 0
Nt = No Lés , NTE= _fo (transverse impedances) (7.6.5)
ni ny cos 0

Defining the TM and TE effective transverse refractive indices through nmy = no/nmy
and n7g = no/ntg, we have:

nTM*Nc0597 2 2 qin2
VY3 — N2sin® 0 (transverse refractive indices) (7.6.6)

N1g = N cos O

where we used Eq. (3.6.23) for the TM case, that is,

Ncos6 = %\/ng — N2sin? 0 (7.6.7)

3

In the isotropic case, N = n; = n, = n3 = n, Egs. (7.6.6) reduce to Eq. (6.2.13). Next,
we discuss the TM and TE reflection and refraction problems of Fig. 6.1.1.
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Assuming that the interface is at z = 0, the equality of the total tangential electric
fields (Ex component for TM and E, for TE), implies as in Sec. 6.1 that the propagation
phase factors must match at all values of x:

e*jkwrx — e*jkxfx — efjk;ux = eijk;(—x
which requires that ky+ = kx— = kj, = k;_, or, because ky = ksin 0 = Nk sin 0:
Nsin@, =Nsinf_ = N'sin0’, = N'sin0_

This implies Snell’s law of reflection, thatis, 8+ = 0_ = 0 and 8, = 0" = ', and
Snell’s law of refraction,

Nsin® = N'sin 0’ (Snell’s law for birefringent media) (7.6.8)

Thus, Snell’s law is essentially the same as in the isotropic case, provided one uses
the effective refractive index N. Because N depends on the polarization, there will be
two different refraction angles? for the same angle of incidence. In particular, Eq. (7.6.8)
can be written explicitly in the two polarization cases:

nin3 sin 0 n\ns sin 0’
L3 S - 13 S (T™) (7.6.92)
\/nf sin 0 + n3 cos2 0 \/n'l2 sin? 0’ + ny cos? 0’
n, sin @ = n5 sin 0’ (TE) (7.6.9b)

Both expressions reduce to Eq. (6.1.6) in the isotropic case. The explicit solutions of
Eq. (7.6.9a) for sin 8’ and sin 0 are:

ninsnj sin 0

sin0’ =

\/[n’fn’;(n% - n3)-nini(n? —n$?)]sin® 0 + nn¥n;3
(7.6.10)
4 4 . !
njnzn;z sin 0

sinf =

\/[n%ng (n? — n¥)—n¥n$ (n3 — n3) ] sin® 0’ + n¥nin}?

The MATLAB function snel1, solves Egs. (7.6.9) for 6’ given the angle of incidence
0 and the polarization type. It works for any type of medium, isotropic, uniaxial, or
biaxial. It has usage:

thb = snell(na,nb,tha,pol); % refraction angle from Snell’s law

The refractive index inputs na, nb may be entered as 1-, 2-, or 3-dimensional column
or row vectors, for example, n, = [n,] (isotropic), n; = [Ngo, Nge] (uniaxial), or n,; =
[na1, nap, a3 (biaxial).

Next, we discuss the propagation and matching of the transverse fields. All the
results of Sec. 6.3 translate verbatim to the birefringent case, provided one uses the
proper transverse refractive indices according to Eq. (7.6.6).

THence, the name birefringent.
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In particular, the propagation equations (6.3.5)-(6.3.7) for the transverse fields, for
the transverse reflection coefficients I'r, and for the transverse wave impedances Zr,
remain unchanged.

The phase thickness 6, for propagating along z by a distance I also remains the same
as Eq. (6.3.8), except that the index N must be used in the optical length, and therefore,
0, depends on the polarization:

0, = k;l = klcos0 = Nkylcos 0 = ZTT( IN cos 0 (7.6.11)

Using Eq. (7.6.7), we have explicitly:

5, = 27" 1\ - N2sin? o, (TM) (7.6.122)
3

0, = ZTW In, cos 0, (TE) (7.6.12b)

The transverse matching matrix (6.3.11) and Fresnel reflection coefficients (6.3.12)
remain the same. Explicitly, we have in the TM and TE cases:

2 2
, np m
_Nm—Npy _ Ncos@® N’cosb’
Pm = T 2 2
Nrm + Ny ny + ny 7 6.13
Ncos@ N’cos6’ (7.6.13)
» Nrg— N N2cos 0 — njcos O’
TE = =
Nrg+ N N2 cos 0 + njcos O’

Using Eq. (7.6.6) and the TM and TE Snell’s laws, Eqgs. (7.6.9), we may rewrite the
reflection coefficients in terms of the angle 0 only:

ninz\n¥ — N2sin? @ — n\nj\/n3 — N2sin> 0
Pt =
nin3\ny¥ — N2sin® 0 + njnj\/n — N2 sin’ 0
Ny cos O — y[n%* — n3 sin® 0
PTE =
Ny cos 0 +/n%* — n3sin® 0

The quantity N2sin? 6 can be expressed directly in terms of 6 and the refractive
indices of the incident medium. Using Eq. (7.6.4), we have:

(7.6.14)

n2nj sin® 0

N?sin® 0 =
n3 sin® 0 + n3 cos? 0

(7.6.15)

The TE reflection coefficient behaves like the TE isotropic case. The TM coefficient
exhibits a much more complicated behavior. If n; = nj but ns # nj, it behaves like the
TM isotropic case. If n3 = n} but n; # nj, the square-root factors cancel and it becomes
independent of 0:
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P1M = 7 (7.6.16)

Another interesting case is when both media are uniaxial and n3 = n; and n} = ns,
that is, the refractive index vectors are n = [ny,h;,n3] and n’ = [n3,n3, ny]. Itis
straightforward to show in this case that pry = pre at all angles of incidence. Multilayer
films made from alternating such materials exhibit similar TM and TE optical properties
[241].

The MATLAB function fresnel can evaluate Eqgs. (7.6.14) at any range of incident
angles 6. The function determines internally whether the media are isotropic, uniaxial,
or biaxial.

7.7 Brewster and Critical Angles in Birefringent Media

The maximum angle of refraction, critical angle of incidence, and Brewster angle, have
their counterparts in birefringent media.

It is straightforward to verify that 0’ is an increasing function of 0 in Eq. (7.6.9). The
maximum angle of refraction 6 is obtained by setting 8 = 90° in Eq. (7.6.9).

For the TE case, we obtain sin 0, = n; /n'z. As in the isotropic case of Eq. (6.5.2), this
requires that n, < nj, that is, the incident medium is less dense than the transmitted
medium, with respect to the index n,. For the TM case, we obtain from Eq. (7.6.9a):

nsn;

sin 9; = (maximum TM refraction angle) (7.7.1)

T[22 22 2
\/n3n3 + ny° (ny” — n3)

This requires that n3 < nj3. On the other hand, if n3 > nj, we obtain the critical
angle of incidence 6. that corresponds to 6’ = 90° in Eq. (7.6.10):

nsn;

sinf. = (critical TM angle) (7.7.2)

2,72 2,2 2
\/n3n3 + ni (n5 — ny%)

whereas for the TE case, we have sin 6. = n5/n, which requires n, > ns.

In the isotropic case, a Brewster angle always exists at which the TM reflection coeffi-
cient vanishes, pryy = 0. In the birefringent case, the Brewster angle does not necessarily
exist, as is the case of Eq. (7.6.16), and it can also have the value zero, or even be imagi-
nary.

The Brewster angle condition pry = 0 is equivalent to the equality of the transverse
refractive indices npy = n’p,. Using Eq. (7.6.6), we obtain:

ning _ nn;
\/n§ — N2sin® 0 \/n'32 — N2sin? 0

Ny = n,TM = (7.7.3)

where N2 sin® 0 is given by Eq. (7.6.15). Solving for @, we obtain the expression for the
Brewster angle from the left medium:
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’ 2 2

nsny | ng —nj

tanfp = —5° |55
hny \ h3—ng

(Brewster angle) (7.7.4)

Working instead with N'sin@’ = N sin 0, we obtain the Brewster angle from the
right medium, interchanging the roles of the primed and unprimed quantities:

nzn, | n3 —n??
tan 0 = 5,23 <L (Brewster angle) (7.7.5)
n; n3 —nj

Egs. (7.7.4) and (7.7.5) reduce to Egs. (6.6.2) and (6.6.3) in the isotropic case. It is
evident from Eq. (7.7.4) that O3 is a real angle only if the quantity under the square
root is non-negative, that is, only if n; > n} and n3 > nj, or if n; < n} and n3 < nj.
Otherwise, 05 is imaginary. In the special case, n; = nj but n3 # nj, the Brewster
angle vanishes. If n3 = nj, the Brewster angle does not exist, since then ppy is given by
Eq. (7.6.16) and cannot vanish.

The MATLAB function brewster computes the Brewster angle 0p, as well as the
critical angles 0, and 0. For birefringent media the critical angles depend on the po-
larization. Its usage is as follows:

[thB,thc] = brewster(na,nb) % isotropic case
[thB, thcTE,thcTM] = brewster(na,nb) % birefringent case

In multilayer systems, it is convenient to know if the Brewster angle of an internal
interface is accessible from the incident medium. Using Snell’s law we have in this case
Ng;sin0, = N sin 0, where 0, is the incident angle and N, the effective index of the
incident medium. It is simpler, then, to solve Eq. (7.7.3) directly for 0,:

n3n (nf - nif)

N2sin0% = N%sin® 0p = —5>5——5 5
ninz — nyny

(7.7.6)

Example 7.7.1: To illustrate the variety of possible Brewster angle values, we consider the fol-
lowing birefringent cases:

(a) n=7[1.63,1.63,1.5], n’ =][1.63,1.63,1.63]
(b) n=1[1.54,1.54,1.63], n’ =[1.51.51.5]
(c) n=1[18,1.8,1.5], n = [1.5,1.5,1.5]

n!

(d) mn=11.8,1.8,1.5], = [1.56,1.56,1.56]

These cases were discussed in [241]. The corresponding materials are: (a) birefringent
polyester and isotropic polyester, (b) syndiotactic polystyrene and polymethylmethacrylate
(PMMA), (c) birefringent polyester and PMMA, and (d) birefringent polyester and isotropic
polyester.

Because n; = nj in case (a), the Brewster angle will be zero, 85 = 0°. In case (b), we
calculate 05 = 29.4°. Because n, > n, and n3 > nj, there will be both TE and TM critical
angles of reflection: 0. 1z = 76.9° and 0. v = 68.1°.
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In case (c), the Brewster angle does not exist because n3 = nj, and in fact, the TM reflection
coefficient is independent of the incident angle as in Eq. (7.6.16). The corresponding critical

angles of reflection are: 0. 7r = 56.4° and 0., = 90°.
Finally, in case (d), because n, > nj but n3 < nj, the Brewster angle will be imaginary,

and there will be a TE critical angle of reflection and a TM maximum angle of refraction:

O¢,1e = 60.1° and O 1 = 74.1°.
Fig. 7.7.1 shows the TM and TE reflection coefficients |pr(0) | of Eq. (7.6.14) versus 0 in

the range 0 < 6 < 90°.
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Fig. 7.7.1 TM and TE birefringent Fresnel reflection coefficients versus incident angle.

The TE coefficient in case (a) is not plotted because it is identically zero. In order to expand
the vertical scales, Fig. 7.7.2 shows the TM reflectances normalized by their values at 0 =

0°, that is, it plots the quantities |p7(0) /pm(0°) |2. Because in case (a) pm(0°) = 0, we

have plotted instead the scaled-up quantity |100p7(0)|2.
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Fig. 7.7.2 TM reflectances normalized at normal incidence.
The typical MATLAB code used to compute the critical angles and generate these graphs

was:
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th

Tinspace(0,90,361); % 0 at 1/4° dintervals

na = [1.63,1.63,1.5]; nb = [1.63,1.63,1.63];
[rtel,rtml] = fresnel(na,nb,th);
[thbl, thcTE1l,thcTM1] = brewster(na,nb);

note the variety of
% equivalent ways of
entering na and nb

R R R

na = [1.54,1.63];

nb = [1.5, 1.51; % FRESNEL and BREWSTER
[rte2,rtm2] = fresnel(na,nb,th); % internally extend
[thb2,thcTE2,thcTM2] = brewster(na,nb); % na,nb into 3-d arrays
na = [1.8, 1.5]; % same as na=[1.8,1.8,1.5]
nb = 1.5; % and nb=[1.5,1.5,1.5]
[rte3,rtm3] = fresnel(na,nb,th);

[thb3,thcTE3,thcTM3] = brewster(na,nb); % in this case, Op =[]

na = [1.8,1.5];

nb = 1.56;

[rte4,rtm4] = fresnel(na,nb,th);
[thb4,thcTE4,thcTM4] = brewster(na,nb);

plot(th, abs([rtml; rtm2; rtm3; rtm4]));

We note four striking properties of the birefringent cases that have no counterparts
for isotropic materials: (i) The Brewster angle can be zero, (ii) the Brewster angle may not
exist, (iii) the Brewster angle may be imaginary with the TE and TM reflection coefficients
both increasing monotonically with the incident angle, and (iv) there may be total internal
reflection in one polarization but not in the other.

7.8 Multilayer Birefringent Structures

With some redefinitions, all the results of Sec. 7.1 on multilayer dielectric structures
translate essentially unchanged to the birefringent case.

We assume the same M-layer configuration shown in Fig. 7.1.1, where now each layer
is a biaxial material. The orthogonal optic axes of all the layers are assumed to be aligned
with the xyz film axes. The xz-plane is the plane of incidence, the layer interfaces are
parallel to the xy-plane, and the layers are arranged along the z-axis.

The ith layer is described by the triplet of refractive indices n; = [nj, hj», i3],
i=1,2,...,M. The incident and exit media a, b may also be birefringent with n, =
[ng1,n42,ng3] and np = [np1, Npp, Np3 ], although in our examples, we will assume that
they are isotropic.

The reflection/refraction angles in each layer depend on the assumed polarization
and are related to each other by the birefringent version of Snell’s law, Eq. (7.6.8):

Ngsinf, = Njsin@; = Npsin0y |, i=1,2...,M (7.8.1)

where N,, Nj, N, are the effective refractive indices given by Eq. (7.6.4). The phase
thickness of the ith layer depends on the polarization:
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2 qin?
Zj Iﬂ’l,’] 1- Nia SH; ea, (TM)
270 A \ nj3
0i = b [iN;cos 0; = (7.8.2)
21T N2sin? 0,
Y li”iz\ 1- T (TE)
i2

where we used Eq. (7.6.7) and Snell’s law to write in the TM and TE cases:

2 i 2 qin?
ni1 : N¢ sin© 0; N4 sin- 0
—'\lnI%—N,-Zst@,-:n,-l I e A
n 2 2

i3 N3

- N2sin? 0,
Nip €08 0; = N1 —sin® 0; = njp |1 — —4——=
i2

ne

Nicos0; =

To use a unified notation for the TM and TE cases, we define the layer optical lengths
at normal-incidence, normalized by a fixed free-space wavelength Ag:

l)\ﬂ (TM)

Li=1 , 0 , i=1,2,....M (7.8.3)
Liniz (TE)
Ao

We define also the cosine coefficients ¢;, which represent cos 6; in the TE birefringent
case and in the TM isotropic case:

2 in2
I—N“ 81121 9,;, (TM)
\ Ni3
i = ,  i=1,2,...,M (7.8.4)
2 a2
- NasintOa o
\ ni;

At normal incidence the cosine factors are unity, ¢; = 1. With these definitions,
Eq. (7.8.2) can be written compactly in the form:

0, =2m i=1,2,....,.M (7.8.5)

% LiCi =217 % LiCi y
where A is the operating free-space wavelength and f = co/A, fo = co/Ag. This is
the birefringent version of Eq. (7.1.10). A typical design might use quarter-wave layers,
L; =1/4, at A¢ and at normal incidence.

The reflection coefficients pr; at the interfaces are given by Eq. (7.1.3), but now the
transverse refractive indices are defined by the birefringent version of Eq. (7.1.4):

1’1121 nj1 Nj3 (TM)

g =1 NicosOi 2 N2sin? 0, . i=a,1,2,....M,b (7.8.6)
nj»> COS 91' = \/m’ (TE)
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With the above redefinitions, the propagation and matching equations (7.1.5)-(7.1.9)
remain unchanged. The MATLAB function muTtidiel can also be used in the birefrin-
gent case to compute the frequency reflection response of a multilayer structure. Its
usage is still:

[Gammal,Z1] = multidiel(n,L,lambda,theta,pol); % birefringent multilayer structure

where the input nis a 1x (M + 2) vector of refractive indices in the isotropic case, or a
3X (M + 2) matrix, where each column represents the triplet of birefringent indices of
each medium. For uniaxial materials, h may be entered as a 2x (M + 2) matrix.

7.9 Giant Birefringent Optics

The results of Sec. 7.4 can be applied almost verbatim to the birefringent case. In
Fig. 7.4.1, we assume that the high and low alternating layers are birefringent, described
by the triplet indices ng = [ny1, hy2, hy3] andny = [nypq, N2, nr3]. The entry and exit
media may also be assumed to be birefringent. Then, Snell’s laws give:

Ngsin0,; = NgsinO@y = Nrsin 0 = Ny sin 0y (7.9.1)

The phase thicknesses 6y and & within the high and low index layers are:

5H = 2'ITLLHCH, 6L = ZTTLLLCL (7.9.2)
fo fo

where Ly, cy and L, ¢ are defined by Egs. (7.8.3) and (7.8.4) for i = H, L. The effective
transverse refractive indices within the high and low index layers are given by Eq. (7.8.6),
again withi = H, L.

The alternating reflection coefficient pr between the high/low interfaces is given by
Eq. (7.6.14), with the quantity N? sin? 0 replaced by N2 sin? 0, by Snell’s law:

NE1Np3\N7 3 — Nasin? 0, — npnpsné; — N3 sin? 0,

P = [ 2 2 a2 [2 2 2
nH1nH3 }’IL3 _Na sin ga +nL1nL3 an _Na s ea
\/nflz — Nzsin? 0, — \/nﬁz — N3 sin® 0,

PT1E =
\/nﬁz —~ N2sin® 0,4 + \/an — N2sin® 0,

(7.9.3)

The multilayer structure will exhibit reflection bands whose bandedges can be cal-
culated from Eqs. (7.4.7)-(7.4.17), with the redefinition L.+ = Lycy = L;cr. The MATLAB
function omniband2 calculates the bandedges. It has usage:

[F1,F2] = omniband2(na,nH,nL,LH,LL,th,poT,N);

where pol is one of the strings ’te’ or ’tm’ for TE or TM polarization, and na, nH, nL
are 1-d, 2-d, or 3-d row or column vectors of birefringent refractive indices.

Next, we discuss some mirror design examples from [241] that illustrate some prop-
erties that are specific to birefringent media. The resulting optical effects in such mirror
structures are referred to as giant birefringent optics (GBO) in [241,746].
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Example 7.9.1: We consider a GBO mirror consisting of 50-bilayers of high and low index

17+ ()12 (percent)

L1 N JAVA NSNS
]
400 500 600 700 800 900 1000

quarter-wave layers with refractive indices ny = [1.8,1.8,1.5], n; = [1.5,1.5,1.5] (bire-
fringent polyester and isotropic PMMA.) The surrounding media are air, n, = n = 1.

The layers are quarter wavelength at the normalization wavelength Ay = 700 nm at normal
incidence, so that for both polarizations we take Ly = L; = 1/4.

Because the high/low index layers are matched along the z-direction, nys = ny3, the TM
reflection coefficient at the high/low interface will be constant, independent of the incident
angle 0,, as in Eq. (7.6.16). However, some dependence on 6, is introduced through the
cosine factors cy, ¢y of Eq. (7.9.2).

The left graph of Fig. 7.9.1 shows the reflectance |[I'r(A)|? as a function of A for an an-
gle of incidence 0, = 60°. The TM and TE bandedge wavelengths were calculated from
omniband2 to be: [A1,A>]= [540.24,606.71] and [A;, A, ]= [548.55,644.37] nm.

Reflectance at 0° and 60° 25% thickness gradient

17+ (M)1? (percent)

900 1000

A (nm)
Fig. 7.9.1 Reflectance of birefringent mirror.

The typical MATLAB code used to generate the left graph and the bandedge wavelengths
was as follows:

LH = 0.25; LL = 0.25;

na = [1; 1; 1];
nH = [1.8; 1.8; 1.5];
nL = [1.5; 1.5; 1.5];

nb = [1; 1; 1];

1a0 = 700;
Ta = linspace(400,1000,601);

th = 60; % angle of incidence
N = 50; % number of bilayers
n = [na, repmat([nH,nL], 1, N), nb]; % 3% (2N + 2) matrix
L = [repmat([LH,LL], 1, N)I;

Ge = 100*abs(multidiel(n, L, 1a/1a0, th, 'te’)).A2;

Gm = 100*abs(multidiel(n, L, Ta/Ta0, th, ’tm’)).A2;

GO = 100*abs(multidiel(n, L, T1a/T1a0)).A2;
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plot(la,Gm,’-’, l1a,Ge,’--", 1a,G0,’:’);

[F1,F2]=omniband2(na,nH,nL,LH,LL,th, tm’,3);
lal = 1a0/F2; T1a2 = 1a0/F1; % TM bandedge wavelengths

The right graph shows the reflectance with a 25% thickness gradient (the layer thicknesses
Ly, L; decrease linearly from quarter-wavelength to 25% less than that at the end.) This
can be implemented in MATLAB by defining the thickness vector L by:

-
]

[repmat([LH,LL], 1, N)];
L=1L .* (1 - Tinspace(0, 0.25, 2*N)); % 25% thickness gradient

The thickness gradient increases the effective bandwidth of the reflecting bands [240].
However, the bandwidth calculation can no longer be done with omniband2. The band
centers can be shifted to higher wavelengths by choosing A higher. The reflecting bands
can be made flatter by increasing the number of bilayers. [m}

Example 7.9.2: In this example, we design a 30-bilayer GBO mirror with ngy = [1.8,1.8,1.5]

17+ ()12 (percent)

and n; = [1.5,1.5,1.8], so that ny; = ny> = ny3 and ny3 = N1 = No. As we discussed
in Sec. 7.6, it follows from Eq. (7.6.14) that p1y = prz for all angles of incidence.

As in Ref. [241], the media a, b are taken to be isotropic with n, = n, = 1.4. The
normalization wavelength at which the high/low index layer are quarter-wavelength is
Ao = 700 nm.

The left graph of Fig. 7.9.2 shows the reflectance for a 45° angle of incidence. Because
prm = Pr1E, the reflection bands for the TM and TE cases are essentially the same.

Reflectance at 0° and 45° TM and TE bandwidths

0 10 20 30 40 50 60 70 80 90
0, (degrees)
Fig. 7.9.2 Birefringent mirror with identical TM and TE reflection bands.

The right graph depicts the asymptotic (for large number of bilayers) bandedges of the
reflecting band versus incident angle. They were computed with omniband2. Unlike the
isotropic case, the TM and TE bands are exactly identical. This is a consequence of the
following relationships between the cosine factors in this example: ¢y, = Cr,1r and
cu,1e = Cr,tv- Then, because we assume quarter-wave layers in both the TE and TM cases,
Ly = L; = 1/4, we will have:



7.9. Giant Birefringent Optics

17+ ()12 (percent)

Ly v =Ly v+ Ly tvCr,y ==

L_ v =Ly — Lp,mvCr,n ==

235

1 (CH, M + CL1M) =

1
2 (cL,re+ CcHe) = Ly 1E

1 1
1 (CH,rM — CL1M) = 1 (cr,re— c,1E) = =Ly 18

Because the computational algorithm (7.4.17) for the bandwidth does not depend on the
sign of L_, it follows that Eq. (7.4.17) will have the same solution for the TM and TE cases.
The typical MATLAB code for this example was:

In Fig. 7.9.3, the low-index material is changed slightly to n;

LH = 0.25; LL = 0.25;
na = [1.4; 1.4; 1.4];
nb = [1.4; 1.4; 1.4];
nH = [1.8; 1.8; 1.5];
nL = [1.5; 1.5; 1.8];
1a0 = 700;

la = linspace(400,1000,601);

tha = 45;

N = 30;

n = [na, repmat([nH,nL], 1, N), nb];

L = [repmat([LH,LL], 1, NDT;

Ge = 100*abs(multidiel(n, L, la/1a0, tha, ’'te’)).A2;
Gm = 100*abs(multidiel(n, L, 1a/1a0, tha, 'tm’)).A2;
GO = 100*abs(multidiel(n, L, T1a/T1a0)).A2;
plot(la,Gm,’-’, 1a,Ge,’--", 1a,G0,’:’);

[1.5,1.5,1.9]. The main

behavior of the structure remains the same, except now the TM and TE bands are slightly
different.

Reflectance at 0° and 45° TM and TE bandwidths
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Fig. 7.9.3 Birefringent mirror with slightly different TM and TE reflection bands.

The MATLAB code used to compute the right graph was:
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theta = linspace(0,90,361); % incident angles

Fle = []; F2e = [1;

Fim = [1; F2m = [1;

Ni = 3; % refinement iterations

for i=1:length(theta),
[fle,f2e] = omniband2(na,nH,nL,LH,LL,theta(i), te’,Ni);
[flm,f2m] = omniband2(na,nH,nL,LH,LL,theta(i), tm’,Ni);

Fle = [Fle,fle]; F2e = [F2e,f2e];

Film = [F1m,f1lm]; F2m = [F2m,f2m]; % frequency bandedges
end
lale = 1a0 ./ F2e; la2e = 1a0 ./ Fle; % wavelength bandedges

lalm = 1a0 ./ F2m; 1a2m = 1a0 ./ Flm;

plot(theta,lalm,’-’, theta,la2m,’-’, theta,lale,’--’, theta,la2e,’--");

As the incident angle increases, not only does the TM band widen but it also becomes wider
than the TE band—exactly the opposite behavior from the isotropic case. [m}

Example 7.9.3: GBO Reflective Polarizer. By choosing biaxial high/low layers whose refractive

17+ ()12 (percent)

indices are mismatched only in the x or the y direction, one can design a mirror structure
that reflects only the TM or only the TE polarization.

Fig. 7.9.4 shows the reflectance of an 80-bilayer mirror with ngy = [1.86,1.57,1.57] for
the left graph, and ng = [1.57,1.86, 1.57] for the right one. In both graphs, the low index
material is the same, withn; = [1.57,1.57,1.57].
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Fig. 7.9.4 TM and TE mirror polarizers.

The angle of incidence was 6, = 0°. The typical MATLAB code was:

LH = 0.25; LL = 0.25;

na = [1; 1; 1];
nb = [1; 1; 1]1;
nH = [1.86; 1.57; 1.57];



7.10. Problems 237

nL = [1.57; 1.57; 1.57];

T1a0 = 700;
Ta = linspace(400,1000,601);

N = 80;

n = [na, repmat([nH,nL], 1, N), nb];

L = [repmat([LH,LL], 1, NDI;

L =1L .* Tinspace(1,0.75,2*N); % 25% thickness gradient
Ge = 100*abs(multidiel(n, L, la/1a0, 0, 'te’)).A2;

Gm = 100*abs(multidiel(n, L, 1a/1a0, 0, 'tm’)).A2;

plot(la,Gm,’-’, 1a,Ge,’--");

A 25% thickness gradient was assumed in both cases. In the first case, the x-direction
indices are different and the structure will act as a mirror for the TM polarization. The TE
polarization will be reflected only by the air-high interface.

In the second case, the materials are matched in their y-direction indices and therefore,

the structure becomes a mirror for the TE polarization, assuming as always that the plane
of incidence is still the xz plane. [m}

Giant birefringent optics is a new paradigm in the design of multilayer mirrors and
polarizers [241], offering increased flexibility in the control of reflected light. The re-
cently manufactured multilayer optical film by 3M Corp. [746] consists of hundreds to
thousands of birefringent polymer layers with individual thicknesses of the order of a
wavelength and total thickness of a sheet of paper. The optical working range of such
films are between 400-2500 nm.

Applications include the design of efficient waveguides for transporting visible light
over long distances and piping sunlight into interior rooms, reflective polarizers for
improving liquid crystal displays, and other products, such as various optoelectronic
components, cosmetics, and "hot” and "cold” mirrors for architectural and automotive
windows.

7.10 Problems
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Waveguides

Waveguides are used to transfer electromagnetic power efficiently from one point in
space to another. Some common guiding structures are shown in the figure below.
These include the typical coaxial cable, the two-wire and mictrostrip transmission lines,
hollow conducting waveguides, and optical fibers.

In practice, the choice of structure is dictated by: (a) the desired operating frequency
band, (b) the amount of power to be transferred, and (c) the amount of transmission
losses that can be tolerated.

y
X
@ two-wire - X dielectric
- line MICTOstrip rectangular waveguide
coaxial line line waveguide

Fig. 8.0.1 Typical waveguiding structures.

Coaxial cables are widely used to connect RF components. Their operation is practi-
cal for frequencies below 3 GHz. Above that the losses are too excessive. For example,
the attenuation might be 3 dB per 100 m at 100 MHz, but 10 dB/100 m at 1 GHz, and
50 dB/100 m at 10 GHz. Their power rating is typically of the order of one kilowatt at
100 MHz, but only 200 W at 2 GHz, being limited primarily because of the heating of
the coaxial conductors and of the dielectric between the conductors (dielectric voltage
breakdown is usually a secondary factor.)

Anotherissue is the single-mode operation of the line. At higher frequencies, in order
to prevent higher modes from being launched, the diameters of the coaxial conductors
must be reduced, diminishing the amount of power that can be transmitted.

Two-wire lines are not used at microwave frequencies because they are not shielded
and can radiate. One typical use is for connecting indoor antennas to TV sets. Microstrip
lines are used widely in microwave integrated circuits.



8.1. Longitudinal-Transverse Decompositions 239

Rectangular waveguides are used routinely to transfer large amounts of microwave
power at frequencies greater than 3 GHz. For example at 5 GHz, the transmitted power
might be one megawatt and the attenuation only 4 dB/100 m.

Optical fibers operate at optical and infrared frequencies, allowing a very wide band-
width. Their losses are very low, typically, 0.2 dB/km. The transmitted power is of the
order of milliwatts.

8.1 Longitudinal-Transverse Decompositions

In a waveguiding system, we are looking for solutions of Maxwell’s equations that are
propagating along the guiding direction (the z direction) and are confined in the near
vicinity of the guiding structure. Thus, the electric and magnetic fields are assumed to
have the form:

E(x,y,z,t)= E(x,y)e/wt=ibz

jwt- 1.1
H(x,y,z,t)= H(x,y)e/®t-ibz (8.1.1)

where B is the propagation wavenumber along the guide direction. The corresponding
wavelength, called the guide wavelength, is denoted by A4 = 277/p.

The precise relationship between w and 8 depends on the type of waveguiding struc-
ture and the particular propagating mode. Because the fields are confined in the trans-
verse directions (the x,y directions,) they cannot be uniform (except in very simple
structures) and will have a non-trivial dependence on the transverse coordinates x and
y. Next, we derive the equations for the phasor amplitudes E(x,y) and H(x,y).

Because of the preferential role played by the guiding direction z, it proves con-
venient to decompose Maxwell’s equations into components that are longitudinal, that
is, along the z-direction, and components that are transverse, along the x, y directions.
Thus, we decompose:

E(x,y)=XEx(x,y)+VEy (X,y) +ZE;(X,y) = Er(X,y) +2E; (X,) (8.1.2)

~
transverse longitudinal

In a similar fashion we may decompose the gradient operator:

V =R0y+90,+20,=Vr+20,=V7r—jBz (8.1.3)
[ —}
transverse

where we made the replacement 0, — —j because of the assumed z-dependence. In-
troducing these decompositions into the source-free Maxwell’s equations we have:

V X E=—jwuH (V1 —jB2)x(Er + 2E;)= —jowu(Hr + ZH,)
V X H= jweE (Vr —jBz)x(Hr + 2H;) = jwe (Er + ZE;)

N (8.1.4)
V-E=0 (V1 —jBz)-(Er +2E;)=0

V-H=0 (Vr—jBz)-(Hr +2H,)=0
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where €, u denote the permittivities of the medium in which the fields propagate, for
example, the medium between the coaxial conductors in a coaxial cable, or the medium
within the hollow rectangular waveguide. This medium is assumed to be lossless for
now.

Wenotethatz-2=1,Z2x2=0,Z-Er =0,z -V7E, = 0 and that Z X Er and
Zz X VTE; are transverse while V1 X E7 is longitudinal. Indeed, we have:

2 X Er =2 X (REx + Y E,) = § Ex — XE,,
Vi X Er = (Rx + ¥ 0y) X (REx + Y Ey) = 2(3xEy — 0,Ex)

Using these properties and equating longitudinal and transverse parts in the two
sides of Eq. (8.1.4), we obtain the equivalent set of Maxwell equations:

V7E, X2 —JBZ X ErT = —jwuHr
VrH,; X7 — jBZ X Hr = jweET
VrXEr+jwuzH, =0

VT XHT—j(UEiEZ =0
Vr-Er-jBE; =0
Vr-Hr—jBH, =0

(8.1.5)

Depending on whether both, one, or none of the longitudinal components are zero,
we may classify the solutions as transverse electric and magnetic (TEM), transverse elec-
tric (TE), transverse magnetic (TM), or hybrid:

E, =0, H, =0, TEM modes

E, =0, H, # 0, TE or Hmodes

E,+0, H, =0, TM or E modes

E, #0, H, # 0, hybrid or HE or EH modes

In the case of TEM modes, which are the dominant modes in two-conductor trans-
mission lines such as the coaxial cable, the fields are purely transverse and the solution
of Eq. (8.1.5) reduces to an equivalent two-dimensional electrostatic problem. We will
discuss this case later on.

In all other cases, at least one of the longitudinal fields E,, H, is non-zero. It is then
possible to express the transverse field components Er, Hr in terms of the longitudinal
ones, E,, H,.

Forming the cross-product of the second of equations (8.1.5) with Z and using the
BAC-CAB vector identity, Z X (Z X Hy)= Z(Z - Hr)—Hr(Z - Z)= —Hr, and similarly,
zZX (VrH, xz)= V1H,, we obtain:

V1H, +jBHT =jwei X ET

Thus, the first two of (8.1.5) may be thought of as a linear system of two equations
in the two unknowns Z x Er and Hr, that is,

BZXET—(UUHT ZJQXVTEZ
(8.1.6)
wez X Er — BHr = —jVTH,



8.1. Longitudinal-Transverse Decompositions 241

The solution of this system is:

2 X Er = —i—ﬁzixVTEz—J(:—quTHz
¢ ‘ (8.1.7)
Ht = __](UZG ZXVT1E, — Jé VrH,
kg k¢
where we defined the so-called cutoff wavenumber k. by:
w2
k= w?eu — B2 = =z B% = k* — B?| (cutoff wavenumber) (8.1.8)

The quantity k = w/c = w,/eq is the wavenumber a uniform plane wave would
have in the propagation medium €, u.

Although k? stands for the difference w?eu — B2, it turns out that the boundary
conditions for each waveguide type force kZ to take on certain values, which can be
positive, negative, or zero, and characterize the propagating modes. For example, in a
dielectric waveguide k2 is positive inside the guide and negative outside it; in a hollow
conducting waveguide k2 takes on certain quantized positive values; in a TEM line, k2
is zero. Some related definitions are the cutoff frequency and the cutoff wavelength
defined as follows:

21T

(L)C:Ckc, Ac:?
c

(cutoff frequency and wavelength) (8.1.9)

We can then express B in terms of w and we, or w in terms of B and w.. Taking
the positive square roots of Eq. (8.1.8), we have:

1 2
B = Ex/wawz = %wllf% and W =+\w? + B2c? (8.1.10)

Often, Eq. (8.1.10) is expressed in terms of the wavelengths A = 271/k = 211¢/ W,
Ac = 271/k¢, and Ay = 271t/ B. It follows from k? = k2 + B2 that

11 1 A
== A?Jrré S Ag= j (8.1.11)
-

Note that A is related to the free-space wavelength Ay = 21T/ = co/f by the
refractive index of the dielectric material A = Ay/n.

It is convenient at this point to introduce the transverse impedances for the TE and
TM modes by the definitions:

nre = % =n %, Ny = B =n % (TE and TM impedances) (8.1.12)

where the medium impedance is n = +/u/€, so that n/c = p and nc = 1/€. We note the
properties:



242 Electromagnetic Waves & Antennas - S. J. Orfanidis

) nre w?
NteNT™ = N°, '774 = B2

Because Bc/w = +/1 — wZ/w?, we can write also:

2
w
Nte = #, N =n 1—_;
w? w
1-— -c
w?
With these definitions, we may rewrite Eq. (8.1.7) as follows:
. _ _JB,.
Z X ET = —? (Z X VTEZ + nTEVTHZ)
c
j 1
Hr = —‘g (— 2xV7E; + V7H,)
ké "n

Using the result Z X (Z X Er)= —Er, we solve for E; and Hr:

Er = _LI]<7€ (VTEZ —N1eZ X VTHZ)

.C 1 (transverse fields)
Hr = _‘g (VTHZ + —2ZX VTEZ)

k¢ nmm

(8.1.13)

(8.1.14)

(8.1.15)

(8.1.16)

An alternative and useful way of writing these equations is to form the following

linear combinations, which are equivalent to Eq. (8.1.6):

1 -
HT—iiXET:iVTHZ
nm B

Er —nmeHr X2 = éVTEZ

(8.1.17)

So far we only used the first two of Maxwell’s equations (8.1.5) and expressed Er, Hr
in terms of E,, H,. Using (8.1.16), it is easily shown that the left-hand sides of the

remaining four of Egs. (8.1.5) take the forms:

Vi X Er +j(1)[,liHZ = J(]i)zu
c

jE

Vi x Hy — jwezE, = —sz 2 (V2E, + K2E,)

c
Vi Er - JBE, = ~05 (V3E, + K2E,)
c
V- Hr — jBH __JB V2H, + k’H
T T —JBH; = kZ(TZ+cZ)

c

where va is the two-dimensional Laplacian operator:

2 (V4H, + k?H,)
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Vi=Vr-Vr=05+0; (8.1.18)

and we used the vectorial identities V7 X VrE, =0, Vr X (ZzXVrH,)= 12 VZTHZ, and
Vr-(zZxVrtH;)=0.

It follows that in order to satisfy all of the last four of Maxwell’s equations (8.1.5), it
is necessary that the longitudinal fields E, (x,y), H,(x,y) satisfy the two-dimensional
Helmholtz equations:

V2E, +k%E, =0
(Helmholtz equations) (8.1.19)
V4H, + k2H, = 0

These equations are to be solved subject to the appropriate boundary conditions for
each waveguide type. Once, the fields E,, H, are known, the transverse fields E7, Hr are
computed from Eq. (8.1.16), resulting in a complete solution of Maxwell’s equations for
the guiding structure. To get the full x, y, z, t dependence of the propagating fields, the
above solutions must be multiplied by the factor e/®t=J8z,

The cross-sections of practical waveguiding systems have either cartesian or cylin-
drical symmetry, such as the rectangular waveguide or the coaxial cable. Below, we
summarize the form of the above solutions in the two types of coordinate systems.

Cartesian Coordinates

The cartesian component version of Egs. (8.1.16) and (8.1.19) is straightforward. Using
the identity 2 x V7H, = y 0xH, — %X 0, H,, we obtain for the longitudinal components:

(03 + 03)E, + K2E, = 0
(8.1.20)
(02 +02)H, +k3H, =0
Eq. (8.1.16) becomes for the transverse components:
; ; 1
Ey = _% (asz + N1E asz) Hy = —Ji: (atz - ayEz)
k¢ k& nrmm
8 : 8 X (8.1.21)
E, = 12 (0,E, —nmoH,) | | Hy = —25(0,H, + — 0,E,)
ks k& N1m

Cylindrical Coordinates

The relationship between cartesian and cylindrical coordinates is shown in Fig. 8.1.1.
From the triangle in the figure, we have X = pcos ¢ and y = psin¢. The transverse
gradient and Laplace operator are in cylindrical coordinates:

.0 4210 , 10 0 1 0°
VT—pap+¢pa¢, VT_pap(pap)+pza¢2 (8.1.22)
The Helmholtz equations (8.1.19) now read:
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@

>

p
¢ y
0 X

Fig. 8.1.1 Cylindrical coordinates.

o ( 0E,\ 1 9%, .,
a(p >+pza¢2+kcEZ=0

1 O0H,\ 1 0°H, ... _
pap(p >+p28¢2+kcH2_0

(8.1.23)

Noting that 2 X p = ¢ and 2 X ¢ = —p, we obtain:

- - A1
ZxVrtH, = ¢(asz)—P E (a¢Hz)
The decomposition of a transverse vector is Er = pE, + (i)E¢. The cylindrical
coordinates version of (8.1.16) are:

JB 1 JB 1

E,=—5(0,E; — —0soH H,=-"5(0,H —0oE

p kg(pz r]TEpzb z) p kg(p Z+TITMP¢Z)
T , 81 | (8.1.24)
J

Ep = -5 (=04sE 0,H Hy =-"5(=04pH, — —0,E

¢ kg(P oFz + 10y Hz) ¢ kE(p P P 2)

For either coordinate system, the equations for Hy may be obtained from those of
E7 by a so-called duality transformation, that is, making the substitutions:

E-H, H--E, €e—-u, MU—E€ (duality transformation) (8.1.25)

These imply that n — =1 and e — n74. Duality is discussed in greater detail in
Sec. 16.2.

8.2 Power Transfer and Attenuation

With the field solutions at hand, one can determine the amount of power transmitted
along the guide, as well as the transmission losses. The total power carried by the fields
along the guide direction is obtained by integrating the z-component of the Poynting
vector over the cross-sectional area of the guide:
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1
Pr = J P,dS| where P,= 5 Re(Ex H*)-Z (8.2.1)
s

It is easily verified that only the transverse components of the fields contribute to
the power flow, that is, P, can be written in the form:

P, = %Re(ET X HE) -2 (8.2.2)

For waveguides with conducting walls, the transmission losses are due primarily to
ohmic losses in (a) the conductors and (b) the dielectric medium filling the space between
the conductors and in which the fields propagate. In dielectric waveguides the losses
are due to absorption and scattering by imperfections.

The transmission losses can be quantified by replacing the propagation wavenumber
B by its complex-valued version B, = 8 — j&, where « is the attenuation constant. The
z-dependence of all the field components is replaced by:

e Bz . pmiBez — o= (a+jB)z _ p-zp-jBz (8.2.3)

The quantity « is the sum of the attenuation constants arising from the various loss
mechanisms. For example, if &tz and . are the attenuations due to the ohmic losses in
the dielectric and in the conducting walls, then

X = Xg + Kc (8.2.4)

The ohmic losses in the dielectric can be characterized either by its loss tangent, say
tan 0, or by its conductivity o4—the two being related by o; = we tand. The effective
dielectric constant of the medium is then e(w)= € — joz/w = €(1 — jtand). The
corresponding complex-valued wavenumber f. is obtained by the replacement:

B=+wlue—ki — PBc=+w?2ue(w)—ké

For weakly conducting dielectrics, we may make the approximation:

- 2 _0dy g2 _ [g2 - _jwHoa o 1 ou
Be \/w ue(1—j o) —ke =B? —jwpoa =B /1~ g2 B Jp0a g

Recalling the definition nz = wu/B, we obtain for the attenuation constant:

w tan &
2c+/1 — w3/ w?

which is similar to Eq. (2.7.2), but with the replacement ng — nrz.

The conductor losses are more complicated to calculate. In practice, the following
approximate procedure is adequate. First, the fields are determined on the assumption
that the conductors are perfect.

(dielectric losses) (8.2.5)

[0 —10 —1w—2tan5—
a=5 d’?TE—chz =
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Second, the magnetic fields on the conductor surfaces are determined and the corre-
sponding induced surface currents are calculated by J; = fi X H, where 11 is the outward
normal to the conductor.

Third, the ohmic losses per unit conductor area are calculated by Eq. (2.8.7). Figure
8.2.1 shows such an infinitesimal conductor area dA = dldz, where dl is along the
cross-sectional periphery of the conductor. Applying Eq. (2.8.7) to this area, we have:

dPloss dploss 1 2
"loss _ P loss _ TR 2.
dA dldz ~ 2 sl (8.2.6)
where R; is the surface resistance of the conductor given by Eq. (2.8.4),

_ jou o jwe 1 S
Ry o n 0 Zéwu, o wno skin depth (8.2.7)

Integrating Eq. (8.2.6) around the periphery of the conductor gives the power loss per
unit z-length due to that conductor. Adding similar terms for all the other conductors
gives the total power loss per unit z-length:

_ dPloss

’ 1 b 1 -
Phos = T = SRAIEAI Rl 5.2.8)

Fig. 8.2.1 Conductor surface absorbs power from the propagating fields.

where C, and Cj, indicate the peripheries of the conductors. Finally, the corresponding
attenuation coefficient is calculated from Eq. (2.6.22):

— PI,OSS
2Pt
Equations (8.2.1)-(8.2.9) provide a systematic methodology by which to calculate the
transmitted power and attenuation losses in waveguides. We will apply it to several
examples later on.

[ (conductor losses) (8.2.9)

8.3 TEM, TE, and TM modes

The general solution described by Eqgs. (8.1.16) and (8.1.19) is a hybrid solution with non-
zero E, and H, components. Here, we look at the specialized forms of these equations
in the cases of TEM, TE, and TM modes.
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One common property of all three types of modes is that the transverse fields Er, Hr
are related to each other in the same way as in the case of uniform plane waves propagat-
ing in the z-direction, that is, they are perpendicular to each other, their cross-product
points in the z-direction, and they satisfy:

1
Hr = — 2 X Er (8.3.1)
nr

where nr is the transverse impedance of the particular mode type, that is, n, ne, M
in the TEM, TE, and TM cases.

Because of Eq. (8.3.1), the power flow per unit cross-sectional area described by the
Poynting vector P, of Eq. (8.2.2) takes the simple form in all three cases:

1 1 . 1
= —Re(Er xH¥)-2=—|Fr|> = = Hy|? 3.2
P, > e(Er T) 2 2T7T| Tl 2'7T| Tl (8.3.2)

TEM modes

In TEM modes, both E, and H, vanish, and the fields are fully transverse. One can set
E, = H, = 0 in Maxwell equations (8.1.5), or equivalently in (8.1.16), or in (8.1.17).

From any point view, one obtains the condition k2 = 0, or w = Bc. For example, if
the right-hand sides of Eq. (8.1.17) vanish, the consistency of the system requires that
Nte = DM, Which by virtue of Eq. (8.1.13) implies w = Bc. It also implies that n7g, N1y
must both be equal to the medium impedance n. Thus, the electric and magnetic fields
satisfy:

ZX Er (8.3.3)

These are the same as in the case of a uniform plane wave, except here the fields
are not uniform and may have a non-trivial x,y dependence. The electric field Er is
determined from the rest of Maxwell’s equations (8.1.5), which read:

VT X Er =0
(8.3.4)
Vr-Er =0

These are recognized as the field equations of an equivalent two-dimensional elec-
trostatic problem. Once this electrostatic solution is found, Et (X, y), the magnetic field
is constructed from Eq. (8.3.3). The time-varying propagating fields will be given by
Eq. (8.1.1), with w = Bc. (For backward moving fields, replace 8 by —S.)

We explore this electrostatic point of view further in Sec. 9.1 and discuss the cases
of the coaxial, two-wire, and strip lines. Because of the relationship between Et and Hr,
the Poynting vector P, of Eq. (8.2.2) will be:

1 N 1 1
Py = ;Re(Er xHf)-2 = |Er|* = nlHr|* (8.3.5)
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TE modes

TE modes are characterized by the conditions E, = 0 and H, # 0. It follows from the
second of Egs. (8.1.17) that E7 is completely determined from Hy, thatis, Er = nregHp XZ.

The field H7 is determined from the second of (8.1.16). Thus, all field components
for TE modes are obtained from the equations:

V4H, +k*H, =0

JB

HT:_E

VrH, (TE modes) (8.3.6)

Er = nrgHr X 2

The relationship of Et and H7 is identical to that of uniform plane waves propagating
in the z-direction, except the wave impedance is replaced by nrr. The Poynting vector
of Eq. (8.2.2) then takes the form:

1 1 1 2
[Erf2 = 2 nuslHrl? = rm% VoH, 2 (83.7)
C

1
P, = -Re(Er x HY) -2 =
2 2e(r T)-2 T >

The cartesian coordinate version of Eq. (8.3.6) is:

(a§+a§,)Hz+k§HZ=0
IBom,, Hy=-IPou (83.8)
k@ xi1z, y = k% yiz 3.
Ex =nmHy,, Ey,=-nreHy

H, - JB

And, the cylindrical coordinate version:

10 ( 0Hy\ 1 0°H,  ,,,.
pap(p op >+p2 2 +k:H, =0
JB 0H, JjB 1 0H, (8.3.9)
H,= -5 Hgp = "5 —
G P N D)

E,=nmHy, Ep=-nmHp

where we used Hr x 2 = (pH, + ¢ Hp)x2 = ~p H, + pHy.

TM modes

TM modes have H, = 0 and E, # 0. It follows from the first of Egs. (8.1.17) that Hr is
completely determined from Er, that is, Hr = n}}ﬁ X Er. The field Er is determined
from the first of (8.1.16), so that all field components for TM modes are obtained from
the following equations, which are dual to the TE equations (8.3.6):
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V2E, +k2E, =0

_JB

Er =
T kg

VrE; (TM modes) (8.3.10)

1
HT=72><ET
Nt

Again, the relationship of Er and Hr is identical to that of uniform plane waves
propagating in the z-direction, but the wave impedance is now n . The Poynting vector
takes the form:

1 2
|Er|® = T F |VTE,|? (8.3.11)
™ K¢

1
P,=—Re(Er x H¥) -2 =
z > e(Er T) YA 2N

8.4 Rectangular Waveguides

Next, we discuss in detail the case of a rectangular hollow waveguide with conducting
walls, as shown in Fig. 8.4.1. Without loss of generality, we may assume that the lengths
a, b of the inner sides satisfy b < a. The guide is typically filled with air, but any other
dielectric material €, u may be assumed.

yaA

&H

Fig. 8.4.1 Rectangular waveguide.

The simplest and dominant propagation mode is the so-called TE;y mode and de-
pends only on the x-coordinate (of the longest side.) Therefore, we begin by looking
for solutions of Eq. (8.3.8) that depend only on x. In this case, the Helmholtz equation
reduces to:

02H, (x) +k*H,(x)= 0

The most general solution is a linear combination of cos k.x and sin k.X. However,
only the former will satisfy the boundary conditions. Therefore, the solution is:

H,(x)= Hgcoskcx (8.4.1)

where Hy is a (complex-valued) constant. Because there is no y-dependence, it follows
from Eq. (8.3.8) that 0,,H, = 0, and hence H, = 0 and Ex = 0. It also follows that:

Hy(x)= _ﬁ OxH, = _%lj
c

> (—k¢)Hg sinkcx =J—BH0 sink.x = H; sinkcx
kc kC
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Then, the corresponding electric field will be:
_ _ JB . o
Ey(x)= —n1eHx(X)= —n1e%~ Hosinkex = Ep sinkcx
c

where we defined the constants:

ke
8 (8.4.2)
J . W
Ey=-neH = - — Hy=-jn—H
0 Nte nTEkC 0 Jn W, 0
where we used nrg = nw/Bc. In summary, the non-zero field components are:

H,(x)= Hgcoskcx H,(x,y,z,t)= Hg cos kcx e/wt=Jbz

H, (x)= Hj sink:x = Hy(x,y,z,t)= H sinkcx e/wt-ibz (8.4.3)

Ey (x)= Egsinkcx Ey(x,y,2,t)= Eqsinkcx e/®=/hz

Assuming perfectly conducting walls, the boundary conditions require that there be
no tangential electric field at any of the wall sides. Because the electric field is in the
y-direction, it is normal to the top and bottom sides. But, it is parallel to the left and
right sides. On the left side, x = 0, E) (x) vanishes because sink.x does. On the right
side, x = a, the boundary condition requires:

Ey,(a)= Epsinkca=0 = sinkca=0

This requires that k.a be an integral multiple of 7t:

kca=nm = k.= '%T (8.4.4)

These are the so-called TE,o modes. The corresponding cutoff frequency w. = ck,
fc = we/21T, and wavelength A, = 21t/k. = c/f. are:

cnTr cn 2a
We=—, fe=—, Ac=— (TEno modes) (8.4.5)
a 2a n

The dominant mode is the one with the lowest cutoff frequency or the longest cutoff
wavelength, that is, the mode TE,( having n = 1. It has:

ke=—, we=—, fe Ac =2a (TE19 mode) (8.4.6)

a T 2a’

T CcTU C
a

Fig. 8.4.2 depicts the electric field Ey, (x) = Epsinkcx = Egsin(mrx/a) of this mode
as a function of x.
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ya

Ey
g ZlR

a

Fig. 8.4.2 Electric field inside a rectangular waveguide.

8.5 Higher TE and TM modes

To construct higher modes, we look for solutions of the Helmholtz equation that are
factorable in their x and y dependence:

H,(x,y)=F(Xx)G(y)
Then, Eq. (8.3.8) becomes:

F'(x)  6"O)
F(Xx) G(y)

Because these must be valid for all x, y (inside the guide), the F- and G-terms must
be constants, independent of x and y. Thus, we write:

F"(x)G(y)+F(X)G" (y) +k*F (x) G (y)= 0 +k3=0 (85.1)

F" (x) 2 G"(y) 2
=—k =—k
F(x) Gy Y
F'(x)+kiF(x)=0, G"()+kiG(y)=0 (8.5.2)

where the constants k2 and k)z, are constrained from Eq. (8.5.1) to satisfy:

ki = k3 +k; (8.5.3)

The most general solutions of (8.5.2) that will satisfy the TE boundary conditions are
cos kxx and cos kyy. Thus, the longitudinal magnetic field will be:

H, (x,y)= Hocos kxx coskyy (TEnm modes) (8.5.4)

It then follows from the rest of the equations (8.3.8) that:

Hx(x,y) = H; sinkxx coskyy Ex(x,y) = Ej coskxxsinkyy
(8.5.5)
Hy (x,y) = H, coskxx sink,y Ey(x,y) = Ep sinkxxcoskyy

where we defined the constants:
JBky

H, = Hy, H,= H
1 kg 0 2 kg 0
wk wk
E\ =nmHs =j Y Hy, E»=-nmH, = —j X H
1 = Nref? anckc 0 2 nre i anckc 0
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The boundary conditions are that E, vanish on the right wall, x = a, and that Ex
vanish on the top wall, y = b, that is,

Ey(a,y)= Egysinkxacoskyy =0, Ex(x,b)= Eoxcoskxxsinkyb =0

The conditions require that kya and kyb be integral multiples of Tr:

kea =nm, kp=mm > |ke= "2, k, =0

a b (8.5.6)

These correspond to the TE,,; modes. Thus, the cutoff wavenumbers of these modes
ke = +/k% + k} take on the quantized values:

ke = \/<n:>2 + (?)2 (TE;ym modes) (8.5.7)

The cutoff frequencies fm = wc/21 = cko /21 and wavelengths A,y = ¢/fnm are:

e (Y (MY A, = 1 N
fam = ¢ (2a> +<2b) A <%>2+(%>2 (8.5.8)

The TE(,;, modes are similar to the TE,o modes, but with x and a replaced by y and
b. The family of TM modes can also be constructed in a similar fashion from Eq. (8.3.10).

Assuming E, (x,y)= F(x)G(y), we obtain the same equations (8.5.2). Because E,
is parallel to all walls, we must now choose the solutions sinky and sink,y. Thus, the
longitudinal electric fields is:

E,(x,y)= Egsinkxxsink,y (TM;;;, modes) (8.5.9)

The rest of the field components can be worked out from Eq. (8.3.10) and one finds
that they are given by the same expressions as (8.5.5), except now the constants are
determined in terms of Ej:

JBKkx JBky
E, =- Ey, E,=- E
1 2 Fo B 2 Fo
ok .
H1=—L52=Jwy150, H2=L51=—kaXlHo
nm wcke N nm wcke N

where we used nry = nBc/w. The boundary conditions on Ey, E, are the same as
before, and in addition, we must require that E, vanish on all walls.

These conditions imply that ky, k,, will be given by Eq. (8.5.6), except both n and m
must be non-zero (otherwise E, would vanish identically.) Thus, the cutoff frequencies
and wavelengths are the same as in Eq. (8.5.8).

Waveguide modes can be excited by inserting small probes at the beginning of the
waveguide. The probes are chosen to generate an electric field that resembles the field
of the desired mode.
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8.6 Operating Bandwidth

All waveguiding systems are operated in a frequency range that ensures that only the
lowest mode can propagate. If several modes can propagate simultaneously,’ one has
no control over which modes will actually be carrying the transmitted signal. This may
cause undue amounts of dispersion, distortion, and erratic operation.

A mode with cutoff frequency w,. will propagate only if its frequency is w > we,
or A < Aq. If w < we, the wave will attenuate exponentially along the guide direction.
This follows from the ), B relationship (8.1.10):

w? — w2

w?=w?+pi? = BF= =

If w = w¢, the wavenumber f is real-valued and the wave will propagate. But if
w < w¢, B becomes imaginary, say, f§ = —j«, and the wave will attenuate in the z-
direction, with a penetration depth § = 1/

e—jﬁz — oz

If the frequency w is greater than the cutoff frequencies of several modes, then all
of these modes can propagate. Conversely, if w is less than all cutoff frequencies, then
none of the modes can propagate.

If we arrange the cutoff frequencies in increasing order, we; < Wep < Wez < - - -,
then, to ensure single-mode operation, the frequency must be restricted to the interval
We1 < W < We2, so that only the lowest mode will propagate. This interval defines the
operating bandwidth of the guide.

These remarks apply to all waveguiding systems, not just hollow conducting wave-
guides. For example, in coaxial cables the lowest mode is the TEM mode having no cutoff
frequency, w.; = 0. However, TE and TM modes with non-zero cutoff frequencies do
exist and place an upper limit on the usable bandwidth of the TEM mode. Similarly, in
optical fibers, the lowest mode has no cutoff, and the single-mode bandwidth is deter-
mined by the next cutoff frequency.

In rectangular waveguides the smallest cutoff frequencies are fi9 = c/2a, 2 =
c/a = 2f10, and fo1 = c/2b. Because we assumed that b < a, it follows that always
fio < fo1. If b < a/2, then 1/a < 1/2b and therefore, f>9 < fo1, So that the two lowest
cutoff frequencies are f1o and f>o.

On the other hand, if a/2 < b < a, then fy; < f2¢ and the two smallest frequencies
are f10 and fo; (except when b = a, in which case fo1 = f10 and the smallest frequencies
are f10 and f>0.) The two cases b < a/2 and b > a/2 are depicted in Fig. 8.6.1.

It is evident from this figure that in order to achieve the widest possible usable
bandwidth for the TE;(y mode, the guide dimensions must satisfy b < a/2 so that the
bandwidth is the interval [fc, 2f:], where f. = fio = ¢/2a. In terms of the wavelength
A = c/f, the operating bandwidth becomes: 0.5 < a/A < 1,or,a < A < 2a.

We will see later that the total amount of transmitted power in this mode is propor-
tional to the cross-sectional area of the guide, ab. Thus, if in addition to having the

TMurphy’s law for waveguides states that “if a mode can propagate, it will.”
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Fig. 8.6.1 Operating bandwidth in rectangular waveguides.

widest bandwidth, we also require to have the maximum power transmitted, the dimen-
sion b must be chosen to be as large as possible, that is, b = a/2. Most practical guides
follow these side proportions.

If there is a “canonical” guide, it will have b = a/2 and be operated at a frequency
that lies in the middle of the operating band [f, 2], that is,

f=1.5f= 0.752 (8.6.1)

Table 8.6.1 lists some standard air-filled rectangular waveguides with their naming
designations, inner side dimensions a, b in inches, cutoff frequencies in GHz, minimum
and maximum recommended operating frequencies in GHz, power ratings, and attenua-
tions in dB/m (the power ratings and attenuations are representative over each operating
band.) We have chosen one example from each microwave band.

name a b fe fnin fmax band P o

WR-510 5.10 2.55 1.16 1.45 2.20 L 9 MW 0.007
WR-284 2.84 1.34 2.08 2.60 3.95 S 2.7 MW | 0.019
WR-159 1.59 0.795 3.71 4.64 7.05 C 0.9 MW | 0.043

WR-90 0.90 0.40 6.56 8.20 12.50 X 250 kW | 0.110
WR-62 0.622 | 0.311 9.49 | 11.90 18.00 Ku 140 kW | 0.176
WR-42 0.42 0.17 14.05 | 17.60 26.70 K 50 kW | 0.370
WR-28 0.28 0.14 21.08 | 26.40 40.00 Ka 27 kW | 0.583
WR-15 0.148 | 0.074 | 39.87 | 49.80 75.80 \Y 7.5 kW | 1.52
WR-10 0.10 0.05 59.01 | 73.80 | 112.00 W 3.5 kW | 2.74

Table 8.6.1 Characteristics of some standard air-filled rectangular waveguides.

8.7 Power Transfer, Energy Density, and Group Velocity

Next, we calculate the time-averaged power transmitted in the TE; mode. We also calcu-
late the energy density of the fields and determine the velocity by which electromagnetic
energy flows down the guide and show that it is equal to the group velocity. We recall
that the non-zero field components are:

H,(x)= Hocoskex, Hx(x)=H;sinkcx, Ey(x)= Epsinkcx (8.7.1)
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where

. W
H, = ;TEHO, Ey = -nmeHy = —jn ——Ho (8.7.2)
c Wc
The Poynting vector is obtained from the general result of Eq. (8.3.7):

1 1
Po= B

1
|Ey (x)|*> = —— |Eo|? sin® kcX
2NntE 2ne 2N tE 0 ¢

The transmitted power is obtained by integrating 7, over the cross-sectional area
of the guide:

a b 1
Pr = J J ——— |Eo|? sin® kex dxdy
0 Jo 2ntE
Noting the definite integral,

a a
J sin? kex dx = J sin? (M) dx = 4 (8.7.3)
0 0 a 2

and using n7e = nw/Bc = n/4/1 — w3/ w?2, we obtain:

1 1 w?
Pr = ——|Ey|l?ab = —|Eyl?ab[1 - =< t itted 8.7.4
T 4I7TE| ol 4r)| ol 02 (transmitted power) ( )

We may also calculate the distribution of electromagnetic energy along the guide, as
measured by the time-averaged energy density. The energy densities of the electric and
magnetic fields are:

1

1 1
We = —Re(=€E- E*) = =€|E,|?
e =, Re(; ) = 4l

1 1 1
Wm = = Re(=uH- H*) = - p(|Hy|? + |H,|?)
2 2 4
Inserting the expressions for the fields, we find:
1 1
We =7 €|Eo|? sin®kex,  wpm = Zu(|H1 12 sin® kex + |Ho|? cos? kex)
Because these quantities represent the energy per unit volume, if we integrate them

over the cross-sectional area of the guide, we will obtain the energy distributions per
unit z-length. Using the integral (8.7.3) and an identical one for the cosine case, we find:

a b a by 1
W, = J J We(x,y) dxdy = '[ J = €|Eo|? sin® kex dxdy = - €|Eo|?ab
0 Jo 0Jo 4 8

a rb
, 1 . 1
w,, = Jo .[o ZU(|H1|ZSH12 kex + [Hol? cos® kex)dxdy = gu(lHll2 + |Hpl?)ab
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Although these expressions look different, they are actually equal, W, = W,,. In-
deed, using the property 82/k? +1 = (B2 + k2) /k? = k?/k2 = w?/w? and the relation-
ships between the constants in (8.7.1), we find:

2 2
w
u(IHl? + [Hol?) = u(IHolzli2 +|Hol?) = u|Hol*— = %Ifiol2 = €|Eo|?
c We n

The equality of the electric and magnetic energies is a general property of wavegui-
ding systems. We also encountered it in Sec. 2.3 for uniform plane waves. The total
energy density per unit length will be:

1
W' =W, +W,, =2W, = 1 €lEo|?ab (8.7.5)

According to the general relationship between flux, density, and transport velocity
given in Eq. (1.5.2), the energy transport velocity will be the ratio ve, = P7/W’. Using
Egs. (8.7.4) and (8.7.5) and noting that 1/ne = 1/./u€ = ¢, we find:

Pr w? .
Ven = W Cy[1— w—g (energy transport velocity) (8.7.6)

This is equal to the group velocity of the propagating mode. For any dispersion
relationship between w and B, the group and phase velocities are defined by

Vor = (Zl—(g , Vph = % (group and phase velocities) (8.7.7)

For uniform plane waves and TEM transmission lines, we have w = fc, so that vy =
Vph = C. For a rectangular waveguide, we have w? = w? + B%¢?. Taking differentials of
both sides, we find 2cwdw = 2¢%Bd B, which gives:

_dw _ Bt _ [ wi
vgr—dB— w =C 170U2 (8.7.8)

where we used Eq. (8.1.10). Thus, the energy transport velocity is equal to the group
velocity, Ven = Vgr. We note that Vg = Bc?/w = ¢?/Vpn, or

VgrVph = €2 (8.7.9)

The energy or group velocity satisfies Vg < ¢, whereas vpn = ¢. Information trans-
mission down the guide is by the group velocity and, consistent with the theory of
relativity, it is less than c.

8.8 Power Attenuation

In this section, we calculate the attenuation coefficient due to the ohmic losses of the
conducting walls following the procedure outlined in Sec. 8.2. The losses due to the
filling dielectric can be determined from Eq. (8.2.5).
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The field expressions (8.4.3) were derived assuming the boundary conditions for
perfectly conducting wall surfaces. The induced surface currents on the inner walls of
the waveguide are given by J; = fi X H, where the unit vector fi is =X and =V on the
left/right and bottom/top walls, respectively.

The surface currents and tangential magnetic fields are shown in Fig. 8.8.1. In par-
ticular, on the bottom and top walls, we have:

Fig. 8.8.1 Currents on waveguide walls.

Jo=*2yxH=*xyX XHy+zH,;)= *(-2Z2Hy+XH,)= = (—ZH; sink:x + X Hy cos k:x)
Similarly, on the left and right walls:
Jo=*xXXH=+XX (XHx+ ZH,)= ¥y H, = ¥y Hycos k¢x

At x = 0 and x = a, this gives J; = ¥y (+=Hy)= y Hy. Thus, the magnitudes of the
surface currents are on the four walls:

2 = [Hol?, (left and right walls)
st 7| |Hol?cos? kex + |Hyp|? sin® kex, (top and bottom walls)

The power loss per unit z-length is obtained from Eq. (8.2.8) by integrating |J;|?
around the four walls, that is,

’ 1 “e 1 (i
Ploss =2_R; |Js1=dx + 2= Rs |Js|= dy
2 0 2 0

a b
= RSJ (1Ho|? cos? kex + |Hy|? sin® kex) dx + RSJ |Hol? dy
0 0

Rga

a , : , , oh
= Rs§(|Ho|2 +|H1|*) + Rsb|Ho|* = T(|Ho|Z +Hy|* + ;|H0|Z)

Using |Ho|? +|H11? = |Eg|?/n? from Sec. 8.7, and |Ho|? = (|Eq|?/n?) w?/w?, which
follows from Eq. (8.4.2), we obtain:

7 R a|EO|2 2b wz
Plogs = |1+ ;wig

The attenuation constant is computed from Egs. (8.2.9) and (8.7.4):
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RsalEy|* (1 @wj)
Pl 20° a w?

o(c—
ZPT 1 wZ
2—|Egl?ab+|1 — —<
4'7| ol"aby1 -

which gives:

K= — ————— (attenuation of TE;(y mode) (8.8.1)

This is in units of nepers/m. Its value in dB/m is obtained by xxgg = 8.686 .. For a
given ratio a/b, o, increases with decreasing b, thus the smaller the guide dimensions,
the larger the attenuation. This trend is noted in Table 8.6.1.

The main tradeoffs in a waveguiding system are that as the operating frequency f
increases, the dimensions of the guide must decrease in order to maintain the operat-
ing band f. < f < 2f¢, but then the attenuation increases and the transmitted power
decreases as it is proportional to the guide’s area.

Example 8.8.1: Design a rectangular air-filled waveguide to be operated at 5 GHz, then, re-
design it to be operated at 10 GHz. The operating frequency must lie in the middle of the
operating band. Calculate the guide dimensions, the attenuation constant in dB/m, and
the maximum transmitted power assuming the maximum electric field is one-half of the
dielectric strength of air. Assume copper walls with conductivity o = 5.8x107 S/m.

Solution: If f is in the middle of the operating band, f. < f < 2f., where f. = c/2a, then
f = 1.5fc = 0.75c/a. Solving for a, we find

_ 0.75¢ _ 0.75%30 GHz cm
==t = .

=4.5 cm

For maximum power transfer, we require b = a/2 = 2.25 cm. Because w = 1.5w., we
have w./w = 2/3. Then, Eq. (8.8.1) gives &, = 0.037 dB/m. The dielectric strength of air
is 3 MV/m. Thus, the maximum allowed electric field in the guide is Ey = 1.5 MV/m. Then,
Eq. (8.7.4) gives Py = 1.12 MW.

At 10 GHz, because f is doubled, the guide dimensions are halved, a = 2.25 and b = 1.125
cm. Because R, depends on f like f1/2, it will increase by a factor of +/2. Then, the factor
R,/b will increase by a factor of 2+/2. Thus, the attenuation will increase to the value
& = 0.037 - 24/2 = 0.105 dB/m. Because the area ab is reduced by a factor of four, so
will the power, Py = 1.12/4 = 0.28 MW = 280 kW.

The results of these two cases are consistent with the values quoted in Table 8.6.1 for the
C-band and X-band waveguides, WR-159 and WR-90. [m}

Example 8.8.2: WR-159 Waveguide. Consider the C-band WR-159 air-filled waveguide whose
characteristics were listed in Table 8.6.1. Its inner dimensions are a = 1.59and b = a/2 =
0.795 inches, or, equivalently, a = 4.0386 and b = 2.0193 cm.
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0.1

0.08f

a (dB/m)

0.02f

0.041

The cutoff frequency of the TE;o mode is f; = ¢/2a = 3.71 GHz. The maximum operating
bandwidth is the interval [f;,2f.]= [3.71,7.42] GHz, and the recommended interval is
[4.64,7.05] GHz.

Assuming copper walls with conductivity o = 5.8x107 S/m, the calculated attenuation
constant . from Eq. (8.8.1) is plotted in dB/m versus frequency in Fig. 8.8.2.

Attenuation Coefficient Power Transmitted

15

bandwidth

Pt (MW)

0.5f

bandwidth

8.9

An in

0

o 1 2 3 4 5 6 7 8 9 10 11 12 0O 1 2 3 4 5 6 7 8 9 10 11 12

f (GHz) f (GHz)
Fig. 8.8.2 Attenuation constant and transmitted power in a WR-159 waveguide.

The power transmitted P is calculated from Eq. (8.7.4) assuming a maximum breakdown
voltage of Ey = 1.5 MV/m, which gives a safety factor of two over the dielectric breakdown
of air of 3 MV/m. The power in megawatt scales is plotted in Fig. 8.8.2.

Because of the factor 4/1 — w2/w? in the denominator of &, and the numerator of Pr,
the attenuation constant becomes very large near the cutoff frequency, while the power is
almost zero. A physical explanation of this behavior is given in the next section. [m}

Reflection Model of Waveguide Propagation

tuitive model for the TE;p mode can be derived by considering a TE-polarized

uniform plane wave propagating in the z-direction by obliquely bouncing back and forth
between the left and right walls of the waveguide, as shown in Fig. 8.9.1.

If

0 is the angle of incidence, then the incident and reflected (from the right wall)

wavevectors will be:

k=%Xky+zk, =XkcosO +zksin0

kK = —xky+ 2k, = —%Xkcos@ + 2ksin0

The electric and magnetic fields will be the sum of an incident and a reflected com-
ponent of the form:

Eje KT = g E e kxemke? o g ErelkXeikez — B 4 E

E=VEe/* 1y
1. 1 .0
H=—kxE +—-k XE
n n
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v

Fig. 8.9.1 Reflection model of TE;y mode.

where the electric field was taken to be polarized in the y direction. These field expres-
sions become component-wise:

Ey _ (Ele‘jkxx + Eiejkxx)e—jkzz
1 . . .
L —jkxx 7 HJkxX ) ,—jkzz
H, = n sin 0 (E,e +Eje/¥)e (8.9.1)
1 i N —J
H, = n cos 0 (E1e /o — Eje/lox) e ke

The boundary condition on the left wall, x = 0, requires that E; + E; = 0. We may write
therefore, E1 = —E} = jEy/2. Then, the above expressions simplify into:

E, = Eysinkyx e /kzZ

1 )
i : —jkzz
Hy = n sin OF sinkxx e (8.9.2)

H, = % cos OE coskyx e

—jkzz

These are identical to Eq. (8.4.3) provided we identify 8 with k, and k. with ky, as
shown in Fig. 8.9.1. It follows from the wavevector triangle in the figure that the angle
of incidence 0 will be given by cos 0 = kyx/k = k. /k, or,

2
cos 0 = L¢ , sin@ = - w—; (8.9.3)
w w

The ratio of the transverse components, —E), /Hy, is the transverse impedance, which
is recognized to be nyz. Indeed, we have:

n _ kB _n _ n
E Hy sin0 w?

(8.9.4)
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The boundary condition on the right wall requires sinkya = 0, which gives rise to
the same condition as (8.4.4), that is, kca = nTr.

This model clarifies also the meaning of the group velocity. The plane wave is bounc-
ing left and right with the speed of light c. However, the component of this velocity in
the z-direction will be v, = ¢ sin 6. This is equal to the group velocity. Indeed, it follows
from Eq. (8.9.3) that:

w?
vV, =csin0 = ¢ l—w—g = Vgr (8.9.5)
Eq. (8.9.3) implies also that at v = w., we have sin @ = 0, or 0 = 0, that is, the wave
is bouncing left and right at normal incidence, creating a standing wave, and does not
propagate towards the z-direction. Thus, the transmitted power is zero and this also
implies, through Eq. (8.2.9), that &, will be infinite.
On the other hand, for very large frequencies, w > w,, the angle 9 will tend to 90°,

causing the wave to zoom through guide almost at the speed of light.

8.10 Resonant Cavities

Cavity resonators are metallic enclosures that can trap electromagnetic fields. The
boundary conditions on the cavity walls force the fields to exist only at certain quantized
resonant frequencies. For highly conducting walls, the resonances are extremely sharp,
having a very high Q of the order of 10,000.

Because of their high Q, cavities can be used not only to efficiently store electro-
magnetic energy at microwave frequencies, but also to act as precise oscillators and to
perform precise frequency measurements.

Fig. 8.10.1 shows a rectangular cavity with z-length equal to I formed by replacing
the sending and receiving ends of a waveguide by metallic walls. A forward-moving wave
will bounce back and forth from these walls, resulting in a standing-wave pattern along
the z-direction.

top
y ‘/—J” ’ ‘%right
sz T - H,
bl / bligt Hx
T ~
b4 a a4 “front

Fig. 8.10.1 Rectangular cavity resonator (and induced wall currents for the TEyq, mode.)

Because the tangential components of the electric field must vanish at the end-walls,
these walls must coincide with zero crossings of the standing wave, or put differently, an
integral multiple of half-wavelengths must fit along the z-direction, thatis, | = pA4/2 =
ptt/B, or B = p1r/l, where p is a non-zero integer. For the same reason, the standing-
wave patterns along the transverse directions require a = nAx/2 and b = ma,/2, or
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kx = nm/a and ky, = mtt/b. Thus, all three cartesian components of the wave vector
are quantized, and therefore, so is the frequency of the wave w = cq/k% + k)z, + B2:

a b 1

2 2 2
Wnmp = C\/(rm) + (ﬂ) + (pj) (resonant frequencies) (8.10.1)

Such modes are designated as TEnmp or TMymp. For simplicity, we consider the case
TEnop- Eqgs. (8.3.6) also describe backward-moving waves if one replaces 8 by —f, which
also changes the sign of ntg = nw/Bc. Starting with a linear combination of forward
and backward waves in the TE,( mode, we obtain the field components:

H,(x,z) = Hycoskex(AeP% + BelP?),
Hy(x,z) = jHysinkcx(Ae /P% — BelF?), H, = kﬁHo (8.10.2)
C

Ey(x,2) = —jEgsinkcex(Ae 7 + Belb?) Ey = % nHo
c
where w. = ck¢. By requiring that Ey (x, z) have z-dependence of the form sin Sz, the
coefficients A, B must be chosen as A = —B = j/2. Then, Eq. (8.10.2) specializes into:

H,(x,z) = Hycoskex sinz,
Hy(x,z) = —H; sinkc:x cosfz, Hy; =-— Hj (8.10.3)

Ey(x,z) = —jEosinkcx sinfz, Ep= % nH,
c

As expected, the vanishing of Ey (x, z) on the front/back walls, z = 0 and z = [, and
on the left/right walls, x = 0 and x = a, requires the quantization conditions: 8 = p1r/Il
and k. = ntt/a. The Q of the resonator can be calculated from its definition:

w
Ploss

where W is the total time-averaged energy stored within the cavity volume and P is
the total power loss due to the wall ohmic losses (plus other losses, such as dielectric
losses, if present.) The ratio Aw = Pjyss/W is usually identified as the 3-dB width of the
resonance centered at frequency w. Therefore, we may write Q = w/Aw.

It is easily verified that the electric and magnetic energies are equal, therefore, W
may be calculated by integrating the electric energy density over the cavity volume:

Q= w (8.10.4)

a rb rl

W= 2W, = 21J €lE, (x,2) [2dxdy dz = le|150|2J J J sin? kox cos® Bz dxdy dz
4 vol 2 0 0 0

_1 2 _1 2‘072 _1 2 k2 + p?

= 8€|E0| (abl)= 8/JIHol w2 (abl)= 81J|H0| T (abl)

where we used the following definite integrals (valid because k. = n1r/a, = ptt/I):

1 1

sin® Bzdz = J cos’ Bzdz = é (8.10.5)

a a a
J sin? kex dx = J cos?kexdx = =, J
0 0 2 0

0
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The ohmic losses are calculated from Eq. (8.2.6), integrated over all six cavity sides.
The surface currents induced on the walls are related to the tangential magnetic fields
by Js = fi X Hian. The directions of these currents are shown in Fig. 8.10.1. Specifically,
we find for the currents on the six sides:

HZsin? Bz (left & right)
[Js1? = { H3 cos? kcx sin® Bz + H? sin® kcx cos? Bz (top & bottom)
H? sin® kcx (front & back)

The power loss can be computed by integrating the loss per unit conductor area,
Eg. (8.2.6), over the six wall sides, or doubling the answer for the left, top, and front
sides. Using the integrals (8.10.5), we find:

1 bl al ab
Puss = 3Ry | P da =R [B3E + g+ ) % 4 12|
2 walls 2 4 2
. (8.10.6)
L, e B?
= ZRSHO I2b+a)+-5ab+1)
c

where we substituted H = H3B%/k2. It follows that the Q-factor will be:

Q- W _wH (k& + B*) (abl)
" Ploss  2Rs kK21(2b + a) +B2a(2b + 1)

For the TE;p mode we have = p1r/l and k. = n1r/a. Using Eq. (8.2.7) to replace
R in terms of the skin depth §, we find:

nZ pZ

_1 az ' I2
o ERY
at\a b 2\l b
The lowest resonant frequency corresponds to n = p = 1. For a cubic cavity, a =
b =1, the Q and the lowest resonant frequency are:

Q (8.10.7)

Q—i w _Ccmy2 f _w
_36! 101 = a ) 101_2_’_‘__61\/?

(8.10.8)

For an air-filled cubic cavity with a = 3 cm, we find f191 = 7.07 GHz, § = 7.86x107>
cm, and Q = 12724. As in waveguides, cavities can be excited by inserting small probes
that generate fields resembling a particular mode.

8.11 Dielectric Slab Waveguides

A dielectric slab waveguide is a planar dielectric sheet or thin film of some thickness,
say 2a, as shown in Fig. 8.11.1. Wave propagation in the z-direction is by total internal
reflection from the left and right walls of the slab. Such waveguides provide simple
models for the confining mechanism of waves propagating in optical fibers.
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Fig. 8.11.1 Dielectric slab waveguide.

The propagating fields are confined primarily inside the slab, however, they also
exist as evanescent waves outside it, decaying exponentially with distance from the slab.
Fig. 8.11.1 shows a typical electric field pattern as a function of x.

For simplicity, we assume that the media to the left and right of the slab are the
same. To guarantee total internal reflection, the dielectric constants inside and outside
the slab must satisfy €; > €, and similarly for the refractive indices, n; > np.

We look for TE solutions that depend only on the x coordinate. The cutoff wavenum-
ber k. appearing in the Helmholtz equation for H, (x) depends on the dielectric constant
of the propagation medium, k2 = w?eu — B2. Therefore, k2 takes different values inside
and outside the guide:

k%, = w?ei1po — B% = weouont — B2 = kini — B> (inside)

(8.11.1)
ke

w2211 — B% = weouons — B> = kjn3 — B> (outside)

where kg = w/cg is the free-space wavenumber. We note that w, 8 are the same inside
and outside the guide. This follows from matching the tangential fields at all times t
and all points z along the slab walls. The corresponding Helmholtz equations in the
regions inside and outside the guide are:

02H,(x)+k>H,(x)=0 for |x|<a
(8.11.2)
02H,(x)+k3%H,(x)=0 for |x|=a

Inside the slab, the solutions are sink.;x and cos k.1 x, and outside, sinkqx and
cos kX, or equivalently, e*/ke2X n order for the waves to remain confined in the near
vicinity of the slab, the quantity k., must be imaginary, for if it is real, the fields would
propagate at large x distances from the slab (they would correspond to the rays refracted
from the inside into the outside.)

If we set ke, = —jXc, the solutions outside will be e**<X, If x, is positive, then only
the solution e~ %<X is physically acceptable to the right of the slab, x > a, and only e%<X
to the left, x < —a. Thus, the fields attenuate exponentially with the transverse distance
X, and exist effectively within a skin depth distance 1/, from the slab. Setting k.1 = k.
and kcp = —jxc, Egs. (8.11.1) become in this new notation:
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ke = kgni — B° ke = kgni — B°
= (8.11.3)

2,2
2 0”2 B? 0‘? =p* - kons

Similarly, Egs. (8.11.2) read:

02H,(x)+k?H,(x)=0 for |x|<a
(8.11.4)
02H,(x)-o?H,(x)=0 for [|x|>a
The two solutions sin k. x and cos k.x inside the guide give rise to the so-called even
and odd TE modes (referring to the even-ness or oddness of the resulting electric field.)
For the even modes, the solutions of Egs. (8.11.4) have the form:

H;sink.x, if —-a<x=<a

H,(x)=1 Hpe %X, if x=>a (8.11.5)
Hje%X | if x<-a

The corresponding x-components are obtained by applying Eq. (8.3.8) using the ap-

propriate value for k2, that is, k2, = —«?2 outside and k?; = k2 inside:

JBatz(x)_ —Jk—‘BHl coskcx, if —-as<x=<a

c
Hy(x)= JB > OxHz (X)= — JB Hye %* if x>a (8.11.6)
c
—%%Hz(x)—ﬁng if x=a
—Qc

The electric fields are E) (x) = —n7eHx (x), where nrg = wpo/ B is the same inside
and outside the slab. Thus, the electric field has the form:

Eicoskex, if —a<x=<a
Ey(x)=1q E:e™%¥, if x=a (even TE modes) (8.11.7)
Eze®X | if x<-a
where we defined the constants:

kB neHy, E»= B neH,, E3= _JB nreH3 (8.11.8)
c K¢ K¢

The boundary conditions state that the tangential components of the magnetic and
electric fields, that is, H,, Hy, Ey, are continuous across the dielectric interfaces at x =
—a and x = a. Because E,, = —ngHx and nr¢ is the same in both media, the continuity

of E, follows from the continuity of Hy. The continuity of H, at X = a and X = —a
implies that:

E, =

H,sink.a = Hye %2 and - H,;sink.a = Hze %4 (8.11.9)

Similarly, the continuity of Hy implies (after canceling a factor of —jf):
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1 1 1 1
— Hycoskca=—Hre %% and — H;coskca=—— Hze %4

kC O(C kC (XC
Egs. (8.11.9) and (8.11.10) imply:

. x
H, = —H;3 = Hje%%sink.a = H,e%“ k—c coskca
c

Similarly, we find for the electric field constants:

ke .
E» = E3 = E1e®“9coskea = F1e*4 (X—C sink.a
c

The consistency of the last equations in (8.11.11) or (8.11.12) requires that:

ke .
coskea = OTC sinkca = |o=kctankea

c
For the odd TE modes, we have for the solutions of Eq. (8.11.4):
Hicoskcx, if —a<x=<a
H,(x)=1 Hpe %X, if x=a
Hie%X | if x<-a
The resulting electric field is:
Eysinkcx, if —-a<x=<a
Ey(x)=1 Exe™%X, if x=a (odd TE modes)
Eze&eX | if x<-a

The boundary conditions imply in this case:

H, = Hjz = Hye%“ coskca

X .
—Hleo‘C“ kfc sink.a
c

and, for the electric field constants:

E, =—-E3 = Ele"‘f“ sink.a

k
—Eje% =% cosk.a
K¢

The consistency of the last equation requires:

. = —kccotkca

(8.11.10)

(8.11.11)

(8.11.12)

(8.11.13)

(8.11.14)

(8.11.15)

(8.11.16)

(8.11.17)

(8.11.18)

We note that the electric fields Ey, (x) given by Egs. (8.11.7) and (8.11.15) are even or
odd functions of x for the two families of modes. Expressing E» and E3 in terms of E,

we summarize the forms of the electric fields in the two cases:
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Ej coskex, if —a<x=<a

E,(x)=1 Ejcoskca e~ %c(x=a) ~if x>g (even TE modes) (8.11.19)
E,coskcae®®+a) — if x < —qg
Eysinkcx, if —a<x=<a

Ey(x)=1{ Epsinkcae ®-4 = if x=>aqa (odd TE modes)  (8.11.20)

—E; sinkcae¥®+ta) - if x < —g

Given the operating frequency w, Egs. (8.11.3) and (8.11.13) or (8.11.18) provide three
equations in the three unknowns k¢, &, 8. To solve them, we add the two equations
(8.11.3) to eliminate f3:

2

w
o + ki = k§(nf = n3)= "5 (nf - n3) (8.11.21)
0

Next, we discuss the numerical solutions of these equations. Defining the dimen-
sionless quantities u = kca and v = x.a, we may rewrite Egs. (8.11.13), (8.11.18), and
(8.11.21) in the equivalent forms:

Vv =utanu VvV = —ucotu

) 2 _ g2 (even modes) |, ) 2 _ g (odd modes) (8.11.22)
Ve 4+ uc = Ve 4+ uc =

where R is the normalized frequency variable:

2 2
R = koaN, = %NA _2mray, - TN (8.11.23)
0

where N, = wln% - n% is the numerical aperture of the slab and A = ¢ /f, the free-space
wavelength.

Because the functions tanu and cotu have many branches, there may be several
possible solution pairs u, v for each value of R. These solutions are obtained at the
intersections of the curves v = utanu and v = —ucotu with the circle of radius R,
that is, v2 + u? = R?. Fig. 8.11.2 shows the solutions for various values of the radius R
corresponding to various values of w.

It is evident from the figure that for small enough R, thatis, 0 < R < 11/2, there
is only one solution and it is even (for an optical fiber, the single-mode condition reads
2mmaN /A < 2.405, where a is the core radius.) For 71/2 < R < 11, there are two
solutions, one even and one odd. For 71 < R < 3711/2, there are three solutions, two
even and one odd, and so on. In general, there will be M + 1 solutions, alternating
between even and odd, if R falls in the interval:

M <R< w (8.11.24)
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v A

even modes
odd modes

0 71/2 T 3710/2 210 5T1/2 37U

Fig. 8.11.2 Even and odd TE modes at different frequencies.

Given a value of R, we determine M as that integer satisfying Eq. (8.11.24), or, M <
2R/1t < M + 1, that is, the largest integer less than 2R /T:

M = floor <%) (maximum mode number) (8.11.25)

Then, there will be M +1 solutions indexed by m = 0, 1, ..., M, which will correspond
to even modes if m is even and to odd modes if m is odd. The M + 1 branches of tanu
and cot u being intersected by the R-circle are those contained in the u-ranges:

Rn<u<Rpmiil, m=01,....M (8.11.26)
where
Rm:g . m=0,1,....M (8.11.27)

If m is even, the u-range (8.11.26) defines a branch of tan u, and if m is odd, a branch
of cotu. We can combine the even and odd cases of Eq. (8.11.22) into a single case by
noting the identity:

tanu, if m is even
tan(u — Ryy) = ) ] (8.11.28)
—cotu, if m is odd

This follows from the trigonometric identity:

sinu cos (m7r/2) — cosu sin(mrr/2)
cosucos(mrr/2)+ sinu sin(mrr/2)

tan(u — mtr/2) =

Therefore, to find the mth mode, whether even or odd, we must find the unique
solution of the following system in the u-range R;; < u < Rjp41:
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v=utan(u - Ry) (mth mode) (8.11.29)
mth mode e
v2 +u?=R?

If one had an approximate solution u, v for the mth mode, one could refine it by using
Newton's method, which converges very fast provided it is close to the true solution. Just
such an approximate solution, accurate to within one percent of the true solution, was
given by Lotspeich [439]. Without going into the detailed justification of this method,
the approximation is as follows:

u=Ry+wi(mu(m)+w,(m)u,(m), m=0,1,...,.M (8.11.30)

where u; (m), u, (m) are approximate solutions near and far from the cutoff R,,, and
wi(m), wy (m) are weighting factors:

U (m)_\/1+2R(R—Rm)—1 U (m)_ER—m
R R ’ T2 R+1
wi(m)=exp(—(R —Rm)?/V3), wa(m)=1-w;(m) (8.11.31)

v 1 (1T/4+Rm_ )
M /In1.25 \ cos(rr/4) "

This solution serves as the starting point to Newton’s iteration for solving the equa-
tion F (u) = 0, where F (u) is defined by

F(u)=utan(u — Ry)—v = utan(u — Ry,) —vVR? — u? (8.11.32)

Newton’s iteration is:

fori=1,2...,Nj do:
B F(u) (8.11.33)
G(u)

where G (u) is the derivative F’ (u), correct to order O (F):

2
can=" + 4. K (8.11.34)
u A% u

The solution steps defined in Egs. (8.11.29)-(8.11.34) have been implemented in the
MATLAB function dsTab.m, with usage:

[u,v,err] = dslab(R,Nit); % TE-mode cutoff wavenumbers in a dielectric slab

where Nj; is the desired number of Newton iterations (8.11.33), err is the value of F (u)
at the end of the iterations, and u, v are the (M + 1)-dimensional vectors of solutions.
The number of iterations is typically very small, Nj; = 2-3.

The related MATLAB function dguide.muses ds1ab to calculate the solution param-
eters B, k¢, &Xc, given the frequency f, the half-length a, and the refractive indices ny, n;
of the slab. It has usage:
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[be,kc,ac,fc,err] = dguide(f,a,nl,n2,Nit); % dielectric slab guide

where f is in GHz, a in cm, and B, k¢, @ in cm™!. The quantity f is the vector of
the M + 1 cutoff frequencies defined by the branch edges R, = m7r/2, that is, R, =
wmaN a/co = 21fmaN 5/ co = mTt/2, or,

_ mcy
4aN 4

fim m=0,1,...,M (8.11.35)

The meaning of f}, is that there are m + 1 propagating modes for each f is in the
interval fi < f < fm+1-

Example 8.11.1: Dielectric Slab Waveguide. Determine the propagating TE modes of a dielectric
slab of half-length a = 0.5 cm at frequency f = 30 GHz. The refractive indices of the slab
and the surrounding dielectric are n; = 2 and n, = 1.

Solution: The solution is obtained by the MATLAB call:

f =30; a=0.5; nl=2; n2=1; Nit = 3;
[be,kc,ac,fc,err] = dguide(f,a,nl,n2,Nit)

The frequency radius is R = 5.4414, which gives 2R/1t = 3.4641, and therefore, M = 3.
The resulting solutions, depicted in Fig. 8.11.3, are as follows:

TE Modes for R =5.44 Electric Fields
7 T T T T
6
0
5 1
4 2
>
3
2 3
1
0
0o 1 2 3 4 5 6 7 -3 -2 -1 0 1 2 3

Fig. 8.11.3 TE modes and corresponding E-field patterns.

u v B ke Xc fm

m

0 1.3248 | 5.2777 | 12.2838 2.6497 | 10.5553 0.0000
1 2.6359 | 4.7603 | 11.4071 5.2718 9.5207 8.6603
2

3

3.9105 | 3.7837 9.8359 7.8210 7.5675 | 17.3205
5.0793 | 1.9519 7.3971 | 10.1585 3.9037 | 25.9808

The cutoff frequencies fy,, are in GHz. We note that as the mode number m increases,
the quantity o, decreases and the effective skin depth 1/, increases, causing the fields
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outside the slab to be less confined. The electric field patterns are also shown in the figure
as functions of x.

The approximation error, err, is found to be 4.885x10~!> using only three Newton itera-
tions. Using two, one, and no (the Lotspeich approximation) iterations would result in the
errors 2.381x1078, 4.029x107%, and 0.058.

The lowest non-zero cutoff frequency is f1 = 8.6603 GHz, implying that there will be a
single solution if f is in the interval 0 < f < f;. For example, if f = 5 GHz, the solution is
B = 1.5649 rad/cm, k. = 1.3920 rad/cm, and &, = 1.1629 nepers/cm.

The frequency range over which there are only four solutions is [25.9808,34.6410] GHz,
where the upper limit is 4f;. O

In terms of the ray picture of the propagating wave, the angles of total internal
reflection are quantized according to the values of the propagation wavenumber f3 for
the various modes.

If we denote by k; = kon; the wavenumber within the slab, then the wavenumbers
B, k¢ are the z- and x-components k, kyx of k; with an angle of incidence 0. (The vectorial

relationships are the same as those in Fig. 8.9.1.) Thus, we have:
B =kysinf = kogn; sin 0
(8.11.36)
ke = ki cos 0 = konj cos 0

The value of B for each mode will generate a corresponding value for 8. The at-
tenuation wavenumber . outside the slab can also be expressed in terms of the total
internal reflection angles:

e = \/BZ —k3n3 = ko\/nf sin 0 — n3

Since the critical angle is sin 8, = n,/n;, we may also express . as:

& = konjy/sin? @ — sin 62 (8.11.37)

Example 8.11.2: For the Example 8.11.1, we calculate ko = 6.2832 and k; = 12.5664 rad/cm.
The critical and total internal reflection angles of the four modes are found to be:

0. = asin(@) =30°
n;

0 = asin (5) = {77.8275°, 65.1960°, 51.5100°, 36.0609°}
1

As required, all Os are greater than .. 0O

8.12 Problems

8.1 An air-filled 1.5 cmXx3 cm waveguide is operated at a frequency that lies in the middle of its
TE;¢o mode band. Determine this operating frequency in GHz and calculate the maximum
power in Watts that can be transmitted without causing dielectric breakdown of air. The
dielectric strength of air is 3 MV/m.
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8.2 Itis desired to design an air-filled rectangular waveguide such that (a) it operates only in the
TE;op mode with the widest possible bandwidth, (b) it can transmit the maximum possible
power, and (c) the operating frequency is 12 GHz and it lies in the middle of the operating
band. What are the dimensions of the guide in cm?

8.3 An air-filled rectangular waveguide is used to transfer power to a radar antenna. The guide
must meet the following specifications: The two lowest modes are TE;y and TE;y. The op-
erating frequency is 3 GHz and must lie exactly halfway between the cutoff frequencies of
these two modes. The maximum electric field within the guide may not exceed, by a safety
margin of 3, the breakdown field of air 3 MV/m.

a. Determine the smallest dimensions a, b for such a waveguide, if the transmitted power
is required to be 1 MW.

b. What are the dimensions a, b if the transmitted power is required to be maximum?
What is that maximum power in MW?

8.4 It is desired to design an air-filled rectangular waveguide operating at 5 GHz, whose group
velocity is 0.8c. What are the dimensions a, b of the guide (in cm) if it is also required to carry
maximum power and have the widest possible bandwidth? What is the cutoff frequency of
the guide in GHz and the operating bandwidth?

8.5 Show the following relationship between guide wavelength and group velocity in an arbitrary
air-filled waveguide: v4A5 = cA, where Ay = 27/ and A is the free-space wavelength.
Moreover, show that the A and A4 are related to the cutoff wavelength A by:

1

===+
A2 A2 AZ
8.6 Determine the four lowest modes that can propagate in a WR-159 and a WR-90 waveguide.
Calculate the cutoff frequencies (in GHz) and cutoff wavelengths (in cm) of these modes.

8.7 An air-filled WR-90 waveguide is operated at 9 GHz. Calculate the maximum power that
can be transmitted without causing dielectric breakdown of air. Calculate the attenuation
constant in dB/m due to wall ohmic losses. Assume copper walls.

8.8 A rectangular waveguide has sides a, b such that b < a/2. Determine the cutoff wavelength
Ac of this guide. Show that the operating wavelength band of the lowest mode is 0.5A, <
A < Ac. Moreover, show that the allowed range of the guide wavelength is A; = A¢/ V3.

8.9 The TE;y mode operating bandwidth of an air-filled waveguide is required to be 4-7 GHz.
What are the dimensions of the guide?

8.10 Computer Experiment: WR-159 Waveguide. Reproduce the two graphs of Fig. 8.8.2.

8.11 Computer Experiment: Dielectric Slab Waveguide. Using the MATLAB functions dsTlab and
dguide, write a program that reproduces all the results and graphs of Examples 8.11.1 and
8.11.2.

8.12 A TM mode is propagated along a waveguide of arbitrary but uniform cross section. Assume
perfectly conducting walls.

a. Show that the E, (x,y) component satisfies:
L IVE,|*dS = k? L |E,|2dS

b. Using the above result, show that the energy velocity is equal to the group velocity.
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Transmission Lines

9.1 General Properties of TEM Transmission Lines

We saw in Sec. 8.3 that TEM modes are described by Eqgs. (8.3.3) and (8.3.4), the latter
being equivalent to a two-dimensional electrostatic problem:

1
Hr = — 7 X Er

n
Vi xEr=0 (TEM modes) (9.1.1)
VT -Er =0

The second of (9.1.1) implies that Er can be expressed as the (two-dimensional)
gradient of a scalar electrostatic potential. Then, the third equation becomes Laplace’s
equation for the potential. Thus, the electric field can be obtained from:

Vi =0
(equivalent electrostatic problem) (9.1.2)
Er = -Vrp

Because in electrostatic problems the electric field lines must start at positively
charged conductors and end at negatively charged ones, a TEM mode can be supported
only in multi-conductor guides, such as the coaxial cable or the two-wire line. Hollow
conducting waveguides cannot support TEM modes.

Fig. 9.1.1 depicts the transverse cross-sectional area of a two-conductor transmission
line. The cross-section shapes are arbitrary.

The conductors are equipotentials of the electrostatic solution. Let @4, @p be the
constant potentials on the two conductors. The voltage difference between the conduc-
tors will be V = @, — @p. The electric field lines start perpendicularly on conductor (a)
and end perpendicularly on conductor (b).

The magnetic field lines, being perpendicular to the electric lines according to Eq. (9.1.1),
are recognized to be the equipotential lines. As such, they close upon themselves sur-
rounding the two conductors.

273
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/ electric field lines

magnetic field lines

Fig. 9.1.1 Two-conductor transmission line.

In particular, on the conductor surfaces the magnetic field is tangential. According
to Ampere’s law, the line integrals of the magnetic field around each conductor will
result into total currents I and —I flowing on the conductors in the z-direction. These
currents are equal and opposite.

Impedance, Inductance, and Capacitance

Because the fields are propagating along the z-direction with frequency w and wavenum-
ber B = w/c, the z,t dependence of the voltage V and current I will be:

V(z,t)= Velwt-jbz

I(z,t)= [eJwt-ibz (9.1.3)

For backward-moving voltage and current waves, we must replace § by — . The ratio
V(z,t)/I(z,t)=V/I remains constant and independent of z. It is called the character-
istic impedance of the line:

Z=— (line impedance) (9.1.4)

In addition to the impedance Z, a TEM line is characterized by its inductance per unit
length L’ and its capacitance per unit length C’. For lossless lines, the three quantities
Z,L’,C’ are related as follows:

L'=pu=, C=c¢ % (inductance and capacitance per unit length) (9.1.5)

where n = \/u/€ is the characteristic impedance of the dielectric medium between the
conductors.” By multiplying and dividing L’ and C’, we also obtain:

= (9.1.6)

TThese expressions explain why u and € are sometimes given in units of henry/m and farad/m.
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The velocity factor of the line is the ratio c¢/co = 1/n, where n = \/é/€g = /€ is the
refractive index of the dielectric, which is assumed to be non-magnetic.

Because w = fc, the guide wavelength will be A = 211/8 = c/f = co/fn = Ag/n,
where Ag is the free-space wavelength. For a finite length I of the transmission line, the
quantity I/A = nl/A is referred to as the electrical length of the line and plays the same
role as the optical length in thin-film layers.

Egs. (9.1.5) and (9.1.6) are general results that are valid for any TEM line. They can
be derived with the help of Fig. 9.1.2.

Fig. 9.1.2 Surface charge and magnetic flux linkage.

The voltage V is obtained by integrating Et - dI along any path from (a) to (b). How-
ever, if that path is chosen to be an E-field line, then Et - dl = |Er|dl, giving:

b
V= J |Er|dl (9.1.7)
a

Similarly, the current I can be obtained by the integral of Hr - dI along any closed
path around conductor (a). If that path is chosen to be an H-field line, such as the
periphery C, of the conductor, we will obtain:

I =§ |Hr|dl (9.1.8)
Ca

The surface charge accumulated on an infinitesimal area dldz of conductor (a) is
dQ = psdldz, where ps is the surface charge density. Because the conductors are
assumed to be perfect, the boundary conditions require that ps be equal to the normal
component of the D-field, that is, ps = €|Er|. Thus, dQ = €|Er|dldz.

If we integrate over the periphery C, of conductor (a), we will obtain the total surface
charge per unit z-length:

/_CLQ_§
Q=4 = . clErldl

But because of the relationship | Er| = n|Hy|, which follows from the first of Egs. (9.1.1),
we have:

Q = § €|Erldl = en§ |Hr|dl = enl (9.1.9)
Ca Ca

where we used Eq. (9.1.8). Because Q' is related to the capacitance per unit length and
the voltage by Q' = C'V, we obtain



276 Electromagnetic Waves & Antennas - S. J. Orfanidis

/_ 4 _ /_ 1_ Q
Q =CV=enl| > C —env—ez

Next, we consider an E-field line between points A and B on the two conductors. The
magnetic flux through the infinitesimal area dl dz will be d® = |Br|dldz = u|Hr|dldz
because the vector Hr is perpendicular to the area.

If we integrate from (a) to (b), we will obtain the total magnetic flux linking the two
conductors per unit z-length:

de (P
= = Hrl|dl
dz L u|HT|
replacing |Hy| = |Er|/n and using Eq. (9.1.7), we find:
b b
® - j ulHpdl = 2 J \Erldl = H v
a n Ja n

The magnetic flux is related to the inductance via & = L’I. Therefore, we get:

|4 VA
—=p=

\% L' =
> i n

S =

Transmitted Power

The relationships among Z,L’, C’ can also be derived using energy considerations. The
power transmitted along the line is obtained by integrating the z-component of the
Poynting vector over the cross-section S of the line. For TEM modes we have P, =
|Er|?/2n, therefore,

1 1
Pr=— j |Er2dxdy = — J IVr|’dxd (9.1.10)
o))" Y 2n ls e Y
It can be shown in general that Eq. (9.1.10) can be rewritten as:
_1 sy Loz Loy
Pr = 2Re(V = 2ZIII = 2ZIVI (9.1.11)

We will verify this in the various examples below. It can be proved using the following
Green'’s identity:

IVr@l> + *ViQ = Vr - (@*Vr@)
Writing Er = —V 1@ and noting that V2@ = 0, we obtain:
|Er|* = -V - (9*Er)

Then, the two-dimensional Gauss’ theorem implies:
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= — Er|¢dxdy = —— Vr- Er)dxd
2n S| Tl y on ) VT (p*Er) y

o
~
I

1 . . 1 % . X
- Er - (-n)dl — — Er - (-n)dl
2n EFCQQQ T+ (—h) 2n ChQD T+ (—N)

1 . ) 1 f )
— Er-n)dl + — *(Er - n) dl
2n %Ca(P (Er -n)dl + 2n CbCP (ET - h)

where 11 are the outward normals to the conductors (the quantity —n is the normal
outward from the region S.) Because the conductors are equipotential surfaces, we have
@* = @} on conductor (a) and @* = @} on conductor (b). Using Eq. (9.1.9) and noting
that Er - n = +=|Er| on conductors (a) and (b), we obtain:

1,2 1

1
2n 2nq)“ € 2n

2n

«Q

Pr
b e

1
* Erldl — — *§ Erldl =
@} jﬁca| rldl = 5 @i §1Er] .

1w Q1o enl
—2(q9a (pb)en_ZV p

1 1
=-V* = _Z|I?
5 > 1]
The distribution of electromagnetic energy along the line is described by the time-
averaged electric and magnetic energy densities per unit length, which are given by:

1 - 1
W - ZEHS \Erl2dxdy, W)

m= M Hs |Hr|*dx dy

Using Eq. (9.1.10), we may rewrite:

1 1
W, =-enPr=—P W, ==-=Pr=—P
e 2€f] T= 55T m T T

Thus, W, = W,, and the total energy density is W' = W, + W,, = Pr/c, which
implies that the energy velocity will be Ve, = Pr/W’ = c. We may also express the
energy densities in terms of the capacitance and inductance of the line:
L'|I)? (9.1.12)

! 1 r 7 1
We=,C V2, Win =7

Power Losses, Resistance, and Conductance

Transmission line losses can be handled in the manner discussed in Sec. 8.2. The field
patterns and characteristic impedance are determined assuming the conductors are per-
fectly conducting. Then, the losses due to the ohmic heating of the dielectric and the
conductors can be calculated by Egs. (8.2.5) and (8.2.9).

These losses can be quantified by two more characteristic parameters of the line, the
resistance and conductance per unit length, R" and G’. The attenuation coefficients due
to conductor and dielectric losses are then expressible in terms R’, G' and Z by:

xg=-GZ (9.1.13)

Ke = —,
¢ 2z 2
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They can be derived in general terms as follows. The induced surface currents on
the conductor walls are J; = i X Hr = 1 X (Z X E7)/n, where 1 is the outward normal
to the wall.

Using the BAC-CAB rule, we find J; = Z(fa - Er)/n. But, 1 is parallel to Er on the
surface of conductor (a), and anti parallel on (b). Therefore, i - Er = =|E7|. It follows
that J; = =z|Er|/n = +Z|Hy|, pointing in the +Zz direction on (a) and —z direction on
(b). Inserting these expressions into Eq. (8.2.8), we find for the conductor power loss per
unit z-length:

, AdPoss
Plogs = d;bb

:lRS§ |HT|2d1+1RS§ \Hy 2 dl (9.1.14)
2 Ca 2 Cp

Because Hr is related to the total current I via Eq. (9.1.8), we may define the resistance
per unit length R’ through the relationship:

’ 1 ! .
Ploss = ER |12 (conductor ohmic losses) (9.1.15)

Using Eq. (9.1.11), we find for the attenuation coefficient:

1
, ZR'|I)? p
P R
X = % - 217 =57 (9.1.16)
T ZEZIIIZ

If the dielectric between the conductors is slightly conducting with conductivity oy
or loss tangent tand = 04/€w, then there will be some current flow between the two
conductors.

The induced shunt current per unit z-length is related to the conductance by I& =
G'V. The shunt current density within the dielectric is J; = o4Er. The total shunt
current flowing out of conductor (a) towards conductor (b) is obtained by integrating J;
around the periphery of conductor (a):

1;:} Jd-ﬁdl=adif \E7|dl
Ca Cqa

Using Eqg. (9.1.9), we find:

4 Q’ 7 7 O_d 4 n
I=04% =GV ¢ =% =0,
a=9d" 7 € ga 7

It follows that the dielectric loss constant (8.2.5) will be:
1 1,
g = Eadn = EG V4

Alternatively, the power loss per unit length due to the shunt current will be P,’i =
Re(IV*)/2 = G’|V|%/2, and therefore, &4 can be computed from:

1.,
P’ §G|V|2
Ag=—"= """ =

1 G'Z
2
ZZZW‘

1
2
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Itis common practice to express the dielectric losses and shunt conductance in terms
of the loss tangent tan § and the wavenumber 8 = w/c = wen:

1 1 1 , , ,
o4 = EO‘,})’) = Ewentané = EBtan(S and |G’ = %C =wC'tand| (9.1.17)

Next, we discuss four examples: the parallel plate line, the microstrip line, the coaxial
cable, and the two-wire line. In each case, we discuss the nature of the electrostatic
problem and determine the characteristic impedance Z and the attenuation coefficients
& and og.

9.2 Parallel Plate Lines

The parallel plate line shown in Fig. 9.2.1 consists of two parallel conducting plates of
width w separated by height h by a dielectric material €. Examples of such lines are
microstrip lines used in microwave integrated circuits.

For arbitrary values of w and h, the fringing effects at the ends of the plates cannot
be ignored. In fact, fringing requires the fields to have longitudinal components, and
therefore TEM modes are not strictly-speaking supported.

VA
+«——— W —————p
A +V
y W i i
h € \ o . > X
; » X - E-lines —
z conducting plates H-Tines -—

Fig. 9.2.1 Parallel plate transmission line.

However, assuming the width is much larger than the height, w > h, we may ignore
the fringing effects and assume that the fields have no dependence on the x-coordinate.

The electrostatic problem is equivalent to that of a parallel plate capacitor. Thus,
the electric field will have only a y component and will be constant between the plates.
Similarly, the magnetic field will have only an x component. It follows from Egs. (9.1.7)
and (9.1.8) that:

V =-Eh, I=Hyw
Therefore, the characteristic impedance of the line will be:

V. —Eyh h
7 = — = =n— 2.1
I Hyw n w © )

where we used E, = —nHy. The transmitted power is obtained from Eq. (9.1.10):

2
LVehe LWy Ly _Lop (9.2.2)

1
Pr = —|E,|2(Wwh)= — —
T 2n|y| (wh) 2n h2 2n h 27 2
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The inductance and capacitance per unit length are obtained from Eq. (9.1.5):

h w
L'=pu—, C =¢— 9.2.3
u W h ( )
The surface current on the top conductor is Jg = i X H= (—-y)xH = ZHy. On the
bottom conductor, it will be J; = —ZHy. Therefore, the power loss per unit z-length is

obtained from Eq. (8.2.8):
’ 1 1
PlOSS:25R5|HX|2W: WRSIZ

Comparing with Eq. (9.1.15), we identify the resistance per unit length R’ = 2Rg/w.
Then, the attenuation constant due to conductor losses will be:

_Pioss _R"_ Ry Ry

= = = 2.4
2Py 2Z wZ hn (9.2.4)

Ke

9.3 Microstrip Lines

Practical microstrip lines, shown in Fig. 9.3.1, have width-to-height ratios w/h that are
not necessarily much greater than unity, and can vary over the interval 0.1 < w/h < 10.
Typical heights h are of the order of millimeters.

v fringing
y W Y
IEEEENIARL
h| substrate € I > X
> X E-lines —
z H-lines ----

Fig. 9.3.1 A microstrip transmission line.

Fringing effects cannot be ignored completely and the simple assumptions about the
fields of the parallel plate line are not valid. For example, assuming a propagating wave
in the z-direction with z,t dependence of ¢/®!J8Z with a common f in the dielectric
and air, the longitudinal-transverse decomposition (8.1.5) gives:

Vr1E; x2-jBzX Er = —jwuHr = 72X (V7E; +jBEr)= jwuHr
In particular, we have for the y-component:
OxE; + jJBEx = jwuH,

The boundary conditions require that the components B, = uH, and Dx = €Ex be
continuous across the dielectric-air interface. This gives the conditions:

OxEZ™ + JBEYT = OxEF + jBEY

GOEiir — eEgiel
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Combining the two conditions, we obtain:

Ox(ES™ — E3") = jB* VB 93.1)

Inspecting the fringing patterns of Fig. 9.2.1, we note that the electric field has a
non-zero x-component on the air side, E;‘ir # 0. Thus, the left-hand side of Eq. (9.3.1)
cannot be zero and the wave cannot be assumed to be strictly TEM.

However, Eyx can be assumed to be small in both the air and the dielectric because
the dominant direction of the transverse electric field is in the y-direction. This gives
rise to the so-called quasi-TEM approximation in which the fields are assumed to be
approximately TEM and the effect of the deviation from TEM is taken into account by
empirical formulas for the line impedance and velocity factor.

In particular, the air-dielectric interface is replaced by an effective dielectric, filling
uniformly the entire space, and in which there would be a TEM propagating mode. If
we denote by €e¢r the relative permittivity of the effective dielectric, the wavelength and
velocity factor of the line will be given in terms of their free-space values A, co:

2\0 Co

A= , €= (9.3.2)
/ €eff +/ €eff
There exist many empirical formulas for the characteristic impedance of the line
and the effective dielectric constant. Hammerstad and Jensen’s are some of the most

accurate ones [444,450]:

€&+1 € -1 10\ b w
€off = — + L (1+—)

> > u , u= " (9.3.3)

where €, = €/€( is the relative permittivity of the dielectric and the quantities a, b are

defined by:
4 2 3
T N e P P
49 ut +0.432 18.7 18.1

€r — 0.9)%0%
€+ 3 )
The accuracy of these formulas is better than 0.01% for u < 1 and 0.03% for u < 1000.
Similarly, the characteristic impedance is given by the empirical formula:

__No fw [0, 4
Z = 2T e ln[ > +.,./1+ uz] (9.3.5)

where ng = +/Up/€p and the function f (u) is defined by:

(9.3.4)
b =0.564 (

(9.3.6)

0.7528
f(u)=6+ (211 — 6)exp [— (M) }

u

The accuracy is better than 0.2% for 0.1 < u < 100 and €, < 128. In the limit of
large ratio w/h, or, u — oo, Egs. (9.3.3) and (9.3.5) tend to those of the parallel plate line
of the previous section:
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Mo h _ h

V€ W n w

Some typical substrate dielectric materials used in microstrip lines are alumina, a
ceramic form of Al,O4 with e, = 9.8, and RT-Duroid, a teflon composite material with
€, = 2.2. Practical values of the width-to-height ratio are in the range 0.1 < u < 10 and
practical values of characteristic impedances are between 10-200 ohm. Fig. 9.3.2 shows
the dependence of Z and €.¢r on u for the two cases of €, = 2.2 and €, = 9.8.

€eff = €y, Z—

Characteristic Impedance Effective Permittivity

10

Eeff

0 1 2 3 4 6 7 8 9 10

5
w/h
Fig. 9.3.2 Characteristic impedance and effective permittivity of microstrip line.

The synthesis of a microstrip line requires that we determine the ratio w/h that will
achieve a given characteristic impedance Z. The inverse of Eq. (9.3.5)—solving for u in
terms of Z—is not practical. Direct synthesis empirical equations exist [445,450], but
are not as accurate as (9.3.5). Given a desired Z, the ratio u = w/h is calculated as
follows. If u < 2,

= 3.7
U= ed 0p-a 9.3.7)
and, if u > 2,
-1 .61 2
u:‘fr—[ln(g—mm.ag—&] +Z[B-1-In(2B-1)] 9.3.8)
TE, €r T
where A, B are given by:
A-mfo(e ) L &1 (0.23 + 0'11)
no € +1 €y (9.3.9)
g T Mo .
2.6 Z

The accuracy of these formulas is about 1%. The method can be improved iteratively
by a process of refinement to achieve essentially the same accuracy as Eq. (9.3.5). Start-
ing with u computed from Egs. (9.3.7) and (9.3.8), a value of Z is computed through
Eq. (9.3.5). If that Z is more than, say, 0.2% off from the desired value of the line
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impedance, then u is slightly changed, and so on, until the desired level of accuracy
is reached [450]. Because Z is monotonically decreasing with u, if Z is less than the de-
sired value, then u is decreased by a small percentage, else, u is increased by the same
percentage.

The three MATLAB functions mstripa, mstrips, and mstripr implement the anal-
ysis, synthesis, and refinement procedures. They have usage:

[eff,Z] = mstripa(er,u); % analysis equations (9.3.3) and (9.3.5)
u = mstrips(er,2); % synthesis equations (9.3.7) and (9.3.8)
[u,N] = mstripr(er,Z0,per); % refinement

The function mstripa accepts also a vector of several u’s, returning the correspond-
ing vector of values of €. and Z. In mstripr, the output N is the number of iterations
required for convergence, and per is the desired percentage error, which defaults to
0.2% if this parameter is omitted.

Example 9.3.1: Givene, = 2.2andu = w/h = 2,4, 6, the effective permittivities and impedances
are computed from the MATLAB call:

u=[2; 4; 6];
[eff, Z] = mstripaCer,u);

The resulting output vectors are:

2 1.8347 65.7273
u=| 4 =>  €er = | 1.9111 |, Z =] 41.7537 | ohm
6 1.9585 30.8728

Example 9.3.2: To compare the outputs of mstrips and mstripr, we design a microstrip line
with €, = 2.2 and characteristic impedance Z = 50 ohm. We find:

u = mstrips(2.2,50)= 3.0779 = [€er, Z]= mstripa(2.2,u)= [1.8811, 50.0534]
u = mstripr(2.2,50) = 3.0829 = [€efr, Z]= mstripa(2.2,u)= [1.8813, 49.9990]

The first solution has an error of 0.107% from the desired 50 ohm impedance, and the
second, a 0.002% error.

As another example, if Z = 100 Q, the function mstrips results in u = 0.8949, Z =
99.9495 Q, and a 0.050% error, whereas mstripr gives u = 0.8939, Z = 99.9980 Q, and a
0.002% error. [}

In using microstrip lines several other effects must be considered, such as finite strip
thickness, frequency dispersion, dielectric and conductor losses, radiation, and surface
waves. Guidelines for such effects can be found in [444-450].

The dielectric losses are obtained from Eq. (9.1.17) by multiplying it by an effective
dielectric filling factor q:

_1
1 —€qp¢

1
oG = qg tand = an\/eefftané = —Tmqg./€gstand, q = - (9.3.10)
2c Co )\0 1 r
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Typical values of the loss tangent are of the order of 0.001 for alumina and duroid
substrates. The conductor losses are approximately computed from Eq. (9.2.4):

T wZ

9.4 Coaxial Lines

The coaxial cable, depicted in Fig. 9.4.1, is the most widely used TEM transmission line.
It consists of two concentric conductors of inner and outer radii of a and b, with the
space between them filled with a dielectric €, such as polyethylene or teflon.

The equivalent electrostatic problem can be solved conveniently in cylindrical coor-
dinates p, ¢b. The potential @ (p, ¢p) satisfies Laplace’s equation:

010 (0p) 10%@ _
ViP= oo \Pop ) T o2 arg =0

Because of the cylindrical symmetry, the potential does not depend on the azimuthal
angle ¢. Therefore,

190 acp) 0
~——|p=-]=0 = p=—=B = @(p)=A+Blnp
pop ( op op

where A, B are constants of integration. Assuming the outer conductor is grounded,

@ (p)= 0at p = b, and the inner conductor is held at voltage V, @ (a) = V, the constants
A, B are determined to be B = —VIn(b/a) and A = —BInb, resulting in the potential:

\%
— = In(b/p) (9.4.1)

It follows that the electric field will have only a radial component, E, = —0,@, and
the magnetic field only an azimuthal component Hy = E,/n:

oV 1 v 1
= In/a)p’ ¢~ ninb/a) p

Integrating H¢ around the inner conductor we obtain the current:

(9.4.2)

Fig. 9.4.1 Coaxial transmission line.
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21 d 21 21TV
I‘J Hypdd = J nlnb/a PAP = nbra) (9.4.3)

It follows that the characteristic impedance of the line Z = V/I, and hence the
inductance and capacitance per unit length, will be:

_n r_ M ,_2me
7 = ST In(b/a), L = - In(b/a), C nb/a) (9.4.4)

Using Eq. (9.4.3) into (9.4.2), we may express the magnetic field in the form:

I
Hy = — 4.
¢ 21Tp (94.5)

This is also obtainable by the direct application of Ampeére’s law around the loop of
radius p encircling the inner conductor, thatis, I = (211p) Hg.

The transmitted power can be expressed either in terms of the voltage V or in terms
of the maximum value of the electric field inside the line, which occurs at p = a, that is,
E,=V/(aln(b/a)):

2
pr=tyi= TV

27 nin(b/a) nIEal (rra®)In(b/a) (9.4.6)

Example 9.4.1: A commercially available polyethylene-filled RG-58/U cable is quoted to have
impedance of 53.5 Q, velocity factor of 66 percent, inner conductor radius a = 0.406 mm
(AWG 20-gauge wire), and maximum operating RMS voltage of 1900 volts. Determine the
outer-conductor radius b, the capacitance per unit length C’, the maximum power Pt that
can be transmitted, and the maximum electric field inside the cable. What should be the
outer radius b if the impedance were required to be exactly 50 Q?

Solution: Polyethylene has a relative dielectric constant of €, = 2.25, so that n = /€, = 1.5.
The velocity factor is ¢/co = 1/n = 0.667. Given that n = no/n = 376.73/1.5 = 251.15
Q, we have:

Z=3Lmb/a) = b= aet™" = 0.406e2™HBL ~ 1548 mm

Therefore, b/a = 3.81. If Z = 50, the above calculation would give b = 1.418 mm and
b/a = 3.49. The capacitance per unit length is found from:

n 1 n 1.5
n_ 2 _ M _ 12 _9346pF
77 cZ oz 3x105x535 0346 pF/m

For Z = 50 Q, we find C' = 100 pF/m. The peak voltage is related to its RMS value by
V] = +/2Vms. It follows that the maximum power transmitted is:

1 V2 19002
Pr=——|V|? =m0 _ =67.5kW
r=57Vl Z 53.5

The peak value of the electric field occurring at the inner conductor will be:
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\4 V2V ims V21900
E | = - = =0.5M
|Eal ain(b/a) ~ aln(b/a) ~ 0.406x10-21n(3.096/0.406) _ 0> MV/m

This is to be compared with the dielectric breakdown of air of 3 MV/m. For a 73-Q RG-
59/U cable with a = 0.322 mm (AWG 22-gauge wire), we find b = 2 mm, C’ = 68.5 pF/m,
Py =49.5 kW, and Eppax = 0.46 MV/m. [m}

Example 9.4.2: Most cables have a nominal impedance of either 50 or 75 Q. The precise value
depends on the manufacturer and the cable. For example, a 50-Q cable might actually have
an impedance of 52 Q and a 75-Q cable might actually be a 73-Q cable.

The table below lists some commonly used cables with their AWG-gauge number of the
inner conductor, the inner conductor radius a in mm, and their nominal impedance. Their
dielectric filling is polyethylene with €, = 2.25 or n = /€, = 1.5.

type AWG a VA
RG-6/U 18 0.512 | 75
RG-8/U 11 1.150 | 50
RG-11/U 14 0.815 | 75

RG-58/U 20 0.406 | 50
RG-59/U 22 0.322 | 75
RG-174/U 26 0.203 | 50
RG-213/U 13 0.915 | 50

The most commonly used cables are 50-Q ones, such as the RG-58/U. Home cable-TV uses
75-Q cables, such as the RG-59/U or RG-6/U.

The thin ethernet computer network, known as 10base-2, uses RG-58/U or RG-58A/U,
which is similar to the RG-58/U but has a stranded inner copper core. Thick ethernet
(10base-5) uses the thicker RG-8/U cable.

Because a dipole antenna has an input impedance of about 73 Q, the RG-11, RG-6, and
RG-59 75-Q cables can be used to feed the antenna. m]

Next, we determine the attenuation coefficient due to conductor losses. The power
loss per unit length is given by Eq. (9.1.14). The magnetic fields at the surfaces of
conductors (a) and (b) are obtained from Eq. (9.4.5) by setting p = a and p = b:

I I
H;=——, Hp=—
a7 oma’ P 2mb

Because these are independent of the azimuthal angle, the integrations around the
peripheries dl = ad¢ or dl = bd¢ will contribute a factor of (27ra) or (2mrh). Thus,

RS\IIZ(

, 1
Ploss = ERS[(z"Ta)H"Iﬂ2 + (27Tb)|Hh|2] = Arr

Rlll? (1 1)
_ Plloss _ 4T a b

N N 1
2Py 25 21

1 1

It follows that:

Kc
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Using Eq. (9.4.4), we finally obtain:

oD
X = %% (9.4.8)
n ln(f)
a

The ohmic losses in the dielectric are described by Eq. (9.1.17). The total attenuation
constant will be the sum of the conductor and dielectric attenuations:

1 1
Ry (* i *)
o=+ oy = >4 b) L ®ans (attenuation) (9.4.9)

2n ln<g) 2c

The attenuation in dB/m will be xgg = 8.686 . This expression tends to somewhat
underestimate the actual losses, but it is generally a good approximation. The x, term
grows in frequency like +/f and the term «y, like f.

The smaller the dimensions a, b, the larger the attenuation. The loss tangent tan &
of a typical polyethylene or teflon dielectric is of the order of 0.0004-0.0009 up to about
3 GHz.

The ohmic losses and the resulting heating of the dielectric and conductors also
limits the power rating of the line. For example, if the maximum supported voltage is
1900 volts as in Example 9.4.2, the RMS value of the current for an RG-58/U line would
be I;ms = 1900/53.5 = 35.5 amps, which would melt the conductors. Thus, the actual
power rating is much smaller than that suggested by the maximum voltage rating. The
typical power rating of an RG-58/U cable is 1 kW, 200 W, and 80 W at 10 MHz, 200 MHz,
and 1 GHz.

Example 9.4.3: The table below lists the nominal attenuations in dB per 100 feet of the RG-8/U
and RG-213/U cables. The data are from [739].

\ f (MHz) | 50 | 100 | 200 | 400 | 900 | 1000 | 3000 | 5000
| & (dB/100fy) [ 1.3 ] 1.9 2.7 41| 75| 8.0 16.0 | 27.0

Both are 50-ohm cables and their radii a are 1.15 mm and 0.915 mm for RG-8/U and RG-
213/U. In order to compare these ratings with Eq. (9.4.9), we took a to be the average of
these two values, thatis, a = 1.03 mm. The required value of b to give a 50-ohm impedance
is b = 3.60 mm.

Fig. 9.4.2 shows the attenuations calculated from Eq. (9.4.9) and the nominal ones from the
table. We assumed copper conductors with o = 5.8x107 S/m and polyethylene dielectric
with n = 1.5, so that n = no/n = 376.73/1.5 = 251.15 Q and ¢ = ¢o/n = 2x10® m/sec.
The loss tangent was taken to be tané = 0.0007.

The conductor and dielectric attenuations &, and &4 become equal around 2.3 GHz, and
4 dominates after that.

It is evident that the useful operation of the cable is restricted to frequencies up to 1 GHz.
Beyond that, the attenuations are too excessive and the cable may be used only for short
lengths. a
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RG-8/U and RG-213/U
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Fig. 9.4.2 Attenuation coefficient x versus frequency.

Optimum Coaxial Cables

Given a fixed outer-conductor radius b, one may ask three optimization questions: What
is the optimum value of a, or equivalently, the ratio b/a that (a) minimizes the electric
field E; inside the guide, (b) maximizes the power transfer Pr, and (c) minimizes the
conductor attenuation «..

The three quantities E,, P, & can be thought of as functions of the ratio x = b/a
and take the following forms:

V. x
" blnx’

Setting the derivatives of the three functions of x to zero, we obtain the three
conditions: (@) Inx = 1, (b) Inx = 1/2, and (c) Inx = 1 + 1/x, with solutions (a)
b/a=e! =2.7183,(b) b/a = e'/? = 1.6487 and (c) b/a = 3.5911.

Unfortunately, the three optimization problems have three different answers, and
it is not possible to satisfy them simultaneously. The corresponding impedances Z for
the three values of b/a are 60 Q, 30 Q, and 76.7 Q for an air-filled line and 40 Q, 20 Q,
and 51 Q for a polyethylene-filled line.

The value of 50 Q is considered to be a compromise between 30 and 76.7 Q corre-
sponding to maximum power and minimum attenuation. Actually, the minimum of .
is very broad and any neighboring value to b/a = 3.5911 will result in an . very near
its minimum.

Eq

1 1 Ry x+1
PT=H|Ea|2nb2%, e = 5 X (9.4.10)

" 2nb Inx

Higher Modes

The TEM propagation mode is the dominant one and has no cutoff frequency. However,

TE and TM modes with higher cutoff frequencies also exist in coaxial lines [419], with

the lowest being a TE;; mode with cutoff wavelength and frequency:
C Co

T
Ae=1873 5 (@+h), fo=qo =

(9.4.11)
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This is usually approximated by A, = 1t(a + b). Thus, the operation of the TEM
mode is restricted to frequencies that are less than f.

Example 9.4.4: For the RG-58/U line of Example 9.4.2, we have a = 0.406 mm and b = 1.548
mm, resulting in A, = 1.8737t(a +b) /2 = 5.749 mm, which gives for the cutoff frequency
fc =20/0.5749 = 34.79 GHz, where we used ¢ = co/n = 20 GHz cm.

For the RG-8/U and RG-213/U cables, we may use a = 1.03 mm and b = 3.60 as in Example
9.4.3, resulting in A, = 13.622 mm, and cutoff frequency of f. = 14.68 GHz.

The above cutoff frequencies are far above the useful operating range over which the
attenuation of the line is acceptable. m]

9.5 Two-Wire Lines

The two-wire transmission line consists of two parallel cylindrical conductors of radius
a separated by distance d from each other, as shown in Fig. 9.5.1.

y A Ey,.
pd—E
/ E>» N
o/
% VR /Py )
/ Py
+1 X -1
y € 6 b N X
X a +Q' € _Q’
b4
— bl [ -
- by ———»
- [ ———»

Fig. 9.5.1 Two-wire transmission line.

We assume that the conductors are held at potentials +V /2 with charge per unit
length +Q’. The electrostatic problem can be solved by the standard technique of re-
placing the finite-radius conductors by two thin line-charges +=Q’.

The locations b, and b, of the line-charges are determined by the requirement that
the cylindrical surfaces of the original conductors be equipotential surfaces, the idea
being that if these equipotential surfaces were to be replaced by the conductors, the
field patterns will not be disturbed.

The electrostatic problem of the two lines is solved by invoking superposition and
adding the potentials due to the two lines, so that the potential at the field point P will
be:

(9.5.1)

=~ Lo L= Lon(2)

1 - 1 =
2TT€ e 2TT€ np2 2TT€ P1

where the pp, p» are the distances from the line charges to P. From the triangles

OP(+Q’) and OP(—Q’), we may express these distances in terms of the polar co-

ordinates p, ¢ of the point P:
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p1 = \/p2 —2pbicosp +b?,  p» :\/p2 — 2pb;cos ¢ + b3 (9.5.2)

Therefore, the potential function becomes:

’ 7 2 _ 2
cp(p,cb)—an(pZ)—an(Jp 2pb2cos¢+b2) (9.5.3)

21T€ D1 2TT€ p? — 2pb; cos ¢ + b?

In order that the surface of the left conductor at p = a be an equipotential surface,
that is, @ (a, ¢) = V /2, the ratio p,/p; must be a constant independent of ¢. Thus, we
require that for some constant k and all angles ¢:

_|a®—2ab;cos P + b3

p2 _
a? — 2ab, cos ¢ + b?

P

p=a

which can be rewritten as:
a® — 2ab; cos ¢ + b3 = k? (a® — 2ab, cos ¢ + b?)
This will be satisfied for all ¢ provided we have:
a’ + b3 = k*(a® + b3), b, = k?b,

These may be solved for b, b in terms of k:

by = ka, by = % (9.5.4)

The quantity k can be expressed in terms of a, d by noting that because of symmetry,
the charge —Q’ is located also at distance b; from the center of the right conductor.
Therefore, b, + b, = d. This gives the condition:

bi+by=d = ak+k=d = k+k*1=§

with solution for k:

d d\?
k—z-l— (5) -1 (9.5.5)

An alternative expression is obtained by setting k = eX. Then, we have the condition:

bi+b,=d = a(eX+eX)=2acoshx=d = x=acosh(%) (9.5.6)

Because x = Ink, we obtain for the potential value of the left conductor:

Q' Q’ 1
Ink = — vy
2me N T 2meX T 2

@(a,¢)=

This gives for the capacitance per unit length:
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c- Y _me_ me 9.5.7)

4 X acosh <i>
2a

The corresponding line impedance and inductance are obtained from C’ = en/Z
and L' = uZ/n. We find:

_n,_n i) KB, _H (i)
Z—nx— Wacosh(m L = 7Tx—nacosh a (9.5.8)

In the common case when d > a, we have approximately k ~ d/a, and therefore,
X =Ink =1In(d/a). Then, Z can be written approximately as:

Z="nd/a) (9.5.9)
TT

To complete the electrostatic problem and determine the electric and magnetic fields
of the TEM mode, we replace b, = ak and b, = a/k in Eq. (9.5.3) and write it as:

/ 2 _ 212
oo, d)= 2 ln(k\/p 2akp cos  + a’k ) (9.5.10)

2TT€ p2k? — 2akp cos ¢p + a?
The electric and magnetic field components are obtained from:

op o

E,=nHy=—-—=—, Eg=-nH,=— (9.5.11)
p ¢ ap ¢ P pa¢
Performing the differentiations, we find:
Eo—_ Q' p — ak cos ¢ B pk? — ak cos ¢
P 2me | p2 —2akpcosp +a2k?  p2k2 — 2akp cos ¢ + a2
(9.5.12)
Eoo_ Q’ ak sin ¢ B akp sin ¢
* ™ Tome | p? - 2akcosp + atk?  p2k? — 2akpcos $ + a2

The resistance per unit length and corresponding attenuation constant due to con-
ductor losses are calculated in Problem 9.3:

w_ R d R R d

= —_— o= — = ——
ma |d2 — 4q? ¢ 2Z 2na acosh(d/2a)+/d? — 4a?

9.6 Distributed Circuit Model of a Transmission Line

(9.5.13)

We saw that a transmission line has associated with it the parameters L', C’ describing
its lossless operation, and in addition, the parameters R’, G’ which describe the losses.
It is possible then to define a series impedance Z’ and a shunt admittance Y’ per unit
length by combining R” with L" and G’ with C’:
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7 =R +jowlL’

, (9.6.1)
Y =G +jwC’

This leads to a so-called distributed-parameter circuit, which means that every in-
finitesimal segment Az of the line can be replaced by a series impedance Z'Az and a
shunt admittance Y’'Az, as shown in Fig. 9.6.1. The voltage and current at location z
will be V(z), I(z) and atlocation z + Az, V(z + Az),I(z + AZz).

Fig. 9.6.1 Distributed parameter model of a transmission line.

The voltage across the branch a-b is Vg, = V(z + Az) and the current through it,

Iap = (YYAZ)Vap = Y AzV (z + Az). Applying Kirchhoff’s voltage and current laws,
we obtain:

V(z) = (Z'Az) I(2)+Vap = Z'AzI(2)+V (z + AZ)
(9.6.2)
I1(z) =1ap +1(z+A2)=Y'AzV(z+ Az)+I(z + Az)

Using a Taylor series expansion, we may expand I (z + Az) and V(z + Az) to first
order in Az:

I(z+Az) =1(z2)+I' (2)Az
V(z+Az) =V(2)+V' (2)Az and Y'AzV(z+ Az)=Y AzV(2)

Inserting these expressions in Eq. (9.6.2) and matching the zeroth- and first-order
terms in the two sides, we obtain the equivalent differential equations:

V'(z)=-Z'I(z)= —(R" + jwL")I(z)

, (9.6.3)
I'(z)=-Y'V(z)=—-(G" +jwC")V(z)

It is easily verified that the most general solution of this coupled system is express-
ible as a sum of a forward and a backward moving wave:

V(z) = Vie bz 4 v_eibez
1 : . (9.6.4)
I(z) = (VieJBez —y_elbe?)

Cc
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where B, Z. are the complex wavenumber and complex impedance:

1, , 1 ., Z' R’ + jwL’
V7YV =w (L' + - R)(C + A I L L
Pe w\/( G556 Ze=\y =\ e T jwe

The real and imaginary parts of . = B — j« define the propagation and attenuation
constants. In the case of a lossless line, R” = G’ = 0, we obtain using Eq. (9.1.6):

w L’
Be=wVL'C'=wue=—=B, Zc=.~=2 (9.6.5)

c C
In practice, we always assume a lossless line and then take into account the losses by
assuming that R’ and G’ are small quantities, which can be evaluated by the appropriate
expressions that can be derived for each type of line, as we did for the parallel-plate,

coaxial, and two-wire lines. The lossless solution (9.6.4) takes the form:

V(z) =Vie B2 4 v_elb2 - v (2)+V_(2)
(9.6.6)

I(z) = %(we*ﬂ*z —V_elb?) = %(w(z)—v_ (2))

This solution is identical to that of uniform plane waves of Chap. 4, provided we
make the identifications:

V(z) — E(2)

Vi(z) — Ei(2)
V_(z) — E_(2)

I(z) — H(z) | and

Z—n

9.7 Wave Impedance and Reflection Response

All the concepts of Chap. 4 translate verbatim to the transmission line case. For example,
we may define the wave impedance and reflection response at location z:

_Vi(z) Vi(z)+V_(2) [(z)= V_(z)
T 12 Vio-V_o(2)’ " Vi(2)

To avoid ambiguity in notation, we will denote the characteristic impedance of the
line by Zy. It follows from Eq. (9.7.1) that Z(z) and I'(z) are related by:

Z(z)

(9.7.1)

1+T(2) _Z(2)-Zo
TG Iz)==2"=2=2 (9.7.2)

2(2)= 2o 7(2)+Zo

For a forward-moving wave, the conditions I'(z) = 0 and Z(z) = Z, are equivalent.
The propagation equations of Z(z) and I'(z) between two points z1, z, along the line
separated by distance | = z, — z; are given by:

7, = 7,22 J4otan Bt Ty = [ye %P 9.7.3
LA izl | T T2 9.7:3)
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where we have the relationships between Z;, Z» and I';,I>:

1+1, 1+1>
Z1 =127 , Zo=172 9.7.4
1=209 2=2o7 ) (9.7.4)
We may also express Z; in terms of I'»:
1+1, 1+1—‘2€72JBI
71 =17 =7 = 9.7.5
R T SR R PP e ©-75)

The relationship between the voltage and current waves at points z; and z; is ob-
tained by the propagation matrix:

Vil _ cos Bl JjZysin Bl Vs i )
[ I ] = [J'Zol sin Bl cos Bl I (propagation matrix) (9.7.6)

Similarly, we may relate the forward/backward voltages at the points z; and z»:

Vit _ elfl 0 Voy . .
|: Vi ] = [ 0 o-iBl Vi (propagation matrix) (9.7.7)
It follows from Eq. (9.6.6) that V1+, V,. are related to V1,I; and V5, I» by:

1 1
Vie = E(Vl = Zol), Vi = E(VZ * Zol) (9.7.8)

Fig. 9.7.1 depicts these various quantities. We note that the behavior of the line
remains unchanged if the line is cut at the point z; and the entire right portion of the
line is replaced by an impedance equal to Z», as shown in the figure.

Z I Z, Ip
— —= == = o~
+ 1 + I
Zo Vi V, |
5 - —— >
Zy 2
.~
— 4» <: I,
+ I + |
Zy Vi Vs i
| —! —
Z I Zy Iy

Fig. 9.7.1 Length segment on infinite line and equivalent terminated line.

This is so because in both cases, all the points z; to the left of z, see the same
voltage-current relationship at z», thatis, Vo = Z>I>.
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Sometimes, as in the case of designing stub tuners for matching a line to a load,
it is more convenient to work with the wave admittances. Defining Yo = 1/Zy, Y1 =
1/Zy,and Y, = 1/Z, it is easily verified that the admittances satisfy exactly the same
propagation relationship as the impedances:

Y, + jYotan Bl
Yy =Yy 2 2 0P 9.7.9
YT 0y + jYo tan Bl (9.7.9)

As in the case of dielectric slabs, the half- and quarter-wavelength separations are
of special interest. For a half-wave distance, we have I = 211/2 = 11, which translates
tol = A/2, where A = 271/f is the wavelength along the line. For a quarter-wave, we
have Bl = 21t/4 = 11/2 or I = A/4. Setting BI = 11 or 11/2 in Eq. (9.7.3), we obtain:

l:% = 21222, F1:F2

A Zé (9.7.10)
l=— Z1=—, In=-T

4 = 1 Z,’ 1 2

The MATLAB functions z2g.m and g2z.m compute I' from Z and conversely, by
implementing Eq. (9.7.2). The functions gprop.m, zprop.mand vprop.mimplement the
propagation equations (9.7.3) and (9.7.6). The usage of these functions is:

G = z29(Z,20); %Ztol
Z = g2z(G,Z0); %I to Z
Gl = gprop(G2,bT); % propagates I'p> to I'1
Z1 = zprop(Z2,20,b1); % propagates Z» to Z1

[V1,I1] = vprop(V2,I12,7Z0,b1); % propagates Vo, I to V1,11

The parameter b1 is fI. The propagation equations and these MATLAB functions
also work for lossy lines. In this case, 8 must be replaced by the complex wavenumber
Bc = B — jx. The propagation phase factors become now:

etIBl __, o*jBcl — pxal p%jBl (9.7.11)

9.8 Two-Port Equivalent Circuit

Any length-I segment of a transmission line may be represented as a two-port equivalent
circuit. Rearranging the terms in Eq. (9.7.6), we may write it in impedance-matrix form:

4 Zn Z I
[Vi ] B [ Z; Z;z ] [ , I; ] (impedance matrix) 9.8.1)

where the impedance elements are:

Z11 =2y =—jZy cotBl
(9.8.2)

Zip =2y = —jJZ
12 21 JOsin,BI
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The negative sign, —I», conforms to the usual convention of having the currents
coming into the two-port from either side. This impedance matrix can also be realized
in a T-section configuration as shown in Fig. 9.8.1.

Zy I Z, I
N == = D-
+i I +1 1
Zo Vi V|
4 — — o

Fig. 9.8.1 Length-I segment of a transmission line and its equivalent T-section.

Using Eqg. (9.8.1) and some trigonometry, the impedances Z,, Zp, Z. of the T-section
are found to be:

Za =211~ Z12 =jZotan(Bl/2)

Zy = Zoy — Z1p = jZotan(Bl/2)
1

0 sin 1

The MATLAB function tsection.m implements Eq. (9.8.3). Its usage is:

(9.8.3)
Ze=Zyp=—-jZ

[Za,Zc] = tsection(Z0,b1);

9.9 Terminated Transmission Lines

We can use the results of the previous section to analyze the behavior of a transmission
line connected between a generator and a load. For example in a transmitting antenna
system, the transmitter is the generator and the antenna, the load. In a receiving system,
the antenna is the generator and the receiver, the load.

Fig. 9.9.1 shows a generator of voltage V¢ and internal impedance Z; connected
to the load impedance Z; through a length d of a transmission line of characteristic
impedance Z,. We wish to determine the voltage and current at the load in terms of the
generator voltage.

We assume that the line is lossless and hence Zj is real. The generator impedance
is also assumed to be real but it does not have to be. The load impedance will have in
general both a resistive and a reactive part, Z; = Ry + jX[.
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Z I Z I'y,
4}> (‘ IL
+1 1 + |
= -

d ———¥
e [ —

Fig. 9.9.1 Terminated line and equivalent circuit.

At the load location, the voltage, current, and impedance are Vy, Iy, Z; and play
the same role as the quantities V>, I, Z»> of the previous section. They are related by
V1 = Zp1I1. The reflection coefficient at the load will be:

_ Z; — 2y 1+1;
- Zr + 2o 1-I;

The quantities Z;,I'; can be propagated now by a distance d to the generator at the
input to the line. The corresponding voltage, current, and impedance Vg, 14, Z; play
the role of V1, I, Z; of the previous section, and are related by V4 = Z414. We have the
propagation relationships:

Iy

(9.9.1)

Z1 + jZotan fd i
7y = 7, 2Lt J4otanpd Iy =TI e 2bd 9.9.2
d=20 G  iZitanpd . 4T (9.9.2)

where
Za— 7o 1+T, 1+ I'pe%Pd
[ — = Ja=7 =/yg——————— 9.9.3
Za + Zo d=20 g T 01 —TLe2pd 99.3)
At the line input, the entire length-d line segment and load can be replaced by the
impedance Z;, as shown in Fig. 9.9.1. We have now a simple voltage divider circuit.
Thus,

d

VeZa Ve

Va=Ve—14Z¢c = L Ig= G
d=Ve=idee = 5 oz AT 7o 7,

(9.9.4)

Once we have V4, I; in terms of Vs, we can invert the propagation matrix (9.7.6) to
obtain the voltage and current at the load:

Vi | cos d —jZysin Bd Vi 9.9.5)
I | | —jZy'sinBd cos Bd Iy e
It is more convenient to express V4, I in terms of the reflection coefficients I'y and
I', the latter being defined by:
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= - Zg =272 9.9.6
G Zc + Zo < G 1 Te ( )
It is easy to verify using Egs. (9.9.3) and (9.9.6) that:
1-Igly 1
Zc+Zg=2Z , Zg+Zy=2Z
e T O YN ) I e T
From these, it follows that:
VeZy 1+1, Ve 1-Ty
= s = 9.9.7
17 Ze+Zo 1-Tglq' " Zo+Zo 1-TI¢lq (9:9.7)

where I'; may be replaced by I'y = I'te~%f4_ If the line and load are matched so that
Z; = Zp,thenIy = 0and I'y = 0 and Z; = Z; for any distance d. Eq. (9.9.7) then
reduces to:

VeZy Ve

=— hed I 9.
d Zc + Zo (matched load) (9.9.8)

= 76+ 7"

In this case, there is only a forward-moving wave along the line. The voltage and
current at the load will correspond to the propagation of these quantities to location
[ = 0, which introduces a propagation phase factor e /4:

— M —jBd _ A —jBd
Vo= oz e =g e (matched load) (9.9.9)

where V, Iy denote V,I; when Z; = Z. It is convenient also to express V' directly in
terms of V; and the reflection coefficients I'y and I';. We note that:

i Va
V=V, (1+Ty), Vip=Vgelbl v, =
L L+( L) L+ d+ d+ 1+Fd

It follows that the voltage Vi and current I} = V/Z are:

i 1+1; _ipg 1 =171
Vi =Vge B 22 [} —[geBd "% 9.9.10
L d 1+ 1y L =1g -1, ( )
Expressing Vi and also I} = V/Z; directly in terms of V, we have:
VeZy 1+17; s Ve 1-I; s
Vi = e /B = e JBd 9.9.11
L= Zze+ 20 1-T¢ly L=z + 20 1-T¢ly ( )

It should be emphasized that d refers to the fixed distance between the generator
and the load. For any other distance, say I, from the load (or, distance z = d — | from
the generator,) the voltage and current can be expressed in terms of the load voltage
and current as follows:

a1+ T : -I :
V= VLeJﬁIfF;, I = ILQJBI?F; , Ij=TIpe %k (9.9.12)
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9.10 Power Transfer from Generator to Load

The total power delivered by the generator is dissipated partly in its internal resistance
and partly in the load. The power delivered to the load is equal (for a lossless line) to
the net power traveling to the right at any point along the line. Thus, we have:

Piot = Pg + Pg = Pp + Pg (9.10.1)

This follows from V; = Vi + 137, which implies

Vel = Valj + Zglal? (9.10.2)
Eq. (9.10.1) is a consequence of (9.10.2) and the definitions:
1 . 1 .
Pt = ERE(VGId): ERe[(Vd"‘ZGId) Id]
1 1
P =, Re(Zglalj) =, Re(Zc) l1al* (9.10.3)
Py = lRe(V;,kId): 1

2 2
The last equality follows from Eq. (9.9.5) or from V4. = V. e*/Bd:

Re(VfIL): PL

1 1 ; 1 1
R X1 0) = 2 _ N 2y 2 _ N 2 - -R *T
5> Re(Vala) 220<|Vd+| Va-1°) 2ZO(|VL+| Vi-1%) 5> Re(VLIL)

In the special case when the generator and the load are matched to the line, so that
Zc = Z1 = Zy, then we find the standard result that half of the generated power is
delivered to the load and half is lost in the internal impedance. Using Eq. (9.9.8) with
Zc = Zy,we obtain Vg = I3Z = V/2, which gives:

Ve |? _ V|2

1 1
= Eptot, Pd = PL = = Eptot (9.10.4)

Example 9.10.1: Aload Z; = 50 + j10 Q is connected to a generator V¢ = 10£0° volts with a
100-ft (30.48 m) cable of a 50-ohm transmission line. The generator’s internal impedance
is 20 ohm, the operating frequency is 10 MHz, and the velocity factor of the line, 2/3.

Determine the voltage across the load, the total power delivered by the generator, the
power dissipated in the generator’s internal impedance and in the load.

Solution: The propagation speed is ¢ = 2¢/3 = 2x108 m/sec. The line wavelength A = ¢/f =
20 m and the propagation wavenumber § = 277/A = 0.3142 rads/m. The electrical length
isd/A = 30.48/20 = 1.524 and the phase length d = 9.5756 radians.

Next, we calculate the reflection coefficients:

Iy Zr=Zo _ 0.0995,84.29°, T¢ =

Zg — 2y
= = —0.4286
Z1 + Zo

Zec+Zy

and I'y = I'Le %P4 = 0.0995 £67.01°. It follows that:
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1+1, . VeZa 3
=53.11 + j9. Vig=——"-"—=7.31+j0.36 =7.32,£2.83°
-1, 53 J9.83, d Zc + 74 3 Jj0.36 3 83

Zg =12y
The voltage across the load will be:

o1+ T
Vi = Ve B 2L _ 700 4 j0.65 = 7.12£174.75° V
1+14

The current through the generator is:

Iz = % =0.13 +j0.02 = 0.142£-7.66° A
d

It follows that the generated and dissipated powers will be:

1
Pior = > Re(VEIy) = 0.6718 W
1
Pg = gRe(ZG)ud\Z =0.1388 W
1
P =P;= ERe(v;,qd): 0.4880 W

We note that Py, = Pg + P;. [m}

If the line is lossy, with a complex wavenumber B. = B — j«, the power P; at the
output of the line is less than the power P, at the input of the line. Writing V4. =
Vi.e*®de*iBd we find:

1 1
Pi=— 2 _ 12y = 2,20d _ _2p—2ad
d 2ZO(|Vd+| Va-1%) 2Z()(|VL+| e [Vi-|%e )
_ b 2 2
Py = 2ZO(|VL+| Vi-1%)

We note that P; > P; for all I';. In terms of the incident forward power at the load,
Pinc = |V1+12/2Z,, we have:
P4 = Pinc (QZad - |FL‘22_20“1) = Pincezad(l — |Fd|2)

(9.10.5)
PL = Pinc(l - |TL|2)

where |[4| = |I']e 2%4. The total attenuation or loss of the line is P4/P; (the inverse
P; /P, is the total gain, which is less than one.) In decibels, the loss is:

(total loss) (9.10.6)

e2(xd _ |FL|2672txd
1—|Igl?

P
L =10log;g (P—d> = 10log, (
L

If the load is matched to the line, Z; = Z, so that I';y = 0, the loss is referred to as
the matched-line loss and is due only to the transmission losses along the line:
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Ly = 10log;, (%) = 8.6860((1‘ (matched-line loss) (9.10.7)
Denoting the matched-line loss in absolute units by a = 10L#/10 = e2%d e may
write Eq. (9.10.6) in the equivalent form:
a’ — |I't|? )
L =10lo —— (total loss) (9.10.8)
810 (a(l — 1212
The additional loss due to the mismatched load is the difference:
1—|Ip|2e4od 1—|4l?
L—-Ly=10I — | =101 —_— 9.10.9
. °g1°< THIE B0\ 1 2 (0109

Example 9.10.2: A 150 ft long RG-58 coax is connected to a load Z; = 25 + 50j ohm. At the
operating frequency of 10 MHz, the cable is rated to have 1.2 dB/100 ft of matched-line
loss. Determine the total loss of the line and the excess loss due to the mismatched load.

Solution: The matched-line loss of the 150 ft cableis Ly; = 150%1.2/100 = 1.8 dB or in absolute
units, a = 108’19 = 1.51. The reflection coefficient has magnitude computed with the
help of the MATLAB function z2g:

[I'L| = abs(z2g(25 + 50j,50)= 0.62

It follows that the total loss will be:

a’ — I |2 1.51%2 - 0.622
I =101 BLY 4 N TS| —— ] =3.1dB
0108 (a(l —irn ) T Tsia -6 ) T

The excess loss due to the mismatched load is 3.1 — 1.8 = 1.3 dB. At the line input, we
have |I'y| = [I't|le 2% = |T';|/a = 0.62/1.51 = 0.41. Therefore, from the point of view of
the input the line appears to be more matched. [m}

9.11 Open- and Short-Circuited Transmission Lines

Open- and short-circuited transmission lines are widely used to construct resonant cir-
cuits as well as matching stubs. They correspond to the special cases for the load
impedance: Z; = oo for an open-circuited line and Z; = 0 for a short-circuited one.
Fig. 9.11.1 shows these two cases.

Knowing the open-circuit voltage and the short-circuit current at the end terminals
a, b, allows us also to replace the entire left segment of the line, including the generator,
with a Thévenin-equivalent circuit. Connected to a load impedance Z;, the equivalent
circuit will produce the same load voltage and current V,I; as the original line and
generator.

Setting Z; = o and Z; = 0in Eqg. (9.9.2), we obtain the following expressions for the
wave impedance Z; at distance I from the open- or short-circuited termination:
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Z I

= 0 a
+1 1 +

Zy Vi Vin |

Fig. 9.11.1 Open- and short-circuited line and Thévenin-equivalent circuit.

Zy = —jZycot Bl (open-circuited) ©11.1)
Z) = jZytan Bl (short-circuited) o
The corresponding admittances Y; = 1/Z; will be:
Y; = jY,tan Bl (open-circuited)
_ o (9.11.2)
Y; = —jYocot Bl (short-circuited)

To determine the Thévenin-equivalent circuit that replaces everything to the left of
the terminals a, b, we must find the open-circuit voltage V,, the short-circuit current
Iy, and the Thévenin impedance Zy,.

The impedance Zy, can be determined either by Zy, = Vi, /I, or by disconnecting
the generator and finding the equivalent impedance looking to the left of the terminals
a,b. It is obtained by propagating the generator impedance Z; by a distance d:

Zg +jZotanBd 1+T'wm
Zo+jZetanBd  °1-Tw |

Zm = Zo Ty = Fge %P4 (9.11.3)

The open-circuit voltage can be determined from Eq. (9.9.11) by setting Z; = oo,
which implies that I't = 1, Iy = e %#4 and I'cTy = I'ce %P4 = I'y,. The short-
circuit current is also obtained from (9.9.11) by setting Z; = 0, which gives I'y = —1,
Tg=—e %P and I'cl'y = —I'ge %P4 = —T'y,. Then, we find:

VeZy 2eJPd Ve 2eJBd

Vi = 820 , -G
N et Zo 1 —Tw’ % Zo+Zo1+Tm

(9.11.4)

It follows that Vi, /Isc = Zw, as given by Eq. (9.11.3). A more convenient way of
writing Eq. (9.11.4) is by noting the relationships:
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ZZO 2Zth
1-Tyw=——"—"7, 14+4lTth=—-—"—>
th Zth + ZO ’ th Zth + ZO
Then, Eq. (9.11.4) becomes:
Zin+ Z Zin+ Z
Vin=Vo 20 220 Lo =1p 220 (9.11.5)
Zy Zwn

where Vy, I are the load voltage and currents in the matched case, given by Eq. (9.9.9).
The intuitive meaning of these expressions can be understood by writing them as:

Zy _ Zin
S, Tp =T
Zin + 2y VA A
These are recognized to be the ordinary voltage and current dividers obtained by

connecting the Thévenin and Norton equivalent circuits to the matched load impedance
Zy, as shown in Fig. 9.11.2.

Vo=V (9.11.6)

Z I
| a
= 011,
+}Il + 0
Zo Vi Vo |20
- —
! b

Fig. 9.11.2 Thévenin and Norton equivalent circuits connected to a matched load.

The quantities Vg, Iy are the same as those obtained by connecting the actual line to
the matched load, as was done in Eqg. (9.9.9).
An alternative way of determining the quantities Vi, and Zy, is by replacing the

length-d transmission line segment by its T-section equivalent circuit, as shown in
Fig. 9.11.3.

Fig. 9.11.3 T-section and Thévenin equivalent circuits.
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The Thévenin equivalent circuit to the left of the terminals a, b is easily determined
by shorting the generator and finding the Thévenin impedance and then finding the
open-circuit voltage. We have:

Zc(Za + ZG) VGZC
Iiwn=2p+ =0V 11.7
h et Za+ 26 M Zev Za+ Zg ©.11.7)
where Z,, Zy, Z. for a length-d segment are given by Eq. (9.8.3):
_ . Bd) . 1
Za=12p =jZotan (*2 y Ze=—jZo sin Bd

It is straightforward to verify that the expressions in Eq. (9.11.7) are equivalent to
those in Eq. (9.11.3) and (9.11.4).

Example 9.11.1: For the generator, line, and load of Example 9.10.1, determine the Thévenin
equivalent circuit. Using this circuit determine the load voltage.

Solution: We work with the T-section approach. The following MATLAB call gives Z, and Z,,
with Zy = 50 and Bd = 9.5756:
[Za, Zc]= tsection (50, 9.5756) = [—661.89j, 332.83j]
Then, Eq. (9.11.7) gives with Z}, = Z;:

ZC(Z(Z+ZG) .
I =Zp + =4 =72 — (. .36 Q
w= 2ot G 0.39 +j6.36
VeZ,

Vi = ——22¢
N+ Za+ Zs

= —10.08 +j0.61 = 10.10£176.52° V
Alternatively, Zy, can be computed by propagating Z; = 20 by a distance d:

Zuw = zprop (20, 50,9.5756) = 20.39 + j6.36 Q

The load voltage is found from the Thévenin circuit:

VinZr .
Vi = —o——— =-7.09+j0.65=7.122174.75° V
L Zr + Zwn J
which agrees with that found in Example 9.10.1. [m}

9.12 Standing Wave Ratio

The line voltage at a distance I from the load is given by Eq. (9.9.12), which can be written
as follows in terms of the forward wave V;,. =V /(1 +1):

Vi=Vi.ePl1+17)) 9.12.1)

The magnitude of V| will be:
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Vil = [VLel 11 + Il = [V |11 + Te %P (9.12.2)
It follows that |V;| will vary sinusoidally as a function of I. Its limits of variation are
determined by noting that the quantity |1 + I';| varies between:

1-Il=1- <N+l <1+ =1+ I

where we used |I'7| = |I'|. Thus, |V;| will vary over the limits:

Vmin = |VI| = Vmax (9.12.3)

where

Vimin = Vil = [Vio] = [V [ (1 = [IL])

(9.12.4)
Vmax = Vil + V-l = Vi (1 + [IL])

We note that the reflection coefficient at aload Z; = Ry +jX| has always magnitude
less than unity, |I';| < 1. Indeed, this follows from the positivity of R; and the following
property:

1+1I7; 1-|I't |2
=> Ry =Re(Zp)=Zy —F—
1-Ip L (Z1) O|1+TL|2

The voltage standing wave ratio (SWR) of a terminated transmission line is a measure
of the degree of matching of the line to the load and is defined as the ratio of the
maximum to minimum voltage along the line:

Z; =7y (9.12.5)

1+ T S—-1

Vmax
S = = Iil==-—-+-
< 1] S+1

- Vmin B 1- |FL|
Because |I';| < 1, the SWR will always be S > 1. A matched load, I'; = 0, has S = 1.
The more unmatched the load is, the larger the SWR. Indeed, S — o as |[I';| — 1. A

matched line has Viyin = |V]| = Vinax at all points I, and is sometimes referred to as a
flat line. The MATLAB function swr.m calculates the SWR from Eq. (9.12.6):

(9.12.6)

S = swr(Gamma) ; % calculates SWR from reflection coefficient I'

The SWR can be used to quantify the amount of power delivered to the load. The
percentage of reflected power from the load is |I'; |?. Therefore, the percentage of the
power delivered to the load relative to the incident power will be:

Pr 4S8
=1-IlP= s 9.12.7
P 'L 5+1)2 ( )

The larger the SWR, the smaller the percentage of delivered power. For example, if
S =9, the reflection coefficient will have magnitude |I';| = 0.8, resulting in 1 — |7 |2 =
0.36, that is, only 36 percent of the incident power gets transferred to the load.

Example 9.12.1: If the reflected wave at the load of a transmission line is 6 dB below the incident
wave, what is the SWR at the load? What percentage of the incident power gets transferred
to the load?
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Solution: The relative power levels of the reflected and incident waves will be:

|[V_|? _ 1 1 1+0.5
Iil?= =107%0=> 5 == = S= =3
Tl IV, |2 4 Tl =5 1-05
The fraction of power transferred to the load is 1 — [I'1|? = 0.75, or 75 percent. [m}

If both the line and load impedances are real-valued, then the standing wave ratio is
S=271120if Z; = Zy,and S = Zy/Z1, if Z; < Zy. This follows from the identity:

5 L+ Il 1Z + Zol + 120 = Zol _ max(Zp, Zo) 9.12.8)
1 -1l 1Zp+ Zol = 1Zr — Zol min(Zy, Zo) o
or, explicitly:
Zr .
—, if Zr = Z
1+ Iy Z,) T =20
S = 1—7|F| = ZO (9129)
L —, if Zp < Zy
VA

9.13 Determining an Unknown Load Impedance

Often a transmission line is connected to an unknown impedance, and we wish to de-
termine that impedance by making appropriate measurements of the voltage along the
line.

The SWR can be readily determined by measuring |V;| and finding its maximum and
minimum values Vi, and V. From the SWR, we then determine the magnitude of
the reflection coefficient |I';|.

The phase of I'r can be determined by finding the locations along the line at which
a voltage maximum or a voltage minimum is measured. If 0} is the required phase, so
that I'; = |I'z]e/%L, then we have:

Vil = VLo 11+ Tl = Vs |[[1+ Tre ™ %Fl = [V || 1+ [p|e/0r=28D |

At all locations I for which 8; — 28] = +271rn, where n is an integer, we will have
I't = |I't| and | V| will be equal to Ve Similarly, at all locations for which 6 — 281 =
+(2n + 1) 1, we will have I'1 = —|I';| and |V;| will be equal to Viin.

We note that two successive maxima, or two successive minima, are separated by a
distance A/2 and a maximum is separated by the next minimum by a distance A/4, so
that |Ipax — Imin| = A/4.

Once such distances lnax, Imin have been determined, the full reflection coefficient
canbe constructed from I'; = I'1eP! where I'1 = +|I';| depending on using a maximum-
or minimum-voltage distance I. From I'; and the knowledge of the line impedance Zj,
the load impedance Z; can be computed. Thus, we have:

1+1;

FL = ‘FL|€I€L — ‘[’L|ez‘jBlmax — _‘FL|eszImin = ZL — ZO 1 T
— 1L

(9.13.1)
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If 0 < 0; < T, the locations for the closest maxima and minima to the load are
determined from the conditions:

QL - 2Blmax =0, QL - 2Blmin =-TT

resulting in the distances:

0 0
Inac = CEA, Iom= 22TTAlL (0<0, <) (9.13.2)
4T 4T
Similarly, if —11 < 61 < 0, we must solve 0; — 2Bl = —21 and 0 — 2Blyin = —TT:
0 +2 0
Inae = CESETTA D I = 2T TTAL (<01 <0) (9.13.3)
4T 4T

Of course, one wants to solve for 6 in terms of the measured I ;s OF Iimin. Using Iiin
is more convenient than using I, because 9y is given by the same expression in both
cases. The lengths I yax, Imin may be assumed to be less than A /2 (if not, we may subtract
enough multiples of A/2 until they are.) Expressing 0; in terms of the measured Inn,
we have:

0, - 4"Tlmin 1t = 2Bl — T (9.13.4)
Alternatively, we have in terms of Iay:
4"/<max = 2Blmax if 0 <l < %
0, = ] A \ (9.13.5)
—/\max — 210 = 2PBlmax — 210 if Z < Imax < E

Example 9.13.1: A 50-ohm line is connected to an unknown impedance. Voltage measurements
along the line reveal that the maximum and minimum voltage values are 1.75 V and 0.25
V. Moreover, the closest distance to the load at which a voltage maximum is observed is
0.125A.

Determine the reflection coefficient I';, the load impedance Z;, and the closest distance
to the load at which a voltage minimum is observed.

For another load, the same maxima and minima are observed, but now the closest distance
to the load at which a minimum is observed is 0.125A. Determine I'; and Z;.

Solution: The SWR is determined to be § = Viyax/Vmin = 1.75/0.25 = 7. Then, the magnitude
of the reflection coefficient is found tobe [I'; | = (S—1)/(S+1)=(7—-1)/(7+1)= 0.75.

Given that at Ih.x = A/8 we observe a voltage maximum, we compute the phase from
Eq. (9.13.5), 81 = 2Blmax = 411/8 = 71/2. Then, the reflection coefficient will be:

I = | ]ef =0.75e/™2 = 0.75j

It follows that the load impedance will be:
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1+,  _ 140.75)
1-T;  ~ 1-0.75j

=14+48jQ

The closest voltage minimum will occur at Ipin = Imax + A/4 = 0.375A = 3A/8. Al-
ternatively, we could have determined the phase from Eq. (9.13.4), 0; = 2By, — T =
417(3/8) —11 = /2. The left graph of Fig. 9.13.1 shows a plot of |V;| versus I.

Standing Wave Pattern Standing Wave Pattern

0 0.25 0.5 0.75 1 1.25 15 0 0.25 0.5 0.75 1 1.25 1.5
172 172

Fig. 9.13.1 Standing wave patterns.

Note the locations of the closest voltage maxima and minima to the load, that is A/8 and
3A/8. In the second case, we are given I, = A/8. It follows that 6 = 2Blygn — T =
/2 — 1 = —717/2. Alternatively, we may work with lox = Imin + A/4 = 3A/8. Because
Imax > A/4,Eq.(9.13.5) will give 01 = 2Bl nax— 27T = 411 (3/8) =211 = —77/2. The reflection
coefficient and load impedance will be:

I =|Ip]eff =0.75e7™2 = —0.75] = Z,=14-48jQ
The right graph of Fig. 9.13.1 depicts the standing wave pattern in this case. O
It is interesting also to determine the wave impedances at the locations along the

line at which we have voltage maxima or minima, that is, at [ = Ijyax Or Inin. The answers
are expressed in terms of the SWR. Indeed, at | = l;,,x, we have I'; = |I';| which gives:

1+ 1 1+ |Ig]
Zmax = Z =Zyg— =87 9.13.6
max 01—F1 01_|FL| 0 ( )
Similarly, at I = Iy, we have I'; = —|I'| and find:
1+ 1-1Il 1

Zmin = Z A (9.13.7)

1-1 P14+ S
We note that ZmaxZmin = Z(Z), as is expected because the points lnax and lyin are
separated by a quarter-wavelength distance A /4.
Because at Iy and Iy, the wave impedances are real-valued, these points can be
used as convenient locations at which to insert a quarter-wave transformer to match a
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line with real Z, to a complex load Z;. Given 0, the required locations are determined
from Eq. (9.13.2) or (9.13.3). We discuss this matching method later on.

The MATLAB function Tmin.m calculates the locations Iy, and Iy from Egs. (9.13.2)
and (9.13.3), and the corresponding impedances Znj, and Znay. It has usage:

[Tm,Zm] Tmin(ZL,Z0,’min’); % locations of voltage minima
[Tm,Zm] = Tmin(ZL,Z0, max’); % locations of voltage maxima

For a lossless line the power delivered to the load can be measured at any point [
along the line, and in particular, at Ijyax and Iyi,. Then, Eq. (9.12.7) can be written in the
alternative forms:

1

_ _ VmaxVmin _ Vrznin _ Vrznax _ Vrznax
27y

P Viil? = |Vi_|?) = = = -
L (IViel® = Vi I%) 27, 27min 2Zmax 28570

(9.13.8)

The last expression shows that for a given maximum voltage that can be supported
along a line, the power transmitted to the load is S times smaller than it could be if the
load were matched.

Conversely, for a given amount Py of transmitted power, the maximum voltage will
be Vinax = +/2SP1 Zy. One must ensure that for a highly unmatched load, Vi remain
less than the breakdown voltage of the line.

If the line is lossy, measurements of the SWR along its length will give misleading
results. Because the reflected power attenuates as it propagates backwards away from
the load, the SWR will be smaller at the line input than at the load.

For a lossy line with . = B — j«, the reflection coefficient at the line input will be:
Iy = I'te 2(@+iB)d which gives for the input SWR:

1+ Tgl 1+ (|Iple?xd  e2¢d 4T  a+ (I
11— Tql  1-|Ile2xd — e20d —|[ | g — |}

where we expressed it in terms of the matched-line loss of Eq. (9.10.7).

Sa

(9.13.9)

Example 9.13.2: For the RG-58 coax cable of Example 9.10.2, we find the SWRs:

1+ Il 1+0.62
T 1-1Il 1-0.62

C1+1Mal _1+0.41

S - _
L 1- 1[Iyl 1-0.41

=2.39

=4.26, Sa

If one does not know that the line is lossy, and measures the SWR at the line input, one
would think that the load is more matched than it actually is. [m}

Example 9.13.3: The SWR at the load of a line is 9. If the matched-line loss is 10 dB, what is
the SWR at the line input?

Solution: We calculate the reflection coefficient at the load:

S-1 9-1
rl=>—-=>""_o.
Mil= g7 =941 ~08

The matched-line loss is a = 10tM/10 = 1010/10 = 10, Thus, the reflection coefficient
at the input will be [I'y| = [I'L]/a = 0.8/10 = 0.08. The corresponding SWR will be
S=(1+0.08)/(1-0.08)=1.17. [}
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Example 9.13.4: A 50-ohm line feeds a half-wave dipole antenna with impedance of 73 + j42.5
ohms. The line has matched-line loss of 3 dB. What is the total loss of the line? What is
the SWR at the load and at the line input?

If the line length is doubled, what is the matched-line loss, the total loss, the input and
load SWRs?

Solution: The matched-line loss in absolute unitsis a = 103/ = 2. Using the MATLAB functions
z2g and swr, we compute the reflection coefficient at the load and its SWR:

Zy—Zy
Z1 + 7y

Iy =‘

B ‘73 +j42.5 = 50

73 + j42.5 + 50 ' = abs(z2g(73 + 42.5j,50))= 0.3713

The SWR will be § = swr(0.3713) = 2.1814. The reflection coefficient at the line input will
be |I'y| = [T le 2*d = |I';|/a = 0.1857, and its SWR, S = swr(0.1857) = 1.4560.

If the line length is doubled, the matched-line loss in dB will double to 6 dB, since it is
given by Ly = 8.686xd. In absolute units, itis a = 22 = 4.

The corresponding reflection coefficient at the line input will be |I'y| = [I't|/a = 0.0928,
and its SWR, S = swr(0.0928) = 1.2047. [}

9.14 Smith Chart

The relationship between the wave impedance Z and the corresponding reflection re-
sponse I along a transmission line Z, can be stated in terms the normalized impedance
z = Z/Zy as follows:
z—-1 1+T
F—Z+1 = Z_l—F (9.14.1)

It represents a mapping between the complex impedance z-plane and the complex
reflection coefficient I'-plane, as shown in Fig. 9.14.1. The mapping is similar to the
bilinear transformation mapping in linear system theory between the s-plane (playing
the role of the impedance plane) and the z-plane of the z-transform (playing the role of
the I'-plane.)

A complex impedance z = r + jx with positive resistive part, ¥ > 0, gets mapped
onto a point I' that lies inside the unit-circle in the I'-plane, that is, satisfying |I'| < 1.

An entire resistance line z = r (a vertical line on the z-plane) gets mapped onto
a circle on the I'-plane that lies entirely inside the unit-circle, if » > 0. Similarly, a
reactance line z = jx (a horizontal line on the z-plane) gets mapped onto a circle on the
I'-plane, a portion of which lies inside the unit-circle.

The Smith chart is a graphical representation of the I'-plane with a curvilinear grid
of constant resistance and constant reactance circles drawn inside the unit-circle. In
effect, the Smith chart is a curvilinear graph paper.

Any reflection coefficient point I' falls at the intersection of a resistance and a reac-
tance circle, r, x, from which the corresponding impedance can be read off immediately
as Zz = r + jx. Conversely, given z = r + jx and finding the intersection of the r,x
circles, the complex point I' can be located and its value read off in polar or cartesian
coordinates.




9.14. Smith Chart 311

=

Imz4
Z=r+jx

X reactance

circles
> I =_é

0 r Rez =
resistance
circles

Fig. 9.14.1 Mapping between z-plane and I'-plane.

To determine the centers and radii of the resistance and reactance circles, we use
the result that a circle with center C and radius R on the I'-plane has the following two
equivalent representations:

Il>-C*IT-Cr*=B < |I-C|=R, whereB=R?>-|CJ? (9.14.2)

Setting z = r + jx in Eq. (9.14.1) and extracting the real and imaginary parts, we can
write ¥ and x in terms of I', as follows:
1-1I? Ja*-n)
¥y =Rez = , X=Imz=""——+~
I1-T]2 1-T]2
In particular, the expression for the resistive part implies that the condition ¥ > 0 is
equivalent to |I'| < 1. The r, x circles are obtained by putting Egs. (9.14.3) in the form
of Eq. (9.14.2). We have:

(9.14.3)

rir-12=1-1I* = r(II?-Ir-r*+1)=1-1r°

and rearranging terms:

IT? -

r r*l—r:‘r

B B B 2_1—r+ r? _( 1 )2
r+1 1+r 1+vr 1+r 1+r (1+7r)2 1+7r

Similarly, we have
XIF=12=jI*-I) = x(IN*-r-r*+1)=jI*-rn)

which can be rearranged as:

|r|2—(1—i)r—<1+l)r*:—1 - ’r—<1+i)
X X X
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To summarize, the constant resistance and reactance circles are:

' - - (resistance circles)
1+r| 14r
- 1 (9.14.4)
'F - (1 + l) ’ = — (reactance circles)
X x|

The centers of the resistance circles are on the positive half of the real axis on the I'-
plane, lying between 0 < I' < 1. When r = 0, the impedance circle is the entire unit-circle
with center at I' = 0. As r increases, the radii become smaller and the centers move
towards I' = 1. The centers of the reactance circles lie on the tangent of the unit-circle
atlI' = 1.

Example 9.14.1: Fig. 9.14.2 depicts the resistance and reactance circles for the following values
of r,x:

r =[0.2, 0.5, 1, 2, 5], x=1[0.2,0.5,1, 2, 5]
Because the point A is at the intersection of the ¥ = 0.2 and x = 0.5 circles, the corre-
sponding impedance will be z4 = 0.2 + 0.5j. We list below the impedances and reflection

coefficients at the points A,B,C,D,E,S,P, O:

za =0.2+40.5j, TI'a=-0.420+ 0.592j =0.726£125.37°

zp = 0.5 — j, I'y =0.077 — 0.615j = 0.6202—82.88°
Zc =2 - 2], I'c =0.539 —0.308j = 0.620£—29.74°
Zp =J, I'p =j=12£90°
ZE=—j, FE=—j=14—9OO

(short circuit) zg =0, I's=-1=12£180°

(open circuit) zp = oo, I'p=1=1x£0°

(matched) Zo =1, I'o=0=0£0°

The points S and P correspond to a short-circuited and an open-circuited impedance. The
center of the Smith chart at point O corresponds to z = 1, that is, an impedance matched
to the line. m]

The Smith chart helps one visualize the wave impedance as one moves away from
or towards a load. Assuming a lossless line, the wave impedance and corresponding
reflection response at a distance I from the load are given by:

zy + jtan Bl ;
7 = M o I=e %A, (9.14.5)
1+ jzy tan Bl

The magnitude of I'; remains constant as I varies, indeed, |I'j| = [I'L|. On the Smith
chart, this represents a circle centered at the origin I = 0 of radius |[I';|. Such circles
are called constant SWR circles because the SWR is related to the circle radius by

1+ I

g= "Ll
1- 107l

The relative phase angle between I'; and I'; is negative, —2 1, and therefore, the point
I't moves clockwise along the constant SWR circle, as shown in Fig. 9.14.3. Conversely,
if I is decreasing towards the load, the point I'; will be moving counter-clockwise.
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Zy

<«— towards generator
constant SWR circle

Fig. 9.14.3 Moving towards the generator along a constant SWR circle.

The rotation angle ¢p; = 21 can be read off in degrees from the outer periphery of
the Smith chart. The corresponding length I can also be read off in units of wavelengths
towards the generator (WTG) or wavelengths towards the load (WTL). Moving towards
the generator by a distance I = A/8 corresponds to a clockwise rotation by an angle of
¢ = 2(21/8) = 11/2, that is, 90°. Moving by I = A/4 corresponds to a 180° rotation,
and by [ = A/2, to a full 360° rotation.

Smith charts provide an intuitive geometrical representation of a load in terms of
its reflection coefficient and help one design matching circuits—where matching means
moving towards the center of the chart. However, the computational accuracy of the
Smith chart is not very high, about 5-10%, because one must visually interpolate between
the grid circles of the chart.
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Smith charts are used widely to display S-parameters of microwave amplifiers and
help with the design of matching circuits. Some of the tools used in such designs are the
stability circles, gain circles, and noise figure circles of an amplifier, which are intuitively
represented on a Smith chart. We discuss them in Chap. 12.

Various resources, including a history of the Smith chart and high-quality download-
able charts in Postscript format can be found on the web site [734].

Laursen’s Smith chart MATLAB toolbox can be used to draw Smith charts. It is avail-
able from the Mathworks web site [745]. Our MATLAB function smith.m can be used to
draw simple Smith charts.

9.15 Time-Domain Response of Transmission Lines

So far we discussed only the sinusoidal response of transmission lines. The response to
arbitrary time-domain inputs can be obtained by writing Eq. (9.6.3) in the time domain
by replacing jw — 0/0t. We will assume a lossless line and set R” = G’ = 0.t We obtain
then the system of coupled equations:

ov , 01 ol , 0V
— =-L'"_ — =-C'— 9.15.1
27 TR ot ©15.1)
The are called telegrapher’s equations. By differentiating again with respect to z, it

is easily verified that V and I satisfy the uncoupled one-dimensional wave equations:

v v 21 1er
0z2 c2 otz 0z2  c2ot2

where ¢ = 1/+/L'C’. Asin Sec. 2.1, it is better to deal directly with the first-order coupled
system (9.15.1). This system can be uncoupled by defining the forward and backward
wave components:

Vi(t,z)= V(t,z)izzol(t,z), where Zg = % (9.15.2)

They satisfy the uncoupled equations:

ov.
0z

_]. aVi
=¥ o (9.15.3)

with general solutions given in terms of two arbitrary functions f (t), g (t):
Vi(t,z)=f(t—-2z/c), V_(t,z)=g(t+z/c) (9.15.4)

They satisfy the basic forward and backward propagation property:

Vi(t,z+ Az) =V, (t - At,2) Az
, where At = — (9.15.5)
V_(t,z+Az) = V_(t+ At,2) c

TAtRF, R’, G’ may be small but cannot be assumed to be frequency-independent, for example, R’ depends
on the surface impedance Ry, which grows like f1/2.
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In particular, we have:

Vi(t,z) =V, (t—2z/c,0)
(9.15.6)
V_(t,z) =V_(t+2z/c,0)

These allow the determination of the line voltages at any point z along the line from
the knowledge of the voltages at z = 0. Next, we consider a terminated line, shown in
Fig. 9.15.1, driven by a generator voltage Vs (t), which is typically turned on at t = 0 as
indicated by the closing of the switch.

FL
\ (‘
+ + ! 1@

Zo VL) Vi) |

|
J (

Fig. 9.15.1 Transient response of terminated line.

In general, Z; and Z; may have inductive or capacitive parts. To begin with, we will
assume that they are purely resistive. Let the length of the line be d, so that the one-
and two-way travel-time delays will be T = d/c and 2T = 2d/c.

When the switch closes, an initial waveform is launched forward along the line. When
it reaches the load T seconds later, it gets reflected, picking up a factor of I';, and begins
to travel backward. It reaches the generator T seconds later, or 2T seconds after the
initial launch, and gets reflected there traveling forward again, and so on. The total
forward- and backward-moving components V.. (t, z) include all the multiple reflections.

Before we sum up the multiple reflections, we can express V. (t,z) in terms of the
total forward-moving component V. (t)= V. (t,0) at the generator end, with the help
of (9.15.6). In fact, we have V. (t,z)= V. (t — z/c). Applying this at the load end z = d,
we have V] (t)= V., (t,d)=V,(t—d/c)= V., (t—T). Because of Ohm’s law at the load,
Vi (t)= Zp1I; (t), we have for the forward/backward components:

Vi (t) =Zolg (t) _ Z; = 2y Zr — 2o

Vi ()= > =—> L = VL’(t)=ZL+Z0

Vi()=T,V,(-T)

Therefore, we find the total voltage at the load end:

Vit)=V () +V[ ()= 1 +T)V,.(t-T) (9.15.7)

Using (9.15.6), the backward component at z = 0 is:

V_@t+T)=V_(t+d/c,0)=V_(t,d)=V  (O)=T V. (t-T), or,
V_(t) =ItVy(@t-2T)
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Thus, the total line voltage at the generator end will be:

Va@) =V, (O)+V_ ()= V() +I LV, (t -2T) (9.15.8)

More generally, the voltage at any point z along the line will be:
V(t,z)=V, (t,2)+V_(t,z2)=V (t —z/c)+T V (t +z/c—2T) (9.15.9)

It remains to determine the total forward component V. (t) in terms of the multiple
reflections of the initially launched wave along the line. We see below that:

= > (I'¢I'L)™V(t —2mT)
m=0

(9.15.10)
=Vt +Igl)V(t- 2T)+(F(;FL) V(t—4T)+
where V (t) is the initially launched waveform:
Zy
= —— 15.11
V(D) Zc + 7o Ve (1) (9.15.11)

Thus, initially the transmission line can be replaced by a voltage divider with Z; in
series with Z;. For a right-sided signal V (t), such as that generated after closing the
switch, the number of terms in (9.15.10) is finite, but growing with time. Indeed, the
requirement that the argument of V (t — 2mT) be non-negative, t — 2mT > 0, may be
solved for the limits on m:

t
0O<m=<M(), where M (t)= floor (ZT) (9.15.12)
To justify (9.15.10) and (9.15.11), we may start with the single-frequency case dis-

cussed in Sec. 9.9 and perform an inverse Fourier transform. Defining the z-transform
variable € = e/®T = ¢/fdt we may rewrite Eq. (9.9.7) in the form:

1+FLC72 1_FLC72 VeZo
=V———=— Zg=V— = h =—"—
Va=V o rerce 2la=Vy ey Whee V=0
The forward and backward waves at z = 0 will be:
V. = Va+ Zolg \%
+_ 2 T 1- I'cl'[C2
Va— Zolyg VIpC=? » (9.15.13)
Vo= = =T vV .15.
2 1-IglC? & Vs

Va=Vi+V_=V,+I1C%V, = Vag(w)=V,(w)+I'e YTy (w)

where in the last equation we indicated explicitly the dependence on w. Using the delay
theorem of Fourier transforms, it follows that the equation for V;(w) is the Fourier
transform of (9.15.8). Similarly, we have at the load end:

TWe use T instead of z to avoid confusion with the position variable z.
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VeZy 1+17;

=@+t
Zo+Zy 1=TelT 2% Ve Vs

Vi =

which is recognized as the Fourier transform of Eq. (9.15.7). Next, we expand V , using
the geometric series noting that |[I'gI'1C7?| = |I'gI'1| < 1:

v
1-TIgl €2

which is equivalent to the Fourier transform of Eq. (9.15.10). The same results can be
obtained using a lattice timing diagram, shown in Fig. 9.15.2, like that of Fig. 4.6.1.

V, = =V+ (FGFL)C_ZV + (FGFL)ZC_4V + .- (9.15.14)

;z=5T

Fig. 9.15.2 Lattice timing diagram.

Each propagation segment introduces a delay factor !, forward or backward, and
each reflection at the load and generator ends introduces a factor I'; or I'c. Summing
up all the forward-moving waves at the generator end gives Eq. (9.15.14). Similarly, the
summation of the backward terms at the generator, and the summation of the forward
and backward terms at the load, generate:

V_ = VFLC_Z[l + (FGFL)C_Z —+ (Tgl"L)ZC“‘ + .- ] = FLC_ZVJr
Vi=VC ' 1+ TeI)C?+ Tel)*CH+--- 1 =TV,
Vi =T VG 1+ Igl)C %+ (Igl)*C*+ -+ | =T 0V =IV]
Replacing V, (t) in terms of (9.15.10), we obtain from (9.15.7) and (9.15.8):
Val(t) = V() + (1 - —) Z (Tg)™V (t — 2mT)

. (9.15.15)
Vi(t) = (1+17) Z (IgI')™V(t— (2m+1)T)
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The line voltage at an arbitrary location z along the line, can be determined from
(9.15.9). The substitution of the series expansion of V, leads to the expression:

V(t,z)= > (TeI)"V(t—z/c—2mT)+I > (TcI')XV(t+z/c—2kT - 2T)
m=0 k=0

For a causal input V (t), the allowed ranges for the summation indices m, k are:

t—2z/c
2T

0=< <fl (
m oor > T

Example 9.15.1: A terminated line has Zy = 50, Zg = 450, Z; = 150 Q. The corresponding
reflection coefficients are calculated to be: I'c = 0.8 and I'; = 0.5. For simplicity, we
takec = 1,d = 1, T = d/c = 1. First, we consider the transient response of the line
to a step generator voltage Vi (t)= 10u(t). The initial voltage input to the line will be:
V(t)=Vg(t)Zo/(Zg+Zy)=10u(t)-50/(450+50) = u(t). It follows from (9.15.15) that:

Va(©)=u)+2.25 > (0.4)™u(t-2mT), Vi (0)=1.5> (04)™u(t— 2m+1)T)

m=1 m=1

Step Response Pulse Response, width 7=T/10

1.5¢ 1150 —— generator
i --- load

= = 15
g = A 0.90
> > "
= _ "
= = i
L) k=) h
> > " -060
I
0.5 " "

— generator E: " " 0.14
n0.10
o load o " n M " o 0% 004
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Fig. 9.15.3 Transient step and pulse responses of a terminated line.

These functions are plotted in Fig. 9.15.3. The successive step levels are calculated by:

Va(t) | VL(t)

1 0

1+2.25[0.4']=1.90 1.5

1+2.25[0.41 +0.42]1=2.26 1.5[1 + 0.4'1= 2.10
1+2.25[0.4) +0.42 + 0.43]= 2.40 1.5([1 + 0.4' + 0.4%]1=2.34

1+2.25[0.4! + 0.4 + 0.43 + 0.44]=2.46 | 1.5([1 + 0.4! + 0.4%2 + 0.43]=2.44

Both V; and V| converge to the same asymptotic value:

142.25[0.4' +0.42+043+04%+--- 1=1.5[1+04'+04%+04%3+. .. |=
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More generally, the asymptotic level for a step input V¢ (t) = Vu(t) is found to be:

1+1; _ VeZo 1+17 _ VeZi
1-T¢ly Ze+Zo1-T¢lt  Ze+ 71

Vo=V (9.15.16)

Thus, the line behaves asymptotically like a lumped circuit voltage divider with Z; in series
with Z. We consider next, the response to a pulse input V¢ (t)= 10[u(t) —u(t — T)], so
that V (t)= u(t) —u(t — T), where T is the pulse duration. Fig. 9.15.3 shows the generator
and load line voltages for the case T = T/10 = 1/10. The pulse levels are:

[1, 2.25(0.4)™] = [1.00, 0.90, 0.36, 0.14, 0.06, ... ] (at generator)
1.5(0.4)™ = [1.50, 0.60, 0.24, 0.10, 0.04, ... ] (atload)

The following MATLAB code illustrates the computation of V; (t):

d=1; c=1; T = d/c; tau = T/10; VG = 10;

Z0 = 50; ZG = 450; ZL = 150;

V = VG * 20 / (ZG+Z0);

9G = z29(ZG,Z20); gL = z29(ZL,Z0); % reflection coefficients I', I'p

t =0 : T/1500 : 10*T;

for i=1:Tength(t),
M = floor(t(i)/2/T);
vd(i) = V * upulse(t(i), tau);
if M >=1,
m= 1:M;
vd(i) = vd({) + (1+1/9G)*V*sum((gG*gL) .Am .* upulse(t(i)-2*m*T, tau));
end
end

plot(t, vd, ’'r’);

where upulse(t, T) generates the unit-pulse function u(t)—u(t — 7). The code can be
adapted for any other input function V (t).

The MATLAB file pulsemovie.m generates a movie of the step or pulse input as it propa-
gates back and forth between generator and load. It plots the voltage V (t, z) as a function
of z at successive time instants t. m}

Next, we discuss briefly the case of reactive terminations. These are best han-
dled using Laplace transforms. Introducing the s-domain variable s = jw, we write
C' = eJ®T = ¢=5T The terminating impedances, and hence the reflection coeffi-
cients, become functions of s. For example, if the load is a resistor in series with an
inductor, we have Z; (s) = R + sL. Indicating explicitly the dependence on s, we have:

V(s) _ Ve(s)Zo
LT (o)L (sye ot Where VIsI= 2 7,

In principle, we may perform an inverse Laplace transform on V', (s) to find V, (t).
However, this is very tedious and we will illustrate the method only in the case of a
matched generator, that is, when Zs = Zy, or, I'¢ = 0. Then, V, (s)= V(s), where

Vi(s)= (9.15.17)




320 Electromagnetic Waves & Antennas - S. J. Orfanidis

V(s)=Vg(s)Zo/2Zy = Vi (s) /2. The line voltages at the generator and load ends will
be from (9.15.13) and (9.15.7):

Va(s)

Vi(s) = [1+Tp(s)]e*TV(s)

We consider the four typical cases of series and parallel R-L and series and parallel
R-C loads. The corresponding Z; (s) and I'; (s) are shown below, where in all cases

= (R - Zy)/ (R + Zp) and the parameter a gives the effective time constant of the
termination, T = 1/a:

=V(s)+I (s)e Ty (s)
(9.15.18)

series R-L parallel R-L series R-C parallel R-C
R
ZL—»> R= 3L % Rgc
_T¢ 1]
RsL 1 R
ZL(S)—R+SL ZL(S)_R+SL ZL—R+E ZL(S)—TRC,S
s+al sI'r —a sI'r +a —-s+al
rp(s)="""2 =" =" rps)=—-"F
s+a s+a s+a s+a
_R+Z() a-— ZoR _ 1 _R+Z()
L " (R+Zy)L " (R+Zy)C " RZ,C

We note that in all cases I'; (s) has the form: I'; (s) = (bos + by) /(s + a). Assuming
a step-input V¢ (t) = 2V u(t), we have V (t)= Vo u(t), so that V(s) = V/s. Then,

1 1 . 1 bes+b .
Va(s)=Vy [7 +1I; (S)fe’m] =V, [7 + ¥e’2”]
S S s s(s+a)
Using partial-fraction expansions and the delay theorem of Laplace transforms, we
find the inverse Laplace transform:

(9.15.19)

Va(t)=Vou(t)+V, [% + (bo - %) e—““-m] u(t—27) (9.15.20)
Applying this result to the four cases, we find:
Va(©)=Vou()+Vo[Ir + (1 =T'r)e 22D ]yt —2T) (series R-L)
Va(©)=Vou(®)+Vo[-1+ (1 +Tg)e 22D ]y(t - 2T) (parallel R-L)
Va(t)=Vou(t)+Vo[1 — (1 = I'g)e~ 42D ]y(t —2T)  (series R-C) @152D
Va(t)=Vou(t)+Vo[I'r — (1 + T'r)e 22D ]y (t - 2T) (parallel R-C)
In a similar fashion, we determine the load voltage:
Vi(©)=Vo[(1+TR)+(1 =TR)e 2D ]u(t-T) (series R-L)
Vi(t)=Vo(1 +TR)e * Dyt -T) (parallel R-L)
(9.15.22)
Vi(t)=Vo[2—- (1 -TR)e 2D ]u(t-T) (series R-C)
Vi(t)=Vo(1 +Tg)[1-e 2D ]u(t-T) (parallel R-C)
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Example 9.15.2: We take V = 1, Zo = 50, R = 150 Q, and, as before,d =1,c=1,T = 1. We

find I'r = 0.5. Fig. 9.15.4 shows the voltages V;(t) and V[ (t) in the four cases.

In all cases, we adjusted L and C such that a = 1. This gives L = 200 and C = 1/200, and
L =37.5and C = 1/37.5, for the series and parallel cases.

Asymptotically, the series R-L and the parallel R-C cases look like a voltage divider V4 =
Vi = VGR/(R + Zy)= 1.5, the parallel R-L case looks like a short-circuited load V; =

V1 = 0, and the series R-C looks like and open circuit so that V4 = V| = V; = 2.

Using the expressions for V (t,z) of Problem 9.30, the MATLAB file RLCmovie.m makes a

movie of the step input as it propagates to and gets reflected from the reactive load.

Series R-L

Parallel R-L

Va(t), M(D)

—— generator
--- load

Va(t), (D)

—— generator
--~- load

2
T

Series R-C

3

4 5

/T

Parallel R-C

Va(®), MO

0.5

—— generator
--- load

15

Va(t), VL(D)

0.5

—— generator
--- load

/T

3

4 5

/T

Fig. 9.15.4 Transient response of reactive terminations.

9.16 Problems

O

9.1 Design a two-wire line made of two AWG 20-gauge (diameter 0.812 mm) copper wires that
has a 300-ohm impedance. Calculate its capacitance per unit length.

9.2 For the two-wire line shown in Fig. 9.5.1, show that the tangential component of the electric
field vanishes on both cylindrical conductor surfaces. Show that the surface charge and
current densities on the positively charged conductor are given in terms of the azimuthal

angle ¢ as follows:

Ps (d)) =

Ql

Q. k-1
2ma k2 —2kcosp +1°

Show and interpret the following:

Jsz(¢)=

I
21ta k? —2kcosp + 1

k-1
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21 21

ps(d))ad(ﬁ:Q’s 0 ]sz(¢)ad¢=1

9.3 For the two-wire line of the previous problem, show that the power loss per unit length due
to ohmic conductor losses is given by:

RslI2k?®+1
2mma k2 -1

21
P{oss =R JO |]sz(¢) ‘zad(j) =

From this result, derive Eq. (9.5.13) for R" and ..

9.4 A polyethylene-filled RG-59 coaxial cable has impedance of 75 ohm and velocity factor of
2/3. If the radius of the inner conductor is 0.322 mm, determine the radius of the outer
conductor in mm. Determine the capacitance and inductance per unit length. Assuming
copper conductors and a loss tangent of 7x10~* for the polyethylene dielectric, calculate
the attenuation of the cable in dB/100-ft at 50 MHz and at 1 GHz. Finally, calculate the cutoff
frequency of higher propagating modes.

9.5 Computer Experiment: Coaxial Cable Attenuation. Consider the attenuation data of an RG-
8/U cable given in Example 9.4.3.

a. Reproduce the graph of that Example. Show that with the assumed characteristics of
the cable, the total attenuation may be written as a function of frequency in the form,
where « is in dB per 100 ft and f is in GHz:

o(f)=4.3412 V2 + 2.9131f

b. Carry out a least-squares fit of the attenuation data given in the table of that Exam-
ple by fitting them to a function of the form o (f)= AfY? + Bf, and determine the
fitted coefficients A, B. This requires that you find A, B by minimizing the weighted
performance index:

T=> wila;—Af}? - Bf;)* = min

where you may take the weights w; = 1. Show that the minimization problem gives
rise to a 2x2 linear system of equations in the unknowns A, B, and solve this system
with MATLAB.

Plot the resulting function of & (f) on the same graph as that of part (a). How do the
fitted coefficients compare with those of part (a)?

Given the fitted coefficients A, B, extract from them the estimated values of the loss
tangent tan 6 and the refractive index n of the dielectric filling (assuming the cable
radii a, b and conductivity o are as given.)

c. Because it appears that the 5-GHz data point is not as accurate as the others, redo part
(b) by assigning only 1/2 weight to that point in the least-squares fit. Finally, redo part
(b) by assigning zero weight to that point (i.e., not using it in the fit.)

9.6 Computer Experiment: Optimum Coaxial Cables. Plot the three quantities E,, Pr, and .
given in Eq. (9.4.10) versus the ratio b/a over the range 1.5 < b/a < 4. Indicate on the
graphs the positions of the optimum ratios that correspond to the minima of E,; and &,
and the maximum of Pr.

Moreover, write a MATLAB function that solves iteratively (for example, using Newton’s
method) the equation for minimizing ., thatis,Inx =1+ 1/x.
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9.7

9.8

9.9

9.10

9.12

9.13

9.14

Let Z; = R; + jX; be the wave impedance on a lossless line at a distance [ from a purely
resistive load Z;. Derive explicit expressions for R; and X; in terms of Z; and the charac-
teristic impedance Z, of the line for the distances I = nA/8, where n = 1,2, 3,4,5,6,7,8.
Discuss the signs of X; (inductive or capacitive) for the two cases Z; > Z; and Z; < Zj.
What happens to the above expressions when Z; = Z,?

A dipole antenna operating in the 30-meter band is connected to a transmitter by a 20-meter
long lossless coaxial cable having velocity factor of 0.66 and characteristic impedance of 50
ohm. The wave impedance at the transmitter end of the cable is measured and found to be
39.9 + 34.2j ohm. Determine the input impedance of the antenna.

Itis desired to measure the characteristic impedance Z, and propagation constanty = x+jf
of alossy line. To this end, a length I of the line is short-circuited and its input impedance Z.
is measured. Then, the segment is open-circuited and its input impedance Z,. is measured.
Explain how to extract the two unknown quantities Zy and y from Zs. and Z,.

The wave impedances of a 100-meter long short- and open-circuited segment of a lossy
transmission line were measured to be Zs. = 68.45 + 128.13j ohm and Z,. = 4.99 — 16.65j
ohm at 10 MHz. Using the results of the previous problem, determine the characteristic
impedance of the line Z,, the attenuation constant « in dB/100-m, and the velocity factor
of the cable noting that the cable length is at least two wavelengths long.

For a lossless line, show the inequality:

- 1+ 1]
1- Il

1*|FL‘< 1+FL€72JBI
1+|FL‘ - lerefszl

where I'; is the load reflection coefficient. Then, show that the magnitude of the wave
impedance Z; along the line varies between the limits:

1
ZminS‘ZI‘SZmaXy Zmin=§ZO: Zmax =S Zo

where Z is the characteristic impedance of the line and S, the voltage SWR.

For a lossless line, show that the current I; at a distance I from a load varies between the
limits:

1 1

Inin < 1] < Imax, where Imin = — Viin, Imax = 5 Vimax

Zy Zy
where Vi, and Vi are the minimum and maximum voltage along the line. Then, show
that the minimum and maximum wave impedances of the previous problem can be written
in the alternative forms:

Vmax Vmin

Zmax = I s Zmin = I
min max

Recall from Sec. 9.13 that Zpax, Zmin correspond to the distances I and Ini,. However,
show that Iy, and I,y correspond to Iy and Iy, respectively.

If 500 W of power are delivered to a load by a 50-ohm lossless line and the SWR on the line is
5, determine the maximum voltage Vo along the line. Determine also the quantities Viyin,
I'max, Imin, Zmax, and Zyin.

A transmitter is connected to an antenna by an 80-ft length of coaxial cable of characteristic
impedance of 50 ohm and matched-line loss of 0.6 dB/100-ft. The antenna impedance is
30 +40j ohm. The transmitter delivers 1 kW of power into the line. Calculate the amount of
power delivered to the load and the power lost in the line. Calculate the SWR at the antenna
and transmitter ends of the line.
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9.15 Let Sy and S; be the SWRs at the load and at distance d from the load on a lossy and
mismatched line. Let a = e?®9 be the matched-line loss for the length-d segment. Show that
the SWRs are related by:

(a-1)(52-1) and Sy = Sy + (a-1)(55-1)

S s - (50— 1) (Sa+1D)-alSa—1)

Show that 1 < S4 < S;. When are the equalities valid? Show also that S; — 1 as d — co.

9.16 A 100-Q lossless transmission line is terminated at an unknown load impedance. The line
is operated at a frequency corresponding to a wavelength A = 40 cm. The standing wave
ratio along this line is measured to be § = 3. The distance from the load where there is a
voltage minimum is measured to be 5 cm. Based on these two measurements, determine the
unknown load impedance.

9.17 The wavelength on a 50 Q transmission line is 80 cm. Determine the load impedance if the
SWR on the line is 3 and the location of the first voltage minimum is 10 cm from the load.
At what other distances from the load would one measure a voltage minimum? A voltage
maximum?

9.18 A 75-ohm line is connected to an unknown load. Voltage measurements along the line reveal
that the maximum and minimum voltage values are 6 V and 2 V. It is observed that a voltage
maximum occurs at the distance from the load:

I =0.5A - iatan(OJS): 0.44879A
4Tt

Determine the reflection coefficient I'; (in cartesian form) and the load impedance Z;.

9.19 A load is connected to a generator by a 30-ft long 75-ohm RG-59/U coaxial cable. The SWR
is measured at the load and the generator and is found to be equal to 3 and 2, respectively.
Determine the attenuation of the cable in dB/ft. Assuming the load is resistive, what are all
possible values of the load impedance in ohm?

9.20 A lossless 50-ohm line with velocity factor of 0.8 is connected to an unknown load. The
operating frequency is 1 GHz. Voltage measurements along the line reveal that the maximum
and minimum voltage values are 6 V and 2 V. It is observed that a voltage minimum occurs
at a distance of 3 cm from the load. Determine the load reflection coefficient I'; and the
load impedance Z;.

9.21 The next four problems are based on Ref. [506]. A lossless transmission line with real
characteristic impedance Z is connected to a series RLC circuit.

a. Show that the corresponding load impedance may be written as a function of frequency
in the form (with f, fy in Hz):

ZL:R+jRQ(%7%)

where fy and Q are the frequency and Q-factor at resonance. Such a load impedance
provides a simplified model for the input impedance of a resonant dipole antenna.
Show that the corresponding SWR S; satisfies S; > S, for all f, where S, is the SWR
at resonance, that is, corresponding to Z; = R.
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b. The SWR bandwidth is defined by Af = f> — f1, where f1,[> are the left and right
bandedge frequencies at which the SWR S reaches a certain level, say S = Sg, such
that Sp > S(. Often the choice Sp = 2 is made. Assuming that Z, > R, show that the
bandedge frequencies satisfy the conditions:

(So+1)T5 — (S —1)2 Sp—1

where I'p =

. _ 2 2L £2 _op2 g2
hf:=fo, fi+f;=2f6+f 02(1-T132) : Sp+1

c. Show that the normalized bandwidth is given by:

4(I3 —13) . _So—1
(1-T0)2(1-T%)" So+1

Qaf
0

; = (S5 = S0) (So - S5Y) —J

Show that the left and right bandedge frequencies are given by:

2 2
R R N e

d. Show that the maximum bandwidth is realized for a mismatched load that has the
following optimum SWR at resonance:

_ SB+S§1
=5

Afmax S3—1 2Tp
Ioy=I% = = =
0~ B Q fo 2S5 1-T13

So

For example, if Sp = 2, we have I'y = 1/3, So = 1.25, and Af/fy = 0.75/Q, whereas
for a matched load we have Sq = 1 and Af/fy = 0.50/Q.

9.22 We assume now that the transmission line of the previous problem is lossy and that the
RLC load is connected to a generator by a length-d segment of the line. Let a = e2%9 be the
matched-line loss. For such lossy line, we may define the bandwidth in terms of the SWR Sy
at the generator end.

Show that the normalized bandwidth is given by the same expression as in the previous
problem, but with the replacement I'y — I'; 3, where I'; g = al'a:

QA—: =/ (S18 — S0) (So - Sg}) =

2 2
f J 4Ip — o) where SLB:71+FLB

(1-T0)2(1—-T3p)’ 1-TIpp

Show that I';p, S;p are the quantities I'g, Sp referred to the load end of the line. Show
that the meaningful range of the bandwidth formula is 1 < Sy < S;p in the lossy case, and
1 < S, < Sp for the lossless case. Show that for the same S, the bandwidth for the lossy
case is always greater than the bandwidth of the lossless case.

Show that this definition of bandwidth makes sense as long as the matched line loss satisfies
al'p < 1. Show that the bandwidth vanishes at the Sy that has I'y = al'z. Show that the
maximum bandwidth is realized for the optimum Sy:

_ Sip+Sip
= SR

Afmax S]%B -1 2l 2al'p
Ty=1TI? = = =
o=l = Q=g 2Sis 1-I3,  1-al3

So

Show that the optimum S is given at the load and generator ends of the line by:

1+a’T3 _l+alg

So=7T7—"">5=>, =
07 1-azr3 O ary
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9.23 Assume now that Zy < R in the previous problem. Show that the normalized bandwidth is
given by:

4(I'ip —Ip)
(1+Ty)2(1-T%p)

ar_

2,

V(Sis = Sa) (So" - Sph) = J

Show that the maximum always occurs at Sy = 1. Show that the conditions al'’p < 1 and
0 < Sy < Spp are still required.

Show that, for the same S, the bandwidth of the case Zy < R is always smaller than that of
the case Zy = R.

9.24 Computer Experiment: Antenna Bandwidth. An 80-meter dipole antenna is resonant at fy =
3.75 MHz. Its input impedance is modeled as a series RLC circuit as in Problem 9.21. Its
Q-factoris Q = 13 and its resistance R at resonance will be varied to achieve various values
of the SWR Sy. The antenna is connected to a transmitter with a length of 75-ohm coaxial
cable with matched-line loss of a = e2%4,

a. For a lossless line (a = 0 dB), plot the normalized bandwidths Q (Af)/fo versus the
SWR at the antenna at resonance Sy. Do two such plots corresponding to SWR band-
width levels of Sg = 2 and Sp = 1.75. On the same graphs, add the normalized
bandwidth plots for the case of a lossy line with a = 2 dB. Identify on each graph the
optimum bandwidth points and the maximum range of S, (for convenience, use the
same vertical and horizontal scales in all graphs.)

b. Assume now that Sy = 1.25. What are the two possible values of R? For these two
cases and assuming a lossy line with a = 2 dB, plot the SWR at the antenna end of
the line versus frequency in the interval 3.5 < f < 4 MHz. Then, plot the SWRs at
the transmitter end of the line. Using common scales on all four graphs, add on each
graph the left and right bandedge frequencies corresponding to the two SWR levels of
Sp = 2 and S = 1.75. Note the wider bandwidth in the lossy case and for the case
having Z, = R.

9.25 For the special case of a matched generator having Z; = Z, or, ' = 0, show that Eq. (9.15.15)
reduces to:

Va®)=V(@®)+ItV(t-2T) and V()= 1+I)V(IE-T)

9.26 A terminated transmission line may be thought of as a sampled-data linear system. Show
that Eq. (9.15.15) can be written in the convolutional form:

Vd(t)=fo ha(HV(t-t)dt, VL(t)=fo hp (HV(e-t)dt

so that V (t) may be considered to be the input and V4 (t) and Vp (t), the outputs. Show
that the corresponding impulse responses have the sampled-data forms:

00

ha(t) = 8(t)+ (1 + %) > (I'gI')™6s(t —2mT)

m=1

h(t) = (1+17) > (Tgl)™S(t— 2m+1)T)
m=0

What are the corresponding frequency responses? Show that the effective time constant of
the system may be defined as:
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9.27

9.28

. Ine
- " In|lell

where € is a small number, such as € = 1072. Provide an interpretation of T.

Computer Experiment: Rise Time and Propagation Effects. In digital systems where pulses
are transmitted along various interconnects, a rule of thumb is used according to which if
the rise time-constant of a pulse is t, < 2.5T, where T = d/c is the propagation delay along
the interconnect, then propagation effects must be taken into account. If t, > 5T, then a
lumped circuit approach may be used.

Consider the transmission line of Example 9.15.1. Using the MATLAB function upulse.m,
generate four triangular pulses of duration t; = 20T and rise times t, = 0, 2.5T, 5T, 10T.
You may take the fall-times to be equal to the rise-times.

For each pulse, calculate and plot the line voltages V4 (t), V (t) at the generator and load
ends for the time period 0 < t < 80T. Superimpose on these graphs the initial triangular
waveform that is launched along the line. Discuss the above rule of thumb in the light of
your results.

Two coaxial transmission lines of lengths d;,d», impedances Zy;, Zy2, and propagation
speeds ¢y, cy are connected in cascade as shown below. Define the one-way travel times
and z-transform variables by T; = d/cy, To = d»/c2, 1 = /®T1 and , = &/®T2,

~—] g i
chw il Zy, \J7 Zy FL%ZL

Show that the reflection response at the left of the junction is given by:

ZG V+ dl ‘/]1 i ‘/1’1 dz VL
)

o =

_ PG Tl -pH)E?
1= 2 =Pt =2
1+pI'L T, 1+pI'LC;

where p = (Zy» — Zp1)/ (Zo2 + Zp1) and I'; is the load reflection coefficient. Show that the
forward and backward voltages at the generator end and to the right of the junction are:

v ) Ve Zo
Vi=——7F——=, V_=T 2y , h V=—"""
T TG 1617V, where Zc + Zo
. A+t . A +pIG'gH

Vi, = ——"7"2— , Vi_=—77- "7V
TR 1+plGy2

Assume a matched generator, that is, having Zs = Zg, or, I'¢ = 0, and a purely resistive
load. Show that the time-domain forward and backward transient voltages are given by:

V0=V (D)= VoD
V()= pV(t=2T)+I (1= p?) X (=pI')™V (t —2mT, — 2T, — 2Ty)
m=0

Vi(t)= (1+p) X (=pI')"V(t—2mT, - T))

m=0

VO =Tr(1+p) > (=pl)™V(t—2mT, = 2T, - T1)
m=0
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Show that the line voltage V (t, z) is given in terms of the above quantities by:

Vit.z)= Vi(t—2z/c1)+V_(t+2z/cy), for 0<z<d,
Vi (t=(z=d) i) +V_(t+ (z—d1)/c), for dy <z<d +d>

9.29 Computer Experiment: Transient Response of Cascaded Lines. For the previous problem,
assume the numerical values d; = 8,d» = 2,¢c; = c» = 1, Zyy = 50, Zypp = 200, Zg = 50,
and Z; = 600 Q.

Plot the line voltage V;(t)= V. (t)+V_(t) at the generator end for 0 < t < 5T, in the
two cases of (a) a step input V¢ (t)= 3.25u(t), and (b) a pulse input of width T = T;/20
defined by V¢ (t)= 3.25[u(t) —u(t — T)]. You may use the MATLAB functions ustep.m and
upulse.m.

For case (a), explain also the initial and final voltage levels. In both cases, explain the reasons
for the time variations of V4 (t).

The MATLARB file pulse2movie.m generates a movie of the pulse or step signal V' (t, z) as it
propagates through this structure.

9.30 Equations (9.15.21) and (9.15.22) represent the line voltages at the generator and load ends
of a line terminated by a reactive load. Using inverse Laplace transforms, show that the line
voltage at any point z along such a line is given by:

V(t,z)=Voul(t —z/c)+Vo[I'g + (1 —Tg)e 4t+2/c=2D |y (t + z/c — 2T)  (series R-L)

V(t,z)=Vou(t —z/c)+Vo[-1+ (1 + Tg)e 2+z/c=2D |y (t + z/c — 2T) (parallel R-L)

[
[-
V(t,z)=Vou(t —z/c)+Vo[1l - (1 —Tg)e 2t+2/c=2D |y (t + z/c - 2T) (series R-C)

V(t,z)=Voul(t—z/c)+Vo[I'g — (1 + T'g)e 4W+2/c=2D |y (t + z/c — 2T)  (parallel R-C)

The MATLAB file RLCmov1ie.m generates a movie of these waves as they propagate to and get
reflected from the reactive load.

9.31 Time-domain reflectometry (TDR) is used in a number of applications, such as determining
fault locations in buried transmission lines, or probing parts of circuit that would otherwise
be inaccessible. As a fault-location example, consider a transmission line of impedance Z,
matched at both the generator and load ends, having a fault at a distance d; from the source,
or distance d, from the load, as shown below.

Zo Vd dl 1 Vz 1 Vl Vz dz

~{ J & 20 —
VG§W$ Z %Zo VGQ§W cl z %ZO

The fault is shown as a shunt or series capacitor C. But C can equally well be replaced by
an inductor L, or a resistor R. Assuming a unit-step input V (t) = 2V u(t), show that the
TDR voltage V; (t) measured at the generator end will be given by:

Va(t)=Vou(t)—Vye 2Ty (t — 2T,) (shunt C)
Va(t)=Vou(t)=Vo[1 - e 22T u(t - 2T,) (shunt L)
Va(t)=Vou(t) +Vo[1 — e 22T |y (t — 2T,) (series C)
Vat)=Vou(t)+Vye at=2TO y(t — 2T,) (series L)

Vat)=Vou(t)+Volyu(t—2T) (shunt or series R)
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where T, = d;/c is the one-way travel time to the fault. Show that the corresponding time
constant T = 1/a is in the four cases:

ZyC 2L L
= 20> =27.C == = —
T 5 0 T oC, T 7 T 27
For a resistive fault, show that I'y1 = —Zy/ (2R + Zy), or, I'1 = R/ (2R + Zy), for a shunt

or series R. For a series C, show that the voltage wave along the two segments is given as
follows, and also derive similar expressions for all the other cases:

Vi(t,z)=
(t,2) Voe 2210y (t — z/c), for di <z<d,+d>

{Vo u(t—z/c)+Voe at+zle=2T y(t + z/c - 2T;), for 0<z<d,

Make a plot of V4(t) for 0 <t < 5T, assuming a = 1 for the C and L faults, and I'; = ¥1
corresponding to a shorted shunt or an opened series fault.

The MATLARB file TDRmovie.m generates a movie of the step input as it propagates and gets
reflected from the fault. The lengths were d, = 6, d> = 4 (in units such that ¢ = 1), and the
input was Vy = 1.



10
Coupled Lines

10.1 Coupled Transmission Lines

Coupling between two transmission lines is introduced by their proximity to each other.
Coupling effects may be undesirable, such as crosstalk in printed circuits, or they may
be desirable, as in directional couplers where the objective is to transfer power from one
line to the other.

In Sections 10.1-10.3, we discuss the equations, and their solutions, describing cou-
pled lines and crosstalk [458-475]. In Sec. 10.4, we discuss directional couplers, as well
as fiber Bragg gratings, based on coupled-mode theory [476-497]. Fig. 10.1.1 shows an
example of two coupled microstrip lines over a common ground plane, and also shows
a generic circuit model for coupled lines.

7
VGI ZGI Zl ZLl
— »j
et de ~q
L e ]
— Ver (§ Za2 Z, J% Zia

l

Fig. 10.1.1 Coupled Transmission Lines.

For simplicity, we assume that the lines are lossless. Let L;,C;, I = 1,2 be the
distributed inductances and capacitances per unit length when the lines are isolated from
each other. The corresponding propagation velocities and characteristic impedances
are: v; = 1/+/L;iCj, Z; = 4/Lij/Cj, i = 1,2. The coupling between the lines is modeled
by introducing a mutual inductance and capacitance per unit length, L, Cp,. Then, the
coupled versions of telegrapher’s equations (9.15.1) become:’

TC, is related to the capacitance to ground Ci4 via C1 = C14 + Cpy, so that the total charge per unit
length on line-1is Q1 = C1V1 — CV2 = C19(V1 = Vg) +Cm (V1 — V2), where V4 = 0.

330
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Wi on L A __ i s
oz = B Thmare 5,7 G TOmy
oV oI oI oI A% oV (10-1.1)
oVe 0, oL 0 _ . 0V: vy
o7 = Loy TImge G, TG tOmyy

When L, = Cy = 0, they reduce to the uncoupled equations describing the isolated
individual lines. Egs. (10.1.1) may be written in the 2X2 matrix forms:

W [L L
oz Lnw Ly |0t
(10.1.2)

ot

0z —Cm Co

where V, I are the column vectors:

W | h
V—I:V2:|, I_[IZ] (10.1.3)

For sinusoidal time dependence /Wt the system (10.1.2) becomes:

dv . |:L1 Lm:|
= —jw I

E Lm LZ

(10.1.4)
d_ [ O ]y,
dz = 7% -cm G

It proves convenient to recast these equations in terms of the forward and backward
waves that are normalized with respect to the uncoupled impedances Z;, Z>:

al=V1+lel b, = Vi—-2711,
V2Zy 27, a b,
= a= , b= (10.1.5)
> = Vo + ZoIp b, — Vo — ZoI) ar b>
2 = /7222 y 2 = TZZ

The a, b waves are similar to the power waves defined in Sec. 12.7. The total average
power on the line can be expressed conveniently in terms of these:

1 1 1
P=_Re[VliI]= ERe[v;‘11]+§Re[v;‘lz]= P, + P,

2
(

la11? = |b11%) + (la21? = 1b21?) = (la1)? + |az|?) = (Ib1|? + |bp|?)  (10.1.6)
=ata—b'b

where the dagger operator denotes the conjugate-transpose, for example,a’ = [aF, a¥].
Thus, the a-waves carry power forward, and the b-waves, backward. After some algebra,
it can be shown that Eqgs. (10.1.4) are equivalent to the system:

da

— = —jF iGb

dz JFa+jG - i af . F -G a (10.1.7)
db dz|b |~ |G -F||b -
E:—jGa—i-ij
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with the matrices F, G given by:

| B ok I
e [® 5] o-[0 ] s

where 1, B> are the uncoupled wavenumbers f; = w/v; = w+/L;iCj, i = 1,2 and the
coupling parameters K, X are:

K=;w< %ﬁrzz—Cm\/E):l 3152< Lm' - Lm )

1 L 1 Ly, Cm
= + CmVZiZy | = -4/ — =
X 2w< 7.7, mvV<Z41 2) 5 BlBZ( T.Ls C1C2>

A consequence of the structure of the matrices F, G is that the total power P defined
in (10.1.6) is conserved along z. This follows by writing the power in the following form,
where [ is the 2X2 identity matrix:

1 0 a
— ata _hih = [af Bt
P=a'a—-b'b=]a ,b][0 —I][b]

Using (10.1.7), we find:

dp Ft Gt |1 o I o||F -G|\|a

awen([G le -l e )R]
the latter following from the conditions Ft = F and G = G. Egs. (10.1.6) and (10.1.7)
form the basis of coupled-mode theory.

Next, we specialize to the case of two identical lines that have L1 = L, = Lo and
Ci1=Cy=Cy,sothat 1 = B2 = w+/LoCo = Band Z; = Z» = /Ly/Cy = Zy, and speed
vo = 1/4/LoCyp. Then, the a,b waves and the matrices F, G take the simpler forms:

(10.1.9)

V+ Zol V—Zol V+ Zol V—Zol
= , b= = , b= 10.1.10
NG Y 2z, @ 2 2 ( )
B kK 0 X
F = , G= 10.1.11
[K B X 0 ( )

where, for simplicity, we removed the common scale factor /2Z, from the denominator
of a,b. The parameters K, ¥ are obtained by setting Z; = Z, = Z; in (10.1.9):

_1 Lm_ﬁ) _1 (Lm C;m)
K*23<L0 Co ) foB L0+Co , (10.1.12)

The matrices F, G commute with each other. In fact, they are both examples of
matrices of the form:

a0 a1 | 1o {0 1
A_[al ao]—aol+a1], I—[O 1], ]—[1 O] (10.1.13)
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where ag, a; are real such that |ag| # |a;|. Such matrices form a commutative subgroup
of the group of nonsingular 2x2 matrices. Their eigenvalues are A. = ag + a; and they
can all be diagonalized by a common unitary matrix:

1 1 1 1 1 1 1
Q:\/?|:1 _1]=[e+!e]’ e+=\/§|:1i|i e:\/?|:_1:| (10114)

so that we have QQT = QTQ =T and Ae. = A.e-.

The eigenvectors e. are referred to as the even and odd modes. To simplify sub-
sequent expressions, we will denote the eigenvalues of A by A. = ap + a; and the
diagonalized matrix by A. Thus,

_ _ A 0 ap+a 0
_ + _ + _ 0 1
A=QAQ", A [ 0 A } [ 0 do — a; ] (10.1.15)

Such matrices, as well as any matrix-valued function thereof, may be diagonalized
simultaneously. Three examples of such functions appear in the solution of Egs. (10.1.7):

B=\(F+G)(F-G) = Q|(F+G) (F-G)Qt

Z = Zo(F+ G) (F = G) ! = ZyQy(F + G) (F - G)-1Q* (10.1.16)
Ir=(Z-2oD(Z+Zo1)'=Q(Z~-Zy)(Z+ ZyD)1QT

Using the property FG = GF, and differentiating (10.1.7) one more time, we obtain
the decoupled second-order equations, with B as defined in (10.1.16):

d%a 5 d’b

_ “ Y _ _m2
dzz = B gp=7BD

However, it is better to work with (10.1.7) directly. This system can be decoupled by
forming the following linear combinations of the a, b waves:

A=a-Ib A [ —r .
B=b-Ta = [3}:[_1— 1}[1,] (10.1.17)

The A, B can be written in terms of V, I and the impedance matrix Z as follows:

A= (2D) " (V+ ZD V=D(A+B)
p= 2%l (10.1.18)
B= (2D) Y (v- 27D ZI=D(A-B) 2Z

Using (10.1.17), we find that A, B satisfy the decoupled first-order system:

d|A |3 o0 A dA . dB .
dz|:B}__J|:0 —'B][B] = E—_JfBA, E_JBB (10.1.19)

with solutions expressed in terms of the matrix exponentials e=/3%;

A(z)=e7P2A(0), B(z)=e/®2B(0) (10.1.20)
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Using (10.1.18), we obtain the solutions for V, I:

V(z) = D[e7B2A(0) +e/2B(0) |
. . (10.1.21)
ZI(z) = D[e 73%A(0) -e/22B(0) ]

To complete the solution, we assume that both lines are terminated at common
generator and load impedances, that is, Zgy = Zg2 = Zg and Z1y = Z1p» = Z;. The
generator voltages V1, V2 are assumed to be different. We define the generator voltage
vector and source and load matrix reflection coefficients:

— _ -1
w-lle] REGET e
The terminal conditions for the line are at z = 0 and z = I:
Ve = V(0)+ZsI1(0), V()= ZiI() (10.1.23)
They may be re-expressed in terms of A, B with the help of (10.1.18):
A(0)-I'¢B(0)=D"'Z(Z+ Zgl) 'Vg, B(l)=TLA(]) (10.1.24)

But from (10.1.19), we have:t
e/?1B(0)=B()=T A(l)=T1e/'A(0) = B(0)=Tre *'A(0) (10.1.25)
Inserting this into (10.1.24), we may solve for A(0) in terms of the generator voltage:
A()=D ' [I-TI'¢le ¥ ' 2(Z + 2gI) ' g (10.1.26)

Using (10.1.26) into (10.1.21), we finally obtain the voltage and current at an arbitrary
position z along the lines:

V(z) = [e 737 4 T e 9BleiB2)[[ - ['cTre 2B ' 2(Z + ZoD) ' Vg
(10.1.27)

I(z) = [e B2 — [ e 2BleiB2) [ — [¢Tre 2B (Z + ZoD) ' Vg

These are the coupled-line generalizations of Egs. (9.9.7). Resolving Vi and V(z)
into their even and odd modes, that is, expressing them as linear combinations of the
eigenvectors e., we have:

Ve =Vgier +Vi-e, where Vi, = %
Ve (2) Vs (2) (10.1.28)
V(2)=V.(2)es +V_(2)e,  Vi.(2)= %

In this basis, the matrices in (10.1.27) are diagonal resulting in the equivalent solution:
e*J'BJrZ + I’L+e*2jﬁ+lejﬁ+l Z+
V(z)=V,(z +V_(z)e_ = .
(2)=Vi(Z)ey (z)e | —TeilieDB1 7.+ Z¢
e IB-z L, _e-2B-lpiB-z  7_
1-Tg_TI1_e-2B-1 Z_+Zg

Vgiey
(10.1.29)

Ve_e_

TThe matrices D,Z,I'g,I't,I',B all commute with each other.
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where . are the eigenvalues of B, Z. the eigenvalues of Z, and I'+, I+ are:

ZG - Z+ ZL - Z+

—, Ip+=—"7"—7+ 10.1.30

Ze+2. Tz 47 ( )
The voltages V1 (z),V>(z) are obtained by extracting the top and bottom compo-

nents of (10.1.29), thatis, V12 (2)= [V (2) xV_(2)]//2:

e_.jB+Z + FL+e_2jB+lejB+Z e_J‘BfZ + FLie_Zjﬁflejsz

rGi:

\% = - + - _
I(Z) 1-— FG+FL+e_2AIB+I * 1-— FGerfe_ZJB’I
) ) ) ) ) ] (10.1.31)
Vo (2) e*JﬁJrZ + FL+e*2JB+IeJB+Z e*J[LZ + ['L_e*ZJBJeJﬁfz
2\2) = T el VT 1 _Tol,e-Bl V-
where we defined:
Z+ VG+ 1
+ 7. +27:) )2 4( ¢+) (Vi G2) ( )

The parameters S, Z.. are obtained using the rules of Eq. (10.1.15). From Eq. (10.1.12),
we find the eigenvalues of the matrices F + G:

L 1
(F+G)-=B= (K+x):B(liL—0> =wZ—O(LoiLm)
Cm _
(F-G).=f=+ (K—x>:B(1¢C—O) — 0Zy(Co ¥ Cp)
Then, it follows that:

Bi =\(F+G): (F~G)y = wy(Lo + L) (Co — Cm)

(10.1.33)
B-=(F+G)_(F~G)- = wy(Lo—Lm) (Co + Cm)
_ (F+G)y  [Lo+Lm
L=\ (F o), ‘\/Co—cm
(10.1.34)

~ (F+G) - [Lo—Lm
Z-=20\(F_G)_ \/C0+Cm

Thus, the coupled system acts as two uncoupled lines with wavenumbers and char-
acteristic impedances B+, Z+, propagation speeds v+ = 1/+/(Lg = L) (Co ¥ Cn), and
propagation delays T+ = I/v.. The even mode is energized when Vs, = Vi, or,
Vi, #0,Vi- =0, and the odd mode, when Vo = =V, or, Vg =0,V # 0.

When the coupled lines are immersed in a homogeneous medium, such as two parallel
wires in air over a ground plane, then the propagation speeds must be equal to the speed
of light within this medium [468], that is, vy = v_ = 1/,/u€. This requires:

HeCo

(Lo + Lim) (Co — Cm) = € Lo="cz "¢z
= (10.1.35)

(Lo = Lm) (Co + Cm) = pie L, = HECm

C§— Cin

Therefore, L,,/Ly = Cm/Cy, or, equivalently, k = 0. On the other hand, in an
inhomogeneous medium, such as for the case of the microstrip lines shown in Fig. 10.1.1,
the propagation speeds may be different, v, # v_, and hence T, # T_.
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10.2 Crosstalk Between Lines

When only line-1 is energized, thatis, V1 # 0, Vg2 = 0, the coupling between the lines
induces a propagating wave in line-2, referred to as crosstalk, which also has some minor
influence back on line-1. The near-end and far-end crosstalk are the values of V,(z) at
z = 0 and z = I, respectively. Setting V> = 0 in (10.1.32), we have from (10.1.31):

1(1-Tgy)(A+T14C0%) 1(1-Te)A+TI-CY

V2(0 V—-= . \%
200 =5 1-TgiI1 T3P 2 1-T¢-Ip-T>2 102.1)
1A -Te) (A +Tpy),, 18211 -Te)(1+T10) o
Vo(l) = 5 = -5 =V
2 1_1"G+—1"L+—C+ 2 1_FG—FL—C—

where we defined V = V;/2 and introduced the z-transform delay variables C. =
elwTls = giB:l, Assuming purely resistive termination impedances Zg, Zr, we may use
Eq. (9.15.15) to obtain the corresponding time-domain responses:

V2 (t,0) = é(l—r(;n{vun(u ) s (rGJH)’"vu—me}
G+/ m=1
1 - m
—2(1—FG)[V(t)+(1+> (F_T1-) V(t—ZmT)}
m=t (10.2.2)
Va(t) = 5 (1= Te) (14T 3 (Tguli)" V(e =2mT = T.)

1 00
—S(1-Tg)A+T12) > (Tg-T1-)™V(t—2mT_—T-)
2 m=0
where V (t) = Vg1 (t) /2.1 Because Z. # Zy, there will be multiple reflections even when
the lines are matched to Z, at both ends. Setting Z; = Z; = Z, gives for the reflection
coefficients (10.1.30):

Z() - Zt _
Zot 2. - I. (10.2.3)

In this case, we find for the crosstalk signals:

[Ge=Tpe =

Va(,0) = 5 (1 +r+>[vu)—<1 )

%[\/]8

r2m=1y (¢ - 2mT+)]
1

_ %(1 +1"_)[V(t)—(1 _r)

ﬁ[\/]sa

rem=ly (¢ — 2mT_)]

! (10.2.4)

Vo(t, ) = 7(1 -T?%) Z r’mv-2mT, —T,)

m=0

- 7(1 —-I?%) Z r’mv(t-2mT- —T-)

m=0

TV (t) is the signal that would exist on a matched line-1 in the absence of line-2, V = ZoVg1/(Zo+ Zg) =
VG1/2, provided Zg = Zp.
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Similarly, the near-end and far-end signals on the driven line are found by adding,
instead of subtracting, the even- and odd-mode terms:

Vi(t,0) = %(1 +r+>[vm—<1 I

%Mz

ram=ly (- 2mT+)]
1

%Mz

+la +r)[v<r)—(1 I
2 1

r2m=lty (¢ — 2mT)]
(10.2.5)

1 (o)
Vi) =5 —-I%) > Iimv(t-2mT, - T.)

m=0
+ =12 Y PV —2mT T )
m=0

These expressions simplify drastically if we assume weak coupling. It is straightfor-
ward to verify that to first-order in the parameters Ly,/Ly, Cyn/Co, or equivalently, to
first-order in K, x, we have the approximations:

Bi:BiAB:[giK, Zi:ZOiAZ:ZOiZQK, Vi:V()—T—V()E

B B (10.2.6)

=0+ = +L =T+ =T+ K
I'.=0+Al 2B T.=T=+AT T_Tﬁ
where T = I/vy. Because the I'.s are already first-order, the multiple reflection terms
in the above summations are a second-order effect, and only the lowest terms will con-
tribute, that is, the term m = 1 for the near-end, and m = 0 for the far end. Then,

1 1

V,(0,0) = 2(T+—F,)V(t) 2[T+V(t—2T+)—F,V(t—2T,)]

Vallt) = 2[V(E-T)-V(t-T)]

Using a Taylor series expansion and (10.2.6), we have to first-order:

_av

Vit -2T )=Vt -2TFAT)=V(t-2T)T(AT)V(t-2T), V= I

Vt-T )=Vt -TFAT)=V{t-T)F(AT)V(t-T)

Therefore, I'.V(t — 2T.)= I'.[V(t = 2T)F(AT)V] = I'.V(t — 2T), where we
ignored the second-order terms I'+ (AT) V. It follows that:

Va(0,0) = LI~ TV -Vt ~21)] = (AD V(D) -V (L - 2T)]

ValLt) = %[V(t—T)—(AT)V—V(t—T)—(AT)V] - _(AT)W

These can be written in the commonly used form:

V2(0,t)= Kp[V () -V (t = 2T)]
dv(t—T) (near- and far-end crosstalk) (10.2.7)

Va(l,t)= Ky di
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where Kp, Kf are known as the backward and forward crosstalk coefficients:

Kp X_E<L7m

K VOT(Lm )
- N 7 Kr=-T—=——"" (=2 — V4 10.2.
28 4\ Z, +Cm O) ) f CmZo (10.2.8)

B 2 \Zy

where we may replace I = voT. The same approximations give for line-1, V; (0,t) = V (t)
and V1 (I,t)= V(t — T). Thus, to first-order, line-2 does not act back to disturb line-1.

Example 10.2.1: Fig. 10.2.1 shows the signals V' (0,t), V1 (I,t), V2(0,t), Vo (I, t) for a pair of
coupled lines matched at both ends. The uncoupled line impedance was Z, = 50 Q.

Ln/Lo =04, Cp/Co=0.3 Lm/Lo=0.8, Cy/Co=0.7
' — line 1 - near end H — line 1 - near end
0.6F ! -.- line 1 - far end 0.6F i == line 1 - far end
' line 2 — near end H line 2 - near end
0.4} ! --- line2 - farend 0.4H ' --- line 2 - farend 4
/ L= =" |
i
0.2 i 0.2
i
OF-—=-== L Ty L e e i vt ] Of-—=¢? 177777 L emmSilinrreesseaead
) -
'
—0.2¢ . -0.2r
0 1 2 3 4 5 0 1 2 3 4 5
/T /T

Fig. 10.2.1 Near- and far-end crosstalk signals on lines 1 and 2.

For the left graph, we chose L,,/Ly = 0.4, C,,/Co = 0.3, which results in the even and odd
mode parameters (using the exact formulas):

Z,=7071Q, Z_=33.97Q, v.=1.01vy, v_=1.13v
Ir.=-017, I-=0.19, T,=0.99T, T-=0.88T, Kp=0.175, Kr=0.05

The right graph corresponds to L,,/Ly = 0.8, C,,/Co = 0.7, with parameters:

Z,=12247Q, Z_=1715Q, v, =136vy, v_=1.71v,
I.=-042, I' =049, T,=0.73T, T_=058T, K,=0.375, K;=0.05

The generator input to line-1 was a rising step with rise-time t, = T/4, that is,

V(t)= %V(;l(t): ti[u(t)—u(t— t)] +u(t—t)

r

The weak-coupling approximations are more closely satisfied for the left case. Egs. (10.2.7)
predict for V, (0, t) a trapezoidal pulse of duration 2T and height K}, and for V, (I, t), a
rectangular pulse of width t, and height K7/t, = —0.2 starting at t = T

dv(c-T) Ky

Vz(l,t):KfT7T[u(t7T)7u(t7T7tr)]

These predictions are approximately correct as can be seen in the figure. The approxima-
tion predicts also that V' (0,t)= V(t) and V, (I, t)= V (t — T), which are not quite true—
the effect of line-2 on line-1 cannot be ignored completely.
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The interaction between the two lines is seen better in the MATLAB movie xtalkmovie.m,
which plots the waves V;(z,t) and V,(z,t) as they propagate to and get reflected from
their respective loads, and compares them to the uncoupled case V(z,t)=V (t — z/vy).
The waves V> (z,t) are computed by the same method as for the movie pulsemovie.m
of Example 9.15.1, applied separately to the even and odd modes. [m}

10.3 Weakly Coupled Lines with Arbitrary Terminations

The even-odd mode decomposition can be carried out only in the case of identical lines
both of which have the same load and generator impedances. The case of arbitrary
terminations has been solved in closed form only for homogeneous media [465,468]. It
has also been solved for arbitrary media under the weak coupling assumption [475].
Following [475], we solve the general equations (10.1.7)-(10.1.9) for weakly coupled
lines assuming arbitrary terminating impedances Z;;, Zgi, with reflection coefficients:

_Zui—Zi _Zei—Zi
7+ % Zai+ 7
Working with the forward and backward waves, we write Eq. (10.1.7) as the 4x4

matrix equation:

I'r; i=1,2 (10.3.1)

a, Bl K 0 —X
dc . ap K B -x O
= = _jiM = M =
dz JHC, ¢ b, |’ 0 x -B1 -k
b, X 0 -k =B

The weak coupling assumption consists of ignoring the coupling of a;, b, on a», b».
This amounts to approximating the above linear system by:

Bi 0 0 0
K B -x O
0 0 -B1 O
X 0 -k —B

ac _ _iste, b=

dz (10.3.2)

Its solution is given by ¢(z) = e Mz (0), where the transition matrix e~ Mz can be
expressed in closed form as follows:

e bz 0 0 0 K

itz _ k(e iBiz — o=ibz)  o-iB2 % (eiBiz — oibz) g = B =B,
- 0 0 eibiz o " o X

R (e~iB1z _ piboz) 0 R (eibiz _ ibez)  pibaz Bi+ B2

The transition matrix e /™! may be written in terms of the z-domain delay variables
Ci= elBil = oiwTi j — 1 2 where T; are the one-way travel times along the lines, that is,
T; = 1/v;. Then, we find:

a (1) gt 0 0 0 11 ai(0)
a() | | RE1T-GY G REG-CGYH 0 || a0
b (1) REC'-C) 0 RE-C) T llbo0)
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These must be appended by the appropriate terminating conditions. Assuming that
only line-1 is driven, we have:

Vi0)+Za i (0)=Ve, ViD=ZnLi (D)
V2(0)+Zg21,(0)= 0, Vol)= ZroI> (1)

which can be written in terms of the a, b waves:

a1(0)-I'cib1(0)=Uy, bi(D=Tnai () _ 12 Ve
42(0)~Taba(0)=0, bo(D=Tpax(l) @ U174z, 1~ Te) 77 (1034

Egs. (10.3.3) and (10.3.4) provide a set of eight equations in eight unknowns. Once
these are solved, the near- and far-end voltages may be determined. For line-1, we find:

-2
Vi(0)=, /% [a1(0)+by (0)] = T IHEL L ;;L;fl%_z v
- 1

-1
Vi(l)= E[al(l)+b1(1)] _ G+,

1T lig?

where V = (1 -Tg1)Vg1/2=2Z1Vg1/(Z1 + Zg1). For line-2, we have:

(10.3.5)

Vy(0) = RE =T Tu! + Tty H +X - E G ) (4 Tuleti ' |,
2 (1—FGlleCfZ)(l—FGZFLZCZ_Z) *

Vo) = FE 6D A+ Tnl6l G HDARA -G 6 ) Unt + Tel ) |
(1 -TeiI'Cr?) (1 - Tol12C5%)
(10.3.6)
where Voo = (1 +T62)V = (1 +T62)(1—Tg1)Vgi/2and Vo = (1 + ')V, and we
defined k, X by:

L kW l(Lﬂ_
Zy Bi—B2 B1-B:22\Z,

_ VAN Z> X w l(Lm )
=22 x=]%2 = “(=m 4,z
X 7, X Zi Bi+Br PBi+B2\z M2

In the case of identical lines with Z; = Z, = Zp and B; = B> = B = w/vy, we must
use the limit:

k= |22k=
=\ 7 k=
(10.3.7)

—iBil _ p—jBol
lim e’ —e’” Tl — P = ie‘jﬁll = —jle_fﬁll
B2~ B B1— B2 dps

Then, we obtain:

R(CT - T — jwKpe Bl = —jwé (LZ—’” - szo) e /Pl

I 0 (10.3.8)
_ V
rek= (v con)

where K¢, K, were defined in (10.2.8). Setting £; = C» = € = e/fl = ¢/®T we find the
crosstalk signals:
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Vo (0) = JwKg(I'ty +T1)C 2+ Kp(1 -C ) (1 + T I12C7?) v
? (1 =T I11C2)(1 —Tgal12C2) 20

Vo) = JWKr (1 + T8 2) T +Kp(1-C72) (I + Tg2) T8 Var
(1 -TiI'tiCT2) (1 —T'oI'12C72)

The corresponding time-domain signals will involve the double multiple reflections
arising from the denominators. However, if we assume the each line is matched in at
least one of its ends, so that I'¢1I11 = I'g2I'1> = 0, then the denominators can be
eliminated. Replacing jw by the time-derivative d/dt and each factor £~! by a delay by
T, we obtain:

(10.3.9)

Vo (t,0)=Kp(I'ty + T2 + T'al'2) V(t = 2T)

+Kp(Q+T6) [V) =V (t=2T)] + KpI[1 T [V (t—2T) =V (t — 4T)]
. _ (10.3.10)
Vo(t,D)=Kp[ (1 +T12)V(t—T)+I'11 IV (t—3T)]

+Kp(I'p1 + oo +FL1FL2)[V(t— T)—V(t—3T)]

where V ()= (1 —I'g1) Vg1 (t) /2, and we used the property I'g2I'1> = 0 to simplify the
expressions. Egs. (10.3.10) reduce to (10.2.7) when the lines are matched at both ends.

10.4 Coupled-Mode Theory

In its simplest form, coupled-mode or coupled-wave theory provides a paradigm for the
interaction between two waves and the exchange of energy from one to the other as
they propagate. Reviews and earlier literature may be found in Refs. [476-497], see also
[328-347] for the relationship to fiber Bragg gratings and distributed feedback lasers.
There are several mechanical and electrical analogs of coupled-mode theory, such as
a pair of coupled pendula, or two masses at the ends of two springs with a third spring
connecting the two, or two LC circuits with a coupling capacitor between them. In these
examples, the exchange of energy is taking place over time instead of over space.
Coupled-wave theory is inherently directional. If two forward-moving waves are
strongly coupled, then their interactions with the corresponding backward waves may
be ignored. Similarly, if a forward- and a backward-moving wave are strongly coupled,
then their interactions with the corresponding oppositely moving waves may be ignored.
Fig. 10.4.1 depicts these two cases of co-directional and contra-directional coupling.

o~ | ——» — [ —

a 1(0) —
a(0) —»=" = ay(l)  by(0)

co-directional

—=ay(l)  a;(0)—» —=a;y()

contra-directional ~—by()

Fig. 10.4.1 Directional Couplers.

Egs. (10.1.7) form the basis of coupled-mode theory. In the co-directional case, if
we assume that there are only forward waves at z = 0, that is, a(0)# 0 and b(0)= 0,
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then it may shown that the effect of the backward waves on the forward ones becomes
a second-order effect in the coupling constants, and therefore, it may be ignored. To
see this, we solve the second of Egs. (10.1.7) for b in terms of a, assuming zero initial
conditions, and substitute it in the first:

Z Z
b(z)= fjj F =N Ga(z)dz = % = —jFa +J Ge'FZ=2)Ga(z') dz’
0 0

The second term is second-order in G, or in the coupling constant x. Ignoring this
term, we obtain the standard equations describing a co-directional coupler:

da . dla|_ | B kK a,
dz jFa = dZ|:112j| J[K Bz“iaz] (10.4.1)

For the contra-directional case, a similar argument that assumes the initial conditions
a» (0)= b, (0) = 0 gives the following approximation that couples the a; and b, waves:

d | a | B —X a

— = - 10.4.2

dz [bz ] J [ X —B2|| b2 ( )
The conserved powers are in the two cases:

P=lal®+la?, P=lal®~|by|? (10.4.3)

The solution of Eq. (10.4.1) is obtained with the help of the transition matrix e /%

) ] cosoz—jésinaz —jﬁsinaz
e 7 = Bz P o (10.4.4)
—j—sinoz COSOZ+jJ—sinoz
o o
where
ﬁ:BlgﬁZ, 5:31232, o=V + K2 (10.4.5)
Thus, the solution of (10.4.1) is:
.0 LK
[al(z) ] s Cosaz—JEsmaz —JESIHO'Z [al(O) } (1046
a;(2) —j g sinoz cosoz —j g sinoz | L492(0)

Starting with initial conditions a; (0)= 1 and a» (0) = 0, the total initial power will
be P = |a; (0)|? + |a2(0)|% = 1. As the waves propagate along the z-direction, power is
exchanged between lines 1 and 2 according to:

52
Pi(z)=lai(2)|? = cos’ oz + o7 sin’ oz

, (10.4.7)

Py(z)=lax(2)|? = %sin2 0z=1-P,(2)

Fig. 10.4.2 shows the two cases for which 6/k = 0 and §/k = 0.5. In both cases,
maximum exchange of power occurs periodically at distances that are odd multiples of
z = 1r/20. Complete power exchange occurs only in the case § = 0, or equivalently,
when ; = B,. In this case, we have o = k and P; (z) = cos? kz, P»(z) = sin® Kz.
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Co—directional coupler, d/k =0.5

343

Co—directional coupler, d/k =0
1 N A 1
:’I ‘\ ’Il ‘\
0.8f | \ 1 S 0.8f o
I \ ' ' ’
1 \ ! \ ’ N
! 1 ! 1 “ A \
" \ I’ \\ \ I/ ‘\
0.6\ ; ! oer k ' ‘
‘ \ ' — P9 | . — P9
! \ ! --- Py(2) \ f === Py(2)
04f 5 ; T 0.4f \ / -
J ‘\ ! \ \ i \
! \ ! \ I Y i \
0.2} ¥ \ ; k 0.21 K Y /'I Y
0 M va O ’ L Al L r’ L
0 0.5 1 15 0 0.5 1 15 2
ozlm ozlm
Fig. 10.4.2 Power exchange in co-directional couplers.

10.5 Fiber Bragg Gratings
As an example of contra-directional coupling, we consider the case of a fiber Bragg
grating (FBG), that is, a fiber with a segment that has a periodically varying refractive

index, as shown in Fig. 10.5.1.

a(0)—~ —=a(l)
b(0) =— «—b()
T memmEEEEE
— A l=—one period
- [ ——»

Fig. 10.5.1 Fiber Bragg grating.

The backward wave is generated by the reflection of a forward-moving wave incident

on the interface from the left. The grating behaves very similarly to a periodic multilayer
structure, such as a dielectric mirror at normal incidence, exhibiting high-reflectance

bands. A simple model for an FBG is as follows [328-347]:

ke Kz } [a(z) } 105.1)

d|a(z) | _ . B
dz | bz) |~ 7| —k*eikz B b(2)
where K = 271/ A is the Bloch wavenumber, A is the period, and a (z), b (z) represent the

forward and backward waves. The following transformation removes the phase factor
] (10.5.2)

e~J/XZ from the coupling constant:
esz/Za (Z)

Az) | | ek#2 0 a(z) |
B(z) |~ 0 e JKz/2 b(z) | | e /Xz/2p(z)
d | A(z) . o K A(z)
[ }:_J[_K* _5][3(2)] (10.5.3)

dz | B(z)
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where 6 = f—K/2 is referred to as a detuning parameter. The conserved power is given
by P(z)= |a(z)|? — |b(z)|?. The fields at z = 0 are related to those at z = [ by:

A(O) _ _jFI A(l) . _ 5 K
[B(O) ] =" [B(I) } , with F= [_K* _5} (10.5.4)

The transfer matrix e/f! is given by:

cosol +j 0 sin ol J X sinol

) - - U U

oIFl _ o o = [UQ Uf:] (10.5.5)
—j - sinol cosol—j _sinol 12

where o = /02 — |k|2. If |§] < |k|, then o becomes imaginary. In this case, it is more
convenient to express the transfer matrix in terms of the quantity y = /| k|2 — 62:

coshyl +j 9 sinh yl j K sinh yl
y y (10.5.6)
K* o "
—Jj ? sinh yl coshyl —j } sinh yl

The transfer matrix has unit determinant, which implies that |Uq;|? — |U12]% = 1.
Using this property, we may rearrange (10.5.4) into its scattering matrix form that relates
the outgoing fields to the incoming ones:

B(0) r T A(0) Uf, , Ui 1
= / , I'=s—>=, I'=-—"=, T=_—— 10.5.7
[A(l)] [T rHBm U ont "o, 107
where I', I’ are the reflection coefficients from the left and right, respectively, and T is
the transmission coefficient. We have explicitly,
K*
—j—sinol 1
I= a 5 , T= 5 (10.5.8)
cos 0'1+j;sin0'l coscrl+j;sinal

If there is only an incident wave from the left, that is, A(0)# 0 and B(l)= 0, then
(10.5.7) implies that B(0)=T'A(0) and A(I)= TA(0).

A consequence of power conservation, |[A(0)|2 — |B(0)|2 = |[A(D|? — |B(])|?, is
the unitarity of the scattering matrix, which implies the property |I'|?> + |T|? = 1. The
reflectance |I'|2 may be expressed in the following two forms, the first being appropriate
when |§] > |k|, and the second when |§| < |k|:

|k|2 sin? ol B |k|2 sinh? yl
02 cos? ol + 82sin®> ol y2cosh® yl + 52 sinh® yl

IT2=1-|T)? = (10.5.9)

Fig. 10.5.2 shows |I'|? as a function of &. The high-reflectance band corresponds to
the range |6| < |k|. The left graph has kI = 3 and the right one kI = 6.

As kl increases, the reflection band becomes sharper. The asymptotic width of the
band is —|k| < 6 < |k|. For any finite value of kI, the maximum reflectance achieved



10.5. Fiber Bragg Gratings 345

Fiber Bragg Grating, k1 =3 Fiber Bragg Grating, xl1 =6
1r 1r m
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Fig. 10.5.2 Reflectance of fiber Bragg gratings.

at the center of the band, § = 0, is given by |I'|2,, = tanh? |kl|. The reflectance at the
asymptotic band edges is given by:
2
|F|2=%, at 5=i|K|

The zeros of the reflectance correspond to sincgl = 0, or, 0 = m7r/l, which gives
0 = =+/|k|?2 + (m1r/1)2, where m is a non-zero integer.

The Bragg wavelength Ap is the wavelength at the center of the reflecting band, that
is, corresponding to § = 0, or, B = K/2,0or Ag = 211/3 = 41/K = 2A.

By concatenating two identical FBGs separated by a “spacer” of length d = Ap/4 =
A/2, we obtain a quarter-wave phase-shifted FBG, which has a narrow transmission
window centered at & = 0. Fig. 10.5.3 depicts such a compound grating. Within the
spacer, the A, B waves propagate with wavenumber 8 as though they are uncoupled.

NN N ECEE N NN ECEOE N NN

A4
<t~ | —— e | ——»]

Fig. 10.5.3 Quarter-wave phase-shifted fiber Bragg grating.

The compound transfer matrix is obtained by multiplying the transfer matrices of
the two FBGs and the spacer: V = UrpgUspacer Ursg, Or, explicitly:

Vie Vi | | Un Une elfd 0 U U
[Vikz V?‘I]_[U;“Z Uﬁ}[ 0 ef || Un U (10.5.10)

where the Uj; are given in Eq. (10.5.5). It follows that the matrix elements of V are:
Vi = U%leJBd + |U12|2€7jﬁd , Vio=Up (Uueﬂ”d + Ui“le’jﬁd) (10.5.11)
The reflection coefficient of the compound grating will be:

Vi, U (UnePd + UfeBd) T (T*e/Pd + Te JPd)

Vii  U%,eiBd 4 |U,|2e-ibd T Telbd + |[|2Te-iBd

I'eomp = (10.5.12)
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where we replaced U, = I'/T and Uy; = 1/T. Assuming a quarter-wavelength spacing

d=2Ag/4=A/2,wehave Bd = (§ + T/A)d = 6d + 11/2. Replacing e/Pd = gidod+jm/2 —
Jj e/ we obtain:

r B F(T*ejﬁd _ Tefj(Sd)

oM Tk pjod |2 T e-Jod

(10.5.13)

At 6 =0, we have T = T* = 1/ cosh |k|l, and therefore, I'comp = 0. Fig. 10.5.4 depicts
the reflectance, [I'comp|?, and transmittance, 1 — |'comp |2, for the case kI = 2.

Compound Grating, kI =2 Compound Grating, kIl =2

o
o

g
8 c
= s
‘;‘“j 0.6 k=
8 g
S c
o 0.4r ©
'_

-4 -3 -2 -1 1 2 3 4 -4 -3 -2 -1

0 0
Sk d/k

Fig. 10.5.4 Quarter-wave phase-shifted Bragg grating.

Quarter-wave phase-shifted FBGs are similar to the Fabry-Perot resonators discussed
in Sec. 5.5. Improved designs having narrow and flat transmission bands can be obtained
by cascading several quarter-wave FBGs with different lengths [328-348]. Some appli-
cations of FBGs in DWDM systems were pointed out in Sec. 5.7.

10.6 Problems

10.1 Consider the practical case in which two lines are coupled only over a middle portion of
length I, with their beginning and ending segments being uncoupled, as shown below:

VGl ZGl ZLI
/VV\/—N Zl %:I—\/%/*j?
1 1
Zey B Z N2z,
i : I : s

Assuming weakly coupled lines, how should Egs. (10.3.6) and (10.3.9) be modified in this
case? [Hint: Replace the segments to the left of the reference plane A and to the right of
plane B by their Thévenin equivalents.]
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Impedance Matching

11.1 Conjugate and Reflectionless Matching

The Thévenin equivalent circuits depicted in Figs. 9.11.1 and 9.11.3 also allow us to
answer the question of maximum power transfer. Given a generator and a length-d
transmission line, maximum transfer of power from the generator to the load takes
place when the load is conjugate matched to the generator, that is,

Zr=27% (conjugate match) (11.1.1)

The proof of this result is postponed until Sec. 14.4. Writing Zy, = Ry + jXwm and
Z1 = Ry +jXi, the condition is equivalent to R; = Ry, and X; = —X,. In this case, half
of the generated power is delivered to the load and half is dissipated in the generator’s
Thévenin resistance. From the Thévenin circuit shown in Fig. 9.11.1, we find for the
current through the load:

_ Vth _ Vth _ Vth
Zin+Z;  (Rm+Rp)+j(Xm +X1)  2Ru

Iy

Thus, the total reactance of the circuit is canceled. It follows then that the power de-
livered by the Thévenin generator and the powers dissipated in the generator’s Thévenin
resistance and the load will be:

1 |Vin|?
Piot = =R *I)=
tot 5 e(Vth L) 4Ry,

(11.1.2)
Val®> 1

S8Ry 2

Val® 1

8Ry 2

1 . 1 .
Pwn = ERth|IL|Z = Piot, Pr= ERL|IL|2 = tot
Assuming a lossless line (real-valued Z, and f), the conjugate match condition can

also be written in terms of the reflection coefficients corresponding to Z; and Z:

Ip=r}= Féezjﬁd (conjugate match) (11.1.3)

Moving the phase exponential to the left, we note that the conjugate match condition
can be written in terms of the same quantities at the input side of the transmission line:

347
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Ty=Tpe %bl = Iyl < (conjugate match) (11.1.4)

Thus, the conjugate match condition can be phrased in terms of the input quantities
and the equivalent circuit of Fig. 9.9.1. More generally, there is a conjugate match at
every point along the line.

Indeed, the line can be cut at any distance [ from the load and its entire left segment
including the generator can be replaced by a Thévenin-equivalent circuit. The conjugate
matching condition is obtained by propagating Eq. (11.1.3) to the left by a distance I, or
equivalently, Eq. (11.1.4) to the right by distance d — I:

I =Tpe Pl = rke2Bld-D (conjugate match) (11.1.5)

Conjugate matching is not the same as reflectionless matching, which refers to match-
ing the load to the line impedance, Z; = Zj, in order to prevent reflections from the
load.

In practice, we must use matching networks at one or both ends of the transmission
line to achieve the desired type of matching. Fig. 11.1.1 shows the two typical situations
that arise.

flat line

4>Z() 2047.

matching
network
matching
network
N

conjugate match

> Zy=Z 2o
¢

«-d >

matching
network

Fig. 11.1.1 Reflectionless and conjugate matching of a transmission line.

In the first, referred to as a flat line, both the generator and the load are matched
so that effectively, Z¢ = Z; = Zy. There are no reflected waves and the generator
(which is typically designed to operate into Zj) transmits maximum power to the load,
as compared to the case when Zg = Zy but Z; # Z,.

In the second case, the load is connected to the line without a matching circuit
and the generator is conjugate-matched to the input impedance of the line, that is,
Zq = Z§. As we mentioned above, the line remains conjugate matched everywhere
along its length, and therefore, the matching network can be inserted at any convenient
point, not necessarily at the line input.

Because the value of Z; depends on Z; and the frequency w (through tan d), the
conjugate match will work as designed only at a single frequency. On the other hand, if
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the load and generator are purely resistive and are matched individually to the line, the
matching will remain reflectionless over a larger frequency bandwidth.

Conjugate matching is usually accomplished using L-section reactive networks. Re-
flectionless matching is achieved by essentially the same methods as antireflection coat-
ing. In the next few sections, we discuss several methods for reflectionless and conju-
gate matching, such as (a) quarter-wavelength single- and multi-section transformers;
(b) two-section series impedance transformers; (c) single, double, and triple stub tuners;
and (d) L-section lumped-parameter reactive matching networks.

11.2 Multisection Transmission Lines

Multisection transmission lines are used primarily in the construction of broadband
matching terminations. A typical multisection line is shown in Fig. 11.2.1.

( H

main line Z I : Z\ Z» Zyu V43
s ‘ ST ‘
P P2 P Pu Pm+1
Z Z, Zy Zy Zm+1

Fig. 11.2.1 Multi-section transmission line.

It consists of M segments between the main line and the load. The ith segment
is characterized by its characteristic impedance Z;, length I;, and velocity factor, or
equivalently, refractive index n;. The speed in the ith segment is ¢; = co/n;. The phase
thicknesses are defined by:

w w ,
6,—=B,—li=—l,-=—n,-li, 1=1,2,...,M (11.2.1)
Ci Co

We may define the electrical lengths (playing the same role as the optical lengths of
dielectric slabs) in units of some reference free-space wavelength A or corresponding
frequency fo = co/A¢ as follows:

(electrical lengths) Li = LUL

Ao :/\i , I=12,....,.M (11.2.2)

where A; = Ag/n; is the wavelength within the ith segment. Typically, the electrical
lengths are quarter-wavelengths, L; = 1/4. It follows that the phase thicknesses can be
expressed in terms of L; as 0; = wn;li/co = 21tfnili/ (folo), or,

A
(phase thicknesses) 0; = Bil; = 21L; L = 21L; 20 , i=1,2,....,.M (11.2.3)

fo A
where [ is the operating frequency and A = cy/f the corresponding free-space wave-
length. The wave impedances, Z;, are continuous across the M + 1 interfaces and are
related by the recursions:
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Ziv1 + JZitan Oi

=7
Zi=2i Zi+jZisitand;

i=M,...,1 (11.2.4)

and initialized by Zp+1 = Zr. The corresponding reflection responses at the left of each
interface, I't = (Z; — Zi—1)/ (Zi + Zi_1), are obtained from the recursions:

P+ 1" e*Zj(Si
I = Pi i+1

T 1+ pilis e 25 i=M,...,1 (11.2.5)

and initialized at I'ny+1 = I't = (Zr — Zm)/ (Zr + Zy ), where p; are the elementary
reflection coefficients at the interfaces:

Zi—Zi

=—, 1=12,....M+1 11.2.6
Zi+Zi—1 ! ( )

pi
where Zy;+1 = Zr. The MATLAB function multiTine calculates the reflection response
I'1 (f) atinterface-1 as a function of frequency. Its usage is:

Gammal = multiline(Z,L,ZL,T); % reflection response of multisection line

where Z = [Zy,Z1,...,Zy] and L = [Ly,L>,...,Ly] are the main line and segment
impedances and the segment electrical lengths.

The function mu1ti1ine implements Eq. (11.2.6) and is similar tomultidiel, except
here the load impedance Z; is a separate input in order to allow it to be a function of
frequency. We will see examples of its usage below.

11.3 Quarter-Wavelength Impedance Transformers

Quarter-wavelength Chebyshev impedance transformers allow the matching of real-
valued load impedances Z; to real-valued line impedances Z, and can be designed to
achieve desired attenuation and bandwidth specifications.

The design method has already been discussed in Sec. 5.8. The results of that sec-
tion translate verbatim to the present case by replacing refractive indices n; by line
admittances Y; = 1/Z;. Typical design specifications are shown in Fig. 5.8.1.

In an M-section transformer, all segments have equal electrical lengths, L; = [;/A; =
n;ili/Ag = 1/4 at some operating wavelength Ao. The phase thicknesses of the segments
are all equal and are given by 6; = 27tL;f /[0, or, because L; = 1/4:

mf
2 fo
The reflection response |I'1 (f)|? at the left of interface-1 is expressed in terms of

the order-M Chebyshev polynomials T (x), where x is related to the phase thickness
by x = X cos O:

(11.3.1)

Ly ()2 = e3T3 (Xocos §)
1+ e2T3% (xocosS)

(11.3.2)

where e; = eg/ Ty (Xo) and e is given in terms of the load and main line impedances:
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s (Zp—Zp)? Irp|? VARSIA
= = , =0 11.3.3
€o 47170 1—|I]2 LT zi+ 20 ( )
The parameter X is related to the desired reflectionless bandwidth Af by:
= 1 (11.3.4)
Xo (7T Af) 3.
sin{ ——
4 fo

and the number of sections is related to the attenuation A in the reflectionless band:

acosh <\/(1 +e3)104/10 — e%)

M = ceil
cel acosh (xgp)

(11.3.5)

where A is in dB and is measured from dc, or equivalently, with respect to the reflec-
tion response |I';| of the unmatched line. The maximum equiripple level within the
reflectionless band is given by

r
[T max = ITL11074720 > A = 2010g10< Tl ) (11.3.6)
|F1 |max
This condition can also be expressed in terms of the maximum SWR within the
desired bandwidth. Indeed, setting Smax = (1 + [[1lmax) /(1 — [I'1|max) and Sp =
(1+1|Ir])/(1 = |T'Ll), we may rewrite (11.3.6) as follows:

Smax + 1
Smax -1

(11.3.7)

St —1 Smax + 1
A = 20logy (112 L] S v L)

St +1 Spmax— 1

) = 2010g10 (

where we must demand Spyax < Sp or |I'1|max < [I't]. The MATLAB functions chebtr,
chebtr2, and chebtr3 implement the design steps. In the present context, they have
usage:

[Y,a,b] = chebtr(Y0,YL,A,DF); Chebyshev multisection transformer design
[Y,a,b,A] = chebtr2(Y0,YL,M,DF); specify order and bandwidth
[Y,a,b,DF] = chebtr3(YO0,YL,M,A); specify order and attenuation

The outputs are the admittances Y = [Yq, Y1, Y>,..., Yy, Y ] and the reflection and

transmission polynomials b and a. In chebtr2 and chebtr3, the order M is given. The
designed segment impedances Z;, i = 1, 2, ..., M satisfy the symmetry properties:

ZiZyii-i=2ZoZr, 1i=1,2,....,.M (11.3.8)

Fig. 11.3.1 depicts the three cases of M = 1,2,3 segments. The case M = 1 is
used widely and we discuss it in more detail. According to Eqg. (11.3.8), the segment

impedance satisfies 7% = ZoZy, or,
Z1 =ZoZ1 (11.3.9)
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A4

main line  Z 1-1: Z, ZL
A4 A4

main line Zg F}: Z 7> Zr

M4 N4 A4

main line  Z FI: Z Zs Z3 Zy

Fig. 11.3.1 One, two, and three-section quarter-wavelength transformers.

This implies that the reflection coefficients at interfaces 1 and 2 are equal:

Zy—Zy Zp -2y
_ _ _ 11.3.1
Zi+ 20 Zi+2, P2 (11.3.10)

p1

Because the Chebyshev polynomial of order-1 is T; (x) = x, the reflection response
(11.3.2) takes the form: ,
2
e5cos® o
NP =-—25"—- 11.3.11
MO = s ( )
Using Eq. (11.3.10), we can easily verify that ey is related to p; by

4p3
(1-p7)2
Then, Eq. (11.3.11) can be cast in the following equivalent form, which is recognized

as the propagation of the load reflection response I'> = p» = p; by a phase thickness &
to interface-1:

el =

2
p1(1+z7Y
r 2o | 11.3.12
= |\ ( )
where z = ¢2/%, The reflection response has a zero at z = —1 or § = 71/2, which occurs
at f = fo. The corresponding wave impedance at interface-1 will be:
Zr +jZitand
Z| =7, 2L7J211dn0 11.3.13
'z +jZan s ( )
Using Eq. (11.3.9), we obtain the matching condition at f = f or 6 = 11/2:
Z2
z, =2t =2 (11.3.14)

Zy
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Example 11.3.1: Single-section quarter wavelength transformer. Design a single-section trans-

Solution: The quarter-wavelength section has impedance Z; = \/Z; Zy

1711

former that will match a 200-ohm load to a 50-ohm line at 100 MHz. Determine the band-
width over which the SWR on the line remains less than 1.5.

= /200 - 50 = 100 ohm.
The reflection response |I'; (f) | and the SWR S (f)= (1+|I1 (f) 1)/ (1—|I'1 (f)|) are plotted
in Fig. 11.3.1 versus frequency.

Reflection Response Standing Wave Ratio

0.6 4
9.54 dB
0.4f 3t
D
]
Of
0.2 of
Af
0 ‘ ‘ 1 ‘ ‘
0 50 100 150 200 0 50 100 150 200
f (MHz) f (MHz)

Fig. 11.3.2 Reflection response and line SWR of single-section transformer.

The reflection coefficient of the unmatched line and the maximum tolerable reflection
response over the desired bandwidth are:

_ZL—Z()_ZOO—SO_OG Iy _Smax—l_l.S—l
T Zu+Zy) 200+50 0 Mmoo+l 1.5+1

I =0.2

It follows from Eq. (11.3.6) that the attenuation in dB over the desired band will be:

Izl

|F1|max

A=2010g10< ) = 20log,, (%) =9.54 dB

Because the number of sections and the attenuation are fixed, we may use the MATLAB
function chebtr3. The following code segment calculates the various design parameters:

Z0 = 50; ZL = 200;

GL = z29(ZL,Z0); Smax = 1.5;

f0 = 100; f = linspace(0,2%f0,401); plot over [0,200] MHz

A = 20*Togl0(GL* (Smax+1)/(Smax-1)); Eq. (11.3.7)

[Y,a,b,DF] = chebtr3(1/z0, 1/ZL, 1, A); note, M =1

Z = 1./Y; Df = fO*DF; L = 1/4; note, Z = [Zo, Z1, ZL

Gl = abs(multiline(Z(1:2), L, ZL, f/f0)); reflection response |I'y (f) |

S = swr(Gl); calculate SWR versus frequency

plot(f,Gl); figure; plot(f,S);
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The reflection response |I'y (f) | is computed by muTtiTine with frequencies normalized
to the desired operating frequency of fo = 100 MHz. The impedance inputs to multiline
were [Zy, Z1] and Z; and the electrical length of the segment was L = 1/4. The resulting
bandwidth is Af = 35.1 MHz. The reflection polynomials are:

Z1—Zy 1

b = [by,b1]= [p1,p1], a=l[ag,ail=[1,p%], pi= 7+ 7, =3

An alternative way to compute the reflection response is by Eq. (11.3.12), which can be
implemented with MATLAB’s freqz function, that is,

delta = pi * f/f0/2;
Gl = abs(freqz(b,a,2*delta));

where 26 = 1tf/f, is the digital frequency, such that z = %9, O

Example 11.3.2: Three- and four-section quarter-wavelength Chebyshev transformers. Design
a Chebyshev transformer that will match a 200-ohm load to a 50-ohm line. The line SWR
is required to remain less than 1.25 over the frequency band [50,150] MHz.

Repeat the design if the SWR is required to remain less than 1.1 over the same bandwidth.

Solution: Here, we let the design specifications determine the number of sections and their
characteristic impedances. In both cases, the unmatched reflection coefficient is the same
as in the previous example, I'; = 0.6. Using Syax = 1.25, the required attenuation in dB is
for the first case:

1.25+1
1.25-1

+1
A =20log;, (|m ff“a"i_l) = 20log; <0.6

max

) =14.65dB

The reflection coefficient corresponding to Spax iS [I'1 |max = (1.25-1)/(1.25+1)=1/9 =
0.1111. In the second case, we use Syax = 1.1 to find A = 22.0074 dB and |I'1 |max =
(1.1-1)/(1.1+1)=1/21 = 0.0476.

In both cases, the operating frequency is at the middle of the given bandwidth, that is,
fo = 100 MHz. The normalized bandwidth is AF = Af/fo = (150 — 50)/100 = 1. With
these values of A, AF, the function chebtr calculates the required number of sections and
their impedances. The typical code is as follows:

Z0 = 50; ZL = 200;
GL = z29(ZL,Z0); Smax = 1.25;

f1l = 50; f2 = 150; given bandedge frequencies

Df = f2-f1; f0 = (f2+f1)/2; DF = Df/f0; operating frequency and bandwidth

A = 20*10910(GL*(Smax+1)/(Smax-1)); attenuation of reflectionless band
[Y,a,b] = chebtr(1/z0, 1/ZL, A, DF); Chebyshev transformer design

Z =1./Y; rho = n2r(Y); impedances and reflection coefficients

For the first case, the resulting number of sections is M = 3, and the corresponding output
vector of impedances Z, reflection coefficients at the interfaces, and reflection polynomials
a,b are:
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Z=1Zy,Z1,22, 75, Z11= [50, 66.4185, 100, 150.5604, 200]
p = [p1, P2, P3, Ps]= [0.1410, 0.2018, 0.2018, 0.1410]

b = [bo, b1, b2, b3]= [0.1410, 0.2115, 0.2115, 0.1410]

a = [ag,ai,az az]l= [1, 0.0976, 0.0577, 0.0199]

In the second case, we find M = 4 sections with design parameters:
Z=1[Z20,21,22,23,724,Z1 1= [50, 59.1294, 81.7978, 122.2527, 169.1206, 200]
p = [p1,p2,P3, P4, ps]=[0.0837, 0.1609, 0.1983, 0.1609, 0.0837]
b = [bo,b1,b2,b3,bs]= [0.0837, 0.1673, 0.2091, 0.1673, 0.0837]
a=[ap,a1,az,as,as4]= [1, 0.0907, 0.0601, 0.0274, 0.0070]

The reflection responses and SWRs are plotted versus frequency in Fig. 11.3.3. The upper
two graphs corresponds to the case, Syax = 1.25, and the bottom two graphs, to the case

Smax = 1.1.
Reflection Response Standing Wave Ratio
0.6 . . . 4 . . .
0.4F 1 3r
o 146dB =
o 171
0.2f 1 2r
0 . . 1 . .
0 50 100 150 200 0 50 100 150 200
f (MHz) f (MHz)
Reflection Response Standing Wave Ratio
0.6 . . . 4 . . .
0.4F l 3l
= 22dB =
Y= Y
I 7
0.2f 1 2r
0 . . . 1 ) ; !
0 50 100 150 200 0 50 100 150 200
f (MHz) f (MHz)

Fig. 11.3.3 Three and four section transformers.
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The reflection responses |I'; (f)| can be computed either with the help of the function
multiline, or as the ratio of the reflection polynomials:
_bo+biz '+ +byz M

I'(z)= - . z=e", 5=
ag+a1z7t+---+ayz

S

SR

The typical MATLAB code for producing these graphs uses the outputs of chebtr:

f = linspace(0,2%f0,401); plot over [0,200] MHz

M = length(2)-2; number of sections

L = ones(1,M)/4; quarter-wave lengths

Gl = abs(multiline(Z(1:M+1), L, ZL, f/f0)); Z7 is a separate input

Gl = abs(freqz(b, a, pi*f/f0)); alternative way of computing G
S = swr(Gl); SWR on the line

plot(f,Gl); figure; plot(f,S);

In both cases, the section impedances satisfy the symmetry properties (11.3.8) and the
reflection coefficients p are symmetric about their middle, as discussed in Sec. 5.8.

We note that the reflection coefficients p; at the interfaces agree fairly closely with the
reflection polynomial b—equating the two is equivalent to the so-called small-reflection
approximation that is usually made in designing quarter-wavelength transformers [362].
The above values are exact and do not depend an any approximation. [m}

11.4 Quarter-Wavelength Transformer With Series Section

One limitation of the Chebyshev quarter-wavelength transformer is that it requires the
load to be real-valued. The method can be modified to handle complex loads, but gen-
erally the wide bandwidth property is lost. The modification is to insert the quarter-
wavelength transformer not at the load, but at a distance from the load corresponding
to a voltage minimum or maximum.

For example, Fig. 11.4.1 shows the case of a single quarter-wavelength section in-
serted at a distance Ly, from the load. At that point, the wave impedance seen by the
quarter-wave transformer will be real-valued and given by Zyin = Zo/Sr, where Sy is the
SWR of the unmatched load. Alternatively, one can choose a point of voltage maximum
Lnax at which the wave impedance will be Zyax = ZoSt.

0
main line Z I : —Emin Zr,
7 Zy
( T

Fig. 11.4.1 Quarter-wavelength transformer for matching a complex load.
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As we saw in Sec. 9.13, the electrical lengths Ly, or Lnax are related to the phase
angle 0; of the load reflection coefficient I'; by Egs. (9.13.2) and (9.13.3). The MAT-
LAB function Tmin can be called to calculate these distances and corresponding wave
impedances.

The calculation of the segment length, Ly, or Lyay, depends on the desired match-
ing frequency fy. Because a complex impedance can vary rapidly with frequency, the
segment will have the wrong length at other frequencies.

Even if the segment is followed by a multisection transformer, the presence of the
segment will tend to restrict the overall operating bandwidth to essentially that of a
single quarter-wavelength section. In the case of a single section, its impedance can be
calculated simply as:

[ —— 1 [ P—
Zl = Zozmin = \/? Zo and Zl = ZOZmaX = SL Zo (11.4.1)
L

Example 11.4.1: Quarter-wavelength matching of a complex load impedance. Design a quarter-
wavelength transformer of length M = 1, 3,5 that will match the complex impedance
Z; = 200+ j100 ohm to a 50-ohm line at fy = 100 MHz. Perform the design assuming the
maximum reflection coefficient level of |I'1 |max = 0.1.

Assuming that the inductive part of Z; arises from an inductance, replace the complex load
by Z; = 200 + j100f/fy at other frequencies. Plot the corresponding reflection response
[Ty (f)| versus frequency.

Solution: At fy, the load is Z; = 200 + j100 and its reflection coefficient and SWR are found to
be |I';| = 0.6695 and S; = 5.0521. It follows that the line segments corresponding to a
voltage minimum and maximum will have parameters:

1

Lmin = 0.2665, Zmin =
St

Zy = 9.897, Limax = 0.0165, Zmax = S1Zo = 252.603

For either of these cases, the effective load reflection coefficient seen by the transformer
willbe [I'| = (St —1) /(S +1) = 0.6695. It follows that the design attenuation specification
for the transformer will be:

1|

A= 2010g10 (W
max

0.6695
) = 20log; (T) =16.5155 dB

With the given number of sections M and this value of the attenuation A, the following
MATLAB code will design the transformer and calculate the reflection response of the
overall structure:

Z0 = 50; ZLO = 200 + 100j; load impedance at f(
[Lmin, Zmin] = Tmin(ZLO0,Z0,’min’); calculate Lin
Gmin = abs(z2g(Zmin,Z0)); Glmax = 0.1; design based on Zmin

A = 20*Tog10(Gmin/Glmax);

M= 3; three-section transformer

Z = 1./chebtr3(1/20, 1/Zmin, M, A);

Ztot = [Z(1:M+1), Z0]; concatenate all sections

Ltot = [ones(1,M)/4, Lmin]; electrical lengths of all sections
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f0 = 100; f = linspace(0,2*f0, 801);
ZL = 200 + j*100*f/f0; assume inductive load

Gl = abs(multiline(Ztot, Ltot, ZL, f/f0)); overall reflection response

where the designed impedances and quarter-wavelength segments are concatenated with
the last segment of impedance Z, and length Ly, or Ly.. The corresponding frequency
reflection responses are shown in Fig. 11.4.2.

Lnin = 0.2665, Zpin = 9.897 Linax = 0.0165, Z,ay = 252.603

0 5;0 100 150 200 0 50 100 150 200
f (MHz) f (MHz)

Fig. 11.4.2 Matching a complex impedance.

The calculated vector outputs of the transformer impedances are in the L, case:

Z =[50, 50/8}’%, 50/51]1= [50, 22.2452, 9.897]
Z =[50, 36.5577, 22.2452, 13.5361, 9.897]
Z =[50, 40.5325, 31.0371, 22.2452, 15.9437, 12.2087, 9.897]

and in the Ly case:

Z =[50, 5051/%, 508;]= [50, 112.3840, 252.603]
Z =[50, 68.3850, 112.3840, 184.6919, 252.603]
Z =[50, 61.6789, 80.5486, 112.3840, 156.8015, 204.7727, 252.603]

We note that there is essentially no difference in bandwidth over the desired design level
of |I'1 |max = 0.1 in the Ly, case, and very little difference in the Ly, case. [}

The MATLAB function qwtl implements this matching method. Its inputs are the
complex load and line impedances Z;, Zp and its outputs are the quarter-wavelength
section impedance Z; and the electrical length L, of the Zj-section. It has usage:

[Z1,Lm] = gwtl(ZL,Z0,type); % A /4-transformer with series section

where type is one of the strings min’ or ’max’, depending on whether the first section
gives a voltage minimum or maximum.
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11.5 Quarter-Wavelength Transformer With Shunt Stub

Two other possible methods of matching a complex load are to use a shorted or opened
stub connected in parallel with the load and adjusting its length or its line impedance
so that its susceptance cancels the load susceptance, resulting in a real load that can
then be matched by the quarter-wave section.

In the first method, the stub length is chosen to be either A/8 or 3A/8 and its
impedance is determined in order to provide the required cancellation of susceptance.

In the second method, the stub’s characteristic impedance is chosen to have a conve-
nient value and its length is determined in order to provide the susceptance cancellation.

These methods are shown in Fig. 11.5.1. In practice, they are mostly used with
microstrip lines that have easily adjustable impedances. The methods are similar to the
stub matching methods discussed in Sec. 11.7 in which the stub is not connected at the
load but rather after the series segment.

A4 A4

0 a D— a
main line  Z Z1 main line  Zy Z1
D D—]
short/open short/open

/ /

I
|
I
|
I
|
I
|
I
|
|
12

Fig. 11.5.1 Matching with a quarter-wavelength section and a shunt stub.

Let Yy = 1/Z; = G +jB; be the load admittance. The admittance of a shorted stub
of characteristic admittance Y, = 1/Z, and length d is Y = —jY> cot Bd and that of
an opened stub, Yy, = jY> tan Bd.

The total admittance at point a in Fig. 11.5.1 is required to be real-valued, resulting
in the susceptance cancellation condition:

Yo=Y+ Ysup =Gr +j(Br — YocotBd)=Gy, = Ycotfd =B (11.5.1)

For an opened stub the condition becomes Y, tan fd = —B;. In the first method,
the stub length is d = A/8 or 3A/8 with phase thicknesses fd = 7r/4 or 31r/4. The
corresponding values of the cotangents and tangents are cotfid = tanfid = 1 or
cotfd =tanBd = —1.

Then, the susceptance cancellation condition becomes Y, = B; for a shorted A/8-
stub or an opened 3A/8-stub, and Y, = —B; for a shorted 3A/8-stub or an opened
A/8-stub. The case Y»> = By must be chosen when B; > 0 and Y, = —Bj, when By < 0.

In the second method, Z» is chosen and the length d is determined from the condition
(11.5.1), cot Bd = By /Y, = Z,B; for a shorted stub, and tan fd = —Z,B; for an opened
one. The resulting d must be reduced modulo A/2 to a positive value.
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With the cancellation of the load susceptance, the impedance looking to the right
of point a will be real-valued, Z; = 1/Y,; = 1/Gr. Therefore, the quarter-wavelength

section will have impedance:
[ Zo
Zy =+\ZoZa= |+ 11.5.2
1 =+/Z0Za G1 ( )

The MATLAB functions qwt2 and qwt3 implement these matching methods. Their
usage is as follows:

[Z1,22]
[Z1,d]

gqwt2(ZL,Z0); % A /4-transformer with A/8 shunt stub
gwt3(ZL,Z20,Z2,type) % A /4-transformer with shunt stub of given impedance

where type takes on the string values s’ or o’ for shorted or opened stubs.

Example 11.5.1: Design quarter-wavelength matching circuits to match the load impedance
Z; = 15+ 20j Q to a 50-ohm generator at 5 GHz using series sections and shunt stubs.
Use microstrip circuits with a Duroid substrate (€, = 2.2) of height h = 1 mm. Determine
the lengths and widths of all required microstrip sections, choosing always the shortest
possible lengths.

Solution: For the quarter-wavelength transformer with a series section, it turns out that the
shortest length corresponds to a voltage maximum. The impedance Z; and section length
Lnax are computed with the MATLAB function qwt1:

[Z1, Lmax] = awtl(Z1, Zp, 'max’) = Z; = 98.8809 Q, Lmax = 0.1849

The widths and lengths of the microstrip sections are designed with the help of the func-
tions mstripr and mstripa. For the quarter-wavelength section Z;, the corresponding
width-to-height ratio u; = wy/h is calculated from mstripr and then used in mstripa to
get the effective permittivity, from which the wavelength and length of the segment can
be calculated:

u; = mstripr(€,, Z1)= 0.9164, w; = uh =0.9164 mm

Ay
€eft = mstripa(e,, uy) = 1.7659, A; = —> =4.5151cm, I, = =% =1.1288
off = mstripa(e,, uy) 1 e cm. 1 n cm

where the free-space wavelength is A = 6 cm. Similarly, we find for the series segment
with impedance Z, = Zy and length Ly = Lpax:
u, = mstripr(€,, Z,)= 3.0829, w; = uph = 3.0829 mm

Ao
=4.3745cm, I, = LyA; = 0.8090
Cort cm. 2 202 cm

€cft = mstripa(€,,up) = 1.8813, A, =

For the case of the A/8 shunt stub, we find from qwt2:

[Z1,Z>]= qwt2(Z1, Zy) = [45.6435,-31.2500] Q

where the negative Z, means that we should use either a shorted 3A/8 stub or an opened
A/8 one. Choosing the latter and setting Z, = 31.25 Q, we can go on to calculate the
microstrip widths and lengths:
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u; = mstripr(€,, Z1)= 3.5241, w; = urh = 3.5241 mm
) Ao Ay
Eeff = MSt €r,u;)=1.8965, A= =4.3569cm, |, = — =1.0892
oft = mstripa(€y, uy) Y = am, l= cm
u, = mstripr(€,, Z»)= 5.9067, w> = uh = 5.9067 mm
. A
€cft = mstripa(€,, up) = 1.9567, A, = esz =4.2894cm, I, =

=0.5362 cm

A2
8

For the third matching method, we use a shunt stub of impedance Z, = 30 Q. It turns out
that the short-circuited version has the shorter length. We find with the help of qwt3:

[Zy,d]=aqwt3(Z1,Z0,Z2,"s’) = Z; =45.6435Q, d=0.3718

The microstrip width and length of the quarter-wavelength section Z; are the same as in
the previous case, because the two cases differ only in the way the load susceptance is
canceled. The microstrip parameters of the shunt stub are:

U, = mstripr(€,, Z,)= 6.2258, w; = uph = 6.2258 mm
. A
Eeft = mstripa(€,, uz) = 1.9628, A, = (-:fo =4.2826 cm, [, =dA; =1.5921 cm

Had we used a 50 Q shunt segment, its width and length would be w, = 3.0829 mm and
I, = 1.7983 cm. Fig. 11.5.2 depicts the microstrip matching circuits. [m}

e— | —>te— [p —»

Fig. 11.5.2 Microstrip matching circuits.

11.6 Two-Section Series Impedance Transformer

One disadvantage of the quarter-wavelength transformer is that the required impedan-
ces of the line segments are not always easily realized. In certain applications, such
as microwave integrated circuits, the segments are realized by microstrip lines whose
impedances can be adjusted easily by changing the strip widths. In other applications,
however, such as matching antennas to transmitters, we typically use standard 50- and
75-ohm coaxial cables and it is not possible to re-adjust their impedances.

The two-section series impedance transformer, shown in Fig. 11.6.1, addresses this
problem [503,504]. It employs two line segments of known impedances Z; and Z, that
have convenient values and adjusts their (electrical) lengths L; and L, to match a com-
plexload Z; to a main line of impedance Zj. Fig. 11.6.1 depicts this kind of transformer.
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<« Li—v»eLr >

main line Zo

(
H 2 Z
(

P P2 [

Fig. 11.6.1 Two-section series impedance transformer.

The design method is identical to that of designing two-layer antireflection coatings
discussed in Sec. 5.2. Here, we modify that method slightly in order to handle complex
load impedances. We assume that Zj, Z;, and Z» are real and the load complex, Z; =
Ry + jX;.

Defining the phase thicknesses of two segments by 6, = 2mtn;l1/Ag = 2mL; and
0> = 21Tholr /Ao = 27TL,, the reflection responses I'1 and I'> at interfaces 1 and 2 are:

p1+ e %% P2 + pse %o
2 = :
1 + p2p3e=20:

e 1+ p1F2€72j‘sl ’
where the elementary reflection coefficients are:

-7 -7 -7
T+ PP Ttz Tz 42

P

The coefficients p;, p» are real, but p3 is complex, and we may represent it in polar
form p; = |p3le/?s. The reflectionless matching condition is I'; = 0 (at the operating
free-space wavelength A). This requires that p; + I'.e~%%1 = 0, which implies:

. T
e20r — 22 (11.6.1)
P1

Because the left-hand side has unit magnitude, we must have the condition [I';| =

|p1l, or, [I2|2 = p?, which is written as:

. . 2
p2 + |psle®e 2% |17 pf+|ps|® +2py|p3l cos (262 — 03) _
1+ p2|p3leifse=2io 1+ p3lpsl2 +2palpslcos (28, — 03)

Using the identity cos (28, — 03) = 2 cos? (5, — 03/2) —1, we find:

9
2

) = pi (1= p2lps))?=(p2 — |psl)?

cos? (6> —
(62 4palpsl (1 — p?)

(11.6.2)

. 0 (p2 + 1p31)%=p3i (1 + palps))?
sin? (8, — =) = L
(02-7) 4ps1p3l (1 - p?)

Not every combination of pi, p», p3 will result into a solution for d, because the
left-hand sides must be positive and less than unity. If a solution for 6, exists, then 8,
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is determined from Eq. (11.6.1). Actually, there are two solutions for §, corresponding
to the + signs of the square root of Eq. (11.6.2), that is, we have:

172
1 P%(1—92|P3)2—([)2—|ﬂ3|)2)
0> = =03 +acos | (11.6.3)
T2 [ ( 4palp3l (1 - p)

If the resulting value of J, is negative, it may be shifted by 7T or 27 to make it
positive, and then solve for the electrical length L, = 8,/27T. An alternative way of
writing Egs. (11.6.2) is in terms of the segment impedances (see also Problem 5.3):

03,  (Z3—Z3Z0) (Z3Z} — ZoZ3)

2
cos“ (6 — —) =
0= ) = B - ) (- 2
(11.6.4)
. o 03\  Z5(Zo — Z3) (Z1 — ZoZ3)
sin® (8, — —) = 5 N 5
2 Zo(22 - 7%) (22 - 73)

where Z3 is an equivalent “resistive” termination defined in terms of the load impedance
through the relationship:

T

11.6.5
Z3+ 272> Zr + 2> ( )

Clearly, if Z; is real and greater than Z,, then Z3 = Zj, whereas if it is less that
Zo, then, Z3 = Z%/ Zr. Eq. (11.6.4) shows more clearly the conditions for existence
of solutions. In the special case when section-2 is a section of the main line, so that
Z> = Zy, then (11.6.4) simplifies to:

0: 7573 - Z}
2 — 75 — 3 1 0
cos” (02 > ) it 20) 22 - 20)
(11.6.6)
sin? (5, - 93 = Z0(Z3 — ZoZ3)
2T (2o (- 2d)

It is easily verified from these expressions that the condition for the existence of
solutions is that the equivalent load impedance Z3 lie within the intervals:

z3 Z3
Z—‘Z)sngZ—l, it 7, > Zo
! 0 (11.6.7)
Z—% <Z3< Z—S if Z1<Z
ZO = 43 = % ’ 1 0
They may be combined into the single condition:
Zo 5 max (Z1, Zp)
— <73 < ZyS°|, = = Z\,Z 11.6.8
52 3= 2 min(Zy, Zo) swr(Z1, Zo) ( )

Example 11.6.1: Matching range with 50- and 75-ohm lines. If Z, = 50 and Z; = 75 ohm, then
the following loads can be matched by this method:
503 752

27y < 2 22.22 < 73 < 112.50 O
752 =550 7 3



364

Electromagnetic Waves & Antennas - S. J. Orfanidis

And, if Zy = 75 and Z; = 50, the following loads can be matched:

2 7 3
207 <Z3< e = 33.33<73<168.75Q
75 502
In general, the farther Z; is from Z,, the wider the range of loads that can be matched.
For example, with Zy = 75 and Z; = 300 ohm, all loads in the range from 4.5 to 1200 ohm
can be matched. O

The MATLAB function twosect implements the above design procedure. Its inputs

are the impedances Zy, Z1, Z», and the complex Z;, and its outputs are the two solutions
for L, and L, if they exist. Its usage is as follows, where L, is a 2X2 matrix whose
rows are the two possible sets of values of L, L»:

L12 = twosect(Z0,Z1,Z2,7ZL); % two-section series impedance transformer

The essential code in this function is as follows:

rl = (Z1-20)/(Z1+Z0);

r2 (Z2-21)/(Z2+71);

r3 = abs((ZL-22)/(ZL+Z2));
th3 = angle((ZL-Z2)/(ZL+Z2));

s = ((r24r3)A2 - r1A2*(1+r2*r3)A2) / (4*r2*r3*(1-r1A2));
if (s<0)|(s>1), fprintf(’no solution exists’); return; end

de2 = th3/2 + asin(sqrt(s)) * [1;-1]; % construct two solutions
G2 = (r2 + r3*exp(j*th3-2*j*de2)) ./ (1 + r2*r3*exp(j*th3-2*j*de2));
del = angle(-G2/rl)/2;

L1 = del/2/pi; L2 = de2/2/pi;

L12 = mod([L1,L2], 0.5); % reduce modulo A/2

Example 11.6.2: Matching an antenna with coaxial cables. A 29-MHz amateur radio antenna

with input impedance of 38 ohm is to be fed by a 50-ohm RG-58/U cable. Design a two-
section series impedance transformer consisting of a length of RG-59/U 75-ohm cable
inserted into the main line at an appropriate distance from the antenna [504]. The velocity
factor of both cables is 0.79.

Solution: Here, we have Z, = 50, Z, = 75, Z, = Zy, and Z; = 38 ohm. The call to the function

twosect results in the MATLAB output for the electrical lengths of the segments:

;. _ [ 00536 0.3462 L =0.0536, Lo =0.3462
1271 0.4464 0.1538 L, =0.4464, L, =0.1538

Using the given velocity factor, the operating wavelength is A = 0.79A¢ = 0.79¢o/fo =
8.1724 m, where f, = 29 MHz. Therefore, the actual physical lengths for the segments are,
for the first possible solution:

I, = 0.0536A = 0.4379m = 1.4367 ft, [, = 0.3462A = 2.8290 m = 9.2813 ft

and for the second solution:
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I} = 0.4464A = 3.6483 m = 11.9695 ft, I, = 0.1538A = 1.2573 m = 4.1248 ft
Fig. 11.6.2 depicts the corresponding reflection responses at interface-1, |I'; (f) |, as a func-
tion of frequency. The standing wave ratio on the main line is also shown, that is, the

quantity S, ()= (1 + I (F) /(1= T () ]).

Reflection Response Standing Wave Ratio

1 4
o8t — solution 1 3.5¢ — solution 1
- - - solution 2 - - - solution 2
3t
- 25 , '
0 K \
K .
o}/
Il \\
! \
15t/ \
\\
. . 1
0 0.5 15 2 0 0.5 15 2

1
/1,

1
/1,

Fig. 11.6.2 Reflection response of two-section series transformer.

The reflection response was computed with the help of multiline. The typical MATLAB
code for this example was:

Z0
c0

50; Z1 = 75; ZL = 38;
3e8; f0 = 29e6; vf = 0.79;

1a0 = c0/f0; la = l1a0*vf;

L12

twosect(Z0,71,70,ZL);

f = linspace(0,2,401);

% in units of fo

Gl = abs(multiline([Zz0,21,Z0],L12(1,:),ZL,F)); % reflection response 1
G2 = abs(multiline([Z0,21,Z0],L12(2,:),ZL,F)); % reflection response 2
S1=(1+G1) ./(1-G1); S2=(1+G2)./(1-G2); % SWRs

We note that the two solutions have unequal bandwidths. [}

Example 11.6.3: Matching a complex load. Design a 75-ohm series section to be inserted into
a 300-ohm line that feeds the load 600 + 900j ohm [504].

Solution: The MATLAB call
L12 = twosect(300, 75, 300, 600+900j);

produces the solutions: L; = [0.3983, 0.1017] and L, = [0.2420, 0.3318]. ]
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One-section series impedance transformer

We mention briefly also the case of the one-section series impedance transformer, shown
in Fig. 11.6.3. This is one of the earliest impedance transformers [498-502]. It has
limited use in that not all complex loads can be matched, although its applicability can
be extended somewhat [502].

i« L;—>

main line Zo I : Z) Zr

P P2
Fig. 11.6.3 One-section series impedance transformer.
Both the section impedance Z; and length L; are treated as unknowns to be fixed

by requiring the matching condition I'y = 0 at the operating frequency. It is left as an
exercise (see Problem 11.7) to show that the solution is given by:

ZoX7 1 [zl (Zo — Ry) ]
Z1 =+[ZoRL — , L =_—-——at —— 11.6.9
! 0L Z()—RL ! 27Taan Z()XL ( )
provided that either of the following conditions is satisfied:
X
Zo <Ry or Zy>Rp+ —— (11.6.10)

R;

In particular, there is always a solution if Z; is real. The MATLAB function onesect
implements this method. It has usage:

[Z1,L1] = onesect(ZL,Z0); % one-section series impedance transformer

where L; is the normalized length Ly = I;/A1, with I; and A; the physical length and
wavelength of the Z; section. The routine outputs the smallest positive L;.

11.7 Single Stub Matching

Stub tuners are widely used to match any complex load! to a main line. They consist of
shorted or opened segments of the line, connected in parallel or in series with the line
at a appropriate distances from the load.

In coaxial cable or two-wire line applications, the stubs are obtained by cutting ap-
propriate lengths of the main line. Shorted stubs are usually preferred because opened
stubs may radiate from their opened ends. However, in microwave integrated circuits

TThe resistive part of the load must be non-zero. Purely reactive loads cannot be matched to a real line
impedance by this method nor by any of the other methods discussed in this chapter. This so because the
transformation of a reactive load through the matching circuits remains reactive.
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employing microstrip lines, radiation is not as a major concern because of their smaller
size, and either opened or shorted stubs may be used.

The single stub tuner is perhaps the most widely used matching circuit and can
match any load. However, it is sometimes inconvenient to connect to the main line if
different loads are to be matched. In such cases, double stubs may be used, but they
cannot match all loads. Triple stubs can match any load. A single stub tuner is shown
in Figs. 11.7.1 and 11.7.2, connected in parallel and in series.

main line Zg Ly

/

short/open i

/
v

Fig. 11.7.1 Parallel connection of single stub tuner.

- | >

main line Z La—>

0 (

Zy

-~ Q. —»

short/open

Fig. 11.7.2 Series connection of single stub tuner.

In the parallel case, the admittance Y, = 1/Z; at the stub location a is the sum of
the admittances of the length-d stub and the wave admittance at distance I from the
load, that is,

1-1
Ya = YI + Ystub = YO 1+ FI + Ystub
where I'1 = I'te~%P! The admittance of a short-circuited stub is Y = —jYo cot Bd,

and of an open-circuited one, Ysyp = jYo tan Bd. The matching condition is that Y, =
Y. Assuming a short-circuited stub, we have:

1-I7 . 1-1I;
—-jY =Y
01+T1 JYocotpd o = 1+ 17

—jcotBd =1

which can be rearranged into the form:
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1
2jtanBd =1+ — (11.7.1)
I
Inserting I'} = I'e %l = |I'; |e/. =28l where I't = |I'1|e/9 is the polar form of the
load reflection coefficient, we may write (11.7.1) as:
oI (2B1-01)

djtanBd =1+ (11.7.2)
It |

Equating real and imaginary parts, we obtain the equivalent conditions:

sin(2B1 — 0;1) 1 3
72|FL| =-3 tan(2B1 — 01) (11.7.3)

cos(2Bl —0p)= —|I't|, tanpd =
The first of (11.7.3) may be solved resulting in two solutions for I; then, the second
equation may be solved for the corresponding values of d:

Bl = 01+ Jacos(~IT1l), pd = atan(~ tan(2pl - 01)) (11.7.4)

The resulting values of I, d must be made positive by reducing them modulo A/2.
In the case of an open-circuited shunt stub, the first equation in (11.7.3) remains the
same, and in the second we must replace tan fd by — cot Bd. In the series connection
of a shorted stub, the impedances are additive at point a, resulting in the condition:

1+17;
1-1I;

1+F17

Za:ZlJFZstub:ZO 1_1-1

+jZo taan =7 taan =1

This may be solved in a similar fashion as Eq. (11.7.1). We summarize below the
solutions in the four cases of parallel or series connections with shorted or opened
stubs:

Bl = %[GL +acos(—|It|)], Bd= atan(—% tan(2Bl — 01)), parallel/shorted
Bl = %[QL +acos(—|Itl)], Bd= acot(% tan(2pl - 0;1)), parallel/opened
Bl = %[OL +acos(|I't])], PBd= acot(% tan(2B1 - 01)), series/shorted
Bl = %[QL +acos(|I'L])], PBd= atan(—% tan(2Bl — 01)), series/opened

The MATLAB function stubl implements these equations. Its input is the normal-
ized load impedance, z; = Z;/Zy, and the desired type of stub. Its outputs are the dual
solutions for the lengths d, I, arranged in the rows of a 2x2 matrix d1. Its usage is as
follows:

d1l = stubl(zL,type); % single stub tuner

The parameter type takes on the string values 'ps’, 'po’, ’ss’, ’so’, for parallel/short,
parallel/open, series/short, series/open stubs.
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Example 11.7.1: The load impedance Z; = 10 — 5j ohm is to be matched to a 50-ohm line. The
normalized load is z; = Z;/Zy = 0.2 — 0.1j. The MATLAB calls, d1=stubl1(zL, type), re-
sult into the following solutions for the cases of parallel/short, parallel/open, series/short,
series/open stubs:

0.0806 0.4499 0.3306 0.4499 0.1694 0.3331 0.4194 0.3331
0.4194 0.0831 |’ | 0.1694 0.0831 |’ | 0.3306 0.1999 |’ | 0.0806 0.1999
Each row represents a possible solution for the electrical lengths d/A and I/A. We illustrate

below the solution details for the parallel/short case.

Given the load impedance z; = 0.2 — 0.1j, we calculate the reflection coefficient and put
it in polar form:

—1
rp= % = ~0.6552 - 0.1379) = |I1|=0.6695, ;= —2.9341 rad
L

Then, the solution of Eq. (11.7.4) is:

Bl==[0p +acos(—|I'L])] = =[-2.9341 + acos(—0.6695) | = =[—2.9341 + 2.3044) |

N | =
N | =
N =

which gives the two solutions:

31—2—"1— —0.3149 rad N l—i -0.3149 | _ [ —0.0501A
T A | —2.6192rad T2 | —-2.6192 | | —0.4169A

These may be brought into the interval [0, A/2] by adding enough multiples of A/2. The
built-in MATLAB function mod does just that. In this case, a single multiple of A/2 suffices,
resulting in:

;[ —00501A+ 050 ] _[[04d00A] o[ 2.8267 rad
~ | —0.4169A +0.5A |~ | 0.0831A AL=1 05024 rad

With these values of BI, we calculate the stub length d:
1 0.5064 rad 0.0806A
Bd = atan(~ tan (2Bl = 6.)) = [ ~0.5064 rad } 4= [ ~0.0806A ]

Shifting the second d by A/2, we finally find:

d- 0.0806A | 0.0806A fd = 0.5064 rad
“ | —0.0806A +0.5A | | 0.4194A |’ | 2.6351 rad

Next, we verify the matching condition. The load admittance is y; = 1/z; = 4 + 2j.
Propagating it to the left of the load by a distance I, we find for the two values of I and for
the corresponding values of d:

_ yr+jtanpl | 1.0000 + 1.8028; . _ | —1.8028j

YL iy tanBl | 1.0000 - 1.8028) |* Ysue = TJCOtBA = gnog;
For both solutions, the susceptance of y; is canceled by the susceptance of the stub, re-
sulting in the matched total normalized admittance y; = y; + Vswub = 1. [m}
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Example 11.7.2: Match the antenna and feed line of Example 11.6.2 using a single shorted or

opened stub. Plot the corresponding matched reflection responses.

Solution: The normalized load impedance is z; = 38/50 = 0.76. The MATLAB function to
stubl yields the following solutions for the lengths d, I, in the cases of parallel/short,

parallel/open, series/short, series/open stubs:

0.2072  0.3859 0.4572
0.2928 0.1141 |’

These numbers must be multiplied by A, the free-space wavelength corresponding to
the operating frequency of fo = 29 MHz. The resulting reflection responses [I';(f)| at
the connection point a of the stub, corresponding to all the pairs of d,l are shown in

0.0428 0.1141

0.0428 0.3641} [0.2928 0.3641

0.4572

0.1359

0.2072  0.1359

Fig. 11.7.3. For example, in the parallel/short case, I'; is calculated by

1-ya _1-Tpe ¥
T 14y, YT 14 rie Al

—jcotBd, PBl= 217£
fo

Bd = 21'r£i

[
Ao’ fo Ao

We note that different solutions can have very different bandwidths.
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Fig. 11.7.3 Reflection response of single stub matching solutions.

11.8 Balanced Stubs

In microstrip realizations of single-stub tuners, balanced stubs are often used to reduce
the transitions between the series and shunt segments. Fig. 11.8.1 depicts two identical

balanced stubs connected at opposite sides of the main line.

Because of the parallel connection, the total admittance of the stubs will be dou-
ble that of each leg, that is, Ypa = 2Ygup. A single unbalanced stub of length d can
be converted into an equivalent balanced stub of length d} by requiring that the two
configurations provide the same admittance. Depending on whether shorted or opened

stubs are used, we obtain the relationships between dp and d:
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short/open

main line  Z Lo

/
v

short/open :

Fig. 11.8.1 Balanced stubs.

2cotBdy =cotBd = dyp

% acot (0.5 cot Bd) (shorted)
n (11.8.1)

2tanfBdp =tanfd = dyp

A
o atan (0.5 tan Sd) (opened)

The microstrip realization of such a balanced stub is shown in Fig. 11.8.2. The figure
also shows the use of balanced stubs for quarter-wavelength transformers with a shunt
stub as discussed in Sec. 11.5.

= f e
Zy| dp |22
' v
— Zy —‘ Zi|
o~ [ — e—— A/4—>
Z 7

Fig. 11.8.2 Balanced microstrip single-stub and quarter-wavelength transformers.

If the shunt stub has length A/8 or 3A/8, then the impedance Z» of each leg must
be double that of the single-stub case. On the other hand, if the impedance Z5 is fixed,
then the stub length dj of each leg may be calculated by Eq. (11.8.1).

11.9 Double and Triple Stub Matching

Because the stub distance I from the load depends on the load impedance to be matched,
the single-stub tuner is inconvenient if several different load impedances are to be
matched, each requiring a different value for L.
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The double-stub tuner, shown in Fig. 11.9.1, provides an alternative matching method
in which two stubs are used, one at the load and another at a fixed distance I from the
load, where typically, I = A/8. Only the stub lengths d;, d» need to be adjusted to match
the load impedance.

main line Z Zy—>

/

/
v

short/open i

Fig. 11.9.1 Double stub tuner.

The two stubs are connected in parallel to the main line and can be short- or open-
circuited. We discuss the matching conditions for the case of shorted stubs.

Let Y; = 1/Z; = G + jBr be the load admittance, and define its normalized ver-
sion y; = Y /Yy = gr + jbr, where g;,b; are the normalized load conductance and
susceptance. At the connection points a, b, the total admittance is the sum of the wave
admittance of the line and the stub admittance:

Yy + jtan Sl

1 + jyp tan Bl —Jeotpd,

Ya = Y1+ Vstub,1 =

Yb =YL + Ysup,2 = g1 +.j(by — cot Bd>)

The matching condition is y, = 1, which gives rise to two equations that can be
solved for the unknown lengths di,d,. It is left as an exercise (see Problem 11.8) to
show that the solutions are given by:

1-btanBl — g;

cotBd, =br — b, cotfd, = g1 tan Bl

(11.9.1)

where

1
sin® Bl

Evidently, the condition for the existence of a real-valued b is that the load conduc-
tance gy be less than gmay, that is, g < gmax. If this condition is not satisfied, the
load cannot be matched with any stub lengths d,,d>. Stub separations near A/2, or
near zero, result in gmax = oo, but are not recommended because they have very narrow
bandwidths [427].

Assuming | < A/4, the condition g; < gmax can be turned around into a condition
for the maximum length I that will admit a matching solution for the given load:

b =cotBl £+/gr (Gmax — 91) » Gmax =1 + cot? Bl = (11.9.2)
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A 1
I <lpa = —— asin(——) (maximum stub separation) (11.9.3)

21 NCN

If the existence condition is satisfied, then Eq. (11.9.2) results in two solutions for b
and, hence for, di,d,. The lengths d;,d, must be reduced modulo A/2 to bring them
within the minimum interval [0,A/2].

If any of the stubs are open-circuited, the corresponding quantity cot Sd; must be
replaced by — tan fd; = cot(Bd; — 11/2).

The MATLAB function stub2 implements the above design procedure. Its inputs are
the normalized load impedance z; = Z;/Zy, the stub separation I, and the stub types,
and its outputs are the two possible solutions for the dq, d,. Its usage is as follows:

dl2 = stub2(zL,1,type); % double stub tuner
d12 = stub2(zL,1); 9% equivalent to type='ss’
d12 = stub2(zL); % equivalent to I = 1/8 and type="ss’

The parameter type takes on the strings values: ’ss’, ’so’, ’0s’, '00’, for short/short,
short/open, open/short, open/open stubs. If the existence condition fails, the function
outputs the maximum separation Iy, that will admit a solution.

A triple stub tuner, shown in Fig. 11.9.2, can match any load. The distances Iy, >
between the stubs are fixed and only the stub lengths d;, d>», d3 are adjustable.

The first two stubs (from the left) can be thought of as a double-stub tuner. The
purpose of the third stub at the load is to ensure that the wave impedance seen by the
double-stub tuner satisfies the existence condition g; < gmax-

main line Zj

Fig. 11.9.2 Triple stub tuner.

The total admittance at the load point ¢, and its propagated version by distance I,
to point b are given by:

i = Yc + jtan Bl

= =y + =gr +jbr —jcotBds; =gr +jb (1194
1+ jye tan Bl Ye =YL + YVsub3 = gL +Jbr —jcotBds = gp +j ( )

where b = by — cot Bd3. The corresponding conductance is:

gL 1+ tan? Blz)

11.9.5
(btan Bl — 1)2+g7 tan? Bl ( )

gi = Re(y)) =
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The first two stubs see the effective load y;. The double-stub problem will have a
solution provided g; < gmax,1 = 1/ sin® Bl;. The length d; of the third stubis adjusted to
ensure this condition. To parametrize the possible solutions, we introduce a “smallness”
parameter e < 1 such that g; = egmax,1. This gives the existence condition:

_ gr(1 + tan® Bl»)
(btan Bl, — 1)2+g? tan® I,

gi = €¢9max,1

which can be rewritten in the form:

(b — cot BIZ)ZZ gL (gmax,Z - egmax,lgL) = g]%gmax,l (eémax — €)

where we defined gmax2 = 1 + cot®> Bl = 1/ sin® Bl, and emax = Imax2/ (GrGmax1) - If
emax < 1, we may replace e by the minimum of the chosen e and epay. But if epax > 1,
we just use the chosen e. In other words, we replace the above condition with:

(b — cot 512)2: g]%gmax,l (émax — €min) » €min = mMin(e, emax) (11.9.6)

It corresponds to setting g; = €mingmax,1- Solving Eq. (11.9.6) for cot Bd3 gives the
two solutions:

cotBds =br —b, b=cotfl, = gL\/gmax,l (emax — €min) (11.9.7)

For each of the two values of d3, there will be a feasible solution to the double-stub
problem, which will generate two possible solutions for di,d,. Thus, there will be a
total of four triples d1,d>, ds that will satisfy the matching conditions. Each stub can
be shorted or opened, resulting into eight possible choices for the stub trip