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1
Maxwell’s Equations

1.1 Maxwell’s Equations

Maxwell’s equations describe all (classical) electromagnetic phenomena:

∇∇∇× E = −∂B

∂t

∇∇∇×H = J+ ∂D

∂t

∇∇∇ ·D = ρ
∇∇∇ · B = 0

(Maxwell’s equations) (1.1.1)

The first is Faraday’s law of induction, the second is Ampère’s law as amended by
Maxwell to include the displacement current ∂D/∂t, the third and fourth are Gauss’ laws
for the electric and magnetic fields.

The displacement current term ∂D/∂t in Ampère’s law is essential in predicting the
existence of propagating electromagnetic waves. Its role in establishing charge conser-
vation is discussed in Sec. 1.6.

Eqs. (1.1.1) are in SI units. The quantities E and H are the electric and magnetic
field intensities and are measured in units of [volt/m] and [ampere/m], respectively.
The quantities D and B are the electric and magnetic flux densities and are in units of
[coulomb/m2] and [weber/m2], or [tesla]. B is also called the magnetic induction.

The quantities ρ and J are the volume charge density and electric current density
(charge flux) of any external charges (that is, not including any induced polarization
charges and currents.) They are measured in units of [coulomb/m3] and [ampere/m2].
The right-hand side of the fourth equation is zero because there are no magnetic mono-
pole charges.

The charge and current densities ρ, J may be thought of as the sources of the electro-
magnetic fields. For wave propagation problems, these densities are localized in space;
for example, they are restricted to flow on an antenna. The generated electric and mag-
netic fields are radiated away from these sources and can propagate to large distances to
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the receiving antennas. Away from the sources, that is, in source-free regions of space,
Maxwell’s equations take the simpler form:

∇∇∇× E = −∂B

∂t

∇∇∇×H = ∂D

∂t

∇∇∇ ·D = 0

∇∇∇ · B = 0

(source-free Maxwell’s equations) (1.1.2)

1.2 Lorentz Force

The force on a charge q moving with velocity v in the presence of an electric and mag-
netic field E,B is called the Lorentz force and is given by:

F = q(E+ v× B) (Lorentz force) (1.2.1)

Newton’s equation of motion is (for non-relativistic speeds):

m
dv

dt
= F = q(E+ v× B) (1.2.2)

where m is the mass of the charge. The force F will increase the kinetic energy of the
charge at a rate that is equal to the rate of work done by the Lorentz force on the charge,
that is, v · F. Indeed, the time-derivative of the kinetic energy is:

Wkin = 1

2
m v · v ⇒ dWkin

dt
=m v · dv

dt
= v · F = q v · E (1.2.3)

We note that only the electric force contributes to the increase of the kinetic energy—
the magnetic force remains perpendicular to v, that is, v · (v× B)= 0.

Volume charge and current distributions ρ, J are also subjected to forces in the
presence of fields. The Lorentz force per unit volume acting on ρ, J is given by:

f = ρE+ J× B (Lorentz force per unit volume) (1.2.4)

where f is measured in units of [newton/m3]. If J arises from the motion of charges
within the distribution ρ, then J = ρv (as explained in Sec. 1.5.) In this case,

f = ρ(E+ v× B) (1.2.5)

By analogy with Eq. (1.2.3), the quantity v · f = ρ v · E = J · E represents the power
per unit volume of the forces acting on the moving charges, that is, the power expended
by (or lost from) the fields and converted into kinetic energy of the charges, or heat. It
has units of [watts/m3]. We will denote it by:

dPloss

dV
= J · E (ohmic power losses per unit volume) (1.2.6)
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In Sec. 1.7, we discuss its role in the conservation of energy. We will find that elec-
tromagnetic energy flowing into a region will partially increase the stored energy in that
region and partially dissipate into heat according to Eq. (1.2.6).

1.3 Constitutive Relations

The electric and magnetic flux densities D,B are related to the field intensities E,H via
the so-called constitutive relations, whose precise form depends on the material in which
the fields exist. In vacuum, they take their simplest form:

D = ε0E

B = µ0H
(1.3.1)

where ε0, µ0 are the permittivity and permeability of vacuum, with numerical values:

ε0 = 8.854× 10−12 farad/m

µ0 = 4π× 10−7 henry/m
(1.3.2)

The units for ε0 and µ0 are the units of the ratios D/E and B/H, that is,

coulomb/m2

volt/m
= coulomb

volt ·m
= farad

m
,

weber/m2

ampere/m
= weber

ampere ·m
= henry

m

From the two quantities ε0, µ0, we can define two other physical constants, namely,
the speed of light and characteristic impedance of vacuum:

c0 = 1√µ0ε0
= 3× 108 m/sec , η0 =

√
µ0

ε0
= 377 ohm (1.3.3)

The next simplest form of the constitutive relations is for simple dielectrics and for
magnetic materials:

D = εE
B = µH

(1.3.4)

These are typically valid at low frequencies. The permittivity ε and permeability µ
are related to the electric and magnetic susceptibilities of the material as follows:

ε = ε0(1+ χ)
µ = µ0(1+ χm)

(1.3.5)

The susceptibilities χ,χm are measures of the electric and magnetic polarization
properties of the material. For example, we have for the electric flux density:

D = εE = ε0(1+ χ)E = ε0E+ ε0χE = ε0E+ P
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where the quantity P = ε0χE represents the dielectric polarization of the material, that
is, the average electric dipole moment per unit volume. The speed of light in the material
and the characteristic impedance are:

c = 1√µε , η =
√
µ
ε

(1.3.6)

The relative dielectric constant and refractive index of the material are defined by:

εr = ε
ε0
= 1+ χ , n =

√
ε
ε0
= √εr (1.3.7)

so that εr = n2 and ε = ε0εr = ε0n2. Using the definition of Eq. (1.3.6) and assuming a
non-magnetic material (µ = µ0), we may relate the speed of light and impedance of the
material to the corresponding vacuum values:

c = 1√µ0ε
= 1√µ0ε0εr

= c0√
εr
= c0

n

η =
√
µ0

ε
=
√
µ0

ε0εr
= η0√

εr
= η0

n

(1.3.8)

Similarly in a magnetic material, we have B = µ0(H + M), where M = χmH is the
magnetization, that is, the average magnetic moment per unit volume. The refractive
index is defined in this case by n = √εµ/ε0µ0 =

√
(1+ χ)(1+ χm).

More generally, constitutive relations may be inhomogeneous, anisotropic, nonlin-
ear, frequency dependent (dispersive), or all of the above. In inhomogeneous materials,
the permittivity ε depends on the location within the material:

D(r, t)= ε(r)E(r, t)

In anisotropic materials, ε depends on the x, y, z direction and the constitutive rela-
tions may be written component-wise in matrix (or tensor) form:



Dx
Dy
Dz


 =



εxx εxy εxz
εyx εyy εyz
εzx εzy εzz





Ex
Ey
Ez


 (1.3.9)

Anisotropy is an inherent property of the atomic/molecular structure of the dielec-
tric. It may also be caused by the application of external fields. For example, conductors
and plasmas in the presence of a constant magnetic field—such as the ionosphere in the
presence of the Earth’s magnetic field—become anisotropic (see for example, Problem
1.9 on the Hall effect.)

In nonlinear materials, εmay depend on the magnitude E of the applied electric field
in the form:

D = ε(E)E , where ε(E)= ε+ ε2E + ε3E2 + · · · (1.3.10)

Nonlinear effects are desirable in some applications, such as various types of electro-
optic effects used in light phase modulators and phase retarders for altering polariza-
tion. In other applications, however, they are undesirable. For example, in optical fibers
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nonlinear effects become important if the transmitted power is increased beyond a few
milliwatts. A typical consequence of nonlinearity is to cause the generation of higher
harmonics, for example, if E = E0ejωt, then Eq. (1.3.10) gives:

D = ε(E)E = εE + ε2E2 + ε3E2 + · · · = εE0ejωt + ε2E2
0e2jωt + ε3E3

0e3jωt + · · ·
Thus the input frequency ω is replaced by ω,2ω,3ω, and so on. Such harmonics

are viewed as crosstalk.
Materials with frequency-dependent dielectric constant ε(ω) are referred to as dis-

persive. The frequency dependence comes about because when a time-varying electric
field is applied, the polarization response of the material cannot be instantaneous. Such
dynamic response can be described by the convolutional (and causal) constitutive rela-
tionship:

D(r, t)=
∫ t
−∞
ε(t − t′)E(r, t′)dt′

which becomes multiplicative in the frequency domain:

D(r,ω)= ε(ω)E(r,ω) (1.3.11)

All materials are, in fact, dispersive. However, ε(ω) typically exhibits strong depen-
dence onω only for certain frequencies. For example, water at optical frequencies has
refractive index n = √εr = 1.33, but at RF down to dc, it has n = 9.

In Sec. 1.9, we discuss simple models of ε(ω) for dielectrics, conductors, and plas-
mas, and clarify the nature of Ohm’s law:

J = σE (Ohm’s law) (1.3.12)

One major consequence of material dispersion is pulse spreading, that is, the pro-
gressive widening of a pulse as it propagates through such a material. This effect limits
the data rate at which pulses can be transmitted. There are other types of dispersion,
such as intermodal dispersion in which several modes may propagate simultaneously,
or waveguide dispersion introduced by the confining walls of a waveguide.

There exist materials that are both nonlinear and dispersive that support certain
types of non-linear waves called solitons, in which the spreading effect of dispersion is
exactly canceled by the nonlinearity. Therefore, soliton pulses maintain their shape as
they propagate in such media [431–433].

More complicated forms of constitutive relationships arise in chiral and gyrotropic
media and are discussed in Chap. 3. The more general bi-isotropic and bi-anisotropic
media are discussed in [31,76].

In Eqs. (1.1.1), the densities ρ, J represent the external or free charges and currents
in a material medium. The induced polarization P and magnetization M may be made
explicit in Maxwell’s equations by using constitutive relations:

D = ε0E+ P , B = µ0(H+M) (1.3.13)

Inserting these in Eq. (1.1.1), for example, by writing ∇∇∇ × B = µ0∇∇∇ × (H + M)=
µ0(J+ Ḋ+∇∇∇×M)= µ0(ε0Ė+ J+ Ṗ+∇∇∇×M), we may express Maxwell’s equations in
terms of the fields E and B :
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∇∇∇× E = −∂B

∂t

∇∇∇× B = µ0ε0
∂E

∂t
+ µ0

[
J+ ∂P

∂t
+∇∇∇×M

]

∇∇∇ · E = 1

ε0

(
ρ−∇∇∇ · P)

∇∇∇ · B = 0

(1.3.14)

We identify the current and charge densities due to the polarization of the material as:

Jpol = ∂P

∂t
, ρpol = −∇∇∇ · P (polarization densities) (1.3.15)

Similarly, the quantity Jmag =∇∇∇×M may be identified as the magnetization current
density (note that ρmag = 0.) The total current and charge densities are:

Jtot = J+ Jpol + Jmag = J+ ∂P

∂t
+∇∇∇×M

ρtot = ρ+ ρpol = ρ−∇∇∇ · P

(1.3.16)

and may be thought of as the sources of the fields in Eq. (1.3.14). In Sec. 13.6, we examine
this interpretation further and show how it leads to the Ewald-Oseen extinction theorem
and to a microscopic explanation of the origin of the refractive index.

1.4 Boundary Conditions

The boundary conditions for the electromagnetic fields across material boundaries are
given below:

E1t − E2t = 0

H1t −H2t = Js × n̂

D1n −D2n = ρs
B1n − B2n = 0

(1.4.1)

where n̂ is a unit vector normal to the boundary pointing from medium-2 into medium-1.
The quantities ρs, Js are any external surface charge and surface current densities on
the boundary surface and are measured in units of [coulomb/m2] and [ampere/m].

In words, the tangential components of the E-field are continuous across the inter-
face; the difference of the tangential components of the H-field are equal to the surface
current density; the difference of the normal components of the flux density D are equal
to the surface charge density; and the normal components of the magnetic flux density
B are continuous.
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The Dn boundary condition may also be written a form that brings out the depen-
dence on the polarization surface charges:

(ε0E1n + P1n)−(ε0E2n + P2n)= ρs ⇒ ε0(E1n − E2n)= ρs − P1n + P2n = ρs,tot

The total surface charge density will be ρs,tot = ρs+ρ1s,pol+ρ2s,pol, where the surface
charge density of polarization charges accumulating at the surface of a dielectric is seen
to be (n̂ is the outward normal from the dielectric):

ρs,pol = Pn = n̂ · P (1.4.2)

The relative directions of the field vectors are shown in Fig. 1.4.1. Each vector may
be decomposed as the sum of a part tangential to the surface and a part perpendicular
to it, that is, E = Et + En. Using the vector identity,

E = n̂× (E× n̂)+n̂(n̂ · E)= Et + En (1.4.3)

we identify these two parts as:

Et = n̂× (E× n̂) , En = n̂(n̂ · E)= n̂En

Fig. 1.4.1 Field directions at boundary.

Using these results, we can write the first two boundary conditions in the following
vectorial forms, where the second form is obtained by taking the cross product of the
first with n̂ and noting that Js is purely tangential:

n̂× (E1 × n̂)− n̂× (E2 × n̂) = 0

n̂× (H1 × n̂)− n̂× (H2 × n̂) = Js × n̂
or,

n̂× (E1 − E2) = 0

n̂× (H1 −H2) = Js
(1.4.4)

The boundary conditions (1.4.1) can be derived from the integrated form of Maxwell’s
equations if we make some additional regularity assumptions about the fields at the
interfaces.

In many interface problems, there are no externally applied surface charges or cur-
rents on the boundary. In such cases, the boundary conditions may be stated as:

E1t = E2t

H1t = H2t

D1n = D2n

B1n = B2n

(source-free boundary conditions) (1.4.5)
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1.5 Currents, Fluxes, and Conservation Laws

The electric current density J is an example of a flux vector representing the flow of the
electric charge. The concept of flux is more general and applies to any quantity that
flows.† It could, for example, apply to energy flux, momentum flux (which translates
into pressure force), mass flux, and so on.

In general, the flux of a quantity Q is defined as the amount of the quantity that
flows (perpendicularly) through a unit surface in unit time. Thus, if the amount ∆Q
flows through the surface ∆S in time ∆t, then:

J = ∆Q
∆S∆t

(definition of flux) (1.5.1)

When the flowing quantity Q is the electric charge, the amount of current through
the surface ∆S will be ∆I = ∆Q/∆t, and therefore, we can write J = ∆I/∆S, with units
of [ampere/m2].

The flux is a vectorial quantity whose direction points in the direction of flow. There
is a fundamental relationship that relates the flux vector J to the transport velocity v
and the volume density ρ of the flowing quantity:

J = ρv (1.5.2)

This can be derived with the help of Fig. 1.5.1. Consider a surface ∆S oriented per-
pendicularly to the flow velocity. In time∆t, the entire amount of the quantity contained
in the cylindrical volume of height v∆t will manage to flow through ∆S. This amount is
equal to the density of the material times the cylindrical volume ∆V = ∆S(v∆t), that
is, ∆Q = ρ∆V = ρ∆Sv∆t. Thus, by definition:

J = ∆Q
∆S∆t

= ρ∆Sv∆t
∆S∆t

= ρv

Fig. 1.5.1 Flux of a quantity.

When J represents electric current density, we will see in Sec. 1.9 that Eq. (1.5.2)
implies Ohm’s law J = σE. When the vector J represents the energy flux of a propagating
electromagnetic wave and ρ the corresponding energy per unit volume, then because the
speed of propagation is the velocity of light, we expect that Eq. (1.5.2) will take the form:

Jen = cρen (1.5.3)

†In this sense, the terms electric and magnetic “flux densities” for the quantities D,B are somewhat of a
misnomer because they do not represent anything that flows.
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Similarly, when J represents momentum flux, we expect to have Jmom = cρmom.
Momentum flux is defined as Jmom = ∆p/(∆S∆t)= ∆F/∆S, where p denotes momen-
tum and ∆F = ∆p/∆t is the rate of change of momentum, or the force, exerted on the
surface ∆S. Thus, Jmom represents force per unit area, or pressure.

Electromagnetic waves incident on material surfaces exert pressure (known as ra-
diation pressure), which can be calculated from the momentum flux vector. It can be
shown that the momentum flux is numerically equal to the energy density of a wave, that
is, Jmom = ρen, which implies that ρen = ρmomc. This is consistent with the theory of
relativity, which states that the energy-momentum relationship for a photon is E = pc.

1.6 Charge Conservation

Maxwell added the displacement current term to Ampère’s law in order to guarantee
charge conservation. Indeed, taking the divergence of both sides of Ampère’s law and
using Gauss’s law∇∇∇ ·D = ρ, we get:

∇∇∇ ·∇∇∇×H =∇∇∇ · J+∇∇∇ · ∂D

∂t
=∇∇∇ · J+ ∂

∂t
∇∇∇ ·D =∇∇∇ · J+ ∂ρ

∂t

Using the vector identity∇∇∇·∇∇∇×H = 0, we obtain the differential form of the charge
conservation law:

∂ρ
∂t
+∇∇∇ · J = 0 (charge conservation) (1.6.1)

Integrating both sides over a closed volume V surrounded by the surface S, as
shown in Fig. 1.6.1, and using the divergence theorem, we obtain the integrated form of
Eq. (1.6.1):

∮
S

J · dS = − d
dt

∫
V
ρdV (1.6.2)

The left-hand side represents the total amount of charge flowing outwards through
the surface S per unit time. The right-hand side represents the amount by which the
charge is decreasing inside the volume V per unit time. In other words, charge does
not disappear into (or get created out of) nothingness—it decreases in a region of space
only because it flows into other regions.

Fig. 1.6.1 Flux outwards through surface.
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Another consequence of Eq. (1.6.1) is that in good conductors, there cannot be any
accumulated volume charge. Any such charge will quickly move to the conductor’s
surface and distribute itself such that to make the surface into an equipotential surface.
Assuming that inside the conductor we have D = εE and J = σE, we obtain

∇∇∇ · J = σ∇∇∇ · E = σ
ε
∇∇∇ ·D = σ

ε
ρ

Therefore, Eq. (1.6.1) implies

∂ρ
∂t
+ σ
ε
ρ = 0 (1.6.3)

with solution:

ρ(r, t)= ρ0(r)e−σt/ε

where ρ0(r) is the initial volume charge distribution. The solution shows that the vol-
ume charge disappears from inside and therefore it must accumulate on the surface of
the conductor. The “relaxation” time constant τrel = ε/σ is extremely short for good
conductors. For example, in copper,

τrel = εσ =
8.85× 10−12

5.7× 107
= 1.6× 10−19 sec

By contrast, τrel is of the order of days in a good dielectric. For good conductors, the
above argument is not quite correct because it is based on the steady-state version of
Ohm’s law, J = σE, which must be modified to take into account the transient dynamics
of the conduction charges.

It turns out that the relaxation time τrel is of the order of the collision time, which
is typically 10−14 sec. We discuss this further in Sec. 1.9. See also Refs. [113–116].

1.7 Energy Flux and Energy Conservation

Because energy can be converted into different forms, the corresponding conservation
equation (1.6.1) should have a non-zero term in the right-hand side corresponding to
the rate by which energy is being lost from the fields into other forms, such as heat.
Thus, we expect Eq. (1.6.1) to have the form:

∂ρen

∂t
+∇∇∇ · Jen = rate of energy loss (1.7.1)

The quantities ρen, Jen describing the energy density and energy flux of the fields are
defined as follows, where we introduce a change in notation:

ρen = w = 1

2
εE · E+ 1

2
µH ·H = energy per unit volume

Jen =PPP = E×H = energy flux or Poynting vector

(1.7.2)

The quantities w and PPP are measured in units of [joule/m3] and [watt/m2]. Using the
identity∇∇∇ · (E×H)= H ·∇∇∇× E− E ·∇∇∇×H, we find:
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∂w
∂t
+∇∇∇ ·PPP = ε∂E

∂t
· E+ µ∂H

∂t
·H+∇∇∇ · (E×H)

= ∂D

∂t
· E+ ∂B

∂t
·H+H ·∇∇∇× E− E ·∇∇∇×H

=
(
∂D

∂t
−∇∇∇×H

)
· E+

(
∂B

∂t
+∇∇∇× E

)
·H

Using Ampère’s and Faraday’s laws, the right-hand side becomes:

∂w
∂t
+∇∇∇ ·PPP = −J · E (energy conservation) (1.7.3)

As we discuss in Eq. (1.2.6), the quantity J·E represents the ohmic losses, that is, the
power per unit volume lost into heat from the fields. The integrated form of Eq. (1.7.3)
is as follows, relative to the volume and surface of Fig. 1.6.1:

−
∮
S
PPP · dS = d

dt

∫
V
wdV +

∫
V

J · EdV (1.7.4)

It states that the total power entering a volumeV through the surface S goes partially
into increasing the field energy stored inside V and partially is lost into heat.

Example 1.7.1: Energy concepts can be used to derive the usual circuit formulas for capaci-
tance, inductance, and resistance. Consider, for example, an ordinary plate capacitor with
plates of areaA separated by a distance l, and filled with a dielectric ε. The voltage between
the plates is related to the electric field between the plates via V = El.
The energy density of the electric field between the plates is w = εE2/2. Multiplying this
by the volume between the plates, A·l, will give the total energy stored in the capacitor.
Equating this to the circuit expression CV2/2, will yield the capacitance C:

W = 1

2
εE2 ·Al = 1

2
CV2 = 1

2
CE2l2 ⇒ C = ε A

l

Next, consider a solenoid with n turns wound around a cylindrical iron core of length
l, cross-sectional area A, and permeability µ. The current through the solenoid wire is
related to the magnetic field in the core through Ampère’s lawHl = nI. It follows that the
stored magnetic energy in the solenoid will be:

W = 1

2
µH2 ·Al = 1

2
LI2 = 1

2
L
H2l2

n2
⇒ L = n2µ

A
l

Finally, consider a resistor of length l, cross-sectional area A, and conductivity σ. The
voltage drop across the resistor is related to the electric field along it via V = El. The
current is assumed to be uniformly distributed over the cross-section A and will have
density J = σE.

The power dissipated into heat per unit volume is JE = σE2. Multiplying this by the
resistor volume Al and equating it to the circuit expression V2/R = RI2 will give:

(J · E)(Al)= σE2(Al)= V
2

R
= E

2l2

R
⇒ R = 1

σ
l
A
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The same circuit expressions can, of course, be derived more directly using Q = CV, the
magnetic flux Φ = LI, and V = RI. ��

Conservation laws may also be derived for the momentum carried by electromagnetic
fields [41,605]. It can be shown (see Problem 1.6) that the momentum per unit volume
carried by the fields is given by:

G = D× B = 1

c2
E×H = 1

c2
PPP (momentum density) (1.7.5)

where we set D = εE, B = µH, and c = 1/√εµ. The quantity Jmom = cG = PPP/c will
represent momentum flux, or pressure, if the fields are incident on a surface.

1.8 Harmonic Time Dependence

Maxwell’s equations simplify considerably in the case of harmonic time dependence.
Through the inverse Fourier transform, general solutions of Maxwell’s equation can be
built as linear combinations of single-frequency solutions:

E(r, t)=
∫∞
−∞

E(r,ω)ejωt
dω
2π

(1.8.1)

Thus, we assume that all fields have a time dependence ejωt:

E(r, t)= E(r)ejωt, H(r, t)= H(r)ejωt

where the phasor amplitudes E(r),H(r) are complex-valued. Replacing time derivatives
by ∂t → jω, we may rewrite Eq. (1.1.1) in the form:

∇∇∇× E = −jωB

∇∇∇×H = J+ jωD

∇∇∇ ·D = ρ
∇∇∇ · B = 0

(Maxwell’s equations) (1.8.2)

In this book, we will consider the solutions of Eqs. (1.8.2) in three different contexts:
(a) uniform plane waves propagating in dielectrics, conductors, and birefringent me-
dia, (b) guided waves propagating in hollow waveguides, transmission lines, and optical
fibers, and (c) propagating waves generated by antennas and apertures.

Next, we review some conventions regarding phasors and time averages. A real-
valued sinusoid has the complex phasor representation:

A(t)= |A| cos(ωt + θ) � A(t)= Aejωt (1.8.3)

where A = |A|ejθ. Thus, we haveA(t)= Re
[
A(t)

] = Re
[
Aejωt

]
. The time averages of

the quantitiesA(t) and A(t) over one period T = 2π/ω are zero.
The time average of the product of two harmonic quantitiesA(t)= Re

[
Aejωt

]
and

B(t)= Re
[
Bejωt

]
with phasors A,B is given by (see Problem 1.4):
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A(t)B(t) = 1

T

∫ T
0
A(t)B(t)dt = 1

2
Re
[
AB∗] (1.8.4)

In particular, the mean-square value is given by:

A2(t) = 1

T

∫ T
0
A2(t)dt = 1

2
Re
[
AA∗]= 1

2
|A|2 (1.8.5)

Some interesting time averages in electromagnetic wave problems are the time av-
erages of the energy density, the Poynting vector (energy flux), and the ohmic power
losses per unit volume. Using the definition (1.7.2) and the result (1.8.4), we have for
these time averages:

w = 1

2
Re
[

1

2
εE · E∗ + 1

2
µH ·H∗

]
(energy density)

PPP = 1

2
Re
[
E×H∗

]
(Poynting vector)

dPloss

dV
= 1

2
Re
[
Jtot · E∗

]
(ohmic losses)

(1.8.6)

where Jtot = J + jωD is the total current in the right-hand side of Ampère’s law and
accounts for both conducting and dielectric losses. The time-averaged version of Poynt-
ing’s theorem is discussed in Problem 1.5.

1.9 Simple Models of Dielectrics, Conductors, and Plasmas

A simple model for the dielectric properties of a material is obtained by considering the
motion of a bound electron in the presence of an applied electric field. As the electric
field tries to separate the electron from the positively charged nucleus, it creates an
electric dipole moment. Averaging this dipole moment over the volume of the material
gives rise to a macroscopic dipole moment per unit volume.

A simple model for the dynamics of the displacement x of the bound electron is as
follows (with ẋ = dx/dt):

mẍ = eE − kx−mαẋ (1.9.1)

where we assumed that the electric field is acting in the x-direction and that there is
a spring-like restoring force due to the binding of the electron to the nucleus, and a
friction-type force proportional to the velocity of the electron.

The spring constant k is related to the resonance frequency of the spring via the
relationshipω0 =

√
k/m, or, k =mω2

0. Therefore, we may rewrite Eq. (1.9.1) as

ẍ+αẋ+ω2
0x =

e
m
E (1.9.2)

The limitω0 = 0 corresponds to unbound electrons and describes the case of good
conductors. The frictional term αẋ arises from collisions that tend to slow down the
electron. The parameter α is a measure of the rate of collisions per unit time, and
therefore, τ = 1/α will represent the mean-time between collisions.
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In a typical conductor, τ is of the order of 10−14 seconds, for example, for copper,
τ = 2.4 × 10−14 sec and α = 4.1 × 1013 sec−1. The case of a tenuous, collisionless,
plasma can be obtained in the limit α = 0. Thus, the above simple model can describe
the following cases:

a. Dielectrics,ω0 
= 0,α 
= 0.
b. Conductors,ω0 = 0,α 
= 0.
c. Collisionless Plasmas,ω0 = 0,α = 0.

The basic idea of this model is that the applied electric field tends to separate positive
from negative charges, thus, creating an electric dipole moment. In this sense, the
model contains the basic features of other types of polarization in materials, such as
ionic/molecular polarization arising from the separation of positive and negative ions
by the applied field, or polar materials that have a permanent dipole moment.

Dielectrics

The applied electric field E(t) in Eq. (1.9.2) can have any time dependence. In particular,
if we assume it is sinusoidal with frequency ω, E(t)= Eejωt, then, Eq. (1.9.2) will have
the solution x(t)= xejωt, where the phasor x must satisfy:

−ω2x+ jωαx+ω2
0x =

e
m
E

which is obtained by replacing time derivatives by ∂t → jω. Its solution is:

x =
e
m
E

ω2
0 −ω2 + jωα (1.9.3)

The corresponding velocity of the electron will also be sinusoidal v(t)= vejωt, where
v = ẋ = jωx. Thus, we have:

v = jωx =
jω
e
m
E

ω2
0 −ω2 + jωα (1.9.4)

From Eqs. (1.9.3) and (1.9.4), we can find the polarization per unit volume P. We
assume that there areN such elementary dipoles per unit volume. The individual electric
dipole moment is p = ex. Therefore, the polarization per unit volume will be:

P = Np = Nex =
Ne2

m
E

ω2
0 −ω2 + jωα ≡ ε0χ(ω)E (1.9.5)

The electric flux density will be then:

D = ε0E + P = ε0
(
1+ χ(ω))E ≡ ε(ω)E

where the effective dielectric constant ε(ω) is:
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ε(ω)= ε0 +
Ne2

m
ω2

0 −ω2 + jωα (1.9.6)

This can be written in a more convenient form, as follows:

ε(ω)= ε0 +
ε0ω2

p

ω2
0 −ω2 + jωα (1.9.7)

whereω2
p is the so-called plasma frequency of the material defined by:

ω2
p =

Ne2

ε0m
(plasma frequency) (1.9.8)

For a dielectric, we may assume ω0 
= 0. Then, the low-frequency limit (ω = 0) of
Eq. (1.9.7), gives the nominal dielectric constant of the material:

ε(0)= ε0 + ε0
ω2
p

ω2
0
= ε0 + Ne2

mω2
0

(1.9.9)

The real and imaginary parts of ε(ω) characterize the refractive and absorptive
properties of the material. By convention, we define the imaginary part with the negative
sign (this is justified in Chap. 2):

ε(ω)= ε′(ω)−jε′′(ω) (1.9.10)

It follows from Eq. (1.9.7) that:

ε′(ω)= ε0 +
ε0ω2

p(ω
2
0 −ω2)

(ω2 −ω2
0)2+α2ω2

, ε′′(ω)= ε0ω2
pωα

(ω2 −ω2
0)2+α2ω2

(1.9.11)

The real part ε′(ω) defines the refractive index n(ω)= √ε′(ω)/εo. The imaginary
part ε′′(ω) defines the so-called loss tangent of the material tanθ(ω)= ε′′(ω)/ε′(ω)
and is related to the attenuation constant (or absorption coefficient) of an electromag-
netic wave propagating in such a material (see Sec. 2.6.)

Fig. 1.9.1 shows a plot of ε′(ω) and ε′′(ω). Around the resonant frequencyω0 the
ε′(ω) behaves in an anomalous manner (i.e., it becomes less than ε0,) and the material
exhibits strong absorption.

Real dielectric materials exhibit, of course, several such resonant frequencies cor-
responding to various vibrational modes and polarization types (e.g., electronic, ionic,
polar.) The dielectric constant becomes the sum of such terms:

ε(ω)= ε0 +
∑
i

ε0ω2
ip

ω2
i0 −ω2 + jωαi
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Fig. 1.9.1 Real and imaginary parts of dielectric constant.

Conductors

The conductivity properties of a material are described by Ohm’s law, Eq. (1.3.12). To
derive this law from our simple model, we use the relationship J = ρv, where the volume
density of the conduction charges is ρ = Ne. It follows from Eq. (1.9.4) that

J = ρv = Nev =
jω
Ne2

m
E

ω2
0 −ω2 + jωα ≡ σ(ω)E

and therefore, we identify the conductivity σ(ω):

σ(ω)=
jω
Ne2

m
ω2

0 −ω2 + jωα =
jωε0ω2

p

ω2
0 −ω2 + jωα (1.9.12)

We note that σ(ω)/jω is essentially the electric susceptibility considered above.
Indeed, we have J = Nev = Nejωx = jωP, and thus, P = J/jω = (σ(ω)/jω)E. It
follows that ε(ω)−ε0 = σ(ω)/jω, and

ε(ω)= ε0 +
ε0ω2

p

ω2
0 −ω2 + jωα = ε0 + σ(ω)jω

(1.9.13)

Since in a metal the conduction charges are unbound, we may take ω0 = 0 in
Eq. (1.9.12). After canceling a common factor of jω , we obtain:

σ(ω)= εoω2
p

α+ jω (1.9.14)

The nominal conductivity is obtained at the low-frequency limit,ω = 0:

σ = εoω
2
p

α
= Ne

2

mα
(nominal conductivity) (1.9.15)

Example 1.9.1: Copper has a mass density of 8.9 × 106 gr/m3 and atomic weight of 63.54
(grams per mole.) Using Avogadro’s number of 6 × 1023 atoms per mole, and assuming
one conduction electron per atom, we find for the volume density N:
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N =
6× 1023 atoms

mole

63.54
gr

mole

(
8.9× 106 gr

m3

)(
1

electron

atom

) = 8.4× 1028 electrons/m3

It follows that:

σ = Ne
2

mα
= (8.4× 1028)(1.6× 10−19)2

(9.1× 10−31)(4.1× 1013)
= 5.8× 107 Siemens/m

where we used e = 1.6× 10−19, m = 9.1× 10−31, α = 4.1× 1013. The plasma frequency
of copper can be calculated by

fp = ωp
2π

= 1

2π

√
Ne2

mε0
= 2.6× 1015 Hz

which lies in the ultraviolet range. For frequencies such that ω � α, the conductivity
(1.9.14) may be considered to be independent of frequency and equal to the dc value of
Eq. (1.9.15). This frequency range covers most present-day RF applications. For example,
assumingω ≤ 0.1α, we find f ≤ 0.1α/2π = 653 GHz. ��

So far, we assumed sinusoidal time dependence and worked with the steady-state
responses. Next, we discuss the transient dynamical response of a conductor subject to
an arbitrary time-varying electric field E(t).

Ohm’s law can be expressed either in the frequency-domain or in the time-domain
with the help the Fourier transform pair of equations:

J(ω)= σ(ω)E(ω) � J(t)=
∫ t
−∞
σ(t − t′)E(t′)dt′ (1.9.16)

where σ(t) is the causal inverse Fourier transform of σ(ω). For the simple model of
Eq. (1.9.14), we have:

σ(t)= ε0ω2
pe−αtu(t) (1.9.17)

where u(t) is the unit-step function. As an example, suppose the electric field E(t) is a
constant electric field that is suddenly turned on at t = 0, that is, E(t)= Eu(t). Then,
the time response of the current will be:

J(t)=
∫ t

0
ε0ω2

pe−α(t−t
′)Edt′ = ε0ω2

p

α
E
(
1− e−αt) = σE(1− e−αt)

where σ = ε0ω2
p/α is the nominal conductivity of the material.

Thus, the current starts out at zero and builds up to the steady-state value of J = σE,
which is the conventional form of Ohm’s law. The rise time constant is τ = 1/α. We
saw above that τ is extremely small—of the order of 10−14 sec—for good conductors.

The building up of the current can also be understood in terms of the equation of
motion of the conducting charges. Writing Eq. (1.9.2) in terms of the velocity of the
charge, we have:
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v̇(t)+αv(t)= e
m
E(t)

Assuming E(t)= Eu(t), we obtain the convolutional solution:

v(t)=
∫ t

0
e−α(t−t

′) e
m
E(t′)dt′ = e

mα
E
(
1− e−αt)

For large t, the velocity reaches the steady-state value v∞ = (e/mα)E, which reflects
the balance between the accelerating electric field force and the retarding frictional force,
that is,mαv∞ = eE. The quantity e/mα is called the mobility of the conduction charges.
The steady-state current density results in the conventional Ohm’s law:

J = Nev∞ = Ne
2

mα
E = σE

Charge Relaxation in Conductors

Next, we discuss the issue of charge relaxation in good conductors [113–116]. Writing
(1.9.16) three-dimensionally and using (1.9.17), Ohm’s law reads in the time domain:

J(r, t)=ω2
p

∫ t
−∞
e−α(t−t

′)ε0 E(r, t′)dt′ (1.9.18)

Taking the divergence of both sides and using charge conservation, ∇∇∇ · J + ρ̇ = 0,
and Gauss’s law, ε0∇∇∇ · E = ρ, we obtain the following integro-differential equation for
the charge density ρ(r, t):

−ρ̇(r, t)=∇∇∇ · J(r, t)=ω2
p

∫ t
−∞
e−α(t−t

′)ε0∇∇∇ · E(r, t′)dt′ =ω2
p

∫ t
−∞
e−α(t−t

′)ρ(r, t′)dt′

Differentiating both sides with respect to t, we find that ρ satisfies the second-order
differential equation:

ρ̈(r, t)+αρ̇(r, t)+ω2
pρ(r, t)= 0 (1.9.19)

whose solution is easily verified to be a linear combination of:

e−αt/2 cos(ωrelt) , e−αt/2 sin(ωrelt) , where ωrel =
√
ω2
p − α

2

4

Thus, the charge density is an exponentially decaying sinusoid with a relaxation time
constant that is twice the collision time τ = 1/α:

τrel = 2

α
= 2τ (relaxation time constant) (1.9.20)

Typically, ωp � α, so that ωrel is practically equal to ωp. For example, using the
numerical data of Example 1.9.1, we find for copper τrel = 2τ = 5×10−14 sec. We
calculate also: frel =ωrel/2π = 2.6×1015 Hz. In the limit α→∞, or τ→ 0, Eq. (1.9.19)
reduces to the naive relaxation equation (1.6.3) (see Problem 1.8).
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In addition to charge relaxation, the total relaxation time depends on the time it takes
for the electric and magnetic fields to be extinguished from the inside of the conductor,
as well as the time it takes for the accumulated surface charge densities to settle, the
motion of the surface charges being damped because of ohmic losses. Both of these
times depend on the geometry and size of the conductor [115].

Power Losses

To describe a material with both dielectric and conductivity properties, we may take the
susceptibility to be the sum of two terms, one describing bound polarized charges and
the other unbound conduction charges. Assuming different parameters {ω0,ωp,α}
for each term, we obtain the total dielectric constant:

ε(ω)= ε0 +
ε0ω2

dp

ω2
d0 −ω2 + jωαd +

ε0ω2
cp

jω(αc + jω) (1.9.21)

Denoting the first two terms by εd(ω) and the third by σc(ω)/jω, we obtain the
total effective dielectric constant of such a material:

ε(ω)= εd(ω)+σc(ω)jω
(effective dielectric constant) (1.9.22)

In the low-frequency limit, ω = 0, the quantities εd(0) and σc(0) represent the
nominal dielectric constant and conductivity of the material. We note also that we can
write Eq. (1.9.22) in the form:

jωε(ω)= σc(ω)+jωεd(ω) (1.9.23)

These two terms characterize the relative importance of the conduction current and
the displacement (polarization) current. The right-hand side in Ampère’s law gives the
total effective current:

Jtot = J + ∂D∂t = J + jωD = σc(ω)E + jωεd(ω)E = jωε(ω)E

where the term Jdisp = ∂D/∂t = jωεd(ω)E represents the displacement current. The
relative strength between conduction and displacement currents is the ratio:

∣∣∣∣∣Jcond

Jdisp

∣∣∣∣∣ = |σc(ω)E|
|jωεd(ω)E| =

|σc(ω)|
|ωεd(ω)| (1.9.24)

This ratio is frequency-dependent and establishes a dividing line between a good
conductor and a good dielectric. If the ratio is much larger than unity (typically, greater
than 10), the material behaves as a good conductor at that frequency; if the ratio is much
smaller than one (typically, less than 0.1), then the material behaves as a good dielectric.

Example 1.9.2: This ratio can take a very wide range of values. For example, assuming a fre-
quency of 1 GHz and using (for illustration purposes) the dc-values of the dielectric con-
stants and conductivities, we find:
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∣∣∣∣∣Jcond

Jdisp

∣∣∣∣∣ = σ
ωε

=



109 for copper with σ = 5.8×107 S/m and ε = ε0

1 for seawater with σ = 4 S/m and ε = 72ε0

10−9 for a glass with σ = 10−10 S/m and ε = 2ε0

Thus, the ratio varies over 18 orders of magnitude! If the frequency is reduced by a factor
of ten to 100 MHz, then all the ratios get multiplied by 10. In this case, seawater acts like
a good conductor. ��

The time-averaged ohmic power losses per unit volume within a lossy material are
given by Eq. (1.8.6). Writing ε(ω)= ε′(ω)−jε′′(ω), we have:

Jtot = jωε(ω)E = jωε′(ω)E+ωε′′(ω)E

Denoting
∣∣E
∣∣2 = E · E∗, it follows that:

dPloss

dV
= 1

2
Re
[
Jtot · E∗

] = 1

2
ωε′′(ω)

∣∣E
∣∣2

(ohmic losses) (1.9.25)

Writing εd(ω)= ε′d(ω)−jε′′d (ω) and assuming that the conductivity σc(ω) is real-
valued for the frequency range of interest (as was discussed in Example 1.9.1), we find
by equating real and imaginary parts of Eq. (1.9.22):

ε′(ω)= ε′d(ω) , ε′′(ω)= ε′′d (ω)+
σc(ω)
ω

(1.9.26)

Then, the power losses can be written in a form that separates the losses due to
conduction and those due to the polarization properties of the dielectric:

dPloss

dV
= 1

2

(
σc(ω)+ωε′′d (ω)

)∣∣E
∣∣2

(ohmic losses) (1.9.27)

A convenient way to quantify the losses is by means of the loss tangent defined in
terms of the real and imaginary parts of the effective dielectric constant:

tanθ = ε
′′(ω)
ε′(ω)

(loss tangent) (1.9.28)

where θ is the loss angle. Eq. (1.9.28) may be written as the sum of two loss tangents,
one due to conduction and one due to polarization. Using Eq. (1.9.26), we have:

tanθ = σc(ω)+ωε
′′
d (ω)

ωε′d(ω)
= σc(ω)
ωε′d(ω)

+ ε
′′
d (ω)
ε′d(ω)

= tanθc + tanθd (1.9.29)

The ohmic loss per unit volume can be expressed in terms of the loss tangent as:

dPloss

dV
= 1

2
ωε′d(ω)tanθ

∣∣E
∣∣2

(ohmic losses) (1.9.30)
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Plasmas

To describe a collisionless plasma, such as the ionosphere, the simple model considered
in the previous sections can be specialized by choosing ω0 and α = 0. Thus, the
conductivity given by Eq. (1.9.14) becomes pure imaginary:

σ(ω)= ε0ω2
p

jω

The corresponding effective dielectric constant of Eq. (1.9.13) becomes purely real:

ε(ω)= ε0 + σ(ω)jω
= ε0

(
1− ω

2
p

ω2

)
(1.9.31)

The plasma frequency can be calculated from ω2
p = Ne2/mε0. In the ionosphere

the electron density is typically N = 1012, which gives fp = 9 MHz.
We will see in Sec. 2.6 that the propagation wavenumber of an electromagnetic wave

propagating in a dielectric/conducting medium is given in terms of the effective dielec-
tric constant by:

k =ω
√
µε(ω)

It follows that for a plasma:

k =ω
√
µ0ε0

(
1−ω2

p/ω2
) = 1

c

√
ω2 −ω2

p

where we used c = 1/√µ0ε0.
If ω > ωp, the electromagnetic wave propagates without attenuation within the

plasma. But if ω < ωp, the wavenumber k becomes imaginary and the wave gets
attenuated. At such frequencies, a wave incident (normally) on the ionosphere from the
ground cannot penetrate and gets reflected back.

1.10 Problems

1.1 Prove the vector algebra identities:

A× (B× C)= B(A · C)−C(A · B) (BAC-CAB identity)
A · (B× C)= B · (C× A)= C · (A× B)
|A× B|2 + |A · B|2 = |A|2|B|2
A = n̂× A× n̂+ (n̂ · A)n̂ (n̂ is any unit vector)

In the last identity, does it a make a difference whether n̂×A× n̂ is taken to mean n̂×(A× n̂)
or (n̂× A)×n̂?

1.2 Prove the vector analysis identities:
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∇∇∇× (∇∇∇φ)= 0
∇∇∇ · (φ∇∇∇ψ)= φ∇2ψ+∇∇∇φ ·∇∇∇ψ (Green’s first identity)
∇∇∇ · (φ∇∇∇ψ−ψ∇∇∇φ)= φ∇2ψ−ψ∇2φ (Green’s second identity)
∇∇∇ · (φA)= (∇∇∇φ)·A+φ∇∇∇ · A
∇∇∇× (φA)= (∇∇∇φ)×A+φ∇∇∇× A
∇∇∇ · (∇∇∇× A)= 0
∇∇∇ · A× B = B · (∇∇∇× A)−A · (∇∇∇× B)
∇∇∇× (∇∇∇× A)=∇∇∇(∇∇∇ · A)−∇2A

1.3 Consider the infinitesimal volume element ∆x∆y∆z shown below, such that its upper half
lies in medium ε1 and its lower half in medium ε2. The axes are oriented such that n̂ = ẑ.
Applying the integrated form of Ampère’s law to the infinitesimal face abcd, show that

H2y −H1y = Jx∆z+ ∂Dx∂t ∆z

In the limit ∆z → 0, the second term in the right-hand side may be assumed to go to zero,
whereas the first term will be non-zero and may be set equal to a surface current density,
that is, Jsx ≡ lim∆z→0(Jx∆z). Show that this leads to the boundary condition H1y −H2y =
−Jsx. Similarly, show that H1x −H2x = Jsy, and that these two boundary conditions can be
combined vectorially into Eq. (1.4.4).

Next, apply the integrated form of Gauss’s law to the same volume element and show the
boundary condition: D1z −D2z = ρs = lim∆z→0(ρ∆z).

1.4 Show that the time average of the product of two harmonic quantities A(t)= Re
[
Aejωt

]
and B(t)= Re

[
Bejωt

]
with phasors A,B is given by:

A(t)B(t) = 1

T

∫ T
0
A(t)B(t)dt = 1

2
Re
[
AB∗]

where T = 2π/ω is one period. Then, show that the time-averaged values of the cross
and dot products of two time-harmonic vector quantities AAA(t)= Re

[
Aejωt

]
and BBB(t)=

Re
[
Bejωt

]
can be expressed in terms of the corresponding phasors as follows:

AAA(t)×BBB(t) = 1

2
Re
[
A× B∗

]
, AAA(t)·BBB(t) = 1

2
Re
[
A · B∗

]

1.5 Assuming that B = µH, show that Maxwell’s equations (1.8.2) imply the following complex-
valued version of Poynting’s theorem:

∇∇∇× (E×H∗)= −jωµH ·H∗ − E · J∗tot, where Jtot = J+ jωD
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Extracting the real-parts of both sides and integrating over a volume V bounded by a closed
surface S, show the time-averaged form of energy conservation:

−
∮
S

1

2
Re[E×H∗]·dS =

∫
V

1

2
Re[E · J∗tot]dV

which states that the net time-averaged power flowing into a volume is dissipated into heat.
For a lossless dielectric, show that the above integrals are zero and provide an interpretation.

1.6 Assuming that D = εE and B = µH, show that Maxwell’s equations (1.1.1) imply the following
relationships:

ρEx +
(
D× ∂B

∂t
)
x =∇∇∇ ·

(
εExE− x̂

1

2
εE2

)

(J× B)x+
(∂D

∂t
× B

)
x =∇∇∇ ·

(
µHxH− x̂

1

2
µH2

)
where the subscript xmeans the x-component. From these, derive the following relationship
that represents momentum conservation:

fx + ∂Gx∂t =∇∇∇ · Tx (1.10.1)

where fx, Gx are the x-components of the vectors f = ρE + J × B and G = D × B, and Tx is
defined to be the vector (equal to Maxwell’s stress tensor acting on the unit vector x̂):

Tx = εExE+ µHxH− x̂
1

2
(εE2 + µH2)

Write similar equations of the y, z components. The quantity Gx is interpreted as the field
momentum (in the x-direction) per unit volume, that is, the momentum density.

1.7 Show that the plasma frequency for electrons can be expressed in the simple numerical form:
fp = 9

√
N, where fp is in Hz and N is the electron density in electrons/m3. What is fp for

the ionosphere if N = 1012? [Ans. 9 MHz.]

1.8 Show that the relaxation equation (1.9.19) can be written in the following form in terms of
the dc-conductivity σ defined by Eq. (1.9.15):

1

α
ρ̈(r, t)+ρ̇(r, t)+ σ

ε0
ρ(r, t)= 0

Then, show that it reduces to the naive relaxation equation (1.6.3) in the limit τ = 1/α→ 0.
Show also that in this limit, Ohm’s law (1.9.18) takes the instantaneous form J = σE, from
which the naive relaxation constant τrel = ε0/σ was derived.

1.9 Conductors and plasmas exhibit anisotropic and birefringent behavior when they are in the
presence of an external magnetic field. The equation of motion of conduction electrons in
a constant external magnetic field is mv̇ = e(E + v × B)−mαv, with the collisional term
included. Assume the magnetic field is in the z-direction, B = ẑB, and that E = x̂Ex + ŷEy
and v = x̂vx + ŷvy.

a. Show that in component form, the above equations of motion read:

v̇x = e
m
Ex +ωBvy −αvx

v̇y = e
m
Ey −ωBvx −αvy

where ωB = eBm = (cyclotron frequency)

What is the cyclotron frequency in Hz for electrons in the Earth’s magnetic field B =
0.4 gauss = 0.4×10−4 Tesla? [Ans. 1.12 MHz.]
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b. To solve this system, work with the combinations vx ± jvy. Assuming harmonic time-
dependence, show that the solution is:

vx ± jvy =
e
m
(Ex ± jEy)

α+ j(ω±ωB)
c. Define the induced currents as J = Nev. Show that:

Jx ± jJy = σ±(ω)(Ex ± jEy), where σ±(ω)= ασ0

α+ j(ω±ωB)

where σ0 = Ne
2

mα
is the dc value of the conductivity.

d. Show that the t-domain version of part (c) is:

Jx(t)±jJy(t)=
∫ t

0
σ±(t − t′)

(
Ex(t′)±jEy(t′)

)
dt′

where σ±(t)= ασ0e−αte∓jωBtu(t) is the inverse Fourier transform of σ±(ω) and
u(t) is the unit-step function.

e. Rewrite part (d) in component form:

Jx(t) =
∫ t

0

[
σxx(t − t′)Ex(t′)+σxy(t − t′)Ey(t′)

]
dt′

Jy(t) =
∫ t

0

[
σyx(t − t′)Ex(t′)+σyy(t − t′)Ey(t′)

]
dt′

and identify the quantities σxx(t),σxy(t),σyx(t),σyy(t).

f. Evaluate part (e) in the special case Ex(t)= Exu(t) and Ey(t)= Eyu(t), where Ex, Ey
are constants, and show that after a long time the steady-state version of part (e) will
be:

Jx = σ0
Ex + bEy

1+ b2

Jy = σ0
Ey − bEx

1+ b2

where b =ωB/α. If the conductor has finite extent in the y-direction, as shown above,
then no steady current can flow in this direction, Jy = 0. This implies that if an electric
field is applied in the x-direction, an electric field will develop across the y-ends of the
conductor, Ey = bEx. The conduction charges will tend to accumulate either on the
right or the left side of the conductor, depending on the sign of b, which depends on
the sign of the electric charge e. This is the Hall effect and is used to determine the
sign of the conduction charges in semiconductors, e.g., positive holes for p-type, or
negative electrons for n-type.

What is the numerical value of b for electrons in copper if B is 1 gauss? [Ans. 43.]

g. For a collisionless plasma (α = 0), show that its dielectric behavior is determined from
Dx ± jDy = ε±(ω)(Ex ± jEy), where

ε±(ω)= ε0

(
1− ω2

p

ω(ω±ωB)

)

whereωp is the plasma frequency. Thus, the plasma exhibits birefringence.



2
Uniform Plane Waves

2.1 Uniform Plane Waves in Lossless Media

The simplest electromagnetic waves are uniform plane waves propagating along some
fixed direction, say the z-direction, in a lossless medium {ε, µ}.

The assumption of uniformity means that the fields have no dependence on the
transverse coordinates x, y and are functions only of z, t. Thus, we look for solutions
of Maxwell’s equations of the form: E(x, y, z, t)= E(z, t) and H(x, y, z, t)= H(z, t).

Because there is no dependence on x, y, we set the partial derivatives† ∂x = 0 and
∂y = 0. Then, the gradient, divergence, and curl operations take the simplified forms:

∇∇∇ = ẑ
∂
∂z
, ∇∇∇ · E = ∂Ez

∂z
, ∇∇∇× E = ẑ× ∂E

∂z
= −x̂

∂Ey
∂z

+ ŷ
∂Ex
∂z

Assuming that D = εE and B = µH , the source-free Maxwell’s equations become:

∇∇∇× E = −µ ∂H

∂t

∇∇∇×H = ε ∂E

∂t

∇∇∇ · E = 0

∇∇∇ ·H = 0

⇒

ẑ× ∂E

∂z
= −µ ∂H

∂t

ẑ× ∂H

∂z
= ε ∂E

∂t
∂Ez
∂z

= 0

∂Hz
∂z

= 0

(2.1.1)

An immediate consequence of uniformity is that E and H do not have components
along the z-direction, that is, Ez = Hz = 0. Taking the dot-product of Ampère’s law
with the unit vector ẑ, and using the identity ẑ · (ẑ× A)= 0, we have:

ẑ ·
(

ẑ× ∂H

∂z

)
= ε ẑ · ∂E

∂t
= 0 ⇒ ∂Ez

∂t
= 0

†The shorthand notation ∂x stands for
∂
∂x

.
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Because also ∂zEz = 0, it follows that Ez must be a constant, independent of z, t.
Excluding static solutions, we may take this constant to be zero. Similarly, we have
Hz = 0. Thus, the fields have components only along the x, y directions:

E(z, t) = x̂Ex(z, t)+ŷEy(z, t)

H(z, t) = x̂Hx(z, t)+ŷHy(z, t)
(transverse fields) (2.1.2)

These fields must satisfy Faraday’s and Ampère’s laws in Eqs. (2.1.1). We rewrite
these equations in a more convenient form by replacing ε and µ by:

ε = 1

ηc
, µ = η

c
, where c = 1√µε , η =

√
µ
ε

(2.1.3)

Thus, c, η are the speed of light and characteristic impedance of the propagation
medium. Then, the first two of Eqs. (2.1.1) may be written in the equivalent forms:

ẑ× ∂E

∂z
= −1

c
η
∂H

∂t

η ẑ× ∂H

∂z
= 1

c
∂E

∂t

(2.1.4)

The first may be solved for ∂zE by crossing it with ẑ. Using the BAC-CAB rule, and
noting that E has no z-component, we have:

(
ẑ× ∂E

∂z

)
× ẑ = ∂E

∂z
(ẑ · ẑ)−ẑ

(
ẑ · ∂E

∂z

)
= ∂E

∂z

where we used ẑ · ∂zE = ∂zEz = 0 and ẑ · ẑ = 1. It follows that Eqs. (2.1.4) may be
replaced by the equivalent system:

∂E

∂z
= −1

c
∂
∂t
(ηH× ẑ)

∂
∂z
(ηH× ẑ)= −1

c
∂E

∂t

(2.1.5)

Now all the terms have the same dimension. Eqs. (2.1.5) imply that both E and H
satisfy the one-dimensional wave equation. Indeed, differentiating the first equation
with respect to z and using the second, we have:

∂2E

∂z2
= −1

c
∂
∂t
∂
∂z
(ηH× ẑ)= 1

c2

∂2E

∂t2
or,

(
∂2

∂z2
− 1

c2

∂2

∂t2

)
E(z, t)= 0 (wave equation) (2.1.6)

and similarly for H. Rather than solving the wave equation, we prefer to work directly
with the coupled system (2.1.5). The system can be decoupled by introducing the so-
called forward and backward electric fields defined as the linear combinations:
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E+ = 1

2
(E+ ηH× ẑ)

E− = 1

2
(E− ηH× ẑ)

(forward and backward fields) (2.1.7)

These can be inverted to express E,H in terms of E+,E−. Adding and subtracting
them, and using the BAC-CAB rule and the orthogonality conditions ẑ·E± = 0, we obtain:

E = E+ + E−

H = 1

η
ẑ× [E+ − E−]

(2.1.8)

Then, the system of Eqs. (2.1.5) becomes equivalent to the following decoupled sys-
tem expressed in terms of the forward and backward fields E±:

∂E+
∂z

= −1

c
∂E+
∂t

∂E−
∂z

= +1

c
∂E−
∂t

(2.1.9)

Using Eqs. (2.1.5), we verify:

∂
∂z
(E± ηH× ẑ)= −1

c
∂
∂t
(ηH× ẑ)∓1

c
∂E

∂t
= ∓1

c
∂
∂t
(E± ηH× ẑ)

Eqs. (2.1.9) can be solved by noting that the forward field E+(z, t) must depend on
z, t only through the combination z − ct. Indeed, if we set E+(z, t)= F(z − ct), where
F(ζ) is an arbitrary function of its argument ζ = z− ct, then we will have:

∂E+
∂z

= ∂
∂z

F(z− ct)= ∂ζ
∂z
∂F(ζ)
∂ζ

= ∂F(ζ)
∂ζ

∂E+
∂t

= ∂
∂t

F(z− ct)= ∂ζ
∂t
∂F(ζ)
∂ζ

= −c ∂F(ζ)
∂ζ

⇒ ∂E+
∂z

= −1

c
∂E+
∂t

Vectorially, F must have only x, y components, F = x̂Fx + ŷFy, that is, it must be
transverse to the propagation direction, ẑ · F = 0.

Similarly, we find from the second of Eqs. (2.1.9) that E−(z, t) must depend on z, t
through the combination z+ct, so that E−(z, t)= G(z+ct), where G(ξ) is an arbitrary
(transverse) function of ξ = z + ct. In conclusion, the most general solutions for the
forward and backward fields of Eqs. (2.1.9) are:

E+(z, t) = F(z− ct)
E−(z, t) = G(z+ ct)

(2.1.10)

with arbitrary functions F and G, such that ẑ · F = ẑ ·G = 0.
Inserting these into the inverse formula (2.1.8), we obtain the most general solution

of (2.1.5), expressed as a linear combination of forward and backward waves:
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E(z, t) = F(z− ct)+G(z+ ct)

H(z, t) = 1

η
ẑ× [F(z− ct)−G(z+ ct)] (2.1.11)

The term E+(z, t)= F(z − ct) represents a wave propagating with speed c in the
positive z-direction, while E−(z, t)= G(z+ct) represents a wave traveling in the negative
z-direction.

To see this, consider the forward field at a later time t+∆t. During the time interval
∆t, the wave moves in the positive z-direction by a distance ∆z = c∆t. Indeed, we have:

E+(z, t +∆t) = F
(
z− c(t +∆t)) = F(z− c∆t − ct)

E+(z−∆z, t) = F
(
(z−∆z)−ct) = F(z− c∆t − ct)

⇒ E+(z, t+∆t)= E+(z−∆z, t)

This states that the forward field at time t+∆t is the same as the field at time t, but
translated to the right along the z-axis by a distance ∆z = c∆t.

Similarly, we find that E−(z, t+∆t)= E−(z+∆z, t), which states that the backward
field at time t+∆t is the same as the field at time t, translated to the left by a distance
∆z. Fig. 2.1.1 depicts these two cases.

Fig. 2.1.1 Forward and backward waves.

The two special cases corresponding to forward waves only (G = 0), or to backward
ones (F = 0), are of particular interest. For the forward case, we have:

E(z, t) = F(z− ct)

H(z, t) = 1

η
ẑ× F(z− ct)= 1

η
ẑ× E(z, t)

(2.1.12)

This solution has the following properties: (a) The field vectors E and H are perpen-
dicular to each other, E · H = 0, while they are transverse to the z-direction, (b) The
three vectors {E,H, ẑ} form a right-handed vector system as shown in the figure, in the
sense that E×H points in the direction of ẑ, (c) The ratio of E to H× ẑ is independent
of z, t and equals the characteristic impedance η of the propagation medium; indeed:
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H(z, t)= 1

η
ẑ× E(z, t) ⇒ E(z, t)= ηH(z, t)×ẑ (2.1.13)

The electromagnetic energy of such forward wave flows in the positive z-direction.
With the help of the BAC-CAB rule, we find for the Poynting vector:

PPP = E×H = ẑ
1

η
|F |2 = c ẑ ε|F |2 (2.1.14)

where we denoted |F |2 = F·F and replaced 1/η = cε. The electric and magnetic energy
densities (per unit volume) turn out to be equal to each other. Because ẑ and F are
mutually orthogonal, we have for the cross product |ẑ× F | = |ẑ||F | = |F |. Then,

we = 1

2
ε |E |2 = 1

2
ε|F |2

wm = 1

2
µ |H |2 = 1

2
µ

1

η2
|ẑ× F |2 = 1

2
ε |F |2 = we

where we replaced µ/η2 = ε. Thus, the total energy density of the forward wave will be:

w = we +wm = 2we = ε|F |2 (2.1.15)

In accordance with the flux/density relationship of Eq. (1.5.2), the transport velocity
of the electromagnetic energy is found to be:

v = PPP
w
= c ẑ ε|F |2

ε|F |2 = c ẑ

As expected, the energy of the forward-moving wave is being transported at a speed
c along the positive z-direction. Similar results can be derived for the backward-moving
solution that has F = 0 and G �= 0. The fields are now:

E(z, t) = G(z+ ct)

H(z, t) = − 1

η
ẑ×G(z+ ct)= − 1

η
ẑ× E(z, t)

(2.1.16)

The Poynting vector becomes PPP = E × H = −c ẑ ε|G |2 and points in the negative
z-direction, that is, the propagation direction. The energy transport velocity is v = −c ẑ.
Now, the vectors {E,H,−ẑ} form a right-handed system, as shown. The ratio of E to H
is still equal to η, provided we replace ẑ with −ẑ:

H(z, t)= 1

η
(−ẑ)×E(z, t) ⇒ E(z, t)= ηH(z, t)×(−ẑ)

In the general case of Eq. (2.1.11), the E/H ratio does not remain constant. The
Poynting vector and energy density consist of a part due to the forward wave and a part
due to the backward one:

PPP = E×H = c ẑ
(
ε|F |2 − ε|G |2)

w = 1

2
ε|E |2 + 1

2
µ|H |2 = ε|F |2 + ε|G |2

(2.1.17)
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Example 2.1.1: A source located at z = 0 generates an electric field E(0, t)= x̂E0 u(t), where
u(t) is the unit-step function, and E0, a constant. The field is launched towards the positive
z-direction. Determine expressions for E(z, t) and H(z, t).

Solution: For a forward-moving wave, we have E(z, t)= F(z − ct)= F
(
0 − c(t − z/c)), which

implies that E(z, t) is completely determined by E(z,0), or alternatively, by E(0, t):

E(z, t)= E(z− ct,0)= E(0, t − z/c)

Using this property, we find for the electric and magnetic fields:

E(z, t) = E(0, t − z/c)= x̂E0 u(t − z/c)

H(z, t) = 1

η
ẑ× E(z, t)= ŷ

E0

η
u(t − z/c)

Because of the unit-step, the non-zero values of the fields are restricted to t− z/c ≥ 0, or,
z ≤ ct, that is, at time t the wavefront has propagated only up to position z = ct. The
figure shows the expanding wavefronts at time t and t +∆t. �	

Example 2.1.2: Consider the following three examples of electric fields specified at t = 0, and
describing forward or backward fields as indicated:

E(z,0)= x̂E0 cos(kz) (forward-moving)

E(z,0)= ŷE0 cos(kz) (backward-moving)

E(z,0)= x̂E1 cos(k1z)+ŷE2 cos(k2z) (forward-moving)

where k, k1, k2 are given wavenumbers (measured in units of radians/m.) Determine the
corresponding fields E(z, t) and H(z, t).

Solution: For the forward-moving cases, we replace z by z − ct, and for the backward-moving
case, by z+ ct. We find in the three cases:

E(z, t) = x̂E0 cos
(
k(z− ct)) = x̂E0 cos(ωt − kz)

E(z, t) = ŷE0 cos
(
k(z+ ct)) = ŷE0 cos(ωt + kz)

E(z, t) = x̂E1 cos(ω1t − k1z)+ŷE2 cos(ω2t − k2z)

whereω = kc, andω1 = k1c,ω2 = k2c. The corresponding magnetic fields are:

H(z, t) = 1

η
ẑ× E(z, t)= ŷ

E0

η
cos(ωt − kz) (forward)

H(z, t) = − 1

η
ẑ× E(z, t)= x̂

E0

η
cos(ωt + kz) (backward)

H(z, t) = 1

η
ẑ× E(z, t)= ŷ

E1

η
cos(ω1t − k1z)−x̂

E2

η
cos(ω2t − k2z)

The first two cases are single-frequency waves, and are discussed in more detail in the
next section. The third case is a linear superposition of two waves with two different
frequencies and polarizations. �	
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2.2 Monochromatic Waves

Uniform, single-frequency, plane waves propagating in a lossless medium are obtained
as a special case of the previous section by assuming the harmonic time-dependence:

E(x, y, z, t) = E(z)ejωt

H(x, y, z, t) = H(z)ejωt
(2.2.1)

where E(z) and H(z) are transverse with respect to the z-direction.
Maxwell’s equations (2.1.5), or those of the decoupled system (2.1.9), may be solved

very easily by replacing time derivatives by ∂t → jω. Then, Eqs. (2.1.9) become the
first-order differential equations (see also Problem 2.3):

∂E±(z)
∂z

= ∓jkE±(z) , where k = ω
c
=ω√µε (2.2.2)

with solutions:
E+(z) = E0+e−jkz (forward)

E−(z) = E0−ejkz (backward)
(2.2.3)

where E0± are arbitrary (complex-valued) constant vectors such that ẑ · E0± = 0. The
corresponding magnetic fields are:

H+(z) = 1

η
ẑ× E+(z)= 1

η
(ẑ× E0+)e−jkz = H0+e−jkz

H−(z) = − 1

η
ẑ× E−(z)= − 1

η
(ẑ× E0−)ejkz = H0−ejkz

(2.2.4)

where we defined the constant amplitudes of the magnetic fields:

H0± = ± 1

η
ẑ× E0± (2.2.5)

Inserting (2.2.3) into (2.1.8), we obtain the general solution for single-frequency
waves, expressed as a superposition of forward and backward components:

E(z) = E0+e−jkz + E0−ejkz

H(z) = 1

η
ẑ × [E0+e−jkz − E0−ejkz

] (forward+backward waves) (2.2.6)

Setting E0± = x̂A±+ŷB±, and noting that ẑ×E0± = ẑ×(x̂A±+ŷB±)= ŷA±−x̂B±,
we may rewrite (2.2.6) in terms of its cartesian components:

Ex(z)= A+e−jkz +A−ejkz , Ey(z)= B+e−jkz + B−ejkz

Hy(z)= 1

η
[
A+e−jkz −A−ejkz

]
, Hx(z)= − 1

η
[
B+e−jkz − B−ejkz

] (2.2.7)

Wavefronts are defined, in general, to be the surfaces of constant phase. A forward
moving wave E(z)= E0e−jkz corresponds to the time-varying field:
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E(z, t)= E0ejωt−jkz = E0e−jϕ(z,t) , where ϕ(z, t)= kz−ωt

A surface of constant phase is obtained by setting ϕ(z, t)= const. Denoting this
constant by φ0 = kz0 and using the property c =ω/k, we obtain the condition:

ϕ(z, t)=ϕ0 ⇒ kz−ωt = kz0 ⇒ z = ct + z0

Thus, the wavefront is the xy-plane intersecting the z-axis at the point z = ct + z0,
moving forward with velocity c. This justifies the term “plane wave.”

A backward-moving wave will have planar wavefronts parametrized by z = −ct+z0,
that is, moving backwards. A wave that is a linear combination of forward and backward
components, may be thought of as having two planar wavefronts, one moving forward,
and the other backward.

The relationships (2.2.5) imply that the vectors {E0+,H0+, ẑ} and {E0−,H0−,−ẑ} will
form right-handed orthogonal systems. The magnetic field H0± is perpendicular to the
electric field E0± and the cross-product E0± ×H0± points towards the direction of prop-
agation, that is, ±ẑ. Fig. 2.2.1 depicts the case of a forward propagating wave.

Fig. 2.2.1 Forward uniform plane wave.

The wavelength λ is the distance by which the phase of the sinusoidal wave changes
by 2π radians. Since the propagation factor e−jkz accumulates a phase of k radians per
meter, we have by definition that kλ = 2π. The wavelength λ can be expressed via the
frequency of the wave in Hertz, f =ω/2π, as follows:

λ = 2π
k
= 2πc
ω

= c
f

(2.2.8)

If the propagation medium is free space, we use the vacuum values of the parame-
ters {ε, µ, c, η}, that is, {ε0, µ0, c0, η0}. The free-space wavelength and corresponding
wavenumber are:

λ0 = 2π
k0
= c0

f
, k0 = ωc0

(2.2.9)

In a lossless but non-magnetic (µ = µ0) dielectric with refractive index n = √ε/ε0,
the speed of light c, wavelength λ, and characteristic impedance η are all reduced by a
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scale factorn compared to the free-space values, whereas the wavenumber k is increased
by a factor of n. Indeed, using the definitions c = 1/√µ0ε and η = √µ0/ε, we have:

c = c0

n
, η = η0

n
, λ = λ0

n
, k = nk0 (2.2.10)

Example 2.2.1: A microwave transmitter operating at the carrier frequency of 6 GHz is pro-
tected by a Plexiglas radome whose permittivity is ε = 3ε0.

The refractive index of the radome is n = √ε/ε0 =
√

3 = 1.73. The free-space wavelength
and the wavelength inside the radome material are:

λ0 = c0

f
= 3× 108

6× 109
= 0.05 m = 5 cm, λ = λ0

n
= 5

1.73
= 2.9 cm

We will see later that if the radome is to be transparent to the wave, its thickness must be
chosen to be equal to one-half wavelength, l = λ/2. Thus, l = 2.9/2 = 1.45 cm. �	

Example 2.2.2: The nominal speed of light in vacuum is c0 = 3×108 m/s. Because of the rela-
tionship c0 = λf , it may be expressed in the following suggestive units that are appropriate
in different application contexts:

c0 = 5000 km × 60 Hz (power systems)
300 m × 1 MHz (AM radio)

40 m × 7.5 MHz (amateur radio)
3 m × 100 MHz (FM radio, TV)

30 cm × 1 GHz (cell phones)
10 cm × 3 GHz (waveguides, radar)

3 cm × 10 GHz (radar, satellites)
1.5 µm × 200 THz (optical fibers)
500 nm × 600 THz (visible spectrum)

100 nm × 3000 THz (UV)

Similarly, in terms of length/time of propagation:

c0 = 36 000 km/120 msec (geosynchronous satellites)
300 km/msec (power lines)
300 m/µsec (transmission lines)
30 cm/nsec (circuit boards)

The typical half-wave monopole antenna (half of a half-wave dipole over a ground plane)
has length λ/4 and is used in many applications, such as AM, FM, and cell phones. Thus,
one can predict that the lengths of AM radio, FM radio, and cell phone antennas will be of
the order of 75 m, 0.75 m, and 7.5 cm, respectively.

A more detailed list of electromagnetic frequency bands is given in Appendix B. The precise
value of c0 and the values of other physical constants are given in Appendix A. �	

Wave propagation effects become important, and cannot be ignored, whenever the
physical length of propagation is comparable to the wavelength λ. It follows from
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Eqs. (2.1.9) that the incremental change of a forward-moving electric field in propagating
from z to z+∆z is: |∆E+|

|E+| = k∆z = 2π
∆z
λ

(2.2.11)

Thus, the change in the electric field can be ignored only if ∆z� λ, otherwise, propa-
gation effects must be taken into account.

For example, for an integrated circuit operating at 10 GHz, we have λ = 3 cm, which
is comparable to the physical dimensions of the circuit.

Similarly, a cellular base station antenna is connected to the transmitter circuits by
several meters of coaxial cable. For a 1-GHz system, the wavelength is 0.3 m, which
implies that a 30-m cable will be equivalent to 100 wavelengths.

2.3 Energy Density and Flux

The time-averaged energy density and flux of a uniform plane wave can be determined
by Eq. (1.8.6). As in the previous section, the energy is shared equally by the electric
and magnetic fields (in the forward or backward cases.) This is a general result for most
wave propagation and waveguide problems.

The energy flux will be in the direction of propagation. For either a forward- or a
backward-moving wave, we have from Eqs. (1.8.6) and (2.2.5):

we = 1

2
Re
[

1

2
εE±(z)·E∗± (z)

]
= 1

2
Re
[

1

2
εE0±e−jkz · E∗0±ejkz

]
= 1

4
ε|E0±|2

wm = 1

2
Re
[

1

2
µH±(z)·H∗± (z)

]
= 1

4
µ|H0±|2 = 1

4
µ

1

η2
|ẑ× E0±|2 = 1

4
ε|E0±|2 = we

Thus, the electric and magnetic energy densities are equal and the total density is:

w = we +wm = 2we = 1

2
ε|E0±|2 (2.3.1)

For the time-averaged Poynting vector, we have similarly:

PPP = 1

2
Re
[

E±(z)×H∗± (z)
] = 1

2η
Re
[

E0± × (±ẑ× E∗0±)
]

Using the BAC-CAB rule and the orthogonality property ẑ · E0± = 0, we find:

PPP = ±ẑ
1

2η
|E0±|2 = ±c ẑ

1

2
ε|E0±|2 (2.3.2)

Thus, the energy flux is in the direction of propagation, that is, ±ẑ. The correspond-
ing energy velocity is, as in the previous section:

v = PPP
w
= ±c ẑ (2.3.3)

In the more general case of forward and backward waves, we find:
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w = 1

4
Re
[
εE(z)·E∗(z)+µH(z)·H∗(z)] = 1

2
ε|E0+|2 + 1

2
ε|E0−|2

PPP = 1

2
Re
[
E(z)×H∗(z)

] = ẑ

(
1

2η
|E0+|2 − 1

2η
|E0−|2

) (2.3.4)

Thus, the total energy is the sum of the energies of the forward and backward com-
ponents, whereas the net energy flux (to the right) is the difference between the forward
and backward fluxes.

2.4 Wave Impedance

For forward or backward fields, the ratio of E(z) to H(z)×ẑ is constant and equal to
the characteristic impedance of the medium. Indeed, it follows from Eq. (2.2.4) that

E±(z)= ±ηH±(z)×ẑ

However, this property is not true for the more general solution given by Eqs. (2.2.6).
In general, the ratio of E(z) to H(z)×ẑ is called the wave impedance. Because of the
vectorial character of the fields, we must define the ratio in terms of the corresponding
x- and y-components:

Zx(z) =
[
E(z)

]
x[

H(z)×ẑ
]
x
= Ex(z)
Hy(z)

Zy(z) =
[
E(z)

]
y[

H(z)×ẑ
]
y
= − Ey(z)

Hx(z)

(wave impedances) (2.4.1)

Using the cartesian expressions of Eq. (2.2.7), we find:

Zx(z) = Ex(z)
Hy(z)

= η A+e
−jkz +A−ejkz

A+e−jkz −A−ejkz

Zy(z) = − Ey(z)Hx(z)
= η B+e

−jkz + B−ejkz
B+e−jkz − B−ejkz

(wave impedances) (2.4.2)

Thus, the wave impedances are nontrivial functions of z. For forward waves (that is,
with A− = B− = 0), we have Zx(z)= Zy(z)= η. For backward waves (A+ = B+ = 0), we
have Zx(z)= Zy(z)= −η.

The wave impedance is a very useful concept in the subject of multiple dielectric
interfaces and the matching of transmission lines. We will explore its use later on.

2.5 Polarization

Consider a forward-moving wave and let E0 = x̂A+ + ŷB+ be its complex-valued pha-
sor amplitude, so that E(z)= E0e−jkz = (x̂A+ + ŷB+)e−jkz. The time-varying field is
obtained by restoring the factor ejωt:
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E(z, t)= (x̂A+ + ŷB+)ejωt−jkz

The polarization of a plane wave is defined to be the direction of the electric field.
For example, if B+ = 0, the E-field is along the x-direction and the wave will be linearly
polarized.

More precisely, polarization is the direction of the time-varying real-valued field
EEE(z, t)= Re

[
E(z, t)]. At any fixed point z, the vector EEE(z, t) may be along a fixed

linear direction or it may be rotating as a function of t, tracing a circle or an ellipse.
The polarization properties of the plane wave are determined by the relative magni-

tudes and phases of the complex-valued constants A+, B+. Writing them in their polar
forms A+ = Aejφa and B+ = Bejφb , where A,B are positive magnitudes, we obtain:

E(z, t)= (x̂Aejφa + ŷBejφb
)
ejωt−jkz = x̂Aej(ωt−kz+φa) + ŷBej(ωt−kz+φb) (2.5.1)

Extracting real parts and setting EEE(z, t)= Re
[
E(z, t)

] = x̂Ex(z, t)+ŷEy(z, t), we
find the corresponding real-valued x, y components:

Ex(z, t) = A cos(ωt − kz+φa)
Ey(z, t) = B cos(ωt − kz+φb)

(2.5.2)

For a backward moving field, we replace k by −k in the same expression. To deter-
mine the polarization of the wave, we consider the time-dependence of these fields at
some fixed point along the z-axis, say at z = 0:

Ex(t) = A cos(ωt +φa)
Ey(t) = B cos(ωt +φb)

(2.5.3)

The electric field vector EEE(t)= x̂Ex(t)+ŷEy(t) will be rotating on the xy-plane
with angular frequency ω, with its tip tracing, in general, an ellipse. To see this, we
expand Eq. (2.5.3) using a trigonometric identity:

Ex(t) = A
[
cosωt cosφa − sinωt sinφa

]
Ey(t) = B

[
cosωt cosφb − sinωt sinφb

]
Solving for cosωt and sinωt in terms of Ex(t),Ey(t), we find:

cosωt sinφ = Ey(t)
B

sinφa − Ex(t)A sinφb

sinωt sinφ = Ey(t)
B

cosφa − Ex(t)A cosφb

where we defined the relative phase angle φ = φa −φb.
Forming the sum of the squares of the two equations and using the trigonometric

identity sin2ωt + cos2ωt = 1, we obtain a quadratic equation for the components Ex
and Ey, which describes an ellipse on the Ex,Ey plane:
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(Ey(t)
B

sinφa − Ex(t)A sinφb
)2

+
(Ey(t)

B
cosφa − Ex(t)A cosφb

)2

= sin2φ

This simplifies into:

E2
x

A2
+ E

2
y

B2
− 2 cosφ

ExEy
AB

= sin2φ (polarization ellipse) (2.5.4)

Depending on the values of the three quantities {A,B,φ} this polarization ellipse
may be an ellipse, a circle, or a straight line. The electric field is accordingly called
elliptically, circularly, or linearly polarized.

To get linear polarization, we set φ = 0 or φ = π, corresponding to φa = φb = 0,
orφa = 0,φb = −π, so that the phasor amplitudes are E0 = x̂A± ŷB. Then, Eq. (2.5.4)
degenerates into:

E2
x

A2
+ E

2
y

B2
∓ 2

ExEy
AB

= 0 ⇒
(Ex
A
∓ Ey
B

)2

= 0

representing the straight lines:

Ey = ±BA Ex

The fields (2.5.2) take the forms, in the two cases φ = 0 and φ = π:

Ex(t)= A cosωt
Ey(t)= B cosωt and

Ex(t)= A cosωt
Ey(t)= B cos(ωt −π)= −B cosωt

To get circular polarization, we set A = B and φ = ±π/2. In this case, the polariza-
tion ellipse becomes the equation of a circle:

E2
x

A2
+ E

2
y

A2
= 1

The sense of rotation, in conjunction with the direction of propagation, defines left-
circular versus right-circular polarization. For the case, φa = 0 and φb = −π/2, we
have φ = φa −φb = π/2 and complex amplitude E0 = A(x̂− jŷ). Then,

Ex(t) = A cosωt

Ey(t) = A cos(ωt −π/2)= A sinωt

Thus, the tip of the electric field vector rotates counterclockwise on the xy-plane.
To decide whether this represents right or left circular polarization, we use the IEEE
convention [93], which is as follows.
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Curl the fingers of your left and right hands into a fist and point both thumbs towards
the direction of propagation. If the fingers of your right (left) hand are curling in the
direction of rotation of the electric field, then the polarization is right (left) polarized.†

Thus, in the present example, because we had a forward-moving field and the field is
turning counterclockwise, the polarization will be right-circular. If the field were moving
backwards, then it would be left-circular. For the case, φ = −π/2, arising from φa = 0
and φb = π/2, we have complex amplitude E0 = A(x̂+ jŷ). Then, Eq. (2.5.3) becomes:

Ex(t) = A cosωt

Ey(t) = A cos(ωt +π/2)= −A sinωt

The tip of the electric field vector rotates clockwise on the xy-plane. Since the wave
is moving forward, this will represent left-circular polarization. Fig. 2.5.1 depicts the
four cases of left/right polarization with forward/backward waves.

Fig. 2.5.1 Left and right circular polarizations.

To summarize, the electric field of a circularly polarized uniform plane wave will be,
in its phasor form:

E(z)= A(x̂− jŷ)e−jkz (right-polarized, forward-moving)

E(z)= A(x̂+ jŷ)e−jkz (left-polarized, forward-moving)

E(z)= A(x̂− jŷ)ejkz (left-polarized, backward-moving)

E(z)= A(x̂+ jŷ)ejkz (right-polarized, backward-moving)

If A �= B, but the phase difference is still φ = ±π/2, we get an ellipse with major
and minor axes oriented along the x, y directions. Eq. (2.5.4) will be now:

†Most engineering texts use the IEEE convention and most physics texts, the opposite convention.
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E2
x

A2
+ E

2
y

B2
= 1

Finally, if A �= B and φ is arbitrary, then the major/minor axes of the ellipse (2.5.4)
will be rotated relative to the x, y directions. Fig. 2.5.2 illustrates the general case.

Fig. 2.5.2 General polarization ellipse.

It can be shown (see Problem 2.10) that the tilt angle θ is given by:

tan 2θ = 2AB
A2 − B2

cosφ (2.5.5)

The ellipse semi-axes A′, B′, that is, the lengths OC and OD, are given by:

A′ =
√

1

2
(A2 + B2)+ s

2

√
(A2 − B2)2+4A2B2 cos2φ

B′ =
√

1

2
(A2 + B2)− s

2

√
(A2 − B2)2+4A2B2 cos2φ

(2.5.6)

where s = sign(A − B). These results are obtained by defining the rotated coordinate
system of the ellipse axes:

E′x = Ex cosθ+Ey sinθ

E′y = Ey cosθ−Ex sinθ
(2.5.7)

and showing that Eq. (2.5.4) transforms into the standardized form:

E′2x
A′2

+ E
′2
y

B′2
= 1 (2.5.8)

The polarization ellipse is bounded by the rectangle with sides at the end-points
±A,±B, as shown in the figure. To decide whether the elliptic polarization is left- or
right-handed, we may use the same rules depicted in Fig. 2.5.1
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Example 2.5.1: Determine the real-valued electric and magnetic field components and the po-
larization of the following fields specified in their phasor form (given in units of V/m):

a. E(z)= −3j x̂e−jkz

b. E(z)= (3 x̂+ 4 ŷ
)
e+jkz

c. E(z)= (−4 x̂+ 3 ŷ
)
e−jkz

d. E(z)= (3ejπ/3 x̂+ 3 ŷ
)
e+jkz

e. E(z)= (4 x̂+ 3e−jπ/4 ŷ
)
e−jkz

f. E(z)= (3e−jπ/8 x̂+ 4ejπ/8 ŷ
)
e+jkz

g. E(z)= (4ejπ/4 x̂+ 3e−jπ/2 ŷ
)
e−jkz

h. E(z)= (3e−jπ/2 x̂+ 4ejπ/4 ŷ
)
e+jkz

Solution: Restoring the ejωt factor and taking real-parts, we find the x, y electric field compo-
nents, according to Eq. (2.5.2):

a. Ex(z, t)= 3 cos(ωt − kz−π/2), Ey(z, t)= 0

b. Ex(z, t)= 3 cos(ωt + kz), Ey(z, t)= 4 cos(ωt + kz)
c. Ex(z, t)= 4 cos(ωt − kz−π), Ey(z, t)= 3 cos(ωt − kz)
d. Ex(z, t)= 3 cos(ωt + kz+π/3), Ey(z, t)= 3 cos(ωt + kz)
e. Ex(z, t)= 4 cos(ωt − kz), Ey(z, t)= 3 cos(ωt − kz−π/4)
f. Ex(z, t)= 3 cos(ωt + kz−π/8), Ey(z, t)= 4 cos(ωt + kz+π/8)
g. Ex(z, t)= 4 cos(ωt − kz+π/4), Ey(z, t)= 3 cos(ωt − kz−π/2)
h. Ex(z, t)= 3 cos(ωt + kz−π/2), Ey(z, t)= 4 cos(ωt + kz+π/4)

Since these are either forward or backward waves, the corresponding magnetic fields are
obtained by using the formulaHHH(z, t)= ± ẑ×EEE(z, t)/η. This gives the x, y components:

(cases a, c, e, g): Hx(z, t)= − 1

η
Ey(z, t), Hy(z, t)= 1

η
Ex(z, t)

(cases b, d, f, h): Hx(z, t)= 1

η
Ey(z, t), Hy(z, t)= − 1

η
Ex(z, t)

To determine the polarization vectors, we evaluate the electric fields at z = 0:

a. Ex(t)= 3 cos(ωt −π/2), Ey(t)= 0

b. Ex(t)= 3 cos(ωt), Ey(t)= 4 cos(ωt)
c. Ex(t)= 4 cos(ωt +π), Ey(t)= 3 cos(ωt)
d. Ex(t)= 3 cos(ωt +π/3), Ey(t)= 3 cos(ωt)
e. Ex(t)= 4 cos(ωt), Ey(t)= 3 cos(ωt −π/4)
f. Ex(t)= 3 cos(ωt −π/8), Ey(t)= 4 cos(ωt +π/8)
g. Ex(t)= 4 cos(ωt +π/4), Ey(t)= 3 cos(ωt −π/2)
h. Ex(t)= 3 cos(ωt −π/2), Ey(t)= 4 cos(ωt +π/4)

The polarization ellipse parameters A, B, and φ = φa − φb, as well as the computed
semi-major axes A′, B′, tilt angle θ, sense of rotation of the electric field, and polarization
type are given below:
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case A B φ A′ B′ θ rotation polarization

a. 3 0 −90o 3 0 0o → linear/forward

b. 3 4 0o 0 5 −36.87o ↗ linear/backward

c. 4 3 180o 5 0 −36.87o ↖ linear/forward

d. 3 3 60o 3.674 2.121 45o � left/backward

e. 4 3 45o 4.656 1.822 33.79o � right/forward

f. 3 4 −45o 1.822 4.656 −33.79o � right/backward

g. 4 3 135o 4.656 1.822 −33.79o � right/forward

h. 3 4 −135o 1.822 4.656 33.79o � right/backward

In the linear case (b), the polarization ellipse collapses along its A′-axis (A′ = 0) and
becomes a straight line along its B′-axis. The tilt angle θ still measures the angle of theA′-
axis from the x-axis. The actual direction of the electric field will be 90o−36.87o = 53.13o,
which is equal to the slope angle, atan(B/A)= atan(4/3)= 53.13o.

In case (c), the ellipse collapses along its B′-axis. Therefore, θ coincides with the angle of
the slope of the electric field vector, that is, atan(−B/A)= atan(−3/4)= −36.87o. �	

With the understanding that θ always represents the slope of the A′-axis (whether
collapsed or not, major or minor), Eqs. (2.5.5) and (2.5.6) correctly calculate all the special
cases, except when A = B, which has tilt angle and semi-axes:

θ = 45o , A′ = A
√

1+ cosφ, B′ = A
√

1− cosφ (2.5.9)

The MATLAB function ellipse.m calculates the ellipse semi-axes and tilt angle, A′,
B′, θ, given the parameters A, B, φ. It has usage:

[a,b,th] = ellipse(A,B,phi) % polarization ellipse parameters

For example, the function will return the values of the A′, B′, θ columns of the pre-
vious example, if it is called with the inputs:

A = [3, 3, 4, 3, 4, 3, 4, 3]’;
B = [0, 4, 3, 3, 3, 4, 3, 4]’;
phi = [-90, 0, 180, 60, 45, -45, 135, -135]’;

To determine quickly the sense of rotation around the polarization ellipse, we use
the rule that the rotation will be counterclockwise if the phase difference φ = φa −φb
is such that sinφ > 0, and clockwise, if sinφ < 0. This can be seen by considering the
electric field at time t = 0 and at a neighboring time t. Using Eq. (2.5.3), we have:

EEE(0) = x̂A cosφa + ŷB cosφb

EEE(t) = x̂A cos(ωt +φa)+ŷB cos(ωt +φb)

The sense of rotation may be determined from the cross-product EEE(0)×EEE(t). If
the rotation is counterclockwise, this vector will point towards the positive z-direction,
and otherwise, it will point towards the negative z-direction. It follows easily that:
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EEE(0)×EEE(t)= ẑAB sinφ sinωt (2.5.10)

Thus, for t small and positive (such that sinωt > 0), the direction of the vector
EEE(0)×EEE(t) is determined by the sign of sinφ.

2.6 Uniform Plane Waves in Lossy Media

We saw in Sec. 1.9 that power losses may arise because of conduction and/or material
polarization. A wave propagating in a lossy medium will set up a conduction current
Jcond = σE and a displacement (polarization) current Jdisp = jωD = jωεdE . Both
currents will cause ohmic losses. The total current is the sum:

Jtot = Jcond + Jdisp = (σ + jωεd)E = jωεcE

where εc is the effective complex dielectric constant introduced in Eq. (1.9.22):

jωεc = σ + jωεd ⇒ εc = εd − j σω (2.6.1)

The quantitiesσ, εd may be complex-valued and frequency-dependent. However, we
will assume that over the desired frequency band of interest, the conductivity σ is real-
valued; the permittivity of the dielectric may be assumed to be complex, εd = ε′d − jε′′d .
Thus, the effective εc has real and imaginary parts:

εc = ε′ − jε′′ = ε′d − j
(
ε′′d +

σ
ω

)
(2.6.2)

Power losses arise from the non-zero imaginary part ε′′. We recall from Eq. (1.9.25)
that the time-averaged ohmic power losses per unit volume are given by:

dPloss

dV
= 1

2
Re
[
Jtot · E∗

] = 1

2
ωε′′

∣∣E
∣∣2 = 1

2
(σ +ωε′′d )

∣∣E
∣∣2

(2.6.3)

Uniform plane waves propagating in such lossy medium will satisfy Maxwell’s equa-
tions (1.8.2), with the right-hand side of Ampère’s law given by Jtot = J+ jωD = jωεcE .

The assumption of uniformity (∂x = ∂y = 0), will imply again that the fields E,H are
transverse to the direction ẑ. Then, Faraday’s and Ampère’s equations become:

∇∇∇× E = −jωµH

∇∇∇×H = jωεcE
⇒

ẑ× ∂zE = −jωµH

ẑ× ∂zH = jωεcE
(2.6.4)

These may be written in a more convenient form by introducing the complex wavenum-
ber kc and complex characteristic impedance ηc defined by:

kc =ω
√
µεc , ηc =

√
µ
εc

(2.6.5)

They correspond to the usual definitions k = ω/c = ω√µε and η = √
µ/ε with

the replacement ε → εc. Noting that ωµ = kcηc and ωεc = kc/ηc, Eqs. (2.6.4) may
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be written in the following form (using the orthogonality property ẑ · E = 0 and the
BAC-CAB rule on the first equation):

∂
∂z

[
E

ηcH× ẑ

]
=
[

0 −jkc
−jkc 0

][
E

ηcH× ẑ

]
(2.6.6)

To decouple them, we introduce the forward and backward electric fields:

E+ = 1

2

(
E+ ηcH× ẑ)

�
E = E+ + E−

E− = 1

2

(
E− ηcH× ẑ) H = 1

ηc
ẑ× [E+ − E−

] (2.6.7)

Then, Eqs. (2.6.6) may be replaced by the equivalent system:

∂
∂z

[
E+
E−

]
=
[
−jkc 0

0 jkc

][
E+
E−

]
(2.6.8)

with solutions:
E±(z)= E0±e∓jkcz , where ẑ · E0± = 0 (2.6.9)

Thus, the propagating electric and magnetic fields are linear combinations of forward
and backward components:

E(z) = E0+e−jkcz + E0−ejkcz

H(z) = 1

ηc
ẑ× [E0+e−jkcz − E0−ejkcz

] (2.6.10)

In particular, for a forward-moving wave we have:

E(z)= E0e−jkcz , H(z)= H0e−jkcz , with ẑ · E0 = 0 , H0 = 1

ηc
ẑ× E0 (2.6.11)

Eqs. (2.6.10) are the same as in the lossless case but with the replacements k → kc
and η→ ηc. The lossless case is obtained in the limit of a purely real-valued εc.

Because kc is complex-valued, we define the phase and attenuation constants β and
α as the real and imaginary parts of kc, that is,

kc = β− jα =ω
√
µ(ε′ − jε′′) (2.6.12)

We may also define a complex refractive index nc = kc/k0 that measures kc relative
to its free-space value k0 =ω/c0 =ω√µ0ε0. For a non-magnetic medium, we have:

nc = kck0
=
√
εc
ε0
=
√
ε′ − jε′′
ε0

≡ n− jκ (2.6.13)

where n,κ are the real and imaginary parts of nc. The quantity κ is called the extinction
coefficient and n is still called the refractive index. Another commonly used notation is
the propagation constant γ defined by:

γ = jkc = α+ jβ (2.6.14)
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It follows from γ = α + jβ = jkc = jk0nc = jk0(n − jκ) that β = k0n and α =
k0κ. The nomenclature about phase and attenuation constants has its origins in the
propagation factor e−jkcz. We can write it in the alternative forms:

e−jkcz = e−γz = e−αze−jβz = e−k0κze−jk0nz (2.6.15)

Thus, the wave amplitudes attenuate exponentially with the factor e−αz, and oscillate
with the phase factor e−jβz. The energy of the wave attenuates by the factor e−2αz, as
can be seen by computing the Poynting vector. Because e−jkcz is no longer a pure phase
factor and ηc is not real, we have for the forward-moving wave of Eq. (2.6.11):

PPP(z) = 1

2
Re
[

E(z)×H∗(z)
] = 1

2
Re

[
1

η∗c
E0 × (ẑ× E∗0 )e−(α+jβ)ze−(α−jβ)z

]

= ẑ
1

2
Re
(
η−1
c
) |E0|2e−2αz = ẑP(0)e−2αz = ẑP(z)

Thus, the power per unit area flowing past the point z in the forward z-direction will be:

P(z)= P(0)e−2αz (2.6.16)

The quantityP(0) is the power per unit area flowing past the point z = 0. Denoting
the real and imaginary parts of ηc by η′, η′′, so that, ηc = η′ + jη′′, and noting that
|E0| = |ηcH0 × ẑ| = |ηc||H0|, we may express P(0) in the equivalent forms:

P(0)= 1

2
Re
(
η−1
c
) |E0|2 = 1

2
η′ |H0|2 (2.6.17)

The attenuation coefficient α is measured in nepers per meter. However, a more
practical way of expressing the power attenuation is in dB. Taking logs of Eq. (2.6.16),
we have for the dB attenuation at z, relative to z = 0:

AdB(z)= −10 log10

[P(z)
P(0)

]
= 20 log10(e)αz = 8.686αz (2.6.18)

where we used the numerical value 20 log10 e = 8.686. Thus, the quantityαdB = 8.686α
is the attenuation in dB per meter :

αdB = 8.686α (dB/m) (2.6.19)

Another way of expressing the power attenuation is by means of the so-called pen-
etration or skin depth defined as the inverse of α:

δ = 1

α
(skin depth) (2.6.20)

Then, Eq. (2.6.18) can be rewritten in the form:

AdB(z)= 8.686
z
δ

(attenuation in dB) (2.6.21)
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This gives rise to the so-called “9-dB per delta” rule, that is, every time z is increased
by a distance δ, the attenuation increases by 8.686 � 9 dB.

A useful way to represent Eq. (2.6.16) in practice is to consider its infinitesimal ver-
sion obtained by differentiating it with respect to z and solving for α :

P′(z)= −2αP(0)e−2αz = 2αP(z) ⇒ α = −P
′(z)

2P(z)
The quantity P′loss = −P′ represents the power lost from the wave per unit length

(in the propagation direction.) Thus, the attenuation coefficient is the ratio of the power
loss per unit length to twice the power transmitted:

α = P′loss

2Ptransm
(attenuation coefficient) (2.6.22)

If there are several physical mechanisms for the power loss, then α becomes the
sum over all possible cases. For example, in a waveguide or a coaxial cable filled with a
slightly lossy dielectric, power will be lost because of the small conduction/polarization
currents set up within the dielectric and also because of the ohmic losses in the walls
of the guiding conductors, so that the total α will be α = αdiel +αwalls.

Next, we verify that the exponential loss of power from the propagating wave is due
to ohmic heat losses. In Fig. 2.6.1, we consider a volume dV = l dA of area dA and
length l along the z-direction.

Fig. 2.6.1 Power flow in lossy dielectric.

From the definition of P(z) as power flow per unit area, it follows that the power
entering the area dA at z = 0 will be dPin = P(0)dA, and the power leaving the area
dA at z = l, dPout = P(l)dA. The difference dPloss = dPin −dPout =

[P(0)−P(l)]dA
will be the power lost from the wave within the volume l dA. BecauseP(l)= P(0)e−2αl,
we have for the power loss per unit area:

dPloss

dA
= P(0)−P(l)= P(0)(1− e−2αl) = 1

2
Re
(
η−1
c
) |E0|2

(
1− e−2αl) (2.6.23)
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On the other hand, according to Eq. (2.6.3), the ohmic power loss per unit volume
will be ωε′′|E(z)|2/2. Integrating this quantity from z = 0 to z = l will give the total
ohmic losses within the volume l dA of Fig. 2.6.1. Thus, we have:

dPohmic = 1

2
ωε′′

∫ l
0
|E(z)|2 dzdA = 1

2
ωε′′

[∫ l
0
|E0|2e−2αz dz

]
dA , or,

dPohmic

dA
= ωε

′′

4α
|E0|2

(
1− e−2αl) (2.6.24)

Are the two expressions in Eqs. (2.6.23) and (2.6.24) equal? The answer is yes, as
follows from the following relationship among ηc, ε′′,α (see Problem 2.12):

Re
(
η−1
c
) = ωε′′

2α
(2.6.25)

Thus, the power lost from the wave is entirely accounted for by the ohmic losses
within the propagation medium. The equality of (2.6.23) and (2.6.24) is an example of
the more general relationship proved in Problem 1.5.

In the limit l→∞, we have P(l)→ 0, so that dPohmic/dA = P(0), which states that
all the power that enters at z = 0 will be dissipated into heat inside the semi-infinite
medium. Using Eq. (2.6.17), we summarize this case:

dPohmic

dA
= 1

2
Re
(
η−1
c
) |E0|2 = 1

2
η′ |H0|2 (ohmic losses) (2.6.26)

This result will be used later on to calculate ohmic losses of waves incident on lossy
dielectric or conductor surfaces, as well as conductor losses in waveguide and transmis-
sion line problems.

Example 2.6.1: The absorption coefficient α of water reaches a minimum over the visible
spectrum—a fact undoubtedly responsible for why the visible spectrum is visible.

Recent measurements [111] of the absorption coefficient show that it starts at about 0.01
nepers/m at 380 nm (violet), decreases to a minimum value of 0.0044 nepers/m at 418
nm (blue), and then increases steadily reaching the value of 0.5 nepers/m at 600 nm (red).
Determine the penetration depth δ in meters, for each of the three wavelengths.

Determine the depth in meters at which the light intensity has decreased to 1/10th its
value at the surface of the water. Repeat, if the intensity is decreased to 1/100th its value.

Solution: The penetration depths δ = 1/α are:

δ = 100, 227.3, 2 m for α = 0.01, 0.0044, 0.5 nepers/m

Using Eq. (2.6.21), we may solve for the depth z = (A/8.9696)δ. Since a decrease of
the light intensity (power) by a factor of 10 is equivalent to A = 10 dB, we find z =
(10/8.9696)δ = 1.128δ, which gives: z = 112.8, 256.3, 2.3 m. A decrease by a factor of
100 = 1020/10 corresponds to A = 20 dB, effectively doubling the above depths. �	
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Example 2.6.2: A microwave oven operating at 2.45 GHz is used to defrost a frozen food having
complex permittivity εc = (4− j)ε0 farad/m. Determine the strength of the electric field
at a depth of 1 cm and express it in dB and as a percentage of its value at the surface.
Repeat if εc = (45− 15j)ε0 farad/m.

Solution: The free-space wavenumber is k0 =ω√µ0ε0 = 2πf/c0 = 2π(2.45×109)/(3×108)=
51.31 rad/m. Using kc =ω√µ0εc = k0

√
εc/ε0, we calculate the wavenumbers:

kc = β− jα = 51.31
√

4− j = 51.31(2.02− 0.25j)= 103.41− 12.73j m−1

kc = β− jα = 51.31
√

45− 15j = 51.31(6.80− 1.10j)= 348.84− 56.61j m−1

The corresponding attenuation constants and penetration depths are:

α = 12.73 nepers/m, δ = 7.86 cm
α = 56.61 nepers/m, δ = 1.77 cm

It follows that the attenuations at 1 cm will be in dB and in absolute units:

A = 8.686z/δ = 1.1 dB, 10−A/20 = 0.88
A = 8.686z/δ = 4.9 dB, 10−A/20 = 0.57

Thus, the fields at a depth of 1 cm are 88% and 57% of their values at the surface. The
complex permittivities of some foods may be found in [112]. �	

A convenient way to characterize the degree of ohmic losses is by means of the loss
tangent, originally defined in Eq. (1.9.28). Here, we set:

τ = tanθ = ε
′′

ε′
= σ +ωε

′′
d

ωε′d
(2.6.27)

Then, εc = ε′ − jε′′ = ε′(1− jτ)= ε′d(1− jτ). Therefore, kc, ηc may be written as:

kc =ω
√
µε′d (1− jτ)1/2 , ηc =

√
µ
ε′d
(1− jτ)−1/2 (2.6.28)

The quantities cd = 1/
√
µε′d and ηd =

√
µ/ε′d would be the speed of light and

characteristic impedance of an equivalent lossless dielectric with permittivity ε′d.
In terms of the loss tangent, we may characterize weakly lossy media versus strongly

lossy ones by the conditionsτ� 1 versusτ� 1, respectively. These conditions depend
on the operating frequencyω :

σ +ωε′′d
ωε′d

� 1 versus
σ +ωε′′d
ωε′d

� 1

The expressions (2.6.28) may be simplified considerably in these two limits. Using
the small-x Taylor series expansion (1+x)1/2� 1+x/2, we find in the weakly lossy case
(1− jτ)1/2� 1− jτ/2, and similarly, (1− jτ)−1/2� 1+ jτ/2.

On the other hand, ifτ� 1, we may approximate (1−jτ)1/2� (−jτ)1/2= e−jπ/4τ1/2,
where we wrote (−j)1/2= (e−jπ/2)1/2= e−jπ/4. Similarly, (1 − jτ)−1/2� ejπ/4τ−1/2.
Thus, we summarize the two limits:
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(1− jτ)1/2 =



1− jτ
2
, if τ� 1

e−jπ/4 τ1/2 = (1− j)
√τ

2
, if τ� 1

(2.6.29)

(1− jτ)−1/2=




1+ jτ
2
, if τ� 1

ejπ/4 τ−1/2 = (1+ j)
√

1

2τ
, if τ� 1

(2.6.30)

2.7 Propagation in Weakly Lossy Dielectrics

In the weakly lossy case, the propagation parameters kc, ηc become:

kc = β− jα =ω
√
µε′d

(
1− jτ

2

)
=ω

√
µε′d

(
1− jσ +ωε

′′
d

2ωε′d

)

ηc = η′ + jη′′ =
√
µ
ε′d

(
1+ jτ

2

)
=
√
µ
ε′d

(
1+ jσ +ωε

′′
d

2ωε′d

) (2.7.1)

Thus, the phase and attenuation constants are:

β =ω
√
µε′d =

ω
cd
, α = 1

2

√
µ
ε′d
(σ +ωε′′d )=

1

2
ηd(σ +ωε′′d ) (2.7.2)

For a slightly conducting dielectric with ε′′d = 0 and a small conductivityσ , Eq. (2.7.2)
implies that the attenuation coefficient α is frequency-independent in this limit.

Example 2.7.1: Seawater has σ = 4 Siemens/m and εd = 81ε0 (so that ε′d = 81ε0, ε′′d = 0.)
Then, nd =

√
εd/ε0 = 9, and cd = c0/nd = 0.33× 108 m/sec and ηd = η0/nd = 377/9 =

41.89 Ω. The attenuation coefficient (2.7.2) will be:

α = 1

2
ηdσ = 1

2
41.89× 4 = 83.78 nepers/m ⇒ αdB = 8.686α = 728 dB/m

The corresponding skin depth is δ = 1/α = 1.19 cm. This result assumes that σ�ωεd,
which can be written in the form ω� σ/εd, or f � f0, where f0 = σ/(2πεd). Here, we
have f0 = 888 MHz. For frequencies f � f0, we must use the exact equations (2.6.28). For
example, we find:

f = 1 kHz, αdB = 1.09 dB/m, δ = 7.96 m
f = 1 MHz, αdB = 34.49 dB/m, δ = 25.18 cm
f = 1 GHz, αdB = 672.69 dB/m, δ = 1.29 cm

Such extremely large attenuations explain why communication with submarines is impos-
sible at high RF frequencies. �	
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2.8 Propagation in Good Conductors

A conductor is characterized by a large value of its conductivity σ, while its dielectric
constant may be assumed to be real-valued εd = ε (typically equal to ε0.) Thus, its
complex permittivity and loss tangent will be:

εc = ε− j σω = ε
(

1− j σ
ωε

)
, τ = σ

ωε
(2.8.1)

A good conductor corresponds to the limit τ� 1, or, σ �ωε. Using the approxi-
mations of Eqs. (2.6.29) and (2.6.30), we find for the propagation parameters kc, ηc:

kc = β− jα =ω√µε
√
τ
2
(1− j)=

√
ωµσ

2
(1− j)

ηc = η′ + jη′′ =
√
µ
ε

√
1

2τ
(1+ j)=

√
ωµ
2σ

(1+ j)
(2.8.2)

Thus, the parameters β,α,δ are:

β = α =
√
ωµσ

2
=
√
πfµσ , δ = 1

α
=
√

2

ωµσ
= 1√

πfµσ
(2.8.3)

where we replaced ω = 2πf . The complex characteristic impedance ηc can be written
in the form ηc = Rs(1+ j), where Rs is called the surface resistance and is given by the
equivalent forms (where η = √µ/ε ):

Rs = η
√
ωε
2σ
=
√
ωµ
2σ

= α
σ
= 1

σδ
(2.8.4)

Example 2.8.1: For a very good conductor, such as copper, we have σ = 5.8× 107 Siemens/m.
The skin depth at frequency f is:

δ = 1√
πfµσ

= 1√
π · 4π · 10−7 · 5.8 · 107

f−1/2 = 0.0661 f−1/2 ( f in Hz)

We find at frequencies of 1 kHz, 1 MHz, and 1 GHz:

f = 1 kHz, δ = 2.09 mm
f = 1 MHz, δ = 0.07 mm
f = 1 GHz, δ = 2.09 µm

Thus, the skin depth is extremely small for good conductors at RF. �	

Because δ is so small, the fields will attenuate rapidly within the conductor, de-
pending on distance like e−γz = e−αze−jβz = e−z/δe−jβz. The factor e−z/δ effectively
confines the fields to within a distance δ from the surface of the conductor.

This allows us to define equivalent “surface” quantities, such as surface current and
surface impedance. With reference to Fig. 2.6.1, we define the surface current density by
integrating the density J(z)= σE(z)= σE0e−γz over the top-side of the volume l dA ,
and taking the limit l→∞ :
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Js =
∫∞

0
J(z)dz =

∫∞
0
σE0e−γzdz = σγ E0 , or,

Js = 1

Zs
E0 (2.8.5)

where we defined the surface impedance Zs = γ/σ. In the good-conductor limit, Zs is
equal to ηc. Indeed, it follows from Eqs. (2.8.3) and (2.8.4) that:

Zs = γσ =
α+ jβ
σ

= α
σ
(1+ j)= Rs(1+ j)= ηc

Because H0 × ẑ = E0/ηc , it follows that the surface current will be related to the
magnetic field intensity at the surface of the conductor by:

Js = H0 × ẑ = n̂×H0 (2.8.6)

where n̂ = −ẑ is the outward normal to the conductor. The meaning of Js is that it
represents the current flowing in the direction of E0 per unit length measured along the
perpendicular direction to E0, that is, the H0-direction. It has units of A/m.

The total amount of ohmic losses per unit surface area of the conductor may be
calculated from Eq. (2.6.26), which reads in this case:

dPohmic

dA
= 1

2
Rs|H0|2 = 1

2
Rs|Js|2 (ohmic loss per unit conductor area) (2.8.7)

2.9 Propagation in Oblique Directions

So far we considered waves propagating towards the z-direction. For single-frequency
uniform plane waves propagating in some arbitrary direction in a lossless medium, the
propagation factor is obtained by the substitution:

e−jkz → e−j k·r

where k = kk̂, with k = ω√µε = ω/c and k̂ is a unit vector in the direction of propa-
gation. The fields take the form:

E(r, t)= E0ejωt−j k·r

H(r, t)= H0ejωt−j k·r
(2.9.1)

where E0, H0 are constant vectors transverse to k̂, that is, k̂ ·E0 = k̂ ·H0 = 0, such that:

H0 = 1

ωµ
k̂× E0 = 1

η
k̂× E0 (2.9.2)

where η = √µ/ε. Thus, {E,H, k̂} form a right-handed orthogonal system.
The solutions (2.9.1) can be derived from Maxwell’s equations in a straightforward

fashion. When the gradient operator acts on the above fields, it can be simplified into
∇∇∇ → −jk. This follows from:
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∇∇∇(e−j k·r) = −jk (e−j k·r)
After canceling the common factor ejωt−j k·r, Maxwell’s equations (2.1.1) take the form:

−jk× E0 = −jωµH0

−jk×H0 = jωεE0

k · E0 = 0

k ·H0 = 0

⇒

k× E0 =ωµH0

k×H0 = −ωεE0

k · E0 = 0

k ·H0 = 0

(2.9.3)

The last two imply that E0,H0 are transverse to k. The other two can be decoupled
by taking the cross product of the first equation with k and using the second equation:

k× (k× E0)=ωµk×H0 = −ω2µεE0 (2.9.4)

The left-hand side can be simplified using the BAC-CAB rule and k · E0 = 0, that is,
k× (k× E0)= k(k · E0)−E0(k · k)= −(k · k)E0. Thus, Eq. (2.9.4) becomes:

−(k · k)E0 = −ω2µεE0

Thus, we obtain the consistency condition:

k · k =ω2µε (2.9.5)

Defining k =
√

k · k = |k |, we have k =ω√µε. Using the relationshipωµ = kη and
defining the unit vector k̂ = k/|k | = k/k, the magnetic field is obtained from:

H0 = k× E0

ωµ
= k× E0

kη
= 1

η
k̂× E0

The constant-phase (and constant-amplitude) wavefronts are the planes k · r =
constant, or, k̂ · r = constant. They are the planes perpendicular to the propagation
direction k̂.

As an example, consider a rotated coordinate system {x′, y′, z′} in which the z′x′

axes are rotated by angle θ relative to the original zx axes, as shown in Fig. 2.9.1. Thus,
the new coordinates and corresponding unit vectors will be:

z′ = z cosθ+ x sinθ, ẑ′ = ẑ cosθ+ x̂ sinθ
x′ = x cosθ− z sinθ, x̂′ = x̂ cosθ− ẑ sinθ
y′ = y, ŷ′ = ŷ

(2.9.6)

We choose the propagation direction to be the new z-axis, that is, k̂ = ẑ′, so that the
wave vector k = k k̂ = k ẑ′ will have components kx = k cosθ and kx = k sinθ :

k = k k̂ = k(ẑ cosθ+ x̂ sinθ)= ẑkz + x̂kx

The propagation phase factor becomes:
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Fig. 2.9.1 TM and TE waves.

e−j k·r = e−j(kzz+kxx) = e−jk(z cosθ+x sinθ) = e−jkz′

Because {E0,H0,k } form a right-handed vector system, the electric field may have
components along the new transverse (with respect to z′) axes, that is, along x′ and y.
Thus, we may resolve E0 into the orthogonal directions:

E0 = x̂′A+ ŷB = (x̂ cosθ− ẑ sinθ)A+ ŷB (2.9.7)

The corresponding magnetic field will be H0 = k̂×E0/η = ẑ′×(x̂′A+ ŷB)/η. Using
the relationships ẑ′ × x̂′ = ŷ and ẑ′ × ŷ = −x̂′, we find:

H0 = 1

η
[
ŷA− x̂′B

] = 1

η
[
ŷA− (x̂ cosθ− ẑ sinθ)B

]
(2.9.8)

The complete expressions for the fields are then:

E(r, t) = [
(x̂ cosθ− ẑ sinθ)A+ ŷB

]
ejωt−jk(z cosθ+x sinθ)

H(r, t) = 1

η
[
ŷA− (x̂ cosθ− ẑ sinθ)B

]
ejωt−jk(z cosθ+x sinθ)

(2.9.9)

Written with respect to the rotated coordinate system {x′, y′, z′}, the solutions be-
come identical to those of Sec. 2.2:

E(r, t) = [
x̂′A+ ŷ′B

]
ejωt−jkz

′

H(r, t) = 1

η
[
ŷ′A− x̂′B

]
ejωt−jkz

′ (2.9.10)

They are uniform in the sense that they do not depend on the new transverse coor-
dinates x′, y′. The constant-phase planes are z′ = ẑ′ · r = z cosθ+ x sinθ = const.

The polarization properties of the wave depend on the relative phases and ampli-
tudes of the complex constantsA,B, with the polarization ellipse lying on the x′y′ plane.

The A- and B-components of E0 are referred to as transverse magnetic (TM) and
transverse electric (TE), respectively, where “transverse” is meant here with respect to
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the z-axis. The TE case has an electric field transverse to z; the TM case has a magnetic
field transverse to z. Fig. 2.9.1 depicts these two cases separately.

This nomenclature arises in the context of plane waves incident obliquely on inter-
faces, where the xz plane is the plane of incidence and the interface is the xy plane. The
TE and TM cases are also referred to as having “perpendicular” and “parallel” polariza-
tion vectors with respect to the plane of incidence, that is, the E-field is perpendicular
or parallel to the xz plane.

We may define the concept of transverse impedance as the ratio of the transverse
(with respect to z) components of the electric and magnetic fields. In particular, by
analogy with the definitions of Sec. 2.4, we have:

ηTM = ExHy =
A cosθ

1

η
A

= η cosθ

ηTE = − EyHx =
B

1

η
B cosθ

= η
cosθ

(2.9.11)

Such transverse impedances play an important role in describing the transfer matri-
ces of dielectric slabs at oblique incidence. We discuss them further in Chap. 6.

2.10 Complex Waves

The steps leading to the wave solution (2.9.1) do not preclude a complex-valued wavevec-
tor k. For example, if the medium is lossy, we must replace {η, k} by {ηc, kc}, where
kc = β − jα, resulting from a complex effective permittivity εc. If the propagation
direction is defined by the unit vector k̂, chosen to be a rotated version of ẑ, then the
wavevector will be defined by k = kc k̂ = (β−jα)k̂ . Because kc =ω

√
µεc and k̂·k̂ = 1,

the vector k satisfies the consistency condition (2.9.5):

k · k = k2
c =ω2µεc (2.10.1)

The propagation factor will be:

e−j k·r = e−jkc k̂·r = e−(α+jβ) k̂·r = e−α k̂·re−jβ k̂·r

The wave is still a uniform plane wave in the sense that the constant-amplitude
planes, α k̂ · r = const., and the constant-phase planes, β k̂ · r = const., coincide with
each other—being the planes perpendicular to the propagation direction. For example,
the rotated solution (2.9.10) becomes in the lossy case:

E(r, t) = [x̂′A+ ŷ′B
]
ejωt−jkcz

′ = [x̂′A+ ŷ′B
]
ejωt−(α+jβ)z

′

H(r, t) = 1

ηc

[
ŷ′A− x̂′B

]
ejωt−jkcz

′ = 1

ηc

[
ŷ′A− x̂′B

]
ejωt−(α+jβ)z

′ (2.10.2)
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In this solution, the real and imaginary parts of the wavevector k = βββ − jααα are
collinear, that is, βββ = β k̂ andααα = α k̂. There exist solutions having a complex wavevec-
tor k = βββ− jααα such that βββ,ααα are not collinear. The propagation factor becomes now:

e−j k·r = e−(ααα+jβββ)·r = e−ααα·re−jβββ·r (2.10.3)

If ααα,βββ are not collinear, such a wave will not be a uniform plane wave because the
constant-amplitude planes,ααα · r = const., and the constant-phase planes, βββ · r = const.,
will be different. The consistency condition k · k = k2

c = (β − jα)2 splits into the
following two conditions obtained by equating real and imaginary parts:

(βββ− jααα)·(βββ− jααα)= (β− jα)2 �
βββ ·βββ−ααα ·ααα = β2 −α2

βββ ·ααα = αβ (2.10.4)

With E0 chosen to satisfy k·E0 = (βββ− jααα)·E0 = 0, the magnetic field is computed from
Eq. (2.9.2), H0 = k× E0/ωµ = (βββ− jααα)×E0/ωµ.

Let us look at an explicit construction. We choose βββ,ααα to lie on the xz plane of
Fig. 2.9.1, and resolve them as βββ = ẑβz + ẑβx and ααα = ẑαz + ẑαx. Thus,

k = βββ− jααα = ẑ (βz − jαz)+ x̂ (βx − jαx)= ẑkz + x̂kx

Then, the propagation factor (2.10.3) and conditions (2.10.4) read explicitly:

e−j k·r = e−(αzz+αxx)e−j(βzz+βxx)
β2
z + β2

x −α2
z −α2

x = β2 −α2

βzαz + βxαx = βα
(2.10.5)

Because k is orthogonal to both ŷ and ŷ× k, we construct the electric field E0 as the
following linear combination of TM and TE terms:

E0 = (ŷ× k̂)A+ ŷB , where k̂ = k

kc
= βββ− jααα
β− jα (2.10.6)

This satisfies k · E0 = 0. Then, the magnetic field becomes:

H0 = k× E0

ωµ
= 1

ηc

[
ŷA− (ŷ× k̂)B

]
(2.10.7)

The vector k̂ is complex-valued and satisfies k̂ · k̂ = 1. These expressions reduce to
Eq. (2.10.2), if k̂ = ẑ′.

Waves with a complex k are known as complex waves. In applications, they always
appear in connection with some interface between two media. The interface serves either
as a reflecting/transmitting surface, or as a guiding surface.

For example, when plane waves are incident obliquely from a lossless dielectric onto
a planar interface with a lossy medium, the waves transmitted into the lossy medium
are of such complex type. Taking the interface to be the xy-plane and the lossy medium
to be the region z ≥ 0, it turns out that the transmitted waves are characterized by
attenuation only in the z-direction. Therefore, Eqs. (2.10.5) apply with αz > 0 and
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αx = 0. The parameter βx is fixed by Snell’s law, so that Eqs. (2.10.5) provide a system
of two equations in the two unknowns βz and αz. We discuss this further in Chap. 6.

Wave solutions with complex k = βββ − jααα are possible even when the propagation
medium is lossless so that εc = ε is real, and β =ω√µε and α = 0. Then, Eqs. (2.10.4)
become βββ ·βββ−ααα ·ααα = β2 and βββ ·ααα = 0. Thus, the constant-amplitude and constant-
phase planes are orthogonal to each other.

Examples of such waves are the evanescent waves in total internal reflection, various
guided-wave problems, such as surface waves, leaky waves, and traveling-wave antennas.
The most famous of these is the Zenneck wave, which is a surface wave propagating
along a lossy ground, decaying exponentially with distance above and along the ground.

For a classification of various types of complex waves and a review of several ap-
plications, including the Zenneck wave, see Refs. [451–457]. We will encounter some of
these later on.

The table below illustrates the vectorial directions and relative signs of some possible
types, assuming thatααα,βββ lie on the xz plane with the yz plane being the interface plane.

ααα βββ αz αx βz βx complex wave type

0 ↘ 0 0 + − oblique incidence

↑ → 0 + + 0 evanescent surface wave

↗ ↘ + + + − Zenneck surface wave

↖ ↗ − + + + leaky wave

2.11 Problems

2.1 A function E(z, t) may be thought of as a function E(ζ, ξ) of the independent variables
ζ = z − ct and ξ = z + ct. Show that the wave equation (2.1.6) and the forward-backward
equations (2.1.9) become in these variables:

∂2E

∂ζ∂ξ
= 0 ,

∂E+
∂ξ

= 0 ,
∂E−
∂ζ

= 0

Thus, E+ may depend only on ζ and E− only on ξ.

2.2 A source located at z = 0 generates an electromagnetic pulse of duration of T sec, given by
E(0, t)= x̂E0

[
u(t)−u(t − T)], where u(t) is the unit step function and E0 is a constant.

The pulse is launched towards the positive z-direction. Determine expressions for E(z, t)
and H(z, t) and sketch them versus z at any given t.

2.3 Show that for a single-frequency wave propagating along the z-direction the corresponding
transverse fields E(z),H(z) satisfy the system of equations:

∂
∂z

[
E

H× ẑ

]
=
[

0 −jωµ
−jωε 0

][
E

H× ẑ

]

where the matrix equation is meant to apply individually to the x, y components of the
vector entries. Show that the following similarity transformation diagonalizes the transition
matrix, and discuss its role in decoupling and solving the above system in terms of forward
and backward waves:
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[
1 η
1 −η

][
0 −jωµ

−jωε 0

][
1 η
1 −η

]−1

=
[
−jk 0

0 jk

]

where k =ω/c, c = 1/√µε , and η = √µ/ε.
2.4 The visible spectrum has the wavelength range 380–780 nm. What is this range in THz? In

particular, determine the frequencies of red, orange, yellow, green, blue, and violet having
the nominal wavelengths of 700, 610, 590, 530, 470, and 420 nm.

2.5 What is the frequency in THz of a typical CO2 laser (used in laser surgery) having the far
infrared wavelength of 20 µm?

2.6 What is the wavelength in meters or cm of a wave with the frequencies of 10 kHz, 10 MHz,
and 10 GHz?

What is the frequency in GHz of the 21-cm hydrogen line observed in the cosmos?

What is the wavelength in cm of the typical microwave oven frequency of 2.45 GHz?

2.7 Suppose you start with E(z, t)= x̂E0ejωt−jkz, but you do not yet know the relationship
between k andω (you may assume they are both positive.) By inserting E(z, t) into Maxwell’s
equations, determine the k–ω relationship as a consequence of these equations. Determine
also the magnetic field H(z, t) and verify that all of Maxwell’s equations are satisfied.

Repeat the problem if E(z, t)= x̂E0ejωt+jkz and if E(z, t)= ŷE0ejωt−jkz.

2.8 Determine the polarization types of the following waves, and indicate the direction, if linear,
and the sense of rotation, if circular or elliptic:

a. E = E0(x̂+ ŷ)e−jkz e. E = E0(x̂− ŷ)e−jkz

b. E = E0(x̂−
√

3 ŷ)e−jkz f. E = E0(
√

3 x̂− ŷ)e−jkz

c. E = E0(j x̂+ ŷ)e−jkz g. E = E0(j x̂− ŷ)ejkz

d. E = E0(x̂− 2j ŷ)e−jkz h. E = E0(x̂+ 2j ŷ)ejkz

2.9 A uniform plane wave, propagating in the z-direction in vacuum, has the following electric
field:

EEE(t, z)= 2 x̂ cos(ωt − kz)+4 ŷ sin(ωt − kz)
a. Determine the vector phasor representingEEE(t, z) in the complex form E = E0ejωt−jkz.

b. Determine the polarization of this electric field (linear, circular, elliptic, left-handed,
right-handed?)

c. Determine the magnetic fieldHHH(t, z) in its real-valued form.

2.10 Show that in order for the polarization ellipse of Eq. (2.5.4) to be equivalent to the rotated one
of Eq. (2.5.7), one must determine the tilt angle θ such that the following matrix condition
is satisfied:

[
cosθ sinθ
− sinθ cosθ

]
1

A2
− cosφ
AB

− cosφ
AB

1

B2



[

cosθ − sinθ
sinθ cosθ

]
= sin2φ




1

A′2
0

0
1

B′2




Show that the required angleθ is given by Eq. (2.5.5). Then, show that the following condition
is satisfied, where τ = tanθ:
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(A2 − B2τ2)(B2 −A2τ2)
(1− τ2)2

= A2B2 sin2φ

Using this property, show that the semi-axes A′, B′ are given by the equations:

A′2 = A
2 − B2τ2

1− τ2
, B′2 = B

2 −A2τ2

1− τ2

Then, transform these equations into the form of Eq. (2.5.6). Finally, show thatA′, B′ satisfy
the relationships:

A′2 + B′2 = A2 + B2 , A′B′ = AB| sinφ|

2.11 Show the cross-product equation (2.5.10). Then, prove the more general relationship:

EEE(t1)×EEE(t2)= ẑAB sinφ sin
(
ω(t2 − t1)

)
Discuss how linear polarization can be explained with the help of this result.

2.12 Using the properties kcηc = ωµ and k2
c = ω2µεc for the complex-valued quantities kc, ηc

of Eq. (2.6.5), show the following relationships, where εc = ε′ − jε′′ and kc = β− jα:

Re
(
η−1
c
) = ωε′′

2α
= β
ωµ

2.13 Show that for a lossy medium the complex-valued quantities kc and ηc may be expressed as
follows, in terms of the loss angle θ defined in Eq. (2.6.27):

kc = β− jα =ω
√
µε′d

(
cos

θ
2
− j sin

θ
2

)
(cosθ)−1/2

ηc = η′ + jη′′ =
√
µ
ε′d

(
cos

θ
2
+ j sin

θ
2

)
(cosθ)1/2

2.14 It is desired to reheat frozen mashed potatoes and frozen cooked carrots in a microwave oven
operating at 2.45 GHz. Determine the penetration depth and assess the effectiveness of this
heating method. Moreover, determine the attenuation of the electric field (in dB and absolute
units) at a depth of 1 cm from the surface of the food. The complex dielectric constants of
the mashed potatoes and carrots are (see [112]) εc = (65− j25)ε0 and εc = (75− j25)ε0.

2.15 We wish to shield a piece of equipment from RF interference over the frequency range from
10 kHz to 1 GHz by enclosing it in a copper enclosure. The RF interference inside the
enclosure is required to be at least 50 dB down compared to its value outside. What is the
minimum thickness of the copper shield in mm?

2.16 In order to protect a piece of equipment from RF interference, we construct an enclosure
made of aluminum foil (you may assume a reasonable value for its thickness.) The conduc-
tivity of aluminum is 3.5×107 S/m. Over what frequency range can this shield protect our
equipment assuming the same 50-dB attenuation requirement of the previous problem?

2.17 A uniform plane wave propagating towards the positive z-direction in empty space has an
electric field at z = 0 that is a linear superposition of two components of frequencies ω1

andω2:

E(0, t)= x̂ (E1ejω1t + E2ejω2t)

Determine the fields E(z, t) and H(z, t) at any point z.
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2.18 An electromagnetic wave propagating in a lossless dielectric is described by the electric and
magnetic fields, E(z)= x̂E(z) and H(z)= ŷH(z), consisting of the forward and backward
components:

E(z) = E+e−jkz + E−ejkz

H(z) = 1

η
(E+e−jkz − E−ejkz)

a. Verify that these expressions satisfy all of Maxwell’s equations.

b. Show that the time-averaged energy flux in the z-direction is independent of z and is
given by:

Pz = 1

2
Re
[
E(z)H∗(z)

] = 1

2η
(|E+|2 − |E−|2)

c. Assuming µ = µ0 and ε = n2ε0, so that n is the refractive index of the dielectric, show
that the fields at two different z-locations, say at z = z1 and z = z2 are related by the
matrix equation:

[
E(z1)
η0H(z1)

]
=
[

coskl jn−1 sinkl
jn sinkl coskl

][
E(z2)
η0H(z2)

]

where l = z2 − z1, and we multiplied the magnetic field by η0 =
√
µ0/η0 in order to

give it the same dimensions as the electric field.

d. Let Z(z)= E(z)
η0H(z)

and Y(z)= 1

Z(z)
be the normalized wave impedance and admit-

tance at location z. Show the relationships at at the locations z1 and z2 :

Z(z1)= Z(z2)+jn−1 tankl
1+ jnZ(z2)tankl

, Y(z1)= Y(z2)+jn tankl
1+ jn−1Y(z2)tankl

What would be these relationships if had we normalized to the medium impedance,
that is, Z(z)= E(z)/ηH(z)?

2.19 Show that the time-averaged energy density and Poynting vector of the obliquely moving
wave of Eq. (2.9.10) are given by

w = 1

2
Re
[1

2
εE · E∗ + 1

2
µH ·H∗

] = 1

2
ε
(|A|2 + |B|2)

PPP = 1

2
Re
[
E×H∗]= ẑ′

1

2η
(|A|2 + |B|2)= (ẑ cosθ+ x̂ sinθ)

1

2η
(|A|2 + |B|2)

where ẑ′ = ẑ cosθ+ x̂ sinθ is the unit vector in the direction of propagation. Show that the
energy transport velocity is v =PPP/w = c ẑ′.

2.20 A uniform plane wave propagating in empty space has electric field:

E(x, z, t)= ŷE0ejωte−jk(x+z)/
√

2 , k = ω
c0

a. Inserting E(x, z, t) into Maxwell’s equations, work out an expression for the corre-
sponding magnetic field H(x, z, t).

b. What is the direction of propagation and its unit vector k̂?
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c. Working with Maxwell’s equations, determine the electric field E(x, z, t) and propaga-
tion direction k̂, if we started with a magnetic field given by:

H(x, z, t)= ŷH0ejωte−jk(
√

3z−x)/2

2.21 A linearly polarized light wave with electric field E0 at angle θ with respect to the x-axis
is incident on a polarizing filter, followed by an identical polarizer (the analyzer) whose
primary axes are rotated by an angle φ relative to the axes of the first polarizer, as shown
in Fig. 2.11.1.

Fig. 2.11.1 Polarizer–analyzer filter combination.

Assume that the amplitude attenuations through the first polarizer are a1, a2 with respect
to the x- and y-directions. The polarizer transmits primarily the x-polarization, so that
a2 � a1. The analyzer is rotated by an angle φ so that the same gains a1, a2 now refer to
the x′- and y′-directions.

a. Ignoring the phase retardance introduced by each polarizer, show that the polarization
vectors at the input, and after the first and second polarizers, are:

E0 = x̂ cosθ+ ŷ sinθ

E1 = x̂a1 cosθ+ ŷa2 sinθ

E2 = x̂′(a2
1 cosφ cosθ+ a1a2 sinφ sinθ)+ŷ′(a2

2 cosφ sinθ− a1a2 sinφ cosθ)

where {x̂′, ŷ′} are related to {x̂, ŷ} as in Problem 3.7.

b. Explain the meaning and usefulness of the matrix operations:[
a1 0
0 a2

][
cosφ sinφ
− sinφ cosφ

][
a1 0
0 a2

][
cosθ
sinθ

]
and

[
cosφ − sinφ
sinφ cosφ

][
a1 0
0 a2

][
cosφ sinφ
− sinφ cosφ

][
a1 0
0 a2

][
cosθ
sinθ

]

c. Show that the output light intensity is proportional to the quantity:

I =(a4
1 cos2 θ+ a4

2 sin2 θ)cos2φ+ a2
1a2

2 sin2φ+
+ 2a1a2(a2

1 − a2
2)cosφ sinφ cosθ sinθ

d. If the input light were unpolarized, that is, incoherent, show that the average of the
intensity of part (c) over all angles 0 ≤ θ ≤ 2π, will be given by the generalized Malus’s
law:

I = 1

2
(a4

1 + a4
2)cos2φ+ a2

1a2
2 sin2φ

The case a2 = 0, represents the usual Malus’ law.



3
Propagation in Birefringent Media

3.1 Linear and Circular Birefringence

In this chapter, we discuss wave propagation in anisotropic media that are linearly or cir-
cularly birefringent. In such media, uniform plane waves can be decomposed in two or-
thogonal polarization states (linear or circular) that propagate with two different speeds.
The two states develop a phase difference as they propagate, which alters the total po-
larization of the wave. Such media are used in the construction of devices for generating
different polarizations.

Linearly birefringent materials can be used to change one polarization into another,
such as changing linear into circular. Examples are the so-called uniaxial crystals, such
as calcite, quartz, ice, tourmaline, and sapphire.

Optically active or chiral media are circularly birefringent. Examples are sugar solu-
tions, proteins, lipids, nucleic acids, amino acids, DNA, vitamins, hormones, and virtually
most other natural substances. In such media, circularly polarized waves go through
unchanged, with left- and right-circular polarizations propagating at different speeds.
This difference causes linearly polarized waves to have their polarization plane rotate
as they propagate—an effect known as natural optical rotation.

A similar but not identical effect—the Faraday rotation—takes place in gyroelec-
tric media, which are ordinary isotropic materials (glass, water, conductors, plasmas)
subjected to constant external magnetic fields that break their isotropy. Gyromagnetic
media, such as ferrites subjected to magnetic fields, also become circularly birefringent.

We discuss all four birefringent cases (linear, chiral, gyroelectric, and gyromagnetic)
and the type of constitutive relationships that lead to the corresponding birefringent
behavior. We begin by casting Maxwell’s equations in different polarization bases.

An arbitrary polarization can be expressed uniquely as a linear combination of two
polarizations along two orthogonal directions.† For waves propagating in the z-direction,
we may use the two linear directions {x̂, ŷ}, or the two circular ones for right and left
polarizations {ê+, ê−}, where ê+ = x̂ − jŷ and ê− = x̂ + jŷ.‡ Indeed, we have the
following identity relating the linear and circular bases:

†For complex-valued vectors e1, e2, orthogonality is defined with conjugation: e∗1 · e2 = 0.
‡Note that ê± satisfy: ê∗± · ê± = 2, ê∗+ · ê− = 0, ê+ × ê− = 2j ẑ, and ẑ× ê± = ±j ê±.
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E = x̂Ex + ŷEy = ê+ E+ + ê− E− , where E± = 1

2
(Ex ± jEy) (3.1.1)

The circular components E+ and E− represent right and left polarizations (in the
IEEE convention) if the wave is moving in the positive z-direction, but left and right if it
is moving in the negative z-direction.

Because the propagation medium is not isotropic, we need to start with the source-
free Maxwell’s equations before we assume any particular constitutive relationships:

∇∇∇× E = −jωB , ∇∇∇×H = jωD , ∇∇∇ ·D = 0 , ∇∇∇ · B = 0 (3.1.2)

For a uniform plane wave propagating in the z-direction, we may replace the gradient
by ∇∇∇ = ẑ∂z. It follows that the curls ∇∇∇× E = ẑ × ∂zE and ∇∇∇× H = ẑ × ∂zH will be
transverse to the z-direction. Then, Faraday’s and Ampère’s laws imply that Dz = 0
and Bz = 0, and hence both of Gauss’ laws are satisfied. Thus, we are left only with:

ẑ× ∂zE = −jωB

ẑ× ∂zH = jωD
(3.1.3)

These equations do not “see” the components Ez,Hz. However, in all the cases that
we consider here, the conditions Dz = Bz = 0 will imply also that Ez = Hz = 0. Thus,
all fields are transverse, for example, E = x̂Ex + ŷEy = ê+ E+ + ê− E−. Equating x, y
components in the two sides of Eq. (3.1.3), we find in the linear basis:

∂zEx = −jωBy , ∂zEy = jωBx
∂zHy = −jωDx , ∂zHx = jωDy (linear basis) (3.1.4)

Using the vector property ẑ × ê± = ±j ê± and equating circular components, we
obtain the circular-basis version of Eq. (3.1.3) (after canceling some factors of j):

∂zE± = ∓ωB±
∂zH± = ±ωD± (circular basis) (3.1.5)

3.2 Uniaxial and Biaxial Media

In uniaxial and biaxial homogeneous anisotropic dielectrics, the D−E constitutive rela-
tionships are given by the following diagonal forms, where in the biaxial case all diagonal
elements of the permittivity matrix are distinct:



Dx
Dy
Dz


 =



εe 0 0
0 εo 0
0 0 εo





Ex
Ey
Ez


 and



Dx
Dy
Dz


 =



ε1 0 0
0 ε2 0
0 0 ε3





Ex
Ey
Ez


 (3.2.1)

For the uniaxial case, the x-axis is taken to be the extraordinary axis with ε1 = εe,
whereas the y and z axes are ordinary axes with permittivities ε2 = ε3 = εo.

The ordinary z-axis was chosen to be the propagation direction in order for the
transverse x, y axes to correspond to two different permittivities. In this respect, the
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uniaxial and biaxial cases are similar, and therefore, we will work with the biaxial case.
Setting Dx = ε1Ex and Dy = ε2Ey in Eq. (3.1.4) and assuming B = µ0H, we have:

∂zEx = −jωµ0Hy , ∂zEy = jωµ0Hx
∂zHy = −jωε1Ex , ∂zHx = jωε2Ey

(3.2.2)

Differentiating these once more with respect to z, we obtain the decoupled Helmholtz
equations for the x-polarized and y-polarized components:

∂2
zEx = −ω2µ0ε1Ex
∂2
zEy = −ω2µ0ε2Ey

(3.2.3)

The forward-moving solutions are:

Ex(z)= Ae−jk1z , k1 =ω√µ0ε1 = k0n1

Ey(z)= Be−jk2z , k2 =ω√µ0ε2 = k0n2
(3.2.4)

where k0 =ω√µ0ε0 =ω/c0 is the free-space wavenumber and we defined the refractive
indices n1 =

√
ε1/ε0 and n2 =

√
ε2/ε0. Therefore, the total transverse field at z = 0 and

at distance z = l inside the medium will be:

E(0) = x̂A+ ŷB

E(l) = x̂Ae−jk1l + ŷBe−jk2l = [x̂A+ ŷBej(k1−k2)l
]
e−jk1l

(3.2.5)

The relative phase φ = (k1 − k2)l between the x- and y-components introduced by
the propagation is called retardance:

φ = (k1 − k2)l = (n1 − n2)k0l = (n1 − n2)
2πl
λ

(3.2.6)

where λ is the free-space wavelength. Thus, the polarization nature of the field keeps
changing as it propagates.

In order to change linear into circular polarization, the wave may be launched into
the birefringent medium with a linear polarization having equal x- and y-components.
After it propagates a distance l such that φ = (n1 − n2)k0l = π/2, the wave will have
changed into left-handed circular polarization:

E(0) = A(x̂+ ŷ
)

E(l) = A(x̂+ ŷejφ
)
e−jk1l = A(x̂+ j ŷ)e−jk1l

(3.2.7)

Polarization-changing devices that employ this property are called retarders and are
shown in Fig. 3.2.1. The above example is referred to as a quarter-wave retarder because
the condition φ = π/2 may be written as (n1 − n2)l = λ/4.
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Fig. 3.2.1 Linearly and circularly birefringent retarders.

3.3 Chiral Media

Ever since the first experimental observations of optical activity by Arago and Biot in
the early 1800s and Fresnel’s explanation that optical rotation is due to circular bire-
fringence, there have been many attempts to explain it at the molecular level. Pasteur
was the first to postulate that optical activity is caused by the chirality of molecules.

There exist several versions of constitutive relationships that lead to circular bire-
fringence [260–276]. For single-frequency waves, they are all equivalent to each other.
For our purposes, the following so-called Tellegen form is the most convenient [34]:

D = εE− jχH
B = µH+ jχE

(chiral media) (3.3.1)

where χ is a parameter describing the chirality properties of the medium.
It can be shown that the reality (for a lossless medium) and positivity of the energy

density function (E∗ ·D+H∗ · B)/2 requires that the constitutive matrix[
ε −jχ
jχ µ

]

be hermitian and positive definite. This implies that ε, µ,χ are real, and furthermore,
that |χ| < √µε. Using Eqs. (3.3.1) in Maxwell’s equations (3.1.5), we obtain:

∂zE± = ∓ωB± = ∓ω(µH± + jχE±)
∂zH± = ±ωD± = ±ω(εE± − jχH±)

(3.3.2)

Defining c = 1/√µε, η = √
µ/ε, k = ω/c = ω√µε, and the following real-valued

dimensionless parameter a = cχ = χ/√µε (so that |a| < 1), we may rewrite Eqs. (3.3.2)
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in the following matrix forms:

∂
∂z

[
E±
ηH±

]
= ∓

[
jka k
−k jka

][
E±
ηH±

]
(3.3.3)

These matrix equations may be diagonalized by appropriate linear combinations. For
example, we define the right-polarized (forward-moving) and left-polarized (backward-
moving) waves for the {E+,H+} case:

ER+ = 1

2

[
E+ − jηH+

]

EL+ = 1

2

[
E+ + jηH+

] �

E+ = ER+ + EL+

H+ = 1

jη
[
ER+ − EL+

] (3.3.4)

It then follows from Eq. (3.3.3) that {ER+, EL+} will satisfy the decoupled equations:

∂
∂z

[
ER+
EL+

]
=
[
−jk+ 0

0 jk−

][
ER+
EL+

]
⇒ ER+(z)= A+ e−jk+z

EL+(z)= B+ ejk−z (3.3.5)

where k+, k− are defined as follows:

k± = k(1± a)=ω
(√
µε± χ) (3.3.6)

We may also define circular refractive indices by n± = k±/k0, where k0 is the free-
space wavenumber, k0 =ω√µ0ε0. Setting also n = k/k0 = √µε/√µ0ε0, we have:

k± = n±k0 , n± = n(1± a) (3.3.7)

For the {E−,H−} circular components, we define the left-polarized (forward-moving)
and right-polarized (backward-moving) fields by:

EL− = 1

2

[
E− + jηH−

]

ER− = 1

2

[
E− − jηH−

] �

E− = EL− + ER−

H− = − 1

jη
[
EL− − ER−

] (3.3.8)

Then, {EL−, ER−} will satisfy:

∂
∂z

[
EL−
ER−

]
=
[
−jk− 0

0 jk+

][
EL−
ER−

]
⇒ EL−(z)= A− e−jk−z

ER−(z)= B− ejk+z (3.3.9)

In summary, we obtain the complete circular-basis fields E±(z):

E+(z) = ER+(z)+EL+(z)= A+ e−jk+z + B+ ejk−z

E−(z) = EL−(z)+ER−(z)= A− e−jk−z + B− ejk+z
(3.3.10)

Thus, the E+(z) circular component propagates forward with wavenumber k+ and
backward with k−, and the reverse is true of the E−(z) component. The forward-moving
component of E+ and the backward-moving component of E−, that is, ER+ and ER−, are
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both right-polarized and both propagate with the same wavenumber k+. Similarly, the
left-polarized waves EL+ and EL− both propagate with k−.

Thus, a wave of given circular polarization (left or right) propagates with the same
wavenumber regardless of its direction of propagation. This is a characteristic difference
of chiral versus gyrotropic media in external magnetic fields.

Consider, next, the effect of natural rotation. We start with a linearly polarized field
at z = 0 and decompose it into its circular components:

E(0)= x̂Ax + ŷAy = ê+A+ + ê−A− , with A± = 1

2
(Ax ± jAy)

where Ax,Ay must be real for linear polarization. Propagating the circular components
forward by a distance l according to Eq. (3.3.10), we find:

E(l) = ê+A+ e−jk+l + ê−A− e−jk−l

= [ê+A+e−j(k+−k−)l/2 + ê−A−ej(k+−k−)l/2
]
e−j(k++k−)l/2

= [ê+A+e−jφ + ê−A−ejφ
]
e−j(k++k−)l/2

(3.3.11)

where we defined the angle of rotation:

φ = 1

2
(k+ − k−)l = akl (natural rotation) (3.3.12)

Going back to the linear basis, we find:

ê+A+e−jφ + ê−A−ejφ = (x̂− jŷ)1

2
(Ax + jAy)e−jφ + (x̂+ jŷ)1

2
(Ax − jAy)ejφ

= [x̂ cosφ− ŷ sinφ
]
Ax +

[
ŷ cosφ+ x̂ sinφ

]
Ay

= x̂′Ax + ŷ′Ay

Therefore, at z = 0 and z = l, we have:

E(0)= [x̂Ax + ŷAy
]

E(l)= [x̂′Ax + ŷ′Ay
]
e−j(k++k−)l/2

(3.3.13)

The new unit vectors x̂′ = x̂ cosφ−ŷ sinφ and ŷ′ = ŷ cosφ+x̂ sinφ are recognized
as the unit vectors x̂, ŷ rotated clockwise (ifφ > 0) by the angleφ, as shown in Fig. 3.2.1
(for the case Ax �= 0, Ay = 0.) Thus, the wave remains linearly polarized, but its
polarization plane rotates as it propagates.

If the propagation is in the negative z-direction, then as follows from Eq. (3.3.10), the
roles of k+ and k− are interchanged so that the rotation angle becomesφ = (k−−k+)l/2,
which is the negative of that of Eq. (3.3.12).

If a linearly polarized wave travels forward by a distance l, gets reflected, and travels
back to the starting point, the total angle of rotation will be zero. By contrast, in the
Faraday rotation case, the angle keeps increasing so that it doubles after a round trip
(see Problem 3.10.)
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3.4 Gyrotropic Media

Gyrotropic† media are isotropic media in the presence of constant external magnetic
fields. A gyroelectric medium (at frequencyω) has constitutive relationships:



Dx
Dy
Dz


 =




ε1 jε2 0
−jε2 ε1 0

0 0 ε3





Ex
Ey
Ez


 , B = µH (3.4.1)

For a lossless medium, the positivity of the energy density function requires that the
permittivity matrix be hermitian and positive-definite, which implies that ε1, ε2, ε3 are
real, and moreover, ε1 > 0, |ε2| ≤ ε1, and ε3 > 0. The quantity ε2 is proportional to the
external magnetic field and reverses sign with the direction of that field.

A gyromagnetic medium, such as a ferrite in the presence of a magnetic field, has
similar constitutive relationships, but with the roles of D and H interchanged:



Bx
By
Bz


 =




µ1 jµ2 0
−jµ2 µ1 0

0 0 µ3





Hx
Hy
Hz


 , D = εE (3.4.2)

where again µ1 > 0, |µ2| ≤ µ1, and µ3 > 0 for a lossless medium.
In the circular basis of Eq. (3.1.1), the above gyrotropic constitutive relationships

take the simplified forms:

D± = (ε1 ± ε2)E± , B± = µH± , (gyroelectric)

B± = (µ1 ± µ2)H± , D± = εE± , (gyromagnetic)
(3.4.3)

where we ignored the z-components, which are zero for a uniform plane wave propa-
gating in the z-direction. For example,

Dx ± jDy = (ε1Ex + jε2Ey)±j(ε1Ey − jε2Ex)= (ε1 ± ε2)(Ex ± jEy)
Next, we solve Eqs. (3.1.5) for the forward and backward circular-basis waves. Con-

sidering the gyroelectric case first, we define the following quantities:

ε± = ε1 ± ε2 , k± =ω√µε± , η± =
√
µ
ε±

(3.4.4)

Using these definitions and the constitutive relations D± = ε±E±, Eqs. (3.1.5) may
be rearranged into the following matrix forms:

∂
∂z

[
E±
η±H±

]
=
[

0 ∓k±
±k± 0

][
E±
η±H±

]
(3.4.5)

These may be decoupled by defining forward- and backward-moving fields as in
Eqs. (3.3.4) and (3.3.8), but using the corresponding circular impedances η±:

ER+ = 1

2

[
E+ − jη+H+

]

EL+ = 1

2

[
E+ + jη+H+

]
EL− = 1

2

[
E− + jη−H−

]

ER− = 1

2

[
E− − jη−H−

] (3.4.6)

†The term “gyrotropic” is sometimes also used to mean “optically active.”
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These satisfy the decoupled equations:

∂
∂z

[
ER+
EL+

]
=
[
−jk+ 0

0 jk+

][
ER+
EL+

]
⇒ ER+(z)= A+ e−jk+z

EL+(z)= B+ ejk+z

∂
∂z

[
EL−
ER−

]
=
[
−jk− 0

0 jk−

][
EL−
ER−

]
⇒ EL−(z)= A− e−jk−z

ER−(z)= B− ejk−z
(3.4.7)

Thus, the complete circular-basis fields E±(z) are:

E+(z) = ER+(z)+EL+(z)= A+ e−jk+z + B+ ejk+z

E−(z) = EL−(z)+ER−(z)= A− e−jk−z + B− ejk−z
(3.4.8)

Now, the E+(z) circular component propagates forward and backward with the same
wavenumber k+, while E−(z) propagates with k−. Eq. (3.3.13) and the steps leading to
it remain valid here. The rotation of the polarization plane is referred to as the Faraday
rotation. If the propagation is in the negative z-direction, then the roles of k+ and k−
remain unchanged so that the rotation angle is still the same as that of Eq. (3.3.12).

If a linearly polarized wave travels forward by a distance l, gets reflected, and travels
back to the starting point, the total angle of rotation will be double that of the single
trip, that is, 2φ = (k+ − k−)l.

Problems 1.9 and 3.12 discuss simple models of gyroelectric behavior for conduc-
tors and plasmas in the presence of an external magnetic field. Problem 3.14 develops
the Appleton-Hartree formulas for plane waves propagating in plasmas, such as the
ionosphere [277–281].

The gyromagnetic case is essentially identical to the gyroelectric one. Eqs. (3.4.5) to
(3.4.8) remain the same, but with circular wavenumbers and impedances defined by:

µ± = µ1 ± µ2 , k± =ω√εµ± , η± =
√
µ±
ε

(3.4.9)

Problem 3.13 discusses a model for magnetic resonance exhibiting gyromagnetic
behavior. Magnetic resonance has many applications—from NMR imaging to ferrite mi-
crowave devices [282–293]. Historical overviews may be found in [291,293].

3.5 Linear and Circular Dichroism

Dichroic polarizers, such as polaroids, are linearly birefringent materials that have widely
different attenuation coefficients along the two polarization directions. For a lossy ma-
terial, the field solutions given in Eq. (3.2.4) are modified as follows:

Ex(z)= Ae−jk1z = Ae−α1ze−jβ1z , k1 =ω√µε1 = β1 − jα1

Ey(z)= Be−jk2z = Be−α2ze−jβ12 , k2 =ω√µε2 = β2 − jα2
(3.5.1)

where α1,α2 are the attenuation coefficients. Passing through a length l of such a
material, the initial and output polarizations will be as follows:
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E(0)= x̂A+ ŷB

E(l)= x̂Ae−jk1l + ŷBe−jk2l = (x̂Ae−α1l + ŷBe−α2lejφ
)
e−jβ1l

(3.5.2)

In addition to the phase changeφ = (β1−β2)l, the field amplitudes have attenuated
by the unequal factors a1 = e−α1l and a2 = e−α2l. The resulting polarization will be
elliptic with unequal semi-axes. If α2 	 α1, then a2 
 a1 and the y-component can be
ignored in favor of the x-component.

This is the basic principle by which a polaroid material lets through only a preferred
linear polarization. An ideal linear polarizer would have a1 = 1 and a2 = 0, correspond-
ing toα1 = 0 andα2 = ∞. Typical values of the attenuations for commercially available
polaroids are of the order of a1 = 0.9 and a2 = 10−2, or 0.9 dB and 40 dB, respectively.

Chiral media may exhibit circular dichroism [262,275], in which the circular wavenum-
bers become complex, k± = β± − jα±. Eq. (3.3.11) reads now:

E(l) = ê+A+ e−jk+l + ê−A− e−jk−l

= [ê+A+e−j(k+−k−)l/2 + ê−A−ej(k+−k−)l/2
]
e−j(k++k−)l/2

= [ê+A+e−ψ−jφ + ê−A−eψ+jφ
]
e−j(k++k−)l/2

(3.5.3)

where we defined the complex rotation angle:

φ− jψ = 1

2
(k+ − k−)l = 1

2
(β+ − β−)l− j 1

2
(α+ −α−)l (3.5.4)

Going back to the linear basis as in Eq. (3.3.13), we obtain:

E(0)= [x̂Ax + ŷAy
]

E(l)= [x̂′A′x + ŷ′A′y
]
e−j(k++k−)l/2 (3.5.5)

where {x̂′, ŷ′} are the same rotated (by φ) unit vectors of Eq. (3.3.13), and

A′x = Ax coshψ− jAy sinhψ
A′y = Ay coshψ+ jAx sinhψ

(3.5.6)

Because the amplitudes A′x,A′y are now complex-valued, the resulting polarization
will be elliptical.

3.6 Oblique Propagation in Birefringent Media

Here, we discuss TE and TM waves propagating in oblique directions in linearly birefrin-
gent media. We will use these results in Chap. 7 to discuss reflection and refraction in
such media, and to characterize the properties of birefringent multilayer structures.

Applications include the recently manufactured (by 3M, Inc.) multilayer birefrin-
gent polymer mirrors that have remarkable and unusual optical properties, collectively
referred to as giant birefringent optics (GBO) [241].

Oblique propagation in chiral and gyrotropic media is discussed in the problems.
Further discussions of wave propagation in anisotropic media may be found in [31–33].
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We recall from Sec. 2.9 that a uniform plane wave propagating in a lossless isotropic
dielectric in the direction of a wave vector k is given by:

E(r)= Ee−j k·r , H(r)= He−j k·r , with k̂ · E = 0 , H = n
η0

k̂× E (3.6.1)

where n is the refractive index of the medium n = √ε/ε0, η0 the free-space impedance,
and k̂ the unit-vector in the direction of k, so that,

k = k k̂ , k = |k| =ω√µ0ε = nk0 , k0 = ωc0
=ω√µ0ε0 (3.6.2)

and k0 is the free-space wavenumber. Thus, E,H, k̂ form a right-handed system.
In particular, following the notation of Fig. 2.9.1, if k is chosen to lie in the xz plane

at an angle θ from the z-axis, that is, k̂ = x̂ sinθ+ ẑ cosθ, then there will be two inde-
pendent polarization solutions: TM, parallel, or p-polarization, and TE, perpendicular,
or s-polarization, with fields given by

(TM or p-polarization): E = E0(x̂ cosθ− ẑ sinθ) , H = n
η0
E0 ŷ

(TE or s-polarization): E = E0 ŷ , H = n
η0
E0(−x̂ cosθ+ ẑ sinθ)

(3.6.3)

where, in both the TE and TM cases, the propagation phase factor e−j k·r is:

e−j k·r = e−j(kzz+kxx) = e−jk0n(z cosθ+x sinθ) (3.6.4)

The designation as parallel or perpendicular is completely arbitrary here and is taken
with respect to the xz plane. In the reflection and refraction problems discussed in
Chap. 6, the dielectric interface is taken to be the xy plane and the xz plane becomes
the plane of incidence.

In a birefringent medium, the propagation of a uniform plane wave with arbitrary
wave vector k is much more difficult to describe. For example, the direction of the
Poynting vector is not towards k, the electric field E is not orthogonal to k, the simple
dispersion relationship k = nω/c0 is not valid, and so on.

In the previous section, we considered the special case of propagation along an ordi-
nary optic axis in a birefringent medium. Here, we discuss the somewhat more general
case in which the xyz coordinate axes coincide with the principal dielectric axes (so that
the permittivity tensor is diagonal,) and we take the wave vector k to lie in the xz plane
at an angle θ from the z-axis. The geometry is depicted in Fig. 3.6.1.

Although this case is still not the most general one with a completely arbitrary direc-
tion for k, it does contain most of the essential features of propagation in birefringent
media. The 3M multilayer films mentioned above have similar orientations for their
optic axes [241].

The constitutive relations are assumed to be B = µ0H and a diagonal permittivity
tensor for D. Let ε1, ε2, ε3 be the permittivity values along the three principal axes and
define the corresponding refractive indices ni =

√
εi/ε0, i = 1,2,3. Then, the D -E

relationship becomes:

Dx
Dy
Dz


 =



ε1 0 0
0 ε2 0
0 0 ε3





Ex
Ey
Ez


 = ε0



n2

1 0 0
0 n2

2 0
0 0 n2

3





Ex
Ey
Ez


 (3.6.5)
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Fig. 3.6.1 Uniform plane waves in a birefringent medium.

For a biaxial medium, the three ni are all different. For a uniaxial medium, we take
the xy-axes to be ordinary, with n1 = n2 = no, and the z-axis to be extraordinary, with
n3 = ne.† The wave vector k can be resolved along the z and x directions as follows:

k = k k̂ = k(x̂ sinθ+ ẑ cosθ)= x̂kx + ẑkz (3.6.6)

The ω-k relationship is determined from the solution of Maxwell’s equations. By
analogy with the isotropic case that has k = nk0 = nω/c0, we may define an effective
refractive index N such that:

k = Nk0 = N ωc0
(effective refractive index) (3.6.7)

We see below by solving Maxwell’s equations that N depends on the chosen polar-
ization, TM or TE (according to Fig. 3.6.1), and on the wave vector direction θ:

N =




n1n3√
n2

1 sin2 θ+ n2
3 cos2 θ

, (TM or p-polarization)

n2, (TE or s-polarization)

(3.6.8)

For the TM case, we may rewrite the N-θ relationship in the form:

1

N2
= cos2 θ

n2
1
+ sin2 θ

n2
3

(effective TM index) (3.6.9)

Multiplying by k2 and using k0 = k/N, and kx = k sinθ, kz = k cosθ, we obtain the
ω-k relationship for the TM case:

ω2

c2
0
= k

2
z
n2

1
+ k

2
x
n2

3
(TM or p-polarization) (3.6.10)

Similarly, we have for the TE case:

ω2

c2
0
= k

2

n2
2

(TE or s-polarization) (3.6.11)

†In Sec. 3.2, the extraordinary axis was the x-axis.
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Thus, the TE mode propagates as if the medium were isotropic with index n = n2,
whereas the TM mode propagates in a more complicated fashion. If the wave vector k
is along the ordinary x-axis (θ = 90o), then k = kx = n3ω/c0 (this was the result of
the previous section), and if k is along the extraordinary z-axis (θ = 0o), then we have
k = kz = n1ω/c0.

For TM modes, the group velocity is not along k. In general, the group velocity
depends on theω-k relationship and is computed as v = ∂ω/∂k. From Eq. (3.6.10), we
find the x- and z-components:

vx = ∂ω∂kx =
kxc2

0

ωn2
3
= c0

N
n2

3
sinθ

vz = ∂ω∂kz =
kzc2

0

ωn2
1
= c0

N
n2

1
cosθ

(3.6.12)

The velocity vector v is not parallel to k. The angle θ̄ that v forms with the z-axis is
given by tan θ̄ = vx/vz. It follows from (3.6.12) that:

tan θ̄ = n
2
1

n2
3

tanθ (group velocity direction) (3.6.13)

Clearly, θ̄ �= θ if n1 �= n3. The relative directions of k and v are shown in Fig. 3.6.2.
The group velocity is also equal to the energy transport velocity defined in terms of the
Poynting vector PPP and energy density w as v = PPP/w. Thus, v and PPP have the same
direction. Moreover, with the electric field being orthogonal to the Poynting vector, the
angle θ̄ is also equal to the angle the E-field forms with the x-axis.

Fig. 3.6.2 Directions of group velocity, Poynting vector, wave vector, and electric field.

Next, we derive Eqs. (3.6.8) for N and solve for the field components in the TM
and TE cases. We look for propagating solutions of Maxwell’s equations of the type
E(r)= Ee−j k·r and H(r)= He−j k·r. Replacing the gradient operator by ∇∇∇ → −jk and
canceling some factors of j, Maxwell’s equations take the form:
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∇∇∇× E = −jωµ0H

∇∇∇×H = jωD

∇∇∇ ·D = 0

∇∇∇ ·H = 0

⇒

k× E =ωµ0H

k×H = −ωD

k ·D = 0

k ·H = 0

(3.6.14)

The last two equations are implied by the first two, as can be seen by dotting both
sides of the first two with k. Replacing k = k k̂ = Nk0k̂, whereN is still to be determined,
we may solve Faraday’s law for H in terms of E :

N
ω
c0

k̂× E =ωµ0H ⇒ H = N
η0

k̂× E (3.6.15)

where we used η0 = c0µ0. Then, Ampère’s law gives:

D = − 1

ω
k×H = − 1

ω
N
ω
c0

k̂×H = N2

η0c0
k̂× (E× k̂) ⇒ k̂× (E× k̂)= 1

ε0N2
D

where we used c0η0 = 1/ε0. The quantity k̂×(E× k̂) is recognized as the component of
E that is transverse to the propagation unit vector k̂. Using the BAC-CAB vector identity,
we have k̂× (E× k̂)= E− k̂(k̂ · E). Rearranging terms, we obtain:

E− 1

ε0N2
D = k̂(k̂ · E) (3.6.16)

Because D is linear in E, this is a homogeneous linear equation. Therefore, in order
to have a nonzero solution, its determinant must be zero. This provides a condition
from which N can be determined.

To obtain both the TE and TM solutions, we assume initially that E has all its three
components and rewrite Eq. (3.6.16) component-wise. Using Eq. (3.6.5) and noting that
k̂ · E = Ex sinθ+ Ez cosθ, we obtain the homogeneous linear system:

(
1− n

2
1

N2

)
Ex = (Ex sinθ+ Ez cosθ)sinθ

(
1− n

2
2

N2

)
Ey = 0

(
1− n

2
3

N2

)
Ez = (Ex sinθ+ Ez cosθ)cosθ

(3.6.17)

The TE case has Ey �= 0 and Ex = Ez = 0, whereas the TM case has Ex �= 0, Ez �= 0,
and Ey = 0. Thus, the two cases decouple.

In the TE case, the second of Eqs. (3.6.17) immediately implies that N = n2. Setting
E = E0ŷ and using k̂× ŷ = −x̂ cosθ+ ẑ sinθ, we obtain the TE solution:



3.6. Oblique Propagation in Birefringent Media 73

E(r) = E0 ŷe−j k·r

H(r) = n2

η0
E0(−x̂ cosθ+ ẑ sinθ)e−j k·r

(TE) (3.6.18)

where the TE propagation phase factor is:

e−j k·r = e−jk0n2(z cosθ+x sinθ) (TE propagation factor) (3.6.19)

The TM case requires a little more work. The linear system (3.6.17) becomes now:

(
1− n

2
1

N2

)
Ex = (Ex sinθ+ Ez cosθ)sinθ

(
1− n

2
3

N2

)
Ez = (Ex sinθ+ Ez cosθ)cosθ

(3.6.20)

Using the identity sin2 θ+ cos2 θ = 1, we may rewrite Eq. (3.6.20) in the matrix form:


 cos2 θ− n

2
1

N2
− sinθ cosθ

− sinθ cosθ sin2 θ− n
2
3

N2



[
Ex
Ez

]
= 0 (3.6.21)

Setting the determinant of the coefficient matrix to zero, we obtain the desired con-
dition on N in order that a non-zero solution Ex, Ez exist:

(
cos2 θ− n

2
1

N2

)(
sin2 θ− n

2
3

N2

)
− sin2 θ cos2 θ = 0 (3.6.22)

This can be solved forN2 to give Eq. (3.6.9). From it, we may also derive the following
relationship, which will prove useful in applying Snell’s law in birefringent media:

N cosθ = n1

n3

√
n2

3 −N2 sin2 θ = n1

√√√√1− N
2 sin2 θ
n2

3
(3.6.23)

With the help of the relationships given in Problem 3.16, the solution of the homo-
geneous system (3.6.20) is found to be, up to a proportionality constant:

Ex = A n3

n1
cosθ , Ez = −A n1

n3
sinθ (3.6.24)

The constant A can be expressed in terms of the total magnitude of the field E0 =
|E| = √|Ex|2 + |Ez|2. Using the relationship (3.7.11), we find (assuming A > 0):

A = E0
N√

n2
1 + n2

3 −N2
(3.6.25)

The magnetic field H can also be expressed in terms of the constant A. We have:
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H = N
η0

k̂× E = N
η0
(x̂ sinθ+ ẑ cosθ)×(x̂Ex + ẑEz)

= N
η0

ŷ(Ex cosθ− Ez sinθ)= N
η0

ŷA
(
n3

n1
cos2 θ+ n1

n3
sin2 θ

)

= N
η0

ŷA
n1n3

N2
= A
η0

ŷ
n1n3

N

(3.6.26)

where we used Eq. (3.7.10). In summary, the complete TM solution is:

E(r) = E0
N√

n2
1 + n2

3 −N2

(
x̂
n3

n1
cosθ− ẑ

n1

n3
sinθ

)
e−j k·r

H(r) = E0

η0

n1n3√
n2

1 + n2
3 −N2

ŷe−j k·r
(TM) (3.6.27)

where the TM propagation phase factor is:

e−j k·r = e−jk0N(z cosθ+x sinθ) (TM propagation factor) (3.6.28)

The solution has been put in a form that exhibits the proper limits at θ = 0o and
90o. It agrees with Eq. (3.6.3) in the isotropic case. The angle that E forms with the x-axis
in Fig. 3.6.2 is given by tan θ̄ = −Ez/Ex and agrees with Eq. (3.6.13).

Next, we derive expressions for the Poynting vector and energy densities. It turns
out—as is common in propagation and waveguide problems—that the magnetic energy
density is equal to the electric one. Using Eq. (3.6.27), we find:

PPP = 1

2
Re(E×H∗)= E2

0

2η0

n1n3N
n2

1 + n2
3 −N2

(
x̂
n1

n3
sinθ+ ẑ

n3

n1
cosθ

)
(3.6.29)

and for the electric, magnetic, and total energy densities:

we = 1

2
Re(D · E∗)= 1

4
ε0
(
n2

1|Ex|2 + n2
3|Ez|2

) = 1

4
ε0E2

0
n2

1n
2
3

n2
1 + n2

3 −N2

wm = 1

2
Re(B ·H∗)= 1

4
µ0|Hy|2 = 1

4
ε0E2

0
n2

1n
2
3

n2
1 + n2

3 −N2
= we

w = we +wm = 2we = 1

2
ε0E2

0
n2

1n
2
3

n2
1 + n2

3 −N2

(3.6.30)

The vectorPPP is orthogonal to E and its direction is θ̄ given by Eq. (3.6.13), as can be
verified by taking the ratio tan θ̄ = Px/Pz. The energy transport velocity is the ratio of
the energy flux to the energy density—it agrees with the group velocity (3.6.12):

v = PPP
w
= c0

(
x̂
N
n2

3
sinθ+ ẑ

N
n2

1
cosθ

)
(3.6.31)

To summarize, the TE and TM uniform plane wave solutions are given by Eqs. (3.6.18)
and (3.6.27). We will use these results in Sects. 7.6 and 7.8 to discuss reflection and re-
fraction in birefringent media and multilayer birefringent dielectric structures. Further
discussion of propagation in birefringent media can be found in [182] and [241–259].
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3.7 Problems

3.1 For the circular-polarization basis of Eq. (3.1.1), show

E = ê+E+ + ê−E− ⇒ ẑ× E = j ê+E+ − j ê−E− ⇒ (ẑ× E± = ±jE±
3.2 Show the component-wise Maxwell equations, Eqs. (3.1.4) and (3.1.5), with respect to the

linear and circular polarization bases.

3.3 Suppose that the two unit vectors {x̂, ŷ} are rotated about the z-axis by an angleφ resulting
in x̂′ = x̂ cosφ + ŷ sinφ and ŷ′ = ŷ cosφ − x̂ sinφ. Show that the corresponding circular
basis vectors ê± = x̂∓ j ŷ and ê′± = x̂′ ∓ j ŷ′ change by the phase factors: ê′± = e±jφê± .

3.4 Consider a linearly birefringent 90o quarter-wave retarder. Show that the following input
polarizations change into the indicated output ones:

x̂± ŷ → x̂± j ŷ
x̂± j ŷ → x̂± ŷ

What are the output polarizations if the same input polarizations go through a 180o half-
wave retarder?

3.5 A polarizer lets through linearly polarized light in the direction of the unit vector êp =
x̂ cosθp + ŷ sinθp, as shown in Fig. 3.7.1. The output of the polarizer propagates in the
z-direction through a linearly birefringent retarder of length l, with birefringent refractive
indices n1, n2, and retardance φ = (n1 − n2)k0l.

Fig. 3.7.1 Polarizer-analyzer measurement of birefringence.

The output E(l) of the birefringent sample goes through an analyzing linear polarizer that
lets through polarizations along the unit vector êa = x̂ cosθa+ ŷ sinθa. Show that the light
intensity at the output of the analyzer is given by:

Ia =
∣∣êa · E(l)

∣∣2 = ∣∣cosθa cosθp + ejφ sinθa sinθp
∣∣2

For a circularly birefringent sample that introduces a natural or Faraday rotation of φ =
(k+ − k−)l/2, show that the output light intensity will be:

Ia =
∣∣êa · E(l)

∣∣2 = cos2(θp − θa −φ)

For both the linear and circular cases, what are some convenient choices for θa and θp?

3.6 A linearly polarized wave with polarization direction at an angle θ with the x-axis goes
through a circularly birefringent retarder that introduces an optical rotation by the angle
φ = (k+ − k−)l/2. Show that the input and output polarization directions will be:

x̂ cosθ+ ŷ sinθ → x̂ cos(θ−φ)+ŷ sin(θ−φ)
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3.7 Show that an arbitrary polarization vector can be expressed as follows with respect to a
linear basis {x̂, ŷ} and its rotated version {x̂′, ŷ′}:

E = A x̂+ B ŷ = A′ x̂′ + B′ ŷ′

where the new coefficients and the new basis vectors are related to the old ones by a rotation
by an angle φ:

[
A′

B′

]
=
[

cosφ sinφ
− sinφ cosφ

][
A
B

]
,
[

x̂′

ŷ′

]
=
[

cosφ sinφ
− sinφ cosφ

][
x̂
ŷ

]

3.8 Show that the source-free Maxwell’s equations (3.1.2) for a chiral medium characterized by
(3.3.1), may be cast in the matrix form, where k =ω√µε, η = √µ/ε, and a = χ/√µε:

∇∇∇×
[

E
ηH

]
=
[
ka −jk
jk ka

][
E
ηH

]

Show that these may be decoupled by forming the “right” and “left” polarized fields:

∇∇∇×
[

ER
EL

]
=
[
k+ 0
0 −k−

][
ER
EL

]
, where ER = 1

2
(E− jηH) , EL = 1

2
(E+ jηH)

where k± = k(1 ± a). Using these results, show that the possible plane-wave solutions
propagating in the direction of a unit-vector k̂ are given by:

E(r)= E0(p̂− j ŝ)e−j k+·r and E(r)= E0(p̂+ j ŝ)e−j k−·r

where k± = k± k̂ and {p̂, ŝ, k̂} form a right-handed system of unit vectors, such as {x̂′, ŷ′, ẑ′}
of Fig. 2.9.1. Determine expressions for the corresponding magnetic fields. What freedom
do we have in selecting {p̂, ŝ} for a given direction k̂ ?

3.9 Using Maxwell’s equations (3.1.2), show the following Poynting-vector relationships for an
arbitrary source-free medium:

∇∇∇ · (E×H∗
) = jω(D∗ · E− B ·H∗

)
∇∇∇ · Re

(
E×H∗

) = −ω Im
(
D∗ · E+ B∗ ·H

)
Explain why a lossless medium must satisfy the condition ∇∇∇ · Re

(
E × H∗

) = 0. Show that
this condition requires that the energy function w = (D∗ · E+ B∗ ·H)/2 be real-valued.

For a lossless chiral medium characterized by (3.3.1), show that the parameters ε, µ,χ are
required to be real. Moreover, show that the positivity of the energy functionw > 0 requires
that |χ| < √µε, as well as ε > 0 and µ > 0.

3.10 In a chiral medium, at z = 0 we lauch the fields ER+(0) and EL−(0), which propagate by a
distance l, get reflected, and come back to the starting point. Assume that at the point of
reversal the fields remain unchanged, that is, ER+(l)= EL+(l) and EL−(l)= ER−(l). Using
the propagation results (3.3.5) and (3.3.9), show that fields returned back at z = 0 will be:

EL+(0)= EL+(l)e−jk−l = ER+(l)e−jk−l = ER+(0)e−j(k++k−)l
ER−(0)= ER−(l)e−jk+l = EL−(l)e−jk+l = EL−(0)e−j(k++k−)l

Show that the overall natural rotation angle will be zero. For a gyrotropic medium, show
that the corresponding rountrip fields will be:
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EL+(0)= EL+(l)e−jk−l = ER+(l)e−jk−l = ER+(0)e−2jk+l

ER−(0)= ER−(l)e−jk+l = EL−(l)e−jk+l = EL−(0)e−2jk−l

Show that the total Faraday rotation angle will be 2φ = (k+ − k−)l.
3.11 Show that the x, y components of the gyroelectric and gyromagnetic constitutive relation-

ships (3.4.1) and (3.4.2) may be written in the compact forms:

DT = ε1ET − jε2 ẑ× ET (gyroelectric)

BT = µ1HT − jµ2 ẑ×HT (gyromagnetic)

where the subscript T indicates the transverse (with respect to z) part of a vector, for exam-
ple, DT = x̂Dx + ŷDy.

3.12 Conductors and plasmas exhibit gyroelectric behavior when they are in the presence of an
external magnetic field. The equation of motion of conduction electrons in a constant mag-
netic field is mv̇ = e(E + v × B)−mαv, with the collisional damping term included. The
magnetic field is in the z-direction, B = ẑB0.

Assuming ejωt time dependence and decomposing all vectors in the circular basis (3.1.1),
for example, v = ê+v+ + ê−v− + ẑvz, show that the solution of the equation of motion is:

v± =
e
m
E±

α+ j(ω±ωB) , vz =
e
m
Ez

α+ jω

where ωB = eB0/m is the cyclotron frequency. Then, show that the D−E constitutive
relationship takes the form of Eq. (3.4.1) with:

ε± = ε1 ± ε2 = ε0

[
1− jω2

p

ω
[
α+ j(ω±ωB)

]
]
, ε3 = ε0

[
1− jω2

p

ω(α+ jω)

]

whereω2
p = Ne2/mε0 is the plasma frequency and N, the number of conduction electrons

per unit volume. (See Problem 1.9 for some helpful hints.)

3.13 If the magnetic field Htot = ẑH0 + Hejωt is applied to a magnetizable sample, the in-
duced magnetic moment per unit volume (the magnetization) will have the form Mtot =
ẑM0 + Mejωt, where ẑM0 is the saturation magnetization due to ẑH0 acting alone. The
phenomenological equations governing Mtot, including a so-called Landau-Lifshitz damping
term, are given by [290]:

dMtot

dt
= γ(Mtot ×Htot)− α

M0H0
Mtot × (Mtot ×Htot)

where γ is the gyromagnetic ratio and τ = 1/α, a relaxation time constant. Assuming that
|H| 
 H0 and |M| 
 M0, show that the linearized version of this equation obtained by
keeping only first order terms in H and M is:

jωM =ωM(ẑ×H)−ωH(ẑ×M)−α ẑ× [(M− χ0 H)×ẑ
]

whereωM = γM0, ωH = γH0, and χ0 =M0/H0. Working in the circular basis (3.1.1), show
that the solution of this equation is:
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M± = χ0
α± jωH

α+ j(ω±ωH) H± ≡ χ±H± and Mz = 0

Writing B = µ0(H + M), show that the permeability matrix has the gyromagnetic form of
Eq. (3.4.2) with µ1 ± µ2 = µ± = µ0(1+ χ±) and µ3 = µ0. Show that the real and imaginary
parts of µ1 are given by [290]:

Re(µ1) = µ0 + µ0χ0

2

[
α2 +ωH(ω+ωH)
α2 + (ω+ωH)2

+ α
2 −ωH(ω−ωH)
α2 + (ω−ωH)2

]

Im(µ1) = −µ0χ0

2

[
αω

α2 + (ω+ωH)2
+ αω
α2 + (ω−ωH)2

]

Derive similar expressions for Re(µ2) and Im(µ2).

3.14 A uniform plane wave, Ee−j k·r and He−j k·r, is propagating in the direction of the unit vector
k̂ = ẑ′ = ẑ cosθ + ẑ sinθ shown in Fig. 2.9.1 in a gyroelectric medium with constitutive
relationships (3.4.1).

Show that Eqs. (3.6.14)–(3.6.16) remain valid provided we define the effective refractive index
N through the wavevector k = k k̂, where k = Nk0, k0 =ω√µε0.

Working in the circular-polarization basis (3.1.1), that is, E = ê+E+ + ê−E− + ẑEz, where
E± = (Ex ± jEy)/2, show that Eq. (3.6.16) leads to the homogeneous system:




1− 1

2
sin2 θ− ε+

ε0N2
−1

2
sin2 θ −1

2
sinθ cosθ

−1

2
sin2 θ 1− 1

2
sin2 θ− ε−

ε0N2
−1

2
sinθ cosθ

− sinθ cosθ − sinθ cosθ sin2 θ− ε3

ε0N2






E+
E−
Ez


 = 0 (3.7.1)

where ε± = ε1 ± ε2. Alternatively, show that in the linear-polarization basis:



ε1 − ε0N2 cos2 θ jε2 ε0N2 sinθ cosθ

−jε2 ε1 − ε0N2 0
ε0N2 sinθ cosθ 0 ε3 − ε0N2 sin2 θ





Ex
Ey
Ez


 = 0 (3.7.2)

For either basis, setting the determinant of the coefficient matrix to zero, show that a non-
zero E solution exists provided that N2 is one of the two solutions of:

tan2 θ = −ε3

ε1

(ε0N2 − ε+)(ε0N2 − ε−)
(ε0N2 − ε3)(ε0N2 − εe) , where εe = 2ε+ε−

ε+ + ε− =
ε2

1 − ε2
2

ε1
(3.7.3)

Show that the two solutions for N2 are:

N2 = (ε
2
1 − ε2

2 − ε1ε3)sin2 θ+ 2ε1ε3 ±
√
(ε2

1 − ε2
2 − ε1ε3)2sin4 θ+ 4ε2

2ε2
3 cos2 θ

2ε0(ε1 sin2 θ+ ε3 cos2 θ)
(3.7.4)

For the special case k̂ = ẑ (θ = 0o), show that the two possible solutions of Eq. (3.7.1) are:

ε0N2 = ε+ , k = k+ =ω√µε+ , E+ �= 0, E− = 0, Ez = 0
ε0N2 = ε− , k = k− =ω√µε− , E+ = 0, E− �= 0, Ez = 0
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For the case k̂ = x̂ (θ = 90o), show that:

ε0N2 = ε3 , k = k3 =ω√µε3 , E+ = 0, E− = 0, Ez �= 0

ε0N2 = εe , k = ke =ω√µεe , E+ �= 0, E− = −ε+ε− E+ , Ez = 0

For each of the above four special solutions, derive the corresponding magnetic fields H .
Justify the four values ofN2 on the basis of Eq. (3.7.3). Discuss the polarization properties of
the four cases. For the “extraordinary” wave k = ke, show thatDx = 0 and Ex/Ey = −jε2/ε1.

Eq. (3.7.4) and the results of Problem 3.14 lead to the so-called Appleton-Hartree equations
for describing plasma waves in a magnetic field [277–281].

3.15 A uniform plane wave, Ee−j k·r and He−j k·r, is propagating in the direction of the unit vector
k̂ = ẑ′ = ẑ cosθ + ẑ sinθ shown in Fig. 2.9.1 in a gyromagnetic medium with constitutive
relationships (3.4.2). Using Maxwell’s equations, show that:

k× E =ωB , k · B = 0
k×H = −ωεE , k · E = 0

⇒ H− 1

µ0N2
B = k̂(k̂ ·H) (3.7.5)

where the effective refractive index N is defined through the wavevector k = k k̂, where
k = Nk0, k0 =ω√µ0ε. Working in the circular polarization basis H = ê+H++ ê−H−+ ẑHz,
where H± = (Hx ± jHy)/2, show that Eq. (3.7.5) leads to the homogeneous system:




1− 1

2
sin2 θ− µ+

µ0N2
−1

2
sin2 θ −1

2
sinθ cosθ

−1

2
sin2 θ 1− 1

2
sin2 θ− µ−

µ0N2
−1

2
sinθ cosθ

− sinθ cosθ − sinθ cosθ sin2 θ− µ3

µ0N2






H+
H−
Hz


 = 0 (3.7.6)

where µ± = µ1 ± µ2. Alternatively, show that in the linear-polarization basis:

µ1 − µ0N2 cos2 θ jµ2 µ0N2 sinθ cosθ

−jµ2 µ1 − µ0N2 0
µ0N2 sinθ cosθ 0 µ3 − µ0N2 sin2 θ





Hx
Hy
Hz


 = 0 (3.7.7)

For either basis, setting the determinant of the coefficient matrix to zero, show that a non-
zero E solution exists provided that N2 is one of the two solutions of:

tan2 θ = −µ3

µ1

(µ0N2 − µ+)(µ0N2 − µ−)
(µ0N2 − µ3)(µ0N2 − µe) , where µe = 2µ+µ−

µ+ + µ− =
µ2

1 − µ2
2

µ1
(3.7.8)

Show that the two solutions for N2 are:

N2 = (µ
2
1 − µ2

2 − µ1µ3)sin2 θ+ 2µ1µ3 ±
√
(µ2

1 − µ2
2 − µ1µ3)2sin4 θ+ 4µ2

2µ2
3 cos2 θ

2µ0(µ1 sin2 θ+ µ3 cos2 θ)

For the special case θ = 0o, show that the two possible solutions of Eq. (3.7.6) are:

µ0N2 = µ+ , k = k+ =ω√εµ+ , H+ �= 0, H− = 0, Hz = 0
µ0N2 = µ− , k = k+ =ω√εµ− , H+ = 0, H− �= 0, Hz = 0

For the special case θ = 90o, show that:

µ0N2 = µ3 , k = k3 =ω√εµ3 , H+ = 0, H− = 0, Hz �= 0

µ0N2 = µe , k = ke =ω√εµe , H+ �= 0, H− = −µ+µ− H+ , Hz = 0
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For each of the above four special solutions, derive the corresponding electric fields E . Justify
the four values of N2 on the basis of Eq. (3.7.8). Discuss the polarization properties of the
four cases. This problem is the dual of Problem 3.14.

3.16 Using Eq. (3.6.9) for the effective TM refractive index in a birefringent medium, show the
following additional relationships:

sin2 θ

1− n
2
1

N2

+ cos2 θ

1− n
2
3

N2

= 1 (3.7.9)

n3

n1
cos2 θ+ n1

n3
sin2 θ = n1n3

N2
(3.7.10)

n2
1

n2
3

sin2 θ+ n
2
3

n2
1

cos2 θ = n
2
1 + n2

3 −N2

N2
(3.7.11)

sin2 θ =
1− n

2
1

N2

1− n
2
1

n2
3

, cos2 θ =
1− n

2
3

N2

1− n
2
3

n2
1

(3.7.12)

cos2 θ− n
2
1

N2
= −n

2
1

n2
3

sin2 θ , sin2 θ− n
2
3

N2
= −n

2
3

n2
1

cos2 θ (3.7.13)

Using these relationships, show that the homogeneous linear system (3.6.20) can be simpli-
fied into the form:

Ex
n1

n3
sinθ = −Ez n3

n1
cosθ , Ez

n3

n1
cosθ = −Ex n1

n3
sinθ



4
Reflection and Transmission

4.1 Propagation Matrices

In this chapter, we consider uniform planes waves incident normally on material inter-
faces. Using the boundary conditions for the fields, we will relate the forward-backward
fields on one side of the interface to those on the other side, expressing the relationship
in terms of a 2×2 matching matrix.

If there are several interfaces, we will propagate our forward-backward fields from
one interface to the next with the help of a 2×2 propagation matrix. The combination of
a matching and a propagation matrix relating the fields across different interfaces will
be referred to as a transfer or transition matrix.

We begin by discussing propagation matrices. Consider an electric field that is lin-
early polarized in the x-direction and propagating along the z-direction in a lossless
(homogeneous and isotropic) dielectric. Setting E(z)= x̂Ex(z)= x̂E(z) and H(z)=
ŷHy(z)= ŷH(z), we have from Eq. (2.2.6):

E(z) = E0+e−jkz + E0−ejkz = E+(z)+E−(z)

H(z) = 1

η
[
E0+e−jkz − E0−ejkz

] = 1

η
[
E+(z)−E−(z)

] (4.1.1)

where the corresponding forward and backward electric fields at position z are:

E+(z)= E0+e−jkz

E−(z)= E0−ejkz
(4.1.2)

We can also express the fields E±(z) in terms of E(z),H(z). Adding and subtracting
the two equations (4.1.1), we find:

E+(z)= 1

2

[
E(z)+ηH(z)]

E−(z)= 1

2

[
E(z)−ηH(z)] (4.1.3)

Eqs.(4.1.1) and (4.1.3) can also be written in the convenient matrix forms:

81
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[
E
H

]
=
[

1 1
η−1 −η−1

][
E+
E−

]
,
[
E+
E−

]
= 1

2

[
1 η
1 −η

][
E
H

]
(4.1.4)

Two useful quantities in interface problems are the wave impedance at z:

Z(z)= E(z)
H(z)

(wave impedance) (4.1.5)

and the reflection coefficient at position z:

Γ(z)= E−(z)
E+(z)

(reflection coefficient) (4.1.6)

Using Eq. (4.1.3), we have:

Γ = E−
E+
=

1

2
(E − ηH)

1

2
(E + ηH)

=
E
H
− η

E
H
+ η

= Z − η
Z + η

Similarly, using Eq. (4.1.1) we find:

Z = E
H
= E+ + E−

1

η
(E+ − E−)

= η
1+ E−

E+

1− E−
E+

= η 1+ Γ
1− Γ

Thus, we have the relationships:

Z(z)= η 1+ Γ(z)
1− Γ(z) � Γ(z)= Z(z)−η

Z(z)+η (4.1.7)

Using Eq. (4.1.2), we find:

Γ(z)= E−(z)
E−(z)

= E0−ejkz

E0+e−jkz
= Γ(0)e2jkz

where Γ(0)= E0−/E0+ is the reflection coefficient at z = 0. Thus,

Γ(z)= Γ(0)e2jkz (propagation of Γ) (4.1.8)

Applying (4.1.7) at z and z = 0, we have:

Z(z)−η
Z(z)+η = Γ(z)= Γ(0)e

2jkz = Z(0)−η
Z(0)+ηe

2jkz

This may be solved for Z(z) in terms of Z(0), giving after some algebra:

Z(z)= η Z(0)−jη tankz
η− jZ(0)tankz

(propagation of Z) (4.1.9)
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The reason for introducing so many field quantities is that the three quantities
{E+(z), E−(z), Γ(z)} have simple propagation properties, whereas {E(z),H(z),Z(z)}
do not. On the other hand, {E(z),H(z),Z(z)}match simply across interfaces, whereas
{E+(z), E−(z), Γ(z)} do not.

Eqs. (4.1.1) and (4.1.2) relate the field quantities at location z to the quantities at
z = 0. In matching problems, it proves more convenient to be able to relate these
quantities at two arbitrary locations.

Fig. 4.1.1 depicts the quantities {E(z),H(z), E+(z), E−(z),Z(z), Γ(z)} at the two
locations z1 and z2 separated by a distance l = z2 − z1. Using Eq. (4.1.2), we have for
the forward field at these two positions:

E2+ = E0+e−jkz2 , E1+ = E0+e−jkz1 = E0+e−jk(z2−l) = ejklE2+

Fig. 4.1.1 Field quantities propagated between two positions in space.

And similarly, E1− = e−jklE2−. Thus,

E1+ = ejklE2+ , E1− = e−jklE2− (4.1.10)

and in matrix form:[
E1+
E1−

]
=
[
ejkl 0
0 e−jkl

][
E2+
E2−

]
(propagation matrix) (4.1.11)

We will refer to this as the propagation matrix for the forward and backward fields.
It follows that the reflection coefficients will be related by:

Γ1 = E1−
E1+

= E2−e−jkl

E2+ejkl
= Γ2e−2jkl , or,

Γ1 = Γ2e−2jkl (reflection coefficient propagation) (4.1.12)

Using the matrix relationships (4.1.4) and (4.1.11), we may also express the total
electric and magnetic fields E1,H1 at position z1 in terms of E2,H2 at position z2:[

E1

H1

]
=
[

1 1
η−1 −η−1

][
E1+
E1−

]
=
[

1 1
η−1 −η−1

][
ejkl 0
0 e−jkl

][
E2+
E2−

]

= 1

2

[
1 1
η−1 −η−1

][
ejkl 0
0 e−jkl

][
1 η
1 −η

][
E2

H2

]
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which gives after some algebra:

[
E1

H1

]
=
[

coskl jη sinkl
jη−1 sinkl coskl

][
E2

H2

]
(propagation matrix) (4.1.13)

Writing η = η0/n, where n is the refractive index of the propagation medium,
Eq. (4.1.13) can written in following form, which is useful in analyzing multilayer struc-
tures and is common in the thin-film literature [176,178,182,193]:[

E1

H1

]
=
[

cosδ jn−1η0 sinδ
jnη−1

0 sinδ cosδ

][
E2

H2

]
(propagation matrix) (4.1.14)

where δ is the propagation phase constant, δ = kl = k0nl = 2π(nl)/λ0, and nl the
optical length. Eqs. (4.1.13) and (4.1.7), imply for the propagation of the wave impedance:

Z1 = E1

H1
= E2 coskl+ jηH2 sinkl
jE2η−1 sinkl+H2 coskl

= η
E2

H2
coskl+ jη sinkl

η coskl+ j E2

H2
sinkl

which gives:

Z1 = η Z2 coskl+ jη sinkl
η coskl+ jZ2 sinkl

(impedance propagation) (4.1.15)

It can also be written in the form:

Z1 = η Z2 + jη tankl
η+ jZ2 tankl

(impedance propagation) (4.1.16)

A useful way of expressing Z1 is in terms of the reflection coefficient Γ2. Using (4.1.7)
and (4.1.12), we have:

Z1 = η 1+ Γ1

1− Γ1
= η 1+ Γ2e−2jkl

1− Γ2e−2jkl or,

Z1 = η 1+ Γ2e−2jkl

1− Γ2e−2jkl (4.1.17)

We mention finally two special propagation cases: the half-wavelength and the quarter-
wavelength cases. When the propagation distance is l = λ/2, or any integral multiple
thereof, the wave impedance and reflection coefficient remain unchanged. Indeed, we
have in this case kl = 2πl/λ = 2π/2 = π and 2kl = 2π. It follows from Eq. (4.1.12)
that Γ1 = Γ2 and hence Z1 = Z2.

If on the other hand l = λ/4, or any odd integral multiple thereof, then kl = 2π/4 =
π/2 and 2kl = π. The reflection coefficient changes sign and the wave impedance
inverts:

Γ1 = Γ2e−2jkl = Γ2e−jπ = −Γ2 ⇒ Z1 = η 1+ Γ1

1− Γ1
= η 1− Γ2

1+ Γ2
= η 1

Z2/η
= η

2

Z2
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Thus, we have in the two cases:

l = λ
2

⇒ Z1 = Z2, Γ1 = Γ2

l = λ
4

⇒ Z1 = η
2

Z2
, Γ1 = −Γ2

(4.1.18)

4.2 Matching Matrices

Next, we discuss the matching conditions across dielectric interfaces. We consider a
planar interface (taken to be the xy-plane at some location z) separating two dielec-
tric/conducting media with (possibly complex-valued) characteristic impedances η,η′,
as shown in Fig. 4.2.1.†

Fig. 4.2.1 Fields across an interface.

Because the normally incident fields are tangential to the interface plane, the bound-
ary conditions require that the total electric and magnetic fields be continuous across
the two sides of the interface:

E = E′
H = H′ (continuity across interface) (4.2.1)

In terms of the forward and backward electric fields, Eq. (4.2.1) reads:

E+ + E− = E′+ + E′−
1

η
(
E+ − E−

) = 1

η′
(
E′+ − E′−

) (4.2.2)

Eq. (4.2.2) may be written in a matrix form relating the fields E± on the left of the
interface to the fields E′± on the right:

[
E+
E−

]
= 1

τ

[
1 ρ
ρ 1

][
E′+
E′−

]
(matching matrix) (4.2.3)

and inversely:

†The arrows in this figure indicate the directions of propagation, not the direction of the fields—the field
vectors are perpendicular to the propagation directions and parallel to the interface plane.
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[
E′+
E′−

]
= 1

τ′

[
1 ρ′

ρ′ 1

][
E+
E−

]
(matching matrix) (4.2.4)

where {ρ,τ} and {ρ′, τ′} are the elementary reflection and transmission coefficients
from the left and from the right of the interface, defined in terms of η,η′ as follows:

ρ = η
′ − η
η′ + η , τ = 2η′

η′ + η (4.2.5)

ρ′ = η− η
′

η+ η′ , τ′ = 2η
η+ η′ (4.2.6)

Writing η = η0/n and η′ = η0/n′, we have in terms of the refractive indices:

ρ = n− n
′

n+ n′ , τ = 2n
n+ n′

ρ′ = n
′ − n
n′ + n , τ′ = 2n′

n′ + n

(4.2.7)

These are also called the Fresnel coefficients. We note various useful relationships:

τ = 1+ ρ, ρ′ = −ρ, τ′ = 1+ ρ′ = 1− ρ, ττ′ = 1− ρ2 (4.2.8)

In summary, the total electric and magnetic fields E,H match simply across the
interface, whereas the forward/backward fields E± are related by the matching matrices
of Eqs. (4.2.3) and (4.2.4). An immediate consequence of Eq. (4.2.1) is that the wave
impedance is continuous across the interface:

Z = E
H
= E

′

H′
= Z′

On the other hand, the corresponding reflection coefficients Γ = E−/E+ and Γ′ =
E′−/E′+ match in a more complicated way. Using Eq. (4.1.7) and the continuity of the
wave impedance, we have:

η
1+ Γ
1− Γ = Z = Z

′ = η′ 1+ Γ
′

1− Γ′
which can be solved to get:

Γ = ρ+ Γ′
1+ ρΓ′ and Γ′ = ρ′ + Γ

1+ ρ′Γ
The same relationship follows also from Eq. (4.2.3):

Γ = E−
E+
=

1

τ
(ρE′+ + E′−)

1

τ
(E′+ + ρE′−)

=
ρ+ E

′−
E′+

1+ ρE
′−
E′+

= ρ+ Γ′
1+ ρΓ′
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To summarize, we have the matching conditions for Z and Γ:

Z = Z′ � Γ = ρ+ Γ′
1+ ρΓ′ � Γ′ = ρ′ + Γ

1+ ρ′Γ (4.2.9)

Two special cases, illustrated in Fig. 4.2.1, are when there is only an incident wave
on the interface from the left, so that E′− = 0, and when the incident wave is only from
the right, so that E+ = 0. In the first case, we have Γ′ = E′−/E′+ = 0, which implies
Z′ = η′(1+ Γ′)/(1− Γ′)= η′. The matching conditions give then:

Z = Z′ = η′, Γ = ρ+ Γ′
1+ ρΓ′ = ρ

The matching matrix (4.2.3) implies in this case:[
E+
E−

]
= 1

τ

[
1 ρ
ρ 1

][
E′+
0

]
= 1

τ

[
E+′
ρE′+

]

Expressing the reflected and transmitted fields E−, E′+ in terms of the incident field E+,
we have:

E− = ρE+
E′+ = τE+ (left-incident fields) (4.2.10)

This justifies the terms reflection and transmission coefficients for ρ and τ. In the
right-incident case, the condition E+ = 0 implies for Eq. (4.2.4):[

E′+
E′−

]
= 1

τ′

[
1 ρ′

ρ′ 1

][
0
E−

]
= 1

τ′

[
ρ′E−
E−

]

These can be rewritten in the form:

E′+ = ρ′E′−
E− = τ′E′− (right-incident fields) (4.2.11)

which relates the reflected and transmitted fields E′+, E− to the incident field E′−. In this
case Γ = E−/E+ = ∞ and the third of Eqs. (4.2.9) gives Γ′ = E′−/E′+ = 1/ρ′, which is
consistent with Eq. (4.2.11).

When there are incident fields both from both sides, that is, E+, E′−, we may invoke
the linearity of Maxwell’s equations and add the two right-hand sides of Eqs. (4.2.10)
and (4.2.11) to obtain the outgoing fields E′+, E− in terms of the incident ones:

E′+ = τE+ + ρ′E′−
E− = ρE+ + τ′E′− (4.2.12)

This gives the scattering matrix relating the outgoing fields to the incoming ones:

[
E′+
E−

]
=
[
τ ρ′

ρ τ′

][
E+
E′−

]
(scattering matrix) (4.2.13)

Using the relationships Eq. (4.2.8), it is easily verified that Eq. (4.2.13) is equivalent
to the matching matrix equations (4.2.3) and (4.2.4).
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4.3 Reflected and Transmitted Power

For waves propagating in the z-direction, the time-averaged Poynting vector has only a
z-component:

PPP = 1

2
Re
(
x̂E × ŷH∗

) = ẑ
1

2
Re(EH∗)

A direct consequence of the continuity equations (4.2.1) is that the Poynting vector
is conserved across the interface. Indeed, we have:

P = 1

2
Re(EH∗)= 1

2
Re(E′H′∗)= P′ (4.3.1)

In particular, consider the case of a wave incident from a lossless dielectric η onto a
lossy dielectric η′. Then, the conservation equation (4.3.1) reads in terms of the forward
and backward fields (assuming E′− = 0):

P = 1

2η
(|E+|2 − |E−|2) = Re

( 1

2η′
)|E′+|2 = P′

The left hand-side is the difference of the incident and the reflected power and rep-
resents the amount of power transmitted into the lossy dielectric per unit area. We saw
in Sec. 2.6 that this power is completely dissipated into heat inside the lossy dielectric
(assuming it is infinite to the right.) Using Eqs. (4.2.10), we find:

P = 1

2η
|E+|2

(
1− |ρ|2)= Re

( 1

2η′
)|E+|2|τ|2 (4.3.2)

This equality requires that:

1

η
(1− |ρ|2)= Re

( 1

η′
)|τ|2 (4.3.3)

This can be proved using the definitions (4.2.5). Indeed, we have:

η
η′
= 1− ρ

1+ ρ ⇒ Re

(
η
η′

)
= 1− |ρ|2
|1+ ρ|2 =

1− |ρ|2
|τ|2

which is equivalent to Eq. (4.3.3), if η is lossless (i.e., real.) Defining the incident, re-
flected, and transmitted powers by

Pin = 1

2η
|E+|2

Pref = 1

2η
|E−|2 = 1

2η
|E+|2|ρ|2 = Pin|ρ|2

Ptr = Re
( 1

2η′
)|E′+|2 = Re

( 1

2η′
)|E+|2|τ|2 = Pin Re

( η
η′
)|τ|2

Then, Eq. (4.3.2) reads Ptr = Pin − Pref. The power reflection and transmission
coefficients, also known as the reflectance and transmittance, give the percentage of the
incident power that gets reflected and transmitted:
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Pref

Pin
= |ρ|2, Ptr

Pin
= 1− |ρ|2 = Re

( η
η′
)|τ|2 = Re

(n′
n
)|τ|2 (4.3.4)

If both dielectrics are lossless, then ρ,τ are real-valued. In this case, if there are
incident waves from both sides of the interface, it is straightforward to show that the
net power moving towards the z-direction is the same at either side of the interface:

P = 1

2η
(|E+|2 − |E−|2) = 1

2η′
(|E′+|2 − |E′−|2) = P′ (4.3.5)

This follows from the matrix identity satisfied by the matching matrix of Eq. (4.2.3):

1

τ2

[
1 ρ
ρ 1

][
1 0
0 −1

][
1 ρ
ρ 1

]
= η
η′

[
1 0
0 −1

]
(4.3.6)

If ρ,τ are real, then we have with the help of this identity and Eq. (4.2.3):

P = 1

2η
(|E+|2 − |E−|2) = 1

2η
[
E∗+, E∗−

][ 1 0
0 −1

][
E+
E−

]

= 1

2η
[
E′+
∗, E′−

∗] 1

ττ∗

[
1 ρ∗

ρ∗ 1

][
1 0
0 −1

][
1 ρ
ρ 1

][
E′+
E′−

]

= 1

2η
η
η′
[
E′+
∗, E′−

∗][ 1 0
0 −1

][
E′+
E′−

]
= 1

2η′
(|E′+|2 − |E′−|2) = P′

Example 4.3.1: Glasses have a refractive index of the order of n = 1.5 and dielectric constant
ε = n2ε0 = 2.25ε0. Calculate the percentages of reflected and transmitted powers for
visible light incident on a planar glass interface from air.

Solution: The characteristic impedance of glass will be η = η0/n. Therefore, the reflection and
transmission coefficients can be expressed directly in terms of n, as follows:

ρ = η− η0

η+ η0
= n

−1 − 1

n−1 + 1
= 1− n

1+ n , τ = 1+ ρ = 2

1+ n

For n = 1.5, we find ρ = −0.2 and τ = 0.8. It follows that the power reflection and
transmission coefficients will be

|ρ|2 = 0.04, 1− |ρ|2 = 0.96

That is, 4% of the incident power is reflected and 96% transmitted. ��

Example 4.3.2: A uniform plane wave of frequency f is normally incident from air onto a thick
conducting sheet with conductivity σ, and ε = ε0, µ = µ0. Show that the proportion
of power transmitted into the conductor (and then dissipated into heat) is given approxi-
mately by

Ptr

Pin
= 4Rs
η0
=
√

8ωε0

σ

Calculate this quantity for f = 1 GHz and copper σ = 5.8×107 Siemens/m.
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Solution: For a good conductor, we have
√
ωε0/σ� 1. It follows from Eq. (2.8.4) that Rs/η0 =√

ωε0/2σ� 1. From Eq. (2.8.2), the conductor’s characteristic impedance is ηc = Rs(1+
j). Thus, the quantity ηc/η0 = (1+ j)Rs/η0 is also small. The reflection and transmission
coefficients ρ,τ can be expressed to first-order in the quantity ηc/η0 as follows:

τ = 2ηc
ηc + η0

� 2ηc
η0
, ρ = τ− 1 � −1+ 2ηc

η0

Similarly, the power transmission coefficient can be approximated as

1− |ρ|2 = 1− |τ− 1|2 = 1− 1− |τ|2 + 2 Re(τ)� 2 Re(τ)= 2
2 Re(ηc)
η0

= 4Rs
η0

where we neglected |τ|2 as it is second order in ηc/η0. For copper at 1 GHz, we have√
ωε0/2σ = 2.19×10−5, which gives Rs = η0

√
ωε0/2σ = 377×2.19×10−5 = 0.0082 Ω. It

follows that 1− |ρ|2 = 4R2/η0 = 8.76×10−5.

This represents only a small power loss of 8.76×10−3 percent and the sheet acts as very
good mirror at microwave frequencies.

On the other hand, at optical frequencies, e.g., f = 600 THz corresponding to green
light with λ = 500 nm, the exact equations (2.6.5) yield the value for the character-
istic impedance of the sheet ηc = 6.3924 + 6.3888i Ω and the reflection coefficient
ρ = −0.9661+ 0.0328i. The corresponding power loss is 1− |ρ|2 = 0.065, or 6.5 percent.
Thus, metallic mirrors are fairly lossy at optical frequencies. ��

Example 4.3.3: A uniform plane wave of frequency f is normally incident from air onto a thick
conductor with conductivity σ, and ε = ε0, µ = µ0. Determine the reflected and trans-
mitted electric and magnetic fields to first-order in ηc/η0 and in the limit of a perfect
conductor (ηc = 0).

Solution: Using the approximations for ρ and τ of the previous example and Eq. (4.2.10), we
have for the reflected, transmitted, and total electric fields at the interface:

E− = ρE+ =
(
−1+ 2ηc

η0

)
E+

E′+ = τE+ =
2ηc
η0
E+

E = E+ + E− = 2ηc
η0
E+ = E′+ = E′

For a perfect conductor, we have σ →∞ and ηc/η0 → 0. The corresponding total tangen-
tial electric field becomes zero E = E′ = 0, and ρ = −1, τ = 0. For the magnetic fields, we
need to develop similar first-order approximations. The incident magnetic field intensity
is H+ = E+/η0. The reflected field becomes to first order:

H− = − 1

η0
E− = − 1

η0
ρE+ = −ρH+ =

(
1− 2ηc

η0

)
H+

Similarly, the transmitted field is
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H′+ =
1

ηc
E′+ =

1

ηc
τE+ = η0

ηc
τH+ = η0

ηc
2ηc
ηc + η0

H+ = 2η0

ηc + η0
H+ � 2

(
1− ηc

η0

)
H+

The total tangential field at the interface will be:

H = H+ +H− = 2

(
1− ηc

η0

)
H+ = H′+ = H′

In the perfect conductor limit, we findH = H′ = 2H+. As we saw in Sec. 2.6, the fields just
inside the conductor, E′+,H′+, will attenuate while they propagate. Assuming the interface
is at z = 0, we have:

E′+(z)= E′+e−αze−jβz, H′+(z)= H′+e−αze−jβz

where α = β = (1− j)/δ, and δ is the skin depth δ = √ωµσ/2. We saw in Sec. 2.6 that
the effective surface current is equal in magnitude to the magnetic field at z = 0, that is,
Js = H′+. Because of the boundary condition H = H′ = H′+, we obtain the result Js = H,
or vectorially, Js = H× ẑ = n̂×H, where n̂ = −ẑ is the outward normal to the conductor.

This result provides a justification of the boundary condition Js = n̂ × H at an interface
with a perfect conductor. ��

4.4 Single Dielectric Slab

Multiple interface problems can be handled in a straightforward way with the help of
the matching and propagation matrices. For example, Fig. 4.4.1 shows a two-interface
problem with a dielectric slab η1 separating the semi-infinite media ηa and ηb.

Fig. 4.4.1 Single dielectric slab.

Let l1 be the width of the slab, k1 = ω/c1 the propagation wavenumber, and λ1 =
2π/k1 the corresponding wavelength within the slab. We have λ1 = λ0/n1, where λ0 is
the free-space wavelength andn1 the refractive index of the slab. We assume the incident
field is from the left medium ηa, and thus, in medium ηb there is only a forward wave.
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Let ρ1, ρ2 be the elementary reflection coefficients from the left sides of the two
interfaces, and let τ1, τ2 be the corresponding transmission coefficients:

ρ1 = η1 − ηa
η1 + ηa , ρ2 = ηb − η1

ηb + η1
, τ1 = 1+ ρ1 , τ2 = 1+ ρ2 (4.4.1)

To determine the reflection coefficient Γ1 into medium ηa, we apply Eq. (4.2.9) to
relate Γ1 to the reflection coefficient Γ′1 at the right-side of the first interface. Then, we
propagate to the left of the second interface with Eq. (4.1.12) to get:

Γ1 = ρ1 + Γ′1
1+ ρ1Γ′1

= ρ1 + Γ2e−2jk1l1

1+ ρ1Γ2e−2jk1l1
(4.4.2)

At the second interface, we apply Eq. (4.2.9) again to relate Γ2 to Γ′2. Because there
are no backward-moving waves in medium ηb, we have Γ′2 = 0. Thus,

Γ2 = ρ2 + Γ′2
1+ ρ2Γ′2

= ρ2

We finally find for Γ1:

Γ1 = ρ1 + ρ2e−2jk1l1

1+ ρ1ρ2e−2jk1l1
(4.4.3)

This expression can be thought of as function of frequency. Assuming a lossless
medium η1, we have 2k1l1 = ω(2l1/c1)= ωT, where T = 2l1/c1 = 2(n1l1)/c0 is the
two-way travel time delay through medium η1. Thus, we can write:

Γ1(ω)= ρ1 + ρ2e−jωT

1+ ρ1ρ2e−jωT
(4.4.4)

This can also be expressed as a z-transform. Denoting the two-way travel time delay
in the z-domain by z−1 = e−jωT = e−2jk1l1 , we may rewrite Eq. (4.4.4) as the first-order
digital filter transfer function:

Γ1(z)= ρ1 + ρ2z−1

1+ ρ1ρ2z−1
(4.4.5)

An alternative way to derive Eq. (4.4.3) is working with wave impedances, which
are continuous across interfaces. The wave impedance at interface-2 is Z2 = Z′2, but
Z′2 = ηb because there is no backward wave in medium ηb. Thus, Z2 = ηb. Using the
propagation equation for impedances, we find:

Z1 = Z′1 = η1
Z2 + jη1 tank1l1
η1 + jZ2 tank1l1

= η1
ηb + jη1 tank1l1
η1 + jηb tank1l1

Inserting this into Γ1 = (Z1 − ηa)/(Z1 + ηa) gives Eq. (4.4.3). Working with wave
impedances is always more convenient if the interfaces are positioned at half- or quarter-
wavelength spacings.

If we wish to determine the overall transmission response into medium ηb, that is,
the quantityT = E′2+/E1+, then we must work with the matrix formulation. Starting at
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the left interface and successively applying the matching and propagation matrices, we
obtain:[

E1+
E1−

]
= 1

τ1

[
1 ρ1

ρ1 1

][
E′1+
E′1−

]
= 1

τ1

[
1 ρ1

ρ1 1

][
ejk1l1 0

0 e−jk1l1

][
E2+
E2−

]

= 1

τ1

[
1 ρ1

ρ1 1

][
ejk1l1 0

0 e−jk1l1

]
1

τ2

[
1 ρ2

ρ2 1

][
E′2+
0

]

where we set E′2− = 0 by assumption. Multiplying the matrix factors out, we obtain:

E1+ = e
jk1l1

τ1τ2

(
1+ ρ1ρ2e−2jk1l1

)
E′2+

E1− = e
jk1l1

τ1τ2

(
ρ1 + ρ2e−2jk1l1

)
E′2+

These may be solved for the reflection and transmission responses:

Γ1 = E1−
E1+

= ρ1 + ρ2e−2jk1l1

1+ ρ1ρ2e−2jk1l1

T = E
′
2+
E1+

= τ1τ2e−jk1l1

1+ ρ1ρ2e−2jk1l1

(4.4.6)

The transmission response has an overall delay factor of e−jk1l1 = e−jωT/2, repre-
senting the one-way travel time delay through medium η1.

For convenience, we summarize the match-and-propagate equations relating the field
quantities at the left of interface-1 to those at the left of interface-2. The forward and
backward electric fields are related by the transfer matrix:

[
E1+
E1−

]
= 1

τ1

[
1 ρ1

ρ1 1

][
ejk1l1 0

0 e−jk1l1

][
E2+
E2−

]

[
E1+
E1−

]
= 1

τ1

[
ejk1l1 ρ1e−jk1l1

ρ1ejk1l1 e−jk1l1

][
E2+
E2−

] (4.4.7)

The reflection responses are related by Eq. (4.4.2):

Γ1 = ρ1 + Γ2e−2jk1l1

1+ ρ1Γ2e−2jk1l1
(4.4.8)

The total electric and magnetic fields at the two interfaces are continuous across the
interfaces and are related by Eq. (4.1.13):

[
E1

H1

]
=
[

cosk1l1 jη1 sink1l1
jη−1

1 sink1l1 cosk1l1

][
E2

H2

]
(4.4.9)

Eqs. (4.4.7)–(4.4.9) are valid in general, regardless of what is to the right of the second
interface. There could be a semi-infinite uniform medium or any combination of multiple
slabs. These equations were simplified in the single-slab case because we assumed that
there was a uniform medium to the right and that there were no backward-moving waves.
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For lossless media, energy conservation states that the energy flux into medium η1

must equal the energy flux out of it. It is equivalent to the following relationship between
Γ andT, which can proved using Eq. (4.4.6):

1

ηa

(
1− |Γ1|2

) = 1

ηb
|T|2 (4.4.10)

Thus, if we call |Γ1|2 the reflectance of the slab, representing the fraction of the
incident power that gets reflected back into medium ηa, then the quantity

1− |Γ1|2 = ηaηb |T|
2 = nb

na
|T|2 (4.4.11)

will be the transmittance of the slab, representing the fraction of the incident power that
gets transmitted through into the right medium ηb. The presence of the factors ηa,ηb
can be can be understood as follows:

Ptransmitted

Pincident
=

1

2ηb
|E′2+|2

1

2ηa
|E1+|2

= ηa
ηb
|T|2

4.5 Reflectionless Slab

The zeros of the transfer function (4.4.5) correspond to a reflectionless interface. Such
zeros can be realized exactly only in two special cases, that is, for slabs that have either
half-wavelength or quarter-wavelength thickness. It is evident from Eq. (4.4.5) that a
zero will occur if ρ1 + ρ2z−1 = 0, which gives the condition:

z = e2jk1l1 = −ρ2

ρ1
(4.5.1)

Because the right-hand side is real-valued and the left-hand side has unit magnitude,
this condition can be satisfied only in the following two cases:

z = e2jk1l1 = 1, ρ2 = −ρ1, (half-wavelength thickness)

z = e2jk1l1 = −1, ρ2 = ρ1, (quarter-wavelength thickness)

The first case requires that 2k1l1 be an integral multiple of 2π, that is, 2k1l1 = 2mπ,
where m is an integer. This gives the half-wavelength condition l1 = mλ1/2, where λ1

is the wavelength in medium-1. In addition, the condition ρ2 = −ρ1 requires that:

ηb − η1

ηb + η1
= ρ2 = −ρ1 = ηa − η1

ηa + η1
� ηa = ηb

that is, the media to the left and right of the slab must be the same. The second pos-
sibility requires e2jk1l1 = −1, or that 2k1l1 be an odd multiple of π, that is, 2k1l1 =
(2m+1)π, which translates into the quarter-wavelength condition l1 = (2m+1)λ1/4.
Furthermore, the condition ρ2 = ρ1 requires:

ηb − η1

ηb + η1
= ρ2 = ρ1 = η1 − ηa

η1 + ηa � η2
1 = ηaηb
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To summarize, a reflectionless slab, Γ1 = 0, can be realized only in the two cases:

half-wave: l1 =m λ1

2
, η1 arbitrary, ηa = ηb

quarter-wave: l1 = (2m+ 1)
λ1

4
, η1 = √ηaηb , ηa, ηb arbitrary

(4.5.2)

An equivalent way of stating these conditions is to say that the optical length of
the slab must be a half or quarter of the free-space wavelength λ0. Indeed, if n1 is the
refractive index of the slab, then its optical length is n1l1, and in the half-wavelength
case we have n1l1 = n1mλ1/2 =mλ0/2, where we used λ1 = λ0/n1. Similarly, we have
n1l1 = (2m+1)λ0/4 in the quarter-wavelength case. In terms of the refractive indices,
Eq. (4.5.2) reads:

half-wave: n1l1 =m λ0

2
, n1 arbitrary, na = nb

quarter-wave: n1l1 = (2m+ 1)
λ0

4
, n1 = √nanb , na, nb arbitrary

(4.5.3)

The reflectionless matching condition can also be derived by working with wave
impedances. For half-wavelength spacing, we have from Eq. (4.1.18) Z1 = Z2 = ηb. The
condition Γ1 = 0 requires Z1 = ηa, thus, matching occurs if ηa = ηb. Similarly, for the
quarter-wavelength case, we have Z1 = η2

1/Z2 = η2
1/ηb = ηa.

We emphasize that the reflectionless response Γ1 = 0 is obtained only at certain slab
widths (half- or quarter-wavelength), or equivalently, at certain operating frequencies.
These operating frequencies correspond to ωT = 2mπ, or, ωT = (2m+ 1)π, that is,
ω = 2mπ/T =mω0, or,ω = (2m+ 1)ω0/2, where we definedω0 = 2π/T.

The dependence on l1 or ω can be seen from Eq. (4.4.5). For the half-wavelength
case, we substitute ρ2 = −ρ1 and for the quarter-wavelength case, ρ2 = ρ1. Then, the
reflection transfer functions become:

Γ1(z) = ρ1(1− z−1)
1− ρ2

1z−1
, (half-wave)

Γ1(z) = ρ1(1+ z−1)
1+ ρ2

1z−1
, (quarter-wave)

(4.5.4)

where z = e2jk1l1 = ejωT. The magnitude-square responses then take the form:

|Γ1|2 = 2ρ2
1

(
1− cos(2k1l1)

)
1− 2ρ2

1 cos(2k1l1)+ρ4
1
= 2ρ2

1(1− cosωT)
1− 2ρ2

1 cosωT + ρ4
1
, (half-wave)

|Γ1|2 = 2ρ2
1

(
1+ cos(2k1l1)

)
1+ 2ρ2

1 cos(2k1l1)+ρ4
1
= 2ρ2

1(1+ cosωT)
1+ 2ρ2

1 cosωT + ρ4
1
, (quarter-wave)

(4.5.5)

These expressions are periodic in l1 with period λ1/2, and periodic inω with period
ω0 = 2π/T. In DSP language, the slab acts as a digital filter with sampling frequency
ω0. The maximum reflectivity occurs at z = −1 and z = 1 for the half- and quarter-
wavelength cases. The maximum squared responses are in either case:
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|Γ1|2max =
4ρ2

1

(1+ ρ2
1)2

Fig. 4.5.1 shows the magnitude responses for the three values of the reflection co-
efficient: |ρ1| = 0.9, 0.7, and 0.5. The closer ρ1 is to unity, the narrower are the reflec-
tionless notches.

Fig. 4.5.1 Reflection responses |Γ(ω)|2. (a) |ρ1| = 0.9, (b) |ρ1| = 0.7, (c) |ρ1| = 0.5.

It is evident from these figures that for the same value of ρ1, the half- and quarter-
wavelength cases have the same notch widths. A standard measure for the width is the
3-dB width, which for thge half-wavelength case is twice the 3-dB frequency ω3, that
is, ∆ω = 2ω3, as shown in Fig. 4.5.1 for the case |ρ1| = 0.5. The frequency ω3 is
determined by the 3-dB half-power condition:

|Γ1(ω3)|2 = 1

2
|Γ1|2max

or, equivalently:

2ρ2
1(1− cosω3T)

1− 2ρ2
1 cosω3T + ρ4

1
= 1

2

4ρ2
1

(1+ ρ2
1)2

Solving for the quantity cosω3T = cos(∆ωT/2), we find:

cos
(∆ωT

2

) = 2ρ2
1

1+ ρ4
1

� tan
(∆ωT

4

) = 1− ρ2
1

1+ ρ2
1

(4.5.6)

If ρ2
1 is very near unity, then 1 − ρ2

1 and ∆ω become small, and we may use the
approximation tanx � x to get:

∆ωT
4

� 1− ρ2
1

1+ ρ2
1
� 1− ρ2

1

2

which gives the approximation:
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∆ωT = 2(1− ρ2
1) (4.5.7)

This is a standard approximation for digital filters relating the 3-dB width of a pole
peak to the radius of the pole [52]. For any desired value of the bandwidth∆ω, Eq. (4.5.6)
or (4.5.7) may be thought of as a design condition that determines ρ1.

Fig. 4.5.2 shows the corresponding transmittances 1 − |Γ1(ω)|2 of the slabs. The
transmission response acts as a periodic bandpass filter. This is the simplest exam-
ple of a so-called Fabry-Perot interference filter or Fabry-Perot resonator. Such filters
find application in the spectroscopic analysis of materials. We discuss them further in
Chap. 5.

Fig. 4.5.2 Transmittance of half- and quarter-wavelength dielectric slab.

Using Eq. (4.5.5), we may express the frequency response of the half-wavelength
transmittance filter in the following equivalent forms:

1− |Γ1(ω)|2 = (1− ρ2
1)2

1− 2ρ2
1 cosωT + ρ4

1
= 1

1+F sin2(ωT/2)
(4.5.8)

where the F is called the finesse in the Fabry-Perot context and is defined by:

F = 2ρ2
1

(1− ρ2
1)2

The finesse is a measure of the peak width, with larger values of F corresponding
to narrower peaks. The connection of F to the 3-dB width (4.5.6) is easily found to be:

tan
(∆ωT

4

) = 1− ρ2
1

1+ ρ2
1
= 1√

2+F (4.5.9)

Quarter-wavelength slabs may be used to design anti-reflection coatings for lenses,
so that all incident light on a lens gets through. Half-wavelength slabs, which require that
the medium be the same on either side of the slab, may be used in designing radar domes
(radomes) protecting microwave antennas, so that the radiated signal from the antenna
goes through the radome wall without getting reflected back towards the antenna.
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Example 4.5.1: Determine the reflection coefficients of half- and quarter-wave slabs that do not
necessarily satisfy the impedance conditions of Eq. (4.5.2).

Solution: The reflection response is given in general by Eq. (4.4.6). For the half-wavelength case,
we have e2jk1l1 = 1 and we obtain:

Γ1 = ρ1 + ρ2

1+ ρ1ρ2
=
η1 − ηa
η1 + ηa +

ηb − η1

ηb + η1

1+ η1 − ηa
η1 + ηa

ηb − η1

ηb + η1

= ηb − ηa
ηb + ηa =

na − nb
na + nb

This is the same as if the slab were absent. For this reason, half-wavelength slabs are
sometimes referred to as absentee layers. Similarly, in the quarter-wavelength case, we
have e2jk1l1 = −1 and find:

Γ1 = ρ1 − ρ2

1− ρ1ρ2
= η

2
1 − ηaηb
η2

1 + ηaηb
= nanb − n

2
1

nanb + n2
1

The slab becomes reflectionless if the conditions (4.5.2) are satisfied. ��

Example 4.5.2: Antireflection Coating. Determine the refractive index of a quarter-wave antire-
flection coating on a glass substrate with index 1.5.

Solution: From Eq. (4.5.3), we have with na = 1 and nb = 1.5:

n1 = √nanb =
√

1.5 = 1.22

The closest refractive index that can be obtained is that of cryolite (Na3AlF6) with n1 =
1.35 and magnesium fluoride (MgF2) with n1 = 1.38. Magnesium fluoride is usually pre-
ferred because of its durability. Such a slab will have a reflection coefficient as given by
the previous example:

Γ1 = ρ1 − ρ2

1− ρ1ρ2
= η

2
1 − ηaηb
η2

1 + ηaηb
= nanb − n

2
1

nanb + n2
1
= 1.5− 1.382

1.5+ 1.382
= −0.118

with reflectance |Γ|2 = 0.014, or 1.4 percent. This is to be compared to the 4 percent
reflectance of uncoated glass that we determined in Example 4.3.1.

Fig. 4.5.3 shows the reflectance |Γ(λ)|2 as a function of the free-space wavelength λ. The
reflectance remains less than one or two percent in the two cases, over almost the entire
visible spectrum.

The slabs were designed to have quarter-wavelength thickness at λ0 = 550 nm, that is, the
optical length was n1l1 = λ0/4, resulting in l1 = 112.71 nm and 99.64 nm in the two cases
of n1 = 1.22 and n1 = 1.38. Such extremely thin dielectric films are fabricated by means
of a thermal evaporation process [176,178].

The MATLAB code used to generate this example was as follows:

n = [1, 1.22, 1.50]; L = 1/4; refractive indices and optical length

lambda = linspace(400,700,101) / 550; visible spectrum wavelengths

Gamma1 = multidiel(n, L, lambda); reflection response of slab
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Fig. 4.5.3 Reflectance over the visible spectrum.

The syntax and use of the function multidiel is discussed in Sec. 5.1. The dependence
of Γ on λ comes through the quantity k1l1 = 2π(n1l1)/λ. Since n1l1 = λ0/4, we have
k1l1 = 0.5πλ0/λ. ��

Example 4.5.3: Thick Glasses. Interference phenomena, such as those arising from the mul-
tiple reflections within a slab, are not observed if the slabs are “thick” (compared to the
wavelength.) For example, typical glass windows seem perfectly transparent.

If one had a glass plate of thickness, say, of l = 1.5 mm and index n = 1.5, it would have
optical length nl = 1.5×1.5 = 2.25 mm = 225×104 nm. At an operating wavelength
of λ0 = 450 nm, the glass plate would act as a half-wave transparent slab with nl =
104(λ0/2), that is, 104 half-wavelengths long.

Such plate would be very difficult to construct as it would require that l be built with
an accuracy of a few percent of λ0/2. For example, assuming n(∆l)= 0.01(λ0/2), the
plate should be constructed with an accuracy of one part in a million: ∆l/l = n∆l/(nl)=
0.01/104 = 10−6. (That is why thin films are constructed by a carefully controlled evapo-
ration process.)

More realistically, a typical glass plate can be constructed with an accuracy of one part in a
thousand, ∆l/l = 10−3, which would mean that within the manufacturing uncertainty ∆l,
there would still be ten half-wavelengths, n∆λ = 10−3(nl)= 10(λ0/2).

The overall power reflection response will be obtained by averaging |Γ1|2 over severalλ0/2
cycles, such as the above ten. Because of periodicity, the average of |Γ1|2 over several cycles
is the same as the average over one cycle, that is,

|Γ1|2 = 1

ω0

∫ω0

0
|Γ1(ω)|2 dω

whereω0 = 2π/T and T is the two-way travel-time delay. Using either of the two expres-
sions in Eq. (4.5.5), this integral can be done exactly resulting in the average reflectance
and transmittance:

|Γ1|2 = 2ρ2
1

1+ ρ2
1
, 1− |Γ1|2 = 1− ρ2

1

1+ ρ2
1
= 2n
n2 + 1

(4.5.10)
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where we used ρ1 = (1 − n)/(1 + n). This explains why glass windows do not exhibit a
frequency-selective behavior as predicted by Eq. (4.5.5). For n = 1.5, we find 1 − |Γ1|2 =
0.9231, that is, 92.31% of the incident light is transmitted through the plate.

The same expressions for the average reflectance and transmittance can be obtained by
summing incoherently all the multiple reflections within the slab, that is, summing the
multiple reflections of power instead of field amplitudes. The timing diagram for such
multiple reflections is shown in Fig. 4.6.1.

Indeed, if we denote by pr = ρ2
1 and pt = 1− pr = 1− ρ2

1, the power reflection and trans-
mission coefficients, then the first reflection of power will be pr . The power transmitted
through the left interface will be pt and through the second interface p2

t (assuming the
same medium to the right.) The reflected power at the second interface will be ptpr and
will come back and transmit through the left interface giving p2

t pr .

Similarly, after a second round trip, the reflected power will be p2
t p3
r , while the transmitted

power to the right of the second interface will be p2
t p2
r , and so on. Summing up all the

reflected powers to the left and those transmitted to the right, we find:

|Γ1|2 = pr + p2
t pr + p2

t p3
r + p2

t p5
r + · · · = pr +

p2
t pr

1− p2
r
= 2pr

1+ pr

1− |Γ1|2 = p2
t + p2

t p2
r + p2

t p4
r + · · · =

p2
t

1− p2
r
= 1− pr

1+ pr

where we used pt = 1− pr . These are equivalent to Eqs. (4.5.10). ��

Example 4.5.4: Radomes. A radome protecting a microwave transmitter has ε = 4ε0 and is
designed as a half-wavelength reflectionless slab at the operating frequency of 10 GHz.
Determine its thickness.

Next, suppose that the operating frequency is 1% off its nominal value of 10 GHz. Calculate
the percentage of reflected power back towards the transmitting antenna.

Determine the operating bandwidth as that frequency interval about the 10 GHz operating
frequency within which the reflected power remains at least 30 dB below the incident
power.

Solution: The free-space wavelength is λ0 = c0/f0 = 30 GHz cm/10 GHz = 3 cm. The refractive
index of the slab is n = 2 and the wavelength inside it, λ1 = λ0/n = 3/2 = 1.5 cm. Thus,
the slab thickness will be the half-wavelength l1 = λ1/2 = 0.75 cm, or any other integral
multiple of this.

Assume now that the operating frequency is ω = ω0 + δω, where ω0 = 2πf0 = 2π/T.
Denoting δ = δω/ω0, we can write ω = ω0(1 + δ). The numerical value of δ is very
small, δ = 1% = 0.01. Therefore, we can do a first-order calculation in δ. The reflection
coefficient ρ1 and reflection response Γ are:

ρ1 = η− η0

η+ η0
= 0.5− 1

0.5+ 1
= −1

3
, Γ1(ω)= ρ1(1− z−1)

1− ρ2
1z−1

= ρ1(1− e−jωT)
1− ρ2

1e−jωT

where we used η = η0/n = η0/2. Noting that ωT = ω0T(1 + δ)= 2π(1 + δ), we can
expand the delay exponential to first-order in δ:

z−1 = e−jωT = e−2πj(1+δ) = e−2πje−2πjδ = e−2πjδ � 1− 2πjδ
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Thus, the reflection response becomes to first-order in δ:

Γ1 � ρ1
(
1− (1− 2πjδ)

)
1− ρ2

1(1− 2πjδ)
= ρ12πjδ

1− ρ2
1 + ρ2

12πjδ
� ρ12πjδ

1− ρ2
1

where we replaced the denominator by its zeroth-order approximation because the numer-
ator is already first-order in δ. It follows that the power reflection response will be:

|Γ1|2 = ρ
2
1(2πδ)2

(1− ρ2
1)2

Evaluating this expression for δ = 0.01 and ρ1 = −1/3, we find |Γ|2 = 0.00049, or
0.049 percent of the incident power gets reflected. Next, we find the frequency about
ω0 at which the reflected power is A = 30 dB below the incident power. Writing again,
ω =ω0 + δω =ω0(1+ δ) and assuming δ is small, we have the condition:

|Γ1|2 = ρ
2
1(2πδ)2

(1− ρ2
1)2

= Prefl

Pinc
= 10−A/10 ⇒ δ = 1− ρ2

1

2π|ρ1| 10−A/20

Evaluating this expression, we find δ = 0.0134, or δω = 0.0134ω0. The bandwidth will
be twice that, ∆ω = 2δω = 0.0268ω0, or in Hz, ∆f = 0.0268f0 = 26.8 MHz. ��

Example 4.5.5: Because of manufacturing imperfections, suppose that the actual constructed
thickness of the above radome is 1% off the desired half-wavelength thickness. Determine
the percentage of reflected power in this case.

Solution: This is essentially the same as the previous example. Indeed, the quantity θ =ωT =
2k1l1 = 2ωl1/c1 can change either because of ω or because of l1. A simultaneous in-
finitesimal change (about the nominal value θ0 =ω0T = 2π) will give:

δθ = 2(δω)l1/c1 + 2ω0(δl1)/c1 ⇒ δ = δθ
θ0
= δω
ω0

+ δl1
l1

In the previous example, we varied ω while keeping l1 constant. Here, we vary l1, while
keepingω constant, so that δ = δl1/l1. Thus, we have δθ = θ0δ = 2πδ. The correspond-
ing delay factor becomes approximately z−1 = e−jθ = e−j(2π+δθ) = 1 − jδθ = 1 − 2πjδ.
The resulting expression for the power reflection response is identical to the above and its
numerical value is the same if δ = 0.01. ��

Example 4.5.6: Because of weather conditions, suppose that the characteristic impedance of
the medium outside the above radome is 1% off the impedance inside. Calculate the per-
centage of reflected power in this case.

Solution: Suppose that the outside impedance changes to ηb = η0 + δη. The wave impedance
at the outer interface will be Z2 = ηb = η0 + δη. Because the slab length is still a half-
wavelength, the wave impedance at the inner interface will be Z1 = Z2 = η0 + δη. It
follows that the reflection response will be:

Γ1 = Z1 − η0

Z1 + η0
= η0 + δη− η0

η0 + δη+ η0
= δη

2η0 + δη �
δη
2η0

where we replaced the denominator by its zeroth-order approximation in δη. Evaluating
at δη/η0 = 1% = 0.01, we find Γ1 = 0.005, which leads to a reflected power of |Γ1|2 =
2.5×10−5, or, 0.0025 percent. ��
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4.6 Time-Domain Reflection Response

We conclude our discussion of the single slab by trying to understand its behavior in
the time domain. The z-domain reflection transfer function of Eq. (4.4.5) incorporates
the effect of all multiple reflections that are set up within the slab as the wave bounces
back and forth at the left and right interfaces. Expanding Eq. (4.4.5) in a partial fraction
expansion and then in power series in z−1 gives:

Γ1(z)= ρ1 + ρ2z−1

1+ ρ1ρ2z−1
= 1

ρ1
− 1

ρ1

(1− ρ2
1)

1+ ρ1ρ2z−1
= ρ1 +

∞∑
n=1

(1− ρ2
1)(−ρ1)n−1ρn2 z−n

Using the reflection coefficient from the right of the first interface, ρ′1 = −ρ1, and the
transmission coefficients τ1 = 1+ρ1 and τ′1 = 1+ρ′1 = 1−ρ1, we have τ1τ′1 = 1−ρ2

1.
Then, the above power series can be written as a function of frequency in the form:

Γ1(ω)= ρ1 +
∞∑
n=1

τ1τ′1(ρ′1)n−1ρn2 z−n = ρ1 +
∞∑
n=1

τ1τ′1(ρ′1)n−1ρn2 e−jωnT

where we set z−1 = e−jωT. It follows that the time-domain reflection impulse response,
that is, the inverse Fourier transform of Γ1(ω), will be the sum of discrete impulses:

Γ1(t)= ρ1δ(t)+
∞∑
n=1

τ1τ′1(ρ′1)n−1ρn2 δ(t − nT) (4.6.1)

This is the response of the slab to a forward-moving impulse striking the left inter-
face at t = 0, that is, the response to the input E1+(t)= δ(t). The first term ρ1δ(t) is the
impulse immediately reflected at t = 0 with the reflection coefficient ρ1. The remaining
terms represent the multiple reflections within the slab. Fig. 4.6.1 is a timing diagram
that traces the reflected and transmitted impulses at the first and second interfaces.

Fig. 4.6.1 Multiple reflections building up the reflection and transmission responses.

The input pulse δ(t) gets transmitted to the inside of the left interface and picks up
a transmission coefficient factor τ1. InT/2 seconds this pulse strikes the right interface
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and causes a reflected wave whose amplitude is changed by the reflection coefficient ρ2

into τ1ρ2.
Thus, the pulse τ1ρ2δ(t − T/2) gets reflected backwards and will arrive at the left

interface T/2 seconds later, that is, at time t = T. A proportion τ′1 of it will be transmit-
ted through to the left, and a proportion ρ′1 will be re-reflected towards the right. Thus,
at time t = T, the reflected pulse into the left medium will be τ1τ′1ρ2δ(t−T), and the
re- reflected pulse τ1ρ′1ρ2δ(t −T).

The re-reflected pulse will travel forward to the right interface, arriving there at time
t = 3T/2 getting reflected backwards picking up a factor ρ2. This will arrive at the left
at time t = 2T. The part transmitted to the left will be now τ1τ′1ρ′1ρ2

2δ(t − 2T), and
the part re-reflected to the right τ1ρ′12ρ2

2δ(t−2T). And so on, after the nth round trip,
the pulse transmitted to the left will be τ1τ′1(ρ′1)n−1ρn2δ(t − nT). The sum of all the
reflected pulses will be Γ1(t) of Eq. (4.6.1).

In a similar way, we can derive the overall transmission response to the right. It is
seen in the figure that the transmitted pulse at time t = nT+(T/2)will beτ1τ2(ρ′1)nρn2 .
Thus, the overall transmission impulse response will be:

T(t)=
∞∑
n=0

τ1τ2(ρ′1)nρn2 δ(t − nT −T/2)

It follows that its Fourier transform will be:

T(ω)=
∞∑
n=0

τ1τ2(ρ′1)nρn2e−jnωTe−jωT/2

which sums up to Eq. (4.4.6):

T(ω)= τ1τ2e−jωT/2

1− ρ′1ρ2e−jωT
= τ1τ2e−jωT/2

1+ ρ1ρ2e−jωT
(4.6.2)

For an incident field E1+(t) with arbitrary time dependence, the overall reflection
response of the slab is obtained by convolving the impulse response Γ1(t) with E1+(t).
This follows from the linear superposition of the reflection responses of all the frequency
components of E1+(t), that is,

E1−(t)=
∫∞
−∞
Γ1(ω)E1+(ω)ejωt

dω
2π

, where E1+(t)=
∫∞
−∞
E1+(ω)ejωt

dω
2π

Then, the convolution theorem of Fourier transforms implies that:

E1−(t)=
∫∞
−∞
Γ1(ω)E1+(ω)ejωt

dω
2π

=
∫ −∞
−∞
Γ1(t′)E1+(t − t′)dt′ (4.6.3)

Inserting (4.6.1), we find that the reflected wave arises from the multiple reflections
of E1+(t) as it travels and bounces back and forth between the two interfaces:

E1−(t)= ρ1E1+(t)+
∞∑
n=1

τ1τ′1(ρ′1)n−1ρn2 E1+(t − nT) (4.6.4)
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For a causal waveform E1+(t), the summation over n will be finite, such that at each
time t ≥ 0 only the terms that have t− nT ≥ 0 will be present. In a similar fashion, we
find for the overall transmitted response into medium ηb :

E′2+(t)=
∫ −∞
−∞
T(t′)E1+(t − t′)dt′ =

∞∑
n=0

τ1τ2(ρ′1)nρn2 E1+(t − nT −T/2) (4.6.5)

We will use similar techniques later on to determine the transient responses of trans-
mission lines.

4.7 Two Dielectric Slabs

Next, we consider more than two interfaces. As we mentioned in the previous section,
Eqs. (4.4.7)–(4.4.9) are general and can be applied to all successive interfaces. Fig. 4.7.1
shows three interfaces separating four media. The overall reflection response can be
calculated by successive application of Eq. (4.4.8):

Γ1 = ρ1 + Γ2e−2jk1l1

1+ ρ1Γ2e−2jk1l1
, Γ2 = ρ2 + Γ3e−2jk2l2

1+ ρ2Γ3e−2jk2l2

Fig. 4.7.1 Two dielectric slabs.

If there is no backward-moving wave in the right-most medium, then Γ′3 = 0, which
implies Γ3 = ρ3. Substituting Γ2 into Γ1 and denoting z1 = e2jk1l1 , z2 = e2jk2l2 , we
eventually find:

Γ1 = ρ1 + ρ2z−1
1 + ρ1ρ2ρ3z−1

2 + ρ3z−1
1 z

−1
2

1+ ρ1ρ2z−1
1 + ρ2ρ3z−1

2 + ρ1ρ3z−1
1 z

−1
2

(4.7.1)

The reflection response Γ1 can alternatively be determined from the knowledge of
the wave impedance Z1 = E1/H1 at interface-1:

Γ1 = Z1 − ηa
Z1 + ηa
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The fields E1,H1 are obtained by successively applying Eq. (4.4.9):[
E1

H1

]
=
[

cosk1l1 jη1 sink1l1
jη−1

1 sink1l1 cosk1l1

][
E2

H2

]

=
[

cosk1l1 jη1 sink1l1
jη−1

1 sink1l1 cosk1l1

][
cosk2l2 jη2 sink2l2

jη−1
2 sink2l2 cosk2l2

][
E3

H3

]

But at interface-3, E3 = E′3 = E′3+ and H3 = Z−1
3 E3 = η−1

b E
′
3+, because Z3 = ηb.

Therefore, we can obtain the fields E1,H1 by the matrix multiplication:[
E1

H1

]
=
[

cosk1l1 jη1 sink1l1
jη−1

1 sink1l1 cosk1l1

][
cosk2l2 jη2 sink2l2

jη−1
2 sink2l2 cosk2l2

][
1
η−1
b

]
E′3+

Because Z1 is the ratio of E1 andH1, the factor E′3+ cancels out and can be set equal
to unity.

Example 4.7.1: Determine Γ1 if both slabs are quarter-wavelength slabs. Repeat if both slabs
are half-wavelength and when one is half- and the other quarter-wavelength.

Solution: Because l1 = λ1/4 and l2 = λ2/4, we have 2k1l1 = 2k2l2 = π, and it follows that
z1 = z2 = −1. Then, Eq. (4.7.1) becomes:

Γ1 = ρ1 − ρ2 − ρ1ρ2ρ3 + ρ3

1− ρ1ρ2 − ρ2ρ3 + ρ1ρ3

A simpler approach is to work with wave impedances. Using Z3 = ηb, we have:

Z1 = η
2
1

Z2
= η2

1

η2
2/Z3

= η
2
1

η2
2
Z3 = η

2
1

η2
2
ηb

Inserting this into Γ1 = (Z1 − ηa)/(Z1 + ηa), we obtain:

Γ1 = η
2
1ηb − η2

2ηa
η2

1ηb + η2
2ηa

The two expressions for Γ1 are equivalent. The input impedance Z1 can also be obtained
by matrix multiplication. Because k1l1 = k2l2 = π/2, we have cosk1l1 = 0 and sink1l1 = 1
and the propagation matrices for E1,H1 take the simplified form:

[
E1

H1

]
=
[

0 jη1

jη−1
1 0

][
0 jη2

jη−1
2 0

][
1
η−1
b

]
E′3+ =

[
−η1η−1

2

−η2η−1
1 η−1

b

]
E′3+

The ratioE1/H1 gives the same answer forZ1 as above. When both slabs are half-wavelength,
the impedances propagate unchanged: Z1 = Z2 = Z3, but Z3 = ηb.
If η1 is half- and η2 quarter-wavelength, then, Z1 = Z2 = η2

2/Z3 = η2
2/ηb. And, if the

quarter-wavelength is first and the half-wavelength second, Z1 = η2
1/Z2 = η2

1/Z3 = η2
1/ηb.

The corresponding reflection coefficient Γ1 is in the three cases:

Γ1 = ηb − ηaηb + ηa , Γ1 = η
2
2 − ηaηb
η2

2 + ηaηb
, Γ1 = η

2
1 − ηaηb
η2

1 + ηaηb
These expressions can also be derived by Eq. (4.7.1), or by the matrix method. ��
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The frequency dependence of Eq. (4.7.1) arises through the factors z1, z2, which can
be written in the forms: z1 = ejωT1 and z2 = ejωT2 , where T1 = 2l1/c1 and T2 = 2l2/c2

are the two-way travel time delays through the two slabs.
A case of particular interest arises when the slabs are designed to have the equal

travel-time delays so that T1 = T2 ≡ T. Then, defining a common variable z = z1 =
z2 = ejωT, we can write the reflection response as a second-order digital filter transfer
function:

Γ1(z)= ρ1 + ρ2(1+ ρ1ρ3)z−1 + ρ3z−2

1+ ρ2(ρ1 + ρ3)z−1 + ρ1ρ3z−2
(4.7.2)

In the next chapter, we discuss further the properties of such higher-order reflection
transfer functions arising from multilayer dielectric slabs.

4.8 Problems

4.1 Fill in the details of the equivalence between Eq. (4.2.2) and (4.2.3), that is,

E+ + E− = E′+ + E′−
1

η
(
E+ − E−

) = 1

η′
(
E′+ − E′−

) �

[
E+
E−

]
= 1

τ

[
1 ρ
ρ 1

][
E′+
E′−

]

4.2 Fill in the details of the equivalences stated in Eq. (4.2.9), that is,

Z = Z′ � Γ = ρ+ Γ′
1+ ρΓ′ � Γ′ = ρ′ + Γ

1+ ρ′Γ
Show that if there is no left-incident field from the right, then Γ = ρ, and if there is no
right-incident field from the left, then, Γ′ = 1/ρ′. Explain the asymmetry of the two cases.

4.3 Let ρ,τ be the reflection and transmission coefficients from the left side of an interface and
let ρ′, τ′ be those from the right, as defined in Eq. (4.2.5). One of the two media may be
lossy, and therefore, its characteristic impedance and hence ρ,τ may be complex-valued.
Show and interpret the relationships:

1− |ρ|2 = Re
( η
η′
)|τ|2 = Re(τ∗τ′)

4.4 Show that the reflection and transmission responses of the single dielectric slab of Fig. 4.4.1
are given by Eq. (4.4.6), that is,

Γ = ρ1 + ρ2e−2jk1l1

1+ ρ1ρ2e−2jk1l1
, T = E

′
2+
E1+

= τ1τ2e−jk1l1

1+ ρ1ρ2e−2jk1l1

Moreover, using these expressions show and interpret the relationship:

1

ηa

(
1− |Γ|2) = 1

ηb
|T|2

4.5 A 1-GHz plane wave is incident normally onto a thick copper plate (σ = 5.8×107 S/m.) Can
the plate be considered to be a good conductor at this frequency? Calculate the percentage
of the incident power that enters the plate. Calculate the attenuation coefficient within the
conductor and express it in units of dB/m. What is the penetration depth in mm?
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4.6 With the help of Fig. 4.5.1, argue that the 3-dB width ∆ω is related to the 3-dB frequency
ω3 by ∆ω = 2ω3 and ∆ω =ω0 − 2ω3, in the cases of half- and quarter-wavelength slabs.
Then, show thatω3 and ∆ω are given by:

cosω3T = ± 2ρ2
1

1+ ρ4
1
, tan

(
∆ωT

4

)
= 1− ρ2

1

1+ ρ2
1

4.7 A fiberglass (ε = 4ε0) radome protecting a microwave antenna is designed as a half-wavelength
reflectionless slab at the operating frequency of 12 GHz.

a. Determine three possible thicknesses (in cm) for this radome.

b. Determine the 15-dB and 30-dB bandwidths in GHz about the 12 GHz operating fre-
quency , defined as the widths over which the reflected power is 15 or 30 dB below the
incident power.

4.8 A 5 GHz wave is normally incident from air onto a dielectric slab of thickness of 1 cm and
refractive index of 1.5, as shown below. The medium to the right of the slab has an index of
2.25.

a. Write an analytical expression of the reflectance |Γ(f)|2 as a function of frequency
and sketch it versus f over the interval 0 ≤ f ≤ 15 GHz. What is the value of the
reflectance at 5 GHz?

b. Next, the 1-cm slab is moved to the left by a distance of 3 cm, creating an air-gap
between it and the rightmost dielectric. Repeat all the questions of part (a).

c. Repeat part (a), if the slab thickness is 2 cm.

4.9 Consider a two-layer dielectric structure as shown in Fig. 4.7.1, and let na, n1, n2, nb be the
refractive indices of the four media. Consider the four cases: (a) both layers are quarter-
wave, (b) both layers are half-wave, (c) layer-1 is quarter- and layer-2 half-wave, and (d) layer-1
is half- and layer-2 quarter-wave. Show that the reflection coefficient at interface-1 is given
by the following expressions in the four cases:

Γ1 = nan
2
2 − nbn2

1

nan2
2 + nbn2

1
, Γ1 = na − nbna + nb , Γ1 = nanb − n

2
1

nanb + n2
1
, Γ1 = n

2
2 − nanb
n2

2 + nanb
4.10 Consider the lossless two-slab structure of Fig. 4.7.1. Write down all the transfer matrices

relating the fields Ei±, i = 1,2,3 at the left sides of the three interfaces. Then, show the
energy conservation equations:

1

ηa

(|E1+|2 − |E1−|2
) = 1

η1

(|E2+|2 − |E2−|2
) = 1

η2

(|E3+|2 − |E3−|2
) = 1

ηb
|E′1+|2
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4.11 An alternative way of representing the propagation relationship Eq. (4.1.12) is in terms of the
hyperbolic w-plane variable defined in terms of the reflection coefficient Γ, or equivalently,
the wave impedance Z as follows:

Γ = e−2w � Z = η coth(w) (4.8.1)

Show the equivalence of these expressions. Writing Γ1 = e−2w1 and Γ2 = e−2w2 , show that
Eq. (4.1.12) becomes equivalent to:

w1 = w2 + jkl (propagation in w-domain) (4.8.2)

This form is essentially the mathematical (as opposed to graphical) version of the Smith
chart and is particularly useful for numerical computations using MATLAB.



5
Multilayer Structures

Higher-order transfer functions of the type of Eq. (4.7.2) can achieve broader reflection-
less notches and are used in the design of thin-film antireflection coatings, dielectric
mirrors, and optical interference filters [176–238,294–327], and in the design of broad-
band terminations of transmission lines [362–372].

They are also used in the analysis, synthesis, and simulation of fiber Bragg gratings
[328–348], in the design of narrow-band transmission filters for wavelength-division
multiplexing (WDM), and in other fiber-optic signal processing systems [358–361].

They are used routinely in making acoustic tube models for the analysis and synthe-
sis of speech, with the layer recursions being mathematically equivalent to the Levinson
lattice recursions of linear prediction [373–379]. The layer recursions are also used in
speech recognition, disguised as the Schur algorithm.

They also find application in geophysical deconvolution and inverse scattering prob-
lems for oil exploration [380–389].

The layer recursions—known as the Schur recursions in this context—are intimately
connected to the mathematical theory of lossless bounded real functions in the z-plane
and positive real functions in the s-plane and find application in network analysis, syn-
thesis, and stability [393–407].

5.1 Multiple Dielectric Slabs

The general case of arbitrary number of dielectric slabs of arbitrary thicknesses is shown
in Fig. 5.1.1. There areM slabs,M+ 1 interfaces, andM+ 2 dielectric media, including
the left and right semi-infinite media ηa and ηb.

The incident and reflected fields are considered at the left of each interface. The
overall reflection response, Γ1 = E1−/E1+, can be obtained recursively in a variety of
ways, such as by the propagation matrices, the propagation of the impedances at the
interfaces, or the propagation of the reflection responses.

The elementary reflection coefficients ρi from the left of each interface are defined
in terms of the characteristic impedances or refractive indices as follows:

ρi = ηi − ηi−1

ηi + ηi−1
= ni−1 − ni
ni−1 + ni , i = 1,2, . . . ,M + 1 (5.1.1)

109



110 Electromagnetic Waves & Antennas – S. J. Orfanidis

Fig. 5.1.1 Multilayer dielectric slab structure.

where ηi = η0/ni, and we must use the convention n0 = na and nM+1 = nb, so that
ρ1 = (na − n1)/(na + n1) and ρM+1 = (nM − nb)/(nM + nb). The forward/backward
fields at the left of interface i are related to those at the left of interface i+ 1 by:

[
Ei+
Ei−

]
= 1

τi

[
ejkili ρie−jkili
ρiejkili e−jkili

][
Ei+1,+
Ei+1,−

]
, i =M,M − 1, . . . ,1 (5.1.2)

where τi = 1+ρi and kili is the phase thickness of the ith slab, which can be expressed
in terms of its optical thickness nili and the operating free-space wavelength by kili =
2π(nili)/λ. Assuming no backward waves in the right-most medium, these recursions
are initialized at the (M + 1)st interface as follows:

[
EM+1,+
EM+1,−

]
= 1

τM+1

[
1 ρM+1

ρM+1 1

][
E′M+1,+

0

]
= 1

τM+1

[
1

ρM+1

]
E′M+1,+

It follows that the reflection responses Γi = Ei−/Ei+ will satisfy the recursions:

Γi = ρi + Γi+1e−2jkili

1+ ρiΓi+1e−2jkili
, i =M,M − 1, . . . ,1 (5.1.3)

and initialized by ΓM+1 = ρM+1. Similarly the recursions for the total electric and
magnetic fields, which are continuous across each interface, are given by:

[
Ei
Hi

]
=
[

coskili jηi sinkili
jη−1
i sinkili coskili

][
Ei+1

Hi+1

]
, i =M,M − 1, . . . ,1 (5.1.4)

and initialized at the (M + 1)st interface as follows:

[
EM+1

HM+1

]
=
[

1
η−1
b

]
E′M+1,+

It follows that the impedances at the interfaces, Zi = Ei/Hi, satisfy the recursions:
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Zi = ηi Zi+1 + jηi tankili
ηi + jZi+1 tankili

, i =M,M − 1, . . . ,1 (5.1.5)

and initialized by ZM+1 = ηb. The objective of all these recursions is to obtain the
overall reflection response Γ1 into medium ηa.

The MATLAB function multidiel implements the recursions (5.1.3) for such a multi-
dielectric structure and evaluates Γ1 andZ1 at any desired set of free-space wavelengths.
Its usage is as follows:

[Gamma1,Z1] = multidiel(n,L,lambda); % multilayer dielectric structure

where n,L are the vectors of refractive indices of the M + 2 media and the optical
thicknesses of theM slabs, that is, in the notation of Fig. 5.1.1:

n = [na, n1, n2, . . . , nM,nb], L = [n1l1, n2l2, . . . , nMlM]

and λ is a vector of free-space wavelengths at which to evaluate Γ1. Both the optical
lengths L and the wavelengths λ are in units of some desired reference wavelength, say
λ0, typically chosen at the center of the desired band. The usage of multidiel was
illustrated in Example 4.5.2. Additional examples are given in the next sections.

The layer recursions (5.1.2)–(5.1.5) remain essentially unchanged in the case of oblique
incidence (with appropriate redefinitions of the impedances ηi) and are discussed in
Chap. 6.

Next, we apply the layer recursions to the analysis and design of antireflection coat-
ings and dielectric mirrors.

5.2 Antireflection Coatings

The simplest example of antireflection coating is the quarter-wavelength layer discussed
in Example 4.5.2. Its primary drawback is that it requires the layer’s refractive index to
satisfy the reflectionless condition n1 = √nanb.

For a typical glass substrate with index nb = 1.50, we have n1 = 1.22. Materials with
n1 near this value, such as magnesium fluoride with n1 = 1.38, will result into some,
but minimized, reflection compared to the uncoated glass case, as we saw in Example
4.5.2.

The use of multiple layers can improve the reflectionless properties of the single
quarter-wavelength layer, while allowing the use of real materials. In this section, we
consider three such examples.

Assuming a magnesium fluoride film and adding between it and the glass another
film of higher refractive index, it is possible to achieve a reflectionless structure (at a
single wavelength) by properly adjusting the film thicknesses [178,203].

With reference to the notation of Fig. 4.7.1, we have na = 1, n1 = 1.38, n2 to be
determined, and nb = nglass = 1.5. The reflection response at interface-1 is related to
the response at interface-2 by the layer recursions:

Γ1 = ρ1 + Γ2e−2jk1l1

1+ ρ1Γ2e−2jk1l1
, Γ2 = ρ2 + ρ3e−2jk2l2

1+ ρ2ρ3e−2jk2l2
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The reflectionless condition is Γ1 = 0 at an operating free-space wavelength λ0. This
requires that ρ1 + Γ2e−2jk1l1 = 0, which can be written as:

e2jk1l1 = −Γ2

ρ1
(5.2.1)

Because the left-hand side has unit magnitude, we must have the condition |Γ2| =
|ρ1|, or, |Γ2|2 = ρ2

1, which is written as:∣∣∣∣∣ ρ2 + ρ3e−2jk2l2

1+ ρ2ρ3e−2jk2l2

∣∣∣∣∣
2

= ρ2
2 + ρ2

3 + 2ρ2ρ3 cos 2k2l2
1+ ρ2

2ρ
2
3 + 2ρ2ρ3 cos 2k2l2

= ρ2
1

This can be solved for cos 2k2l2:

cos 2k2l2 = ρ
2
1(1+ ρ2

2ρ
2
3)−(ρ2

2 + ρ2
3)

2ρ2ρ3(1− ρ2
1)

Using the identity, cos 2k2l2 = 2 cos2 k2l2 − 1, we also find:

cos2 k2l2 = ρ
2
1(1− ρ2ρ3)2−(ρ2 − ρ3)2

4ρ2ρ3(1− ρ2
1)

sin2 k2l2 = (ρ2 + ρ3)2−ρ2
1(1+ ρ2ρ3)2

4ρ2ρ3(1− ρ2
1)

(5.2.2)

It is evident from these expressions that not every combination of ρ1, ρ2, ρ3 will
admit a solution because the left-hand sides are positive and less than one. If we assume
that n2 > n1 and n2 > nb, then, we will have ρ2 < 0 and ρ3 > 0. Then, it is necessary
that the numerators of above expressions be negative, resulting into the conditions:∣∣∣∣∣ ρ3 + ρ2

1+ ρ2ρ3

∣∣∣∣∣
2

< ρ2
1 <

∣∣∣∣∣ ρ3 − ρ2

1− ρ2ρ3

∣∣∣∣∣
2

The left inequality requires that
√
nb < n1 < nb, which is satisfied with the choices

n1 = 1.38 and nb = 1.5. Similarly, the right inequality is violated—and therefore there
is no solution—if

√
nb < n2 < n1

√
nb, which has the numerical range 1.22 < n2 < 1.69.

Catalan [178,203] used bismuth oxide (Bi2O3) with n2 = 2.45, which satisfies the
above conditions for the existence of solution. With this choice, the reflection coeffi-
cients are ρ1 = −0.16, ρ2 = −0.28, and ρ3 = 0.24. Solving Eq. (5.2.2) for k2l2 and then
Eq. (5.2.1) for k1l1, we find:

k1l1 = 2.0696, k2l2 = 0.2848 (radians)

Writing k1l1 = 2π(n1l1)/λ0, we find the optical lengths:

n1l1 = 0.3294λ0, n2l2 = 0.0453λ0

Fig. 5.2.1 shows the resulting reflection response Γ1 as a function of the free-space
wavelength λ, with λ0 chosen to correspond to the middle of the visible spectrum,
λ0 = 550 nm. The figure also shows the responses of the single quarter-wave slab of
Example 4.5.2.

The reflection responses were computed with the help of the MATLAB function mul-
tidiel. The MATLAB code used to implement this example was as follows:
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Fig. 5.2.1 Two-slab reflectionless coating.

na=1; nb=1.5; n1=1.38; n2=2.45;
n = [na,n1,n2,nb]; la0 = 550;
r = n2r(n);

c = sqrt((r(1)^2*(1-r(2)*r(3))^2 - (r(2)-r(3))^2)/(4*r(2)*r(3)*(1-r(1)^2)));
k2l2 = acos(c);
G2 = (r(2)+r(3)*exp(-2*j*k2l2))/(1 + r(2)*r(3)*exp(-2*j*k2l2));
k1l1 = (angle(G2) - pi - angle(r(1)))/2;
if k1l1 <0, k1l1 = k1l1 + 2*pi; end

L = [k1l1,k2l2]/2/pi;

la = linspace(400,700,101);
Ga = abs(multidiel(n, L, la/la0)).^2 * 100;
Gb = abs(multidiel([na,n1,nb], 0.25, la/la0)).^2 * 100;
Gc = abs(multidiel([na,sqrt(nb),nb], 0.25, la/la0)).^2 * 100;

plot(la, Ga, la, Gb, la, Gc);

The dependence on λ comes through the quantities k1l1 and k2l2, for example:

k1l1 = 2π
n1l1
λ
= 2π

0.3294λ0

λ

Essentially the same method is used in Sec. 11.6 to design 2-section series impedance
transformers. The MATLAB function twosect of that section implements the design.
It can be used to obtain the optical lengths of the layers, and in fact, it produces two
possible solutions:

L12 = twosect(1, 1/1.38, 1/2.45, 1/1.5)=
[

0.3294 0.0453
0.1706 0.4547

]

where each row represents a solution, so that L1 = n1l1/λ0 = 0.1706 and L2 =
n2l2/λ0 = 0.4547 is the second solution. The arguments of twosect are the inverses
of the refractive indices, which are proportional to the characteristic impedances of the
four media.
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Although this design method meets its design objectives, it results in a narrower
bandwidth compared to that of the ideal single-slab case. Varying n2 has only a minor
effect on the shape of the curve. To widen the bandwidth, and at the same time keep
the reflection response low, more than two layers must be used.

A simple approach is to fix the optical thicknesses of the films to some prescribed
values, such as quarter-wavelengths, and adjust the refractive indices hoping that the
required index values come close to realizable ones [178,204]. Fig. 5.2.2 shows the
two possible structures: the quarter-quarter two-film case and the quarter-half-quarter
three-film case.

Fig. 5.2.2 Quarter-quarter and quarter-half-quarter antireflection coatings.

The behavior of the two structures is similar at the design wavelength. For the
quarter-quarter case, the requirement Z1 = ηa implies:

Z1 = η
2
1

Z2
= η2

1

η2
2/Z3

= η
2
1

η2
2
ηb = ηa

which gives the design condition (see also Example 4.7.1):

na = n
2
1

n2
2
nb (5.2.3)

The optical thicknesses are n1l1 = n2l2 = λ0/4. In the quarter-half-quarter case,
the half-wavelength layer acts as an absentee layer, that is, Z2 = Z3, and the resulting
design condition is the same:

Z1 = η
2
1

Z2
= η

2
1

Z3
= η2

1

η2
3/Z4

= η
2
1

η2
3
ηb = ηa

yielding in the condition:

na = n
2
1

n2
3
nb (5.2.4)

The optical thicknesses are now n1l1 = n3l3 = λ0/4 and n2l2 = λ0/2. Conditions
(5.2.3) and (5.2.4) are the same as far as determining the refractive index of the second
quarter-wavelength layer. In the quarter-half-quarter case, the index n2 of the half-
wavelength film is arbitrary.
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In the quarter-quarter case, if the first quarter-wave film is magnesium fluoride with
n1 = 1.38 and the glass substrate has nglass = 1.5, condition (5.2.3) gives for the index
for the second quarter-wave layer:

n2 =
√
n2

1nb
na

=
√

1.382 × 1.50

1.0
= 1.69 (5.2.5)

The material cerium fluoride (CeF3) has an index of n2 = 1.63 at λ0 = 550 nm and
can be used as an approximation to the ideal value of Eq. (5.2.5). Fig. 5.2.3 shows the
reflectances |Γ1|2 for the two- and three-layer cases and for the ideal and approximate
values of the index of the second quarter-wave layer.
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Fig. 5.2.3 Reflectances of the quarter-quarter and quarter-half-quarter cases.

The design wavelength was λ0 = 550 nm and the index of the half-wave slab was
n2 = 2.2 corresponding to zirconium oxide (ZrO2). We note that the quarter-half-quarter
case achieves a much broader bandwidth over most of the visible spectrum, for either
value of the refractive index of the second quarter slab.

The reflectances were computed with the help of the function multidiel. The typ-
ical MATLAB code was as follows:

la0 = 550; la = linspace(400,700,101);

Ga = 100*abs(multidiel([1,1.38,2.2,1.63,1.5], [0.25,0.5,0.25], la/la0)).^2;
Gb = 100*abs(multidiel([1,1.38,2.2,1.69,1.5], [0.25,0.5,0.25], la/la0)).^2;
Gc = 100*abs(multidiel([1,1.22,1.5], 0.25, la/la0)).^2;

plot(la, Ga, la, Gb, la, Gc);

These and other methods of designing and manufacturing antireflection coatings for
glasses and other substrates can be found in the vast thin-film literature. An incomplete
set of references is [176–236]. Some typical materials used in thin-film coatings are given
below:
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material n material n
cryolite (Na3AlF6) 1.35 magnesium fluoride (MgF2) 1.38
Silicon dioxide SiO2 1.46 polystyrene 1.60
cerium fluoride (CeF3) 1.63 lead fluoride (PbF2) 1.73
Silicon monoxide SiO 1.95 zirconium oxide (ZrO2) 2.20
zinc sulfide (ZnS) 2.32 titanium dioxide (TiO2) 2.40
bismuth oxide (Bi2O3) 2.45 silicon (Si) 3.50
germanium (Ge) 4.20 tellurium (Te) 4.60

Thin-film coatings have a wide range of applications, such as displays; camera lenses,
mirrors, and filters; eyeglasses; coatings for energy-saving lamps and architectural win-
dows; lighting for dental, surgical, and stage environments; heat reflectors for movie
projectors; instrumentation, such as interference filters for spectroscopy, beam split-
ters and mirrors, laser windows, and polarizers; optics of photocopiers and compact
disks; optical communications; home appliances, such as heat reflecting oven windows;
rear-view mirrors for automobiles.

5.3 Dielectric Mirrors

The main interest in dielectric mirrors is that they have extremely low losses at optical
and infrared frequencies, as compared to ordinary metallic mirrors. On the other hand,
metallic mirrors reflect over a wider bandwidth than dielectric ones and from all incident
angles. However, omnidirectional dielectric mirrors are also possible and have recently
been constructed [317,318]. The omnidirectional property is discussed in Sec. 7.4. Here,
we consider only the normal-incidence case.

A dielectric mirror (also known as a Bragg reflector) consists of identical alternating
layers of high and low refractive indices, as shown in Fig. 5.3.1. The optical thicknesses
are typically chosen to be quarter-wavelength long, that is, nHlH = nLlL = λ0/4 at some
operating wavelength λ0. The standard arrangement is to have an odd number of layers,
with the high index layer being the first and last layer.

Fig. 5.3.1 Nine-layer dielectric mirror.

Fig. 5.3.1 shows the case of nine layers. If the number of layers is M = 2N + 1, the
number of interfaces will be 2N + 2 and the number of media 2N + 3. After the first
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layer, we may view the structure as the repetition ofN identical bilayers of low and high
index. The elementary reflection coefficients alternate in sign as shown in Fig. 5.3.1 and
are given by

ρ = nH − nL
nH + nL , −ρ = nL − nH

nL + nH , ρ1 = na − nHna + nH , ρ2 = nH − nbnH + nb (5.3.1)

The substrate nb can be arbitrary, even the same as the incident medium na. In
that case, ρ2 = −ρ1. The reflectivity properties of the structure can be understood by
propagating the impedances from bilayer to bilayer. For the example of Fig. 5.3.1, we
have for the quarter-wavelength case:

Z2 = η
2
L
Z3
= η

2
L
η2
H
Z4 =

(
nH
nL

)2

Z4 =
(
nH
nL

)4

Z6 =
(
nH
nL

)6

Z8 =
(
nH
nL

)8

ηb

Therefore, after each bilayer, the impedance decreases by a factor of (nL/nH)2.
After N bilayers, we will have:

Z2 =
(
nH
nL

)2N
ηb (5.3.2)

Using Z1 = η2
H/Z2, we find for the reflection response at λ0:

Γ1 = Z1 − ηa
Z1 + ηa =

1−
(
nH
nL

)2N n2
H

nanb

1+
(
nH
nL

)2N n2
H

nanb

(5.3.3)

It follows that for large N, Γ1 will tend to −1, that is, 100 % reflection.

Example 5.3.1: For nine layers, 2N + 1 = 9, or N = 4, and nH = 2.32, nL = 1.38, and na =
nb = 1, we find:

Γ1 =
1−

(
2.32

1.38

)8

2.322

1+
(

2.32

1.38

)8

2.322

= −0.9942 ⇒ |Γ1|2 = 98.84 percent

ForN = 8, or 17 layers, we have Γ1 = −0.9999 and |Γ1|2 = 99.98 percent. If the substrate
is glass with nb = 1.52, the reflectances change to |Γ1|2 = 98.25 percent for N = 4, and
|Γ1|2 = 99.97 percent for N = 8. ��

To determine the bandwidth around λ0 for which the structure exhibits high reflec-
tivity, we work with the layer recursions (5.1.2). Because the bilayers are identical, the
forward/backward fields at the left of one bilayer are related to those at the left of the
next one by a transition matrix F, which is the product of two propagation matrices of
the type of Eq. (5.1.2). The repeated application of the matrix F takes us to the right-most
layer. For example, in Fig. 5.3.1 we have:[

E2+
E2−

]
= F

[
E4+
E4−

]
= F2

[
E6+
E6−

]
= F3

[
E8+
E8−

]
= F4

[
E10+
E10−

]
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where F is the matrix:

F = 1

1+ ρ

[
ejkLlL ρe−jkLlL
ρejkLlL e−jkLlL

]
1

1− ρ

[
ejkHlH −ρe−jkHlH
−ρejkHlH e−jkHlH

]
(5.3.4)

Defining the phase thicknesses δH = kHlH and δL = kLlL, and multiplying the
matrix factors out, we obtain the expression for F:

F = 1

1− ρ2

[
ej(δH+δL) − ρ2ej(δH−δL) −2jρe−jδH sinδL

2jρejδH sinδL e−j(δH+δL) − ρ2e−j(δH−δL)

]
(5.3.5)

By an additional transition matrix F1 we can get to the left of interface-1 and by an
additional matching matrix F2 we pass to the right of the last interface:

[
E1+
E1−

]
= F1

[
E2+
E2−

]
= F1F4

[
E10+
E10−

]
= F1F4F2

[
E′10+

0

]

where F1 and F2 are:

F1 = 1

τ1

[
ejkHlH ρ1e−jkHlH
ρ1ejkHlH e−jkHlH

]
, F2 = 1

τ2

[
1 ρ2

ρ2 1

]
(5.3.6)

where τ1 = 1+ ρ1, τ2 = 1+ ρ2, and ρ1, ρ2 were defined in Eq. (5.3.1). More generally,
for 2N + 1 layers, or N bilayers, we have:

[
E2+
E2−

]
= FN

[
E2N+2,+
E2N+2,−

]
,
[
E1+
E1−

]
= F1FNF2

[
E′2N+2,+

0

]
(5.3.7)

Thus, the properties of the multilayer structure are essentially determined by the
Nth power, FN, of the bilayer transition matrix F. In turn, the behavior of FN is deter-
mined by the eigenvalue structure of F.

Let {λ+, λ−} be the two eigenvalues of F and let V be the eigenvector matrix. Then,
the eigenvalue decomposition of F and FN will be F = VΛV−1 and FN = VΛNV−1, where
Λ = diag{λ+, λ−}. Because F has unit determinant, its two eigenvalues will be inverses
of each other, that is, λ− = 1/λ+, or, λ+λ− = 1.

The eigenvalues λ± are either both real-valued or both complex-valued with unit
magnitude. We can represent them in the equivalent form:

λ+ = ejKl , λ− = e−jKl (5.3.8)

where l is the length of each bilayer, l = lL + lH. The quantity K is referred to as the
Bloch wavenumber. If the eigenvalues λ± are unit-magnitude complex-valued, then K
is real. If the eigenvalues are real, then K is pure imaginary, say K = −jα, so that
λ± = e±jKl = e±αl.

The multilayer structure behaves very differently depending on the nature of K. The
structure is primarily reflecting if K is imaginary and the eigenvalues λ± are real, and
it is primarily transmitting if K is real and the eigenvalues are pure phases. To see this,
we write Eq. (5.3.7) in the form:
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[
E2+
E2−

]
= VΛNV−1

[
E2N+2,+
E2N+2,−

]
⇒ V−1

[
E2+
E2−

]
= ΛNV−1

[
E2N+2,+
E2N+2,−

]
, or,

[
V2+
V2−

]
= ΛN

[
V2N+2,+
V2N+2,−

]

where we defined[
V2+
V2−

]
= V−1

[
E2+
E2−

]
,
[
V2N+2,+
V2N+2,−

]
= V−1

[
E2N+2,+
E2N+2,−

]

We have V2+ = λN+V2N+2,+ and V2− = λN−V2N+2,− = λ−N+ V2N+2,− because ΛN is
diagonal. Thus,

V2N+2,+ = λ−N+ V2+ = e−jKNlV2+ , V2N+2,− = λN+V2− = ejKNlV2− (5.3.9)

The quantityNl is recognized as the total length of the bilayer structure, as depicted
in Fig. 5.3.1. It follows that if K is real, the factor λ−N+ = e−jKNl acts as a propagation
phase factor and the fields transmit through the structure.

On the other hand, if K is imaginary, we have λ−N+ = e−αNl and the fields attenuate
exponentially as they propagate into the structure. In the limit of large N, the trans-
mitted fields attenuate completely and the structure becomes 100% reflecting. For finite
but large N, the structure will be mostly reflecting.

The eigenvalues λ± switch from real to complex, as K switches from imaginary to
real, for certain frequency or wavenumber bands. The edges of these regions determine
the bandwidths over which the structure will act as a mirror.

The eigenvalues are determined from the characteristic polynomial of F, given by
the following expression which is valid for any 2×2 matrix:

det(F − λI)= λ2 − (trF)λ+ detF (5.3.10)

where I is the 2×2 identity matrix. Because (5.3.5) has unit determinant, the eigenvalues
are the solutions of the quadratic equation:

λ2 − (trF)λ+ 1 = λ2 − 2aλ+ 1 = 0 (5.3.11)

where we defined a = (trF)/2. The solutions are:

λ± = a±
√
a2 − 1 (5.3.12)

where it follows from Eq. (5.3.5) that a is given by:

a = 1

2
trF = cos(δH + δL)−ρ2 cos(δH − δL)

1− ρ2
(5.3.13)

Using λ+ = ejKl = a+
√
a2 − 1 = a+ j√1− a2, we also find:
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a = cosKl ⇒ K = 1

l
acos(a) (5.3.14)

The sign of the quantity a2− 1 determines whether the eigenvalues are real or com-
plex. The eigenvalues switch from real to complex—equivalently, K switches from imag-
inary to real—when a2 = 1, or, a = ±1. These critical values of K are found from
Eq. (5.3.14) to be:

K = 1

l
acos(±1)= mπ

l
(5.3.15)

where m is an integer. The lowest value is K = π/l and corresponds to a = −1 and to
λ+ = ejKl = ejπ = −1. Thus, we obtain the bandedge condition:

a = cos(δH + δL)−ρ2 cos(δH − δF)
1− ρ2

= −1

It can be manipulated into:

cos2(δH + δL
2

) = ρ2 cos2(δH − δL
2

)
(5.3.16)

The dependence on the free-space wavelength λ or frequency f = c0/λ comes
through δH = 2π(nHlH)/λ and δL = 2π(nLlL)/λ. The solutions of (5.3.16) in λ
determine the left and right bandedges of the reflecting regions.

These solutions can be obtained numerically with the help of the MATLAB function
omniband, discussed in Sec. 7.4. An approximate solution, which is exact in the case of
quarter-wave layers, is given below.

If the high and low index layers have equal optical thicknesses, nHlH = nLlL, such as
when they are quarter-wavelength layers, or when the optical lengths are approximately
equal, we can make the approximation cos

(
(δH − δL)/2

) = 1. Then, (5.3.16) simplifies
into:

cos2(δH + δL
2

) = ρ2 (5.3.17)

with solutions:

cos
(δH + δL

2

) = ±ρ ⇒ δH + δL
2

= π(nHlH + nLlL)
λ

= acos(±ρ)

The solutions for the left and right bandedges and the bandwidth in λ are:

λ1 = π(nHlH + nLlL)
acos(−ρ) , λ2 = π(nHlH + nLlL)

acos(ρ)
, ∆λ = λ2 − λ1 (5.3.18)

Similarly, the left/right bandedges in frequency are f1 = c0/λ2 and f2 = c0/λ1:

f1 = c0
acos(ρ)

π(nHlH + nLlL) , f2 = c0
acos(−ρ)

π(nHlH + nLlL) (5.3.19)
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Noting that acos(−ρ)= π/2+ asin(ρ) and acos(ρ)= π/2− asin(ρ), the frequency
bandwidth can be written in the equivalent forms:

∆f = f2 − f1 = c0
acos(−ρ)− acos(ρ)
π(nHlH + nLlL) = c0

2 asin(ρ)
π(nHlH + nLlL) (5.3.20)

Relative to some desired wavelength λ0 = c0/f0, the normalized bandwidths in
wavelength and frequency are:

∆λ
λ0
= π(nHlH + nLlL)

λ0

[
1

acos(ρ)
− 1

acos(−ρ)

]
(5.3.21)

∆f
f0
= 2λ0 asin(ρ)
π(nHlH + nLlL) (5.3.22)

Similarly, the center of the reflecting band fc = (f1 + f2)/2 is:

fc
f0
= λ0

2(nHlH + nLlL) (5.3.23)

If the layers have equal quarter-wave optical lengths at λ0, that is, nHlH = nLlL =
λ0/4, then, fc = f0 and the matrix F takes the simplified form:

F = 1

1− ρ2

[
e2jδ − ρ2 −2jρe−jδ sinδ

2jρejδ sinδ e−2jδ − ρ2

]
(5.3.24)

where δ = δH = δL = 2π(nHlH)/λ = 2π(λ0/4)/λ = (π/2)λ0/λ = (π/2)f/f0. Then,
Eqs. (5.3.21) and (5.3.22) simplify into:

∆λ
λ0
= π

2

[
1

acos(ρ)
− 1

acos(−ρ)

]
,
∆f
f0
= 4

π
asin(ρ) (5.3.25)

Example 5.3.2: Dielectric Mirror With Quarter-Wavelength Layers. Fig. 5.3.2 shows the reflec-
tion response |Γ1|2 as a function of the free-space wavelength λ and as a function of
frequency f = c0/λ. The high and low indices are nH = 2.32 and nL = 1.38, correspond-
ing to zinc sulfide (ZnS) and magnesium fluoride. The incident medium is air and the
substrate is glass with indices na = 1 and nb = 1.52. The left graph depicts the response
for the cases of N = 2,4,8 bilayers, or 2N + 1 = 5,9,17 layers, as defined in Fig. 5.3.1.
The design wavelength at which the layers are quarter-wavelength long is λ0 = 500 nm.

The reflection coefficient is ρ = 0.25 and the ratio nH/nL = 1.68. The wavelength band-
width calculated from Eq. (5.3.25) is ∆λ = 168.02 nm and has been placed on the graph at
an arbitrary reflectance level. The left/right bandedges are λ1 = 429.73, λ2 = 597.75 nm.
The bandwidth covers most of the visible spectrum. As the number of bilayersN increases,
the reflection response becomes flatter within the bandwidth ∆λ, and has sharper edges
and tends to 100%. The bandwidth ∆λ represents the asymptotic width of the reflecting
band.

The right figure depicts the reflection response as a function of frequency f and is plotted
in the normalized variable f/f0. Because the phase thickness of each layer is δ = πf/2f0
and the matrix F is periodic in δ, the mirror behavior of the structure will occur at odd
multiples of f0 (or odd multiples of π/2 for δ.) As discussed in Sec. 5.6, the structure acts
as a sampled system with sampling frequency fs = 2f0, and therefore, f0 = fs/2 plays the
role of the Nyquist frequency.
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Fig. 5.3.2 Dielectric mirror with quarter-wavelength layers.

The typical MATLAB code used to generate these graphs was:

na = 1; nb = 1.52; nH = 2.32; nL = 1.38; refractive indices

LH = 0.25; LL = 0.25; optical thicknesses in units of λ0

la0 = 500; λ0 in units of nm

rho = (nH-nL)/(nH+nL); reflection coefficient ρ

la2 = pi*(LL+LH)*1/acos(rho) * la0; right bandedge

la1 = pi*(LL+LH)*1/acos(-rho) * la0; left bandedge

Dla = la2-la1; bandwidth

N = 8; number of bilayers

n = [na, nH, repmat([nL,nH], 1, N), nb]; indices for the layers A|H(LH)N|G
L = [LH, repmat([LL,LH], 1, N)]; lengths of the layers H(LH)N

la = linspace(300,800,501); plotting range is 300 ≤ λ ≤ 800 nm

Gla = 100*abs(multidiel(n,L,la/la0)).^2; reflectance as a function of λ
figure; plot(la,Gla);

f = linspace(0,6,1201); frequency plot over 0 ≤ f ≤ 6f0
Gf = 100*abs(multidiel(n,L,1./f)).^2; reflectance as a function of f
figure; plot(f,Gf);

Note that the function repmat replicates the LH bilayer N times. The frequency graph
shows only the case of N = 8. The bandwidth ∆f , calculated from (5.3.25), has been
placed on the graph. The maximum reflectance (evaluated at odd multiples of f0) is equal
to 99.97%. ��

Example 5.3.3: Dielectric Mirror with Unequal-Length Layers. Fig. 5.3.3 shows the reflection
response of a mirror having unequal optical lengths for the high and low index films.

The parameters of this example correspond very closely to the recently constructed om-
nidirectional dielectric mirror [317], which was designed to be a mirror over the infrared
band of 10–15 µm. The number of layers is nine and the number of bilayers,N = 4. The in-
dices of refraction are nH = 4.6 and nL = 1.6 corresponding to Tellurium and Polystyrene.
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Fig. 5.3.3 Dielectric mirror with unequal optical thicknesses.

Their ratio is nH/nL = 2.875 and the reflection coefficient, ρ = 0.48. The incident medium
and substrate are air and NaCl (n = 1.48.)

The center wavelength is taken to be at the middle of the 10–15 µm band, that is, λ0 =
12.5 µm. The lengths of the layers are lH = 0.8 and lL = 1.65 µm, resulting in the
optical lengths (relative to λ0) nHlH = 0.2944λ0 and nLlL = 0.2112λ0. The wavelength
bandwidth, calculated from Eq. (5.3.21), is ∆λ = 9.07 µm. The typical MATLAB code for
generating the figures of this example was as follows:

la0 = 12.5;
na = 1; nb = 1.48; NaCl substrate

nH = 4.6; nL = 1.6; Te and PS

lH = 0.8; lL = 1.65; physical lengths lH, lL
LH = nH*lH/la0, LL = nL*lL/la0; optical lengths in units of λ0

rho = (nH-nL)/(nH+nL); reflection coefficient ρ

la2 = pi*(LL+LH)*1/acos(rho) * la0; right bandedge

la1 = pi*(LL+LH)*1/acos(-rho) * la0; left bandedge

Dla = la2-la1; bandwidth

la = linspace(5,25,401); equally-spaced wavelengths

N = 4;
n = [na, nH, repmat([nL,nH], 1, N), nb]; refractive indices of all media

L = [LH, repmat([LL,LH], 1, N)]; optical lengths of the slabs

G = 100 * abs(multidiel(n,L,la/la0)).^2; reflectance

plot(la,G);

The bandwidth ∆λ shown on the graph is wider than that of the omnidirectional mirror
presented in [317], because our analysis assumes normal incidence only. The condition
for omnidirectional reflectivity for both TE and TM modes causes the bandwidth to narrow
by about half of what is shown in the figure. The reflectance as a function of frequency
is no longer periodic at odd multiples of f0 because the layers have lengths that are not
equal to λ0/4. The omnidirectional case is discussed in Example 7.4.3.
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The maximum reflectivity achieved within the mirror bandwidth is 99.99%, which is better
than that of the previous example with 17 layers. This can be explained because the ratio
nH/nL is much larger here. ��

Although the reflectances in the previous two examples were computed with the help
of the MATLAB function multidiel, it is possible to derive closed-form expressions for
Γ1 that are valid for any number of bilayers N. Applying Eq. (5.1.3) to interface-1 and
interface-2, we have:

Γ1 = ρ1 + e−2jδHΓ2

1+ ρ1e−2jδHΓ2
(5.3.26)

where Γ2 = E2−/E2+, which can be computed from the matrix equation (5.3.7). Thus,
we need to obtain a closed-form expression for Γ2.

It is a general property of any 2×2 unimodular matrix F that its Nth power can
be obtained from the following simple formula, which involves the Nth powers of its
eigenvalues λ±:†

FN =
(
λN+ − λN−
λ+ − λ−

)
F −

(
λN−1+ − λN−1−
λ+ − λ−

)
I =WNF −WN−1I (5.3.27)

where WN = (λN+ − λN−)/(λ+ − λ−). To prove it, we note that the formula holds as a
simple identity when F is replaced by its diagonal version Λ = diag{λ+, λ−}:

ΛN =
(
λN+ − λN−
λ+ − λ−

)
Λ−

(
λN−1+ − λN−1−
λ+ − λ−

)
I (5.3.28)

Eq. (5.3.27) then follows by multiplying (5.3.28) from left and right by the eigenvector
matrix V and using F = VΛV−1 and FN = VΛNV−1. Defining the matrix elements of F
and FN by

F =
[
A B
B∗ A∗

]
, FN =

[
AN BN
B∗N A∗N

]
, (5.3.29)

it follows from (5.3.27) that:

AN = AWN −WN−1 , BN = BWN (5.3.30)

where we defined:

A = e
j(δH+δL) − ρ2ej(δH−δL)

1− ρ2
, B = −2jρe−jδH sinδL

1− ρ2
(5.3.31)

Because F and FN are unimodular, their matrix elements satisfy the conditions:

|A|2 − |B|2 = 1 , |AN|2 − |BN|2 = 1 (5.3.32)

The first follows directly from the definition (5.3.29), and the second can be verified
easily. It follows now that the product FNF2 in Eq. (5.3.7) is:

†The coefficients WN are related to the Chebyshev polynomials of the second kind Um(x) through
WN = UN−1(a)= sin

(
N acos(a)

)
/
√

1− a2 = sin(NKl)/ sin(Kl).
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FNF2 = 1

τ2

[
AN + ρ2BN BN + ρ2AN
B∗N + ρ2A∗N A∗N + ρ2B∗N

]

Therefore, the desired closed-form expression for the reflection coefficient Γ2 is:

Γ2 = B
∗
N + ρ2A∗N
AN + ρ2BN

= B
∗WN + ρ2(A∗WN −WN−1)
AWN −WN−1 + ρ2BWN

(5.3.33)

Suppose now that a2 < 1 and the eigenvalues are pure phases. Then,WN are oscil-
latory as functions of the wavelength λ or frequency f and the structure will transmit.

On the other hand, if f lies in the mirror bands, so that a2 > 1, then the eigenvalues
will be real with |λ+| > 1 and |λ−| < 1. In the limit of large N, WN and WN−1 will
behave like:

WN → λN+
λ+ − λ− , WN−1 → λN−1+

λ+ − λ−
In this limit, the reflection coefficient Γ2 becomes:

Γ2 → B
∗ + ρ2(A∗ − λ−1+ )
A− λ−1+ + ρ2B

(5.3.34)

where we canceled some common diverging factors from all terms. Using conditions
(5.3.32) and the eigenvalue equation (5.3.11), and recognizing that Re(A)= a, it can be
shown that this asymptotic limit of Γ2 is unimodular, |Γ2| = 1, regardless of the value
of ρ2.

This immediately implies that Γ1 given by Eq. (5.3.26) will also be unimodular, |Γ1| =
1, regardless of the value of ρ1. In other words, the structure tends to become a perfect
mirror as the number of bilayers increases.

Next, we discuss some variations on dielectric mirrors that result in (a) multiband
mirrors and (b) longpass and shortpass filters that pass long or short wavelengths, in
analogy with lowpass and highpass filters that pass low or high frequencies.

Example 5.3.4: Multiband Reflectors. The quarter-wave stack of bilayers of Example 5.3.2 can
be denoted compactly as AH(LH)8G (for the case N = 8), meaning ’air’, followed by a
“high-index” quarter-wave layer , followed by four “low/high” bilayers, followed by the
“glass” substrate.

Similarly, Example 5.3.3 can be denoted by A(1.18H)(0.85L1.18H)4G, where the layer
optical lengths have been expressed in units of λ0/4, that is, nLlL = 0.85(λ0/4) and
nHlH = 1.18(λ0/4).

Another possibility for a periodic bilayer structure is to replace one or both of the L or
H layers by integral multiples thereof [180]. Fig. 5.3.4 shows two such examples. In the
first, each H layer has been replaced by a half-wave layer, that is, two quarter-wave layers
2H, so that the total structure is A(2H)(L2H)8G, where na,nb,nH ,nL are the same as in
Example 5.3.2. In the second case, eachH has been replaced by a three-quarter-wave layer,
resulting in A(3H)(L3H)8G.

The mirror peaks at odd multiples of f0 of Example 5.3.2 get split into two or three peaks
each. ��
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Fig. 5.3.4 Dielectric mirrors with split bands.

Example 5.3.5: Shortpass and Longpass Filters. By adding an eighth-wave low-index layer, that
is, a (0.5L), at both ends of Example 5.3.2, we can decrease the reflectivity of the short
wavelengths. Thus, the stack AH(LH)8G is replaced by A(0.5L)H(LH)8(0.5L)G.

For example, suppose we wish to have high reflectivity over the [600,700] nm range and
low reflectivity below 500 nm. The left graph in Fig. 5.3.5 shows the resulting reflectance
with the design wavelength chosen to be λ0 = 650 nm. The parameters na, nb, nH,nL are
the same as in Example 5.3.2
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Fig. 5.3.5 Short- and long-pass wavelength filters.

The right graph of Fig. 5.3.5 shows the stack A(0.5H)L(HL)8(0.5H)G obtained from the
previous case by interchanging the roles of H and L. Now, the resulting reflectance is low
for the higher wavelengths. The design wavelength was chosen to be λ0 = 450 nm. It can
be seen from the graph that the reflectance is high within the band [400,500] nm and low
above 600 nm.

Superimposed on both graphs is the reflectance of the originalAH(LH)8G stack centered
at the corresponding λ0 (dotted curves.)
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Both of these examples can also be thought of as the periodic repetition of a symmetric
triple layer of the form A(BCB)NG. Indeed, we have the equivalences:

A(0.5L)H(LH)8(0.5L)G = A(0.5LH 0.5L)9G

A(0.5H)L(HL)8(0.5H)G = A(0.5HL0.5H)9G

The symmetric triple combinationBCB can be replaced by an equivalent single layer, which
facilitates the analysis of such structures [178,206–208,210]. ��

5.4 Propagation Bandgaps

There is a certain analogy between the electronic energy bands of solid state materials
arising from the periodicity of the crystal structure and the frequency bands of dielectric
mirrors arising from the periodicity of the bilayers. The high-reflectance bands play the
role of the forbidden energy bands (in the sense that waves cannot propagate through
the structure in these bands.) Such periodic dielectric structures have been termed
photonic crystals and have given rise to the new field of photonic bandgap structures,
which has grown rapidly over the past ten years with a large number of potential novel
applications [301–327].

Propagation bandgaps arise in any wave propagation problem in a medium with
periodic structure [294–300]. Waveguides and transmission lines that are periodically
loaded with ridges or shunt impedances, are examples of such media [424–428].

Fiber Bragg gratings, obtained by periodically modulating the refractive index of
the core (or the cladding) of a finite portion of a fiber, exhibit high reflectance bands
[328–348]. Quarter-wave phase-shifted fiber Bragg gratings (discussed in the next sec-
tion) act as narrow-band transmission filters and can be used in wavelength multiplexed
communications systems.

Other applications of periodic structures with bandgaps arise in structural engineer-
ing for the control of vibration transmission and stress [349–351], in acoustics for the
control of sound transmission through structures [352–357], and in the construction of
laser resonators and periodic lens systems [429,430]. A nice review of wave propagation
in periodic structures can be found in [295].

5.5 Narrow-Band Transmission Filters

The reflection bands of a dielectric mirror arise from the N-fold periodic replication of
high/low index layers of the type (HL)N, where H,L can have arbitrary lengths. Here,
we will assume that they are quarter-wavelength layers at the design wavelength λ0.

A quarter-wave phase-shifted multilayer structure is obtained by doubling (HL)N

to (HL)N(HL)N and then inserting a quarter-wave layer L between the two groups,
resulting in (HL)NL(HL)N. We are going to refer to such a structure as a Fabry-Perot
resonator (FPR)—it can also be called a quarter-wave phase-shifted Bragg grating.

An FPR behaves like a single L-layer at the design wavelength λ0. Indeed, noting that
at λ0 the combinations LL andHH are half-wave or absentee layers and can be deleted,
we obtain the successive reductions:
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(HL)NL(HL)N → (HL)N−1HLLHL(HL)N−1

→ (HL)N−1HHL(HL)N−1

→ (HL)N−1L(HL)N−1

Thus, the number of theHL layers can be successively reduced, eventually resulting
in the equivalent layer L (at λ0):

(HL)NL(HL)N → (HL)N−1L(HL)N−1 → (HL)N−2L(HL)N−2 → ·· · → L

Adding another L-layer on the right, the structure (HL)NL(HL)NL will act as 2L,
that is, a half-wave absentee layer at λ0. If such a structure is sandwiched between the
same substrate material, say glass, then it will act as an absentee layer, opening up a
narrow transmission window at λ0, in the middle of its reflecting band.

Without the quarter-wave layers L present, the structures G|(HL)N(HL)N|G and
G|(HL)N|G act as mirrors,† but with the quarter-wave layers present, the structure
G|(HL)NL(HL)NL|G acts as a narrow transmission filter, with the transmission band-
width becoming narrower as N increases.

By repeating the FPR (HL)NL(HL)N several times and using possibly different
lengthsN, it is possible to design a very narrow transmission band centered at λ0 having
a flat passband and very sharp edges.

Thus, we arrive at a whole family of designs, where starting with an ordinary dielec-
tric mirror, we may replace it with one, two, three, four, and so on, FPRs:

0. G|(HL)N1|G
1. G|(HL)N1L(HL)N1|L|G
2. G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|G
3. G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|(HL)N3L(HL)N3|L|G
4. G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|(HL)N3L(HL)N3|(HL)N4L(HL)N4|G

(5.5.1)
Note that when an odd number of FPRs (HL)NL(HL)N are used, an extra L layer

must be added at the end to make the overall structure absentee. For an even number
of FPRs, this is not necessary.

Such filter designs have been used in thin-film applications [181–187] and in fiber
Bragg gratings, for example, as demultiplexers for WDM systems and for generating very-
narrow-bandwidth laser sources (typically at λ0 = 1550 nm) with distributed feedback
lasers [338–348]. We discuss fiber Bragg gratings in Sec. 10.4.

In a Fabry-Perot interferometer, the quarter-wave layer L sandwiched between the
mirrors (HL)N is called a “spacer” or a “cavity” and can be replaced by any odd multiple
of quarter-wave layers, for example, (HL)N(5L)(HL)N.

†G denotes the glass substrate.
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Several variations of FPR filters are possible, such as interchanging the role of H
and L, or using symmetric structures. For example, using eighth-wave layers L/2, the
following symmetric multilayer structure will also act like as a single L at λ0:

(
L
2
H
L
2

)N
L
(
L
2
H
L
2

)N

To create an absentee structure, we may sandwich this between two L/2 layers:

L
2

(
L
2
H
L
2

)N
L
(
L
2
H
L
2

)N L
2

This can be seen to be equivalent to (HL)N(2L)(LH)N, which is absentee at λ0.
This equivalence follows from the identities:

L
2

(
L
2
H
L
2

)N
≡ (LH)N L

2(
L
2
H
L
2

)N L
2
≡ L

2
(HL)N

(5.5.2)

Example 5.5.1: Transmission Filter Design with One FPR. This example illustrates the basic
transmission properties of FPR filters. We choose parameters that might closely emu-
late the case of a fiber Bragg grating for WDM applications. The refractive indices of the
left and right substrates and the layers were: na = nb = 1.52, nL = 1.4, and nH = 2.1. The
design wavelength at which the layers are quarter wavelength is taken to be the standard
laser source λ0 = 1550 nm.

First, we compare the cases of a dielectric mirror (HL)N and its phase-shifted version using
a single FPR (cases 0 and 1 in Eq. (5.5.1)), with number of layersN1 = 6. Fig. 5.5.1 shows the
transmittance, that is, the quantity

(
1−|Γ1(λ)|2

)
plotted over the range 1200 ≤ λ ≤ 2000

nm.
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Fig. 5.5.1 Narrowband FPR transmission filters.

We observe that the mirror (case 0) has a suppressed transmittance over the entire reflect-
ing band, whereas the FPR filter (case 1) has a narrow peak at λ0. The asymptotic edges of
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the reflecting band are calculated from Eq. (5.3.18) to be λ1 = 1373.9 nm and λ2 = 1777.9
nm, resulting in a width of ∆λ = 404 nm. The MATLAB code used to generated the left
graph was:

na = 1.52; nb = 1.52; nH = 2.1; nL = 1.4;
LH = 0.25; LL = 0.25; % optical thicknesses

la0 = 1550;
la = linspace(1200, 2000, 8001); % 1200 ≤ λ ≤ 2000 nm

N1 = 6;

n1 = repmat([nH,nL],1,N1);
L1 = repmat([LH,LL],1,N1);
n = [na, n1, nb];
L = L1;
G0 = 100*(1 - abs(multidiel(n,L,la/la0)).^2); % no phase shift

n1 = [repmat([nH,nL],1,N1), nL, repmat([nH,nL],1,N1)];
L1 = [repmat([LH,LL],1,N1), LL, repmat([LH,LL],1,N1)];
n = [na, n1, nL, nb];
L = [L1, LL];
G1 = 100*(1 - abs(multidiel(n,L,la/la0)).^2); % one phase shift

plot(la,G1,la,G0);

The location of the peak can be shifted by making the phase-shift different from λ/4. This
can be accomplished by changing the optical thickness of the middle L-layer to some other
value. The right graph of Fig. 5.5.1 shows the two cases where that length was chosen to
be nLlL = (0.6)λ0/4 and (1.3)λ0/4, corresponding to phase shifts of 54o and 117o. ��

Example 5.5.2: Transmission Filter Design with Two FPRs. Fig. 5.5.2 shows the transmittance
of a grating with two FPRs (case 2 of Eq. (5.5.1)). The number of bilayers wereN1 = N2 = 8
in the first design, and N1 = N2 = 9 in the second.
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Fig. 5.5.2 Narrow-band transmission filter made with two FPRs.

The resulting transmittance bands are extremely narrow. The plotting scale is only from
1549 nm to 1551 nm. To see these bands in the context of the reflectance band, the
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transmittance (forN1 = N2 = 8) is plotted on the right graph over the range [1200,2000]
nm, which includes the full reflectance band of [1373.9,1777.9] nm.

Using two FPRs has the effect of narrowing the transmittance band and making it somewhat
flatter at its top. ��

Example 5.5.3: Transmission Filter Design with Three and Four FPRs. Fig. 5.5.3 shows the trans-
mittance of a grating with three FPRs (case 3 of Eq. (5.5.1)). A symmetric arrangement of
FPRs was chosen such that N3 = N1.

1549 1549.5 1550 1550.5 1551
0

20

40

60

80

100

T
ra

n
sm

it
ta

n
ce

  (
pe

rc
en

t)

λ (nm)

Three− FPR Filter with Equal Lengths

 N1 =9, N2 =9
 N1 =8, N2 =8

1549 1549.5 1550 1550.5 1551
0

20

40

60

80

100

T
ra

n
sm

it
ta

n
ce

  (
pe

rc
en

t)

λ (nm)

Three− FPR Filters with Unequal Lengths

 N1 =9, N2 =10
 N1 =8, N2 =9

Fig. 5.5.3 Transmission filters with three FPRs of equal and unequal lengths.

The left graph shows the transmittances of the two design cases N1 = N2 = N3 = 8 and
N1 = N2 = N3 = 9, so that all the FPRs have the same lengths. The transmission band is
now flatter but exhibits some ripples. To get rid of the ripples, the length of the middle
FPR is slightly increased. The right graph shows the case N1 = N3 = 8 and N2 = 9, and
the case N1 = N3 = 9 and N2 = 10.

Fig. 5.5.4 shows the case of four FPRs (case 4 in Eq. (5.5.1).) Again, a symmetric arrangement
was chosen with N1 = N4 and N2 = N3.

1549 1549.5 1550 1550.5 1551
0

20

40

60

80

100

T
ra

n
sm

it
ta

n
ce

  (
pe

rc
en

t)

λ (nm)

Four− FPR Filters with Equal Lengths

 N1 =9, N2 =9
 N1 =8, N2 =8

1549 1549.5 1550 1550.5 1551
0

20

40

60

80

100

T
ra

n
sm

it
ta

n
ce

  (
pe

rc
en

t)

λ (nm)

Four− FPR Filters with Unequal Lengths

 N1 =9, N2 =10
 N1 =8, N2 =9

Fig. 5.5.4 Transmission filters with four FPRs of equal and unequal lengths.
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The left graph shows the two cases of equal lengths N1 = N2 = N3 = N4 = 8 and
N1 = N2 = N3 = N4 = 9. The right graphs shows the caseN1 = N4 = 8 andN2 = N4 = 9,
and the case N1 = N4 = 9 and N2 = N3 = 10. We notice again that the equal length cases
exhibit ripples, but increasing the length of the middle FPRs tends to eliminate them. The
typical MATLAB code for generating the case N1 = N4 = 9 and N2 = N3 = 10 was as
follows:

na = 1.52; nb = 1.52; nH = 2.1; nL = 1.4;
LH = 0.25; LL = 0.25;
la0 = 1550;
la = linspace(1549, 1551, 501);

N1 = 9; N2 = 10; N3 = N2; N4 = N1;

n1 = [repmat([nH,nL],1,N1), nL, repmat([nH,nL],1,N1)];
n2 = [repmat([nH,nL],1,N2), nL, repmat([nH,nL],1,N2)];
n3 = [repmat([nH,nL],1,N3), nL, repmat([nH,nL],1,N3)];
n4 = [repmat([nH,nL],1,N4), nL, repmat([nH,nL],1,N4)];
L1 = [repmat([LH,LL],1,N1), LL, repmat([LH,LL],1,N1)];
L2 = [repmat([LH,LL],1,N2), LL, repmat([LH,LL],1,N2)];
L3 = [repmat([LH,LL],1,N3), LL, repmat([LH,LL],1,N3)];
L4 = [repmat([LH,LL],1,N4), LL, repmat([LH,LL],1,N4)];

n = [na, n1, n2, n3, n4, nb];
L = [L1, L2, L3, L4];

G = 100*(1 - abs(multidiel(n,L,la/la0)).^2);
plot(la,G);

The resulting transmittance band is fairly flat with a bandwidth of approximately 0.15 nm,
as would be appropriate for dense WDM systems. The second design case with N1 = 8
and N2 = 9 has a bandwidth of about 0.3 nm.

The effect of the relative lengths N1,N2 on the shape of the transmittance band has been
studied in [344–346]. The equivalence of the low/high multilayer dielectric structures to
coupled-mode models of fiber Bragg gratings has been discussed in [335]. ��

5.6 Equal Travel-Time Multilayer Structures

Here, we discuss the specialized, but useful, case of a multilayer structure whose layers
have equal optical thicknesses, or equivalently, equal travel-time delays, as for exam-
ple in the case of quarter-wavelength layers. Our discussion is based on [373] and on
[380,381].

Fig. 5.6.1 depicts such a structure consisting ofM layers. The media to the left and
right are ηa and ηb and the reflection coefficients ρi at the M + 1 interfaces are as in
Eq. (5.1.1). We will discuss the general case when there are incident fields from both the
left and right media.
Let Ts denote the common two-way travel-time delay, so that,

2n1l1
c0

= 2n2l2
c0

= · · · = 2nMlM
c0

= Ts (5.6.1)
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Fig. 5.6.1 Equal travel-time multilayer structure.

Then, all layers have a common phase thickness, that is, for i = 1,2, . . . ,M:

δ = kili = ωnilic0
= 1

2
ωTs (5.6.2)

where we wrote ki = ω/ci = ωni/c0. The layer recursions (5.1.2)–(5.1.5) simplify
considerably in this case. These recursions and other properties of the structure can be
described using DSP language.

Because the layers have a common roundtrip time delay Ts, the overall structure will
act as a sampled system with sampling periodTs and sampling frequency fs = 1/Ts. The
corresponding “Nyquist frequency”, f0 = fs/2, plays a special role. The phase thickness
δ can be expressed in terms of f and f0 as follows:

δ = 1

2
ωTs = 1

2
2πf

1

fs
= π f

fs
= π

2

f
f0

Therefore, at f = f0 (and odd multiples thereof), the phase thickness will be π/2 =
(2π)/4, that is, the structure will act as quarter-wave layers. Defining the z-domain
variable:

z = e2jδ = ejωTs = e2jkili (5.6.3)

we write Eq. (5.1.2) in the form:

[
Ei+
Ei−

]
= z

1/2

τi

[
1 ρiz−1

ρi z−1

][
Ei+1,+
Ei+1,−

]
, i =M,M − 1, . . . ,1 (5.6.4)

We may rewrite it compactly as:

Ei(z)= Fi(z)Ei+1(z) (5.6.5)

where we defined:

Fi(z)= z
1/2

τi

[
1 ρiz−1

ρi z−1

]
, Ei(z)=

[
Ei+(z)
Ei−(z)

]
(5.6.6)

The transition matrix Fi(z) has two interesting properties. Defining the complex
conjugate matrix F̄i(z)= Fi(z−1), we have:
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F̄i(z)TJ3Fi(z)= 1− ρi
1+ ρi J3 = ηi−1

ηi
J3

F̄i(z)= J1Fi(z)J1

(5.6.7)

where J1, J3 are the 2×2 matrices:†

J1 =
[

0 1
1 0

]
, J3 =

[
1 0
0 −1

]
(5.6.8)

In proving Eq. (5.6.7), we used the result (1−ρ2
i )/τ

2
i = (1−ρi)/(1+ρi)= ηi−1/ηi =

ni/ni−1. The first of Eqs. (5.6.7) implies energy conservation, that is, the energy flux into
medium i is equal to the energy flux into medium i+ 1, or,

1

2ηi−1
(Ēi+Ei+ − Ēi−Ei−)= 1

2ηi
(Ēi+1,+Ei+1,+ − Ēi+1,−Ei+1,−) (5.6.9)

This can be expressed compactly in the form:

Ē
T
i J3Ei = ηi−1

ηi
Ē
T
i+1J3Ei+1

which follows from Eq. (5.6.7):

Ē
T
i J3Ei = Ē

T
i+1F̄

T
i J3Fi Ei+1 = ηi−1

ηi
Ē
T
i+1J3Ei+1

The second of Eqs. (5.6.7) expresses time-reversal invariance and allows the con-
struction of a second, linearly independent, solution of the recursions (5.6.5):

Êi = J1Ēi =
[
Ēi−
Ēi+

]
= J1F̄i(z)Ēi+1 = Fi(z)J1Ēi+1 = Fi(z)Êi+1

The recursions (5.6.5) may be iterated now to the rightmost interface. By an addi-
tional boundary match, we may pass to the right of interfaceM + 1:

Ei = Fi(z)Fi+1(z)· · ·FM(z)FM+1E′M+1

where we defined the last transition matrix as

FM+1 = 1

τM+1

[
1 ρM+1

ρM+1 1

]
(5.6.10)

More explicitly, we have:

[
Ei+
Ei−

]
=z

(M+1−i)/2

νi

[
1 ρiz−1

ρi z−1

][
1 ρi+1z−1

ρi+1 z−1

]
· · ·

· · ·
[

1 ρMz−1

ρM z−1

][
1 ρM+1

ρM+1 1

][
E′M+1,+
E′M+1,−

] (5.6.11)

†They are recognized as two of the three Pauli spin matrices.
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where we defined νi = τiτi+1 · · ·τMτM+1. We introduce the following definition for
the product of these matrices:

[
Ai(z) Ci(z)
Bi(z) Di(z)

]
=
[

1 ρiz−1

ρi z−1

]
· · ·

[
1 ρMz−1

ρM z−1

][
1 ρM+1

ρM+1 1

]
(5.6.12)

Because there areM + 1− i matrix factors that are first-order in z−1, the quantities
Ai(z), Bi(z), Ci(z), and Di(z) will be polynomials of order M + 1 − i in the variable
z−1. We may also express (5.6.12) in terms of the transition matrices Fi(z):[

Ai(z) Ci(z)
Bi(z) Di(z)

]
= z−(M+1−i)/2νiFi(z)· · ·FM(z)FM+1 (5.6.13)

It follows from Eq. (5.6.7) that (5.6.13) will also satisfy similar properties. Indeed, it
can be shown easily that:

Ḡi(z)TJ3Gi(z)= σ2
i J3, where σ2

i =
M+1∏
m=i
(1− ρ2

m)

GRi (z)= J1Gi(z)J1

(5.6.14)

where Gi(z) and its reverse GRi (z) consisting of the reversed polynomials are:

Gi(z)=
[
Ai(z) Ci(z)
Bi(z) Di(z)

]
, GRi (z)=

[
ARi (z) CRi (z)
BRi (z) DRi (z)

]
(5.6.15)

The reverse of a polynomial is obtained by reversing its coefficients, for example, if
A(z) has coefficient vector a = [a0, a1, a2, a3], then AR(z) will have coefficient vector
aR = [a3, a2, a1, a0]. The reverse of a polynomial can be obtained directly in the z-
domain by the property:

AR(z)= z−dA(z−1)= z−dĀ(z)

where d is the degree of the polynomial. For example, we have:

A(z) = a0 + a1z−1 + a2z−2 + a3z−3

AR(z) = a3 + a2z−1 + a1z−2 + a0z−3 = z−3(a0 + a1z+ a2z2 + a3z3)= z−3Ā(z)

Writing the second of Eqs. (5.6.14) explicitly, we have:

[
ARi (z) CRi (z)
BRi (z) DRi (z)

]
=
[

0 1
1 0

][
Ai(z) Ci(z)
Bi(z) Di(z)

][
0 1
1 0

]
=
[
Di(z) Bi(z)
Ci(z) Ai(z)

]

This implies that the polynomials Ci(z), Di(z) are the reverse of Bi(z), Ai(z), that
is, Ci(z)= BRi (z), Di(z)= ARi (z). Using this result, the first of Eqs. (5.6.14) implies the
following constraint between Ai(z) and Bi(z):

Āi(z)Ai(z)−B̄i(z)Bi(z)= σ2
i (5.6.16)
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Thus, the product of matrices in Eq. (5.6.12) has the form:

[
Ai(z) BRi (z)
Bi(z) ARi (z)

]
=
[

1 ρiz−1

ρi z−1

]
· · ·

[
1 ρMz−1

ρM z−1

][
1 ρM+1

ρM+1 1

]
(5.6.17)

This definition implies also the recursion:

[
Ai(z) BRi (z)
Bi(z) ARi (z)

]
=
[

1 ρiz−1

ρi z−1

][
Ai+1(z) BRi+1(z)
Bi+1(z) ARi+1(z)

]
(5.6.18)

Therefore, each column will satisfy the same recursion:†

[
Ai(z)
Bi(z)

]
=
[

1 ρiz−1

ρi z−1

][
Ai+1(z)
Bi+1(z)

]
(forward recursion) (5.6.19)

for i =M,M − 1, . . . ,1, and initialized by the 0th degree polynomials:

[
AM+1(z)
BM+1(z)

]
=
[

1
ρM+1

]
(5.6.20)

Eq. (5.6.11) reads now:

[
Ei+
Ei−

]
= z

(M+1−i)/2

νi

[
Ai(z) BRi (z)
Bi(z) ARi (z)

][
E′M+1,+
E′M+1,−

]
(5.6.21)

Setting i = 1, we find the relationship between the fields incident on the dielectric
structure from the left to those incident from the right:

[
E1+
E1−

]
= z

M/2

ν1

[
A1(z) BR1 (z)
B1(z) AR1 (z)

][
E′M+1,+
E′M+1,−

]
(5.6.22)

where ν1 = τ1τ2 · · ·τM+1. The polynomials A1(z) and B1(z) have degree M and
are obtained by the recursion (5.6.19). These polynomials incorporate all the multiple
reflections and reverberatory effects of the structure.

In referring to the overall transition matrix of the structure, we may drop the sub-
scripts 1 andM + 1 and write Eq. (5.6.22) in the more convenient form:

[
E+
E−

]
= z

M/2

ν

[
A(z) BR(z)
B(z) AR(z)

][
E′+
E′−

]
(transfer matrix) (5.6.23)

Fig. 5.6.2 shows the general case of left- and right-incident fields, as well as when
the fields are incident only from the left or only from the right.

For both the left- and right-incident cases, the corresponding reflection and trans-
mission responses Γ,T and Γ′,T′ will satisfy Eq. (5.6.23):

[
1
Γ

]
= z

M/2

ν

[
A(z) BR(z)
B(z) AR(z)

][
T
0

]

[
0
T′

]
= z

M/2

ν

[
A(z) BR(z)
B(z) AR(z)

][
Γ′

1

] (5.6.24)

†Forward means order-increasing: as the index i decreases, the polynomial orderM + 1− i increases.
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Fig. 5.6.2 Reflection and transmission responses of a multilayer structure.

Solving for Γ,T, we find:

Γ(z)= B(z)
A(z)

, T(z)= νz
−M/2

A(z)
(5.6.25)

Similarly, we find for Γ′,T′:

Γ′(z)= −B
R(z)
A(z)

, T′(z)= ν
′z−M/2

A(z)
(5.6.26)

where the constants ν and ν′ are the products of the left and right transmission coeffi-
cients τi = 1+ ρi and τ′i = 1− ρi, that is,

ν =
M+1∏
i=1

τi =
M+1∏
i=1

(1+ ρi) , ν′ =
M+1∏
i=1

τ′i =
M+1∏
i=1

(1− ρi) (5.6.27)

In deriving the expression forT′, we used the result (5.6.16), which for i = 1 reads:

Ā(z)A(z)−B̄(z)B(z)= σ2, where σ2 =
M+1∏
i=1

(1− ρ2
i ) (5.6.28)

Because AR(z)= z−MĀ(z), we can rewrite (5.6.28) in the form:

A(z)AR(z)−B(z)BR(z)= σ2z−M (5.6.29)

Noting that νν′ = σ2 and that

ν′

ν
=
M+1∏
i=1

1− ρi
1+ ρi =

M+1∏
i=1

ηi−1

ηi
= ηa
ηb
,

we may replace ν and ν′ by the more convenient forms:

ν = σ
√
ηb
ηa
, ν′ = σ

√
ηa
ηb

(5.6.30)

Then, the transmission responsesT andT′ can be expressed as:
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T(z)=
√
ηb
ηa
T(z), T′(z)=

√
ηa
ηb
T(z), T(z)= σz

−M/2

A(z)
(5.6.31)

The magnitude squared of T(z) represents the transmittance, that is, the ratio of
the transmitted to incident powers, whereasT is the corresponding ratio of the electric
fields. Indeed, assuming E′− = 0, we haveT = E′+/E+ and find:

Ptransmitted

Pincident
=

1

2ηb
|E′+|2

1

2ηa
|E+|2

= ηa
ηb
|T|2 = |T|2 (5.6.32)

where we used Eq. (5.6.31). Similarly, if the incident fields are from the right, then
assuming E+ = 0, the corresponding transmission coefficient will be T′ = E−/E′−, and
we find for the left-going transmittance:

P′transmitted

P′incident
=

1

2ηa
|E−|2

1

2ηb
|E′−|2

= ηb
ηa
|T′|2 = |T|2 (5.6.33)

Eqs. (5.6.32) and (5.6.33) state that the transmittance is the same from either side of
the structure. This result remains valid even when the slabs are lossy.

The frequency response of the structure is obtained by setting z = ejωTs . Denoting
A(ejωTs) simply by A(ω), we may express Eq. (5.6.28) in the form:

|A(ω)|2 − |B(ω)|2 = σ2 (5.6.34)

This implies the following relationship between reflectance and transmittance:

|Γ(ω)|2 + |T(ω)|2 = 1 (5.6.35)

Indeed, dividing Eq. (5.6.34) by |A(ω)|2 and using Eq. (5.6.31), we have:

1−
∣∣∣∣B(ω)A(ω)

∣∣∣∣
2

= σ2

|A(ω)|2 =
∣∣∣∣∣σe

−jMωTs/2

A(ω)

∣∣∣∣∣
2

⇒ 1− |Γ(ω)|2 = |T(ω)|2

Scattering Matrix

The transfer matrix in Eq. (5.6.23) relates the incident and reflected fields at the left
of the structure to those at the right of the structure. Using Eqs. (5.6.25), (5.6.26), and
(5.6.29), we may rearrange the transfer matrix (5.6.23) into a scattering matrix form that
relates the incoming fields E+, E′− to the outgoing fields E−, E′+. We have:

[
E−
E′+

]
=
[
Γ(z) T′(z)
T(z) Γ′(z)

][
E+
E′−

]
(scattering matrix) (5.6.36)

The elements of the scattering matrix are referred to as the S-parameters and are
used widely in the characterization of two-port (and multi-port) networks at microwave
frequencies.
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We discuss S-parameters in Sec. 12.1. It is a common convention in the literature to
normalize the fields to the impedances of the left and right media (the generator and
load impedances), as follows:

E± = 1√ηa E± =
E ± ηaH

2
√ηa , E′± =

1√ηb E
′± =

E′ ± ηbH′
2
√ηb (5.6.37)

Such normalized fields are referred to as power waves [515]. Using the results of Eq.
(5.6.31), the scattering matrix may be written in terms of the normalized fields in the
more convenient form:

[
E−
E′+

]
=
[
Γ(z) T(z)
T(z) Γ′(z)

][
E+
E′−

]
= S(z)

[
E+
E′−

]
(5.6.38)

so that S(z) is now a symmetric matrix:

S(z)=
[
Γ(z) T(z)
T(z) Γ′(z)

]
(scattering matrix) (5.6.39)

One can verify also that Eqs. (5.6.25), (5.6.26), and (5.6.28) imply the following uni-
tarity properties of S(z):

S̄(z)TS(z)= I , S(ω)†S(ω)= I , (unitarity) (5.6.40)

where I is the 2×2 identity matrix, S̄(z)= S(z−1), and S(ω) denotes S(z) with z =
ejωTs , so that S̄(ω)T becomes the hermitian conjugate S(ω)†= S(ω)∗T.

The unitarity condition is equivalent to the power conservation condition that the
net incoming power into the (lossless) multilayer structure is equal to the net outgoing
reflected power from the structure. Indeed, in terms of the power waves, we have:

Pout = 1

2ηa
|E−|2 + 1

2ηb
|E′+|2 =

1

2
|E−|2 + 1

2
|E′+|2

= 1

2

[E∗−,E∗′+ ]
[
E−
E′+

]
= 1

2

[E∗+,E∗′− ]S†S
[
E+
E′−

]
= 1

2

[E∗+,E∗′− ]I
[
E+
E′−

]

= 1

2
|E+|2 + 1

2
|E′−|2 =

1

2ηa
|E+|2 + 1

2ηb
|E′−|2 = Pin

Layer Recursions

Next, we discuss the layer recursions. The reflection responses at the successive in-
terfaces of the structure are given by similar equations to (5.6.25). We have Γi(z)=
Bi(z)/Ai(z) at the ith interface and Γi+1(z)= Bi+1(z)/Ai+1(z) at the next one. Us-
ing Eq. (5.6.19), we find that the responses Γi satisfy the following recursion, which is
equivalent to Eq. (5.1.3):

Γi(z)= ρi + z−1Γi+1(z)
1+ ρiz−1Γi+1(z)

, i =M,M − 1, . . . ,1 (5.6.41)
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It starts at ΓM+1(z)= ρM+1 and ends with Γ(z)= Γ1(z). The impedances at the
interfaces satisfy Eq. (5.1.5), which takes the specialized form in the case of equal phase
thicknesses:

Zi(s)= ηi Zi+1(s)+ηis
ηi + sZi+1(s)

, i =M,M − 1, . . . ,1 (5.6.42)

where we defined the variable s via the bilinear transformation:

s = 1− z−1

1+ z−1
(5.6.43)

Note that if z = e2jδ, then s = j tanδ. It is more convenient to think of the impedances
Zi(s) as functions of the variable s and the reflection responses Γi(z) as functions of
the variable z.

To summarize, given the characteristic impedances {ηa,η1, . . . , ηM,ηb}, equiva-
lently, the refractive indices {n1, n1, . . . , nM} of a multilayered structure, we can com-
pute the corresponding reflection coefficients {ρ1, ρ2, . . . , ρM+1} and then carry out the
polynomial recursions (5.6.19), eventually arriving at the final Mth order polynomials
A(z) and B(z), which define via Eq. (5.6.25) the overall reflection and transmission
responses of the structure.

Conversely, given the final polynomials A1(z)= A(z) and B1(z)= B(z), we invert
the recursion (5.6.19) and “peel off” one layer at a time, until we arrive at the rightmost
interface. In the process, we extract the reflection coefficients {ρ1, ρ2, . . . , ρM+1}, as
well as the characteristic impedances and refractive indices of the structure.

This inverse recursion is based on the property that the reflection coefficients appear
in the first and last coefficients of the polynomials Bi(z) andAi(z). Indeed, if we define
these coefficients by the expansions:

Bi(z)=
M+1−i∑
m=0

bi(m)z−m , Ai(z)=
M+1−i∑
m=0

ai(m)z−m

then, it follows from Eq. (5.6.19) that the first coefficients are:

bi(0)= ρi , ai(0)= 1 (5.6.44)

whereas the last coefficients are:

bi(M + 1− i)= ρM+1 , ai(M + 1− i)= ρM+1ρi (5.6.45)

Inverting the transition matrix in Eq. (5.6.19), we obtain the backward recursion:†

[
Ai+1(z)
Bi+1(z)

]
= 1

1− ρ2
i

[
1 −ρi

−ρiz z

][
Ai(z)
Bi(z)

]
(backward recursion) (5.6.46)

†Backward means order-decreasing: as the index i increases, the polynomial orderM + 1− i decreases.
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for i = 1,2, . . . ,M, where ρi = bi(0). This recursion starts with the knowledge ofA1(z)
and B1(z). We note that each step of the recursion reduces the order of the polynomials
by one, until we reach the 0th order polynomials AM+1(z)= 1 and BM+1(z)= ρM+1.

The reverse recursions can also be applied directly to the reflection responses Γi(z)
and wave impedances Zi(s). It follows from Eq. (5.6.41) that the reflection coefficient ρi
can be extracted from Γi(z) if we set z = ∞, that is, ρi = Γi(∞). Then, solving Eq. (5.1.3)
for Γi+1(z), we obtain:

Γi+1(z)= z Γi(z)−ρi
1− ρiΓi(z) , i = 1,2, . . . ,M (5.6.47)

Similarly, it follows from Eq. (5.6.42) that the characteristic impedance ηi can be
extracted from Zi(s) by setting s = 1, which is equivalent to z = ∞ under the transfor-
mation (5.6.43). Thus, ηi = Zi(1) and the inverse of (5.6.42) becomes:

Zi+1(s)= ηi Zi(s)−sηiηi − sZi(s) , i = 1,2, . . . ,M (5.6.48)

The necessary and sufficient condition that the extracted reflection coefficients ρi
and the media impedances ηi are realizable, that is, |ρi| < 1 or ηi > 0, is that the
starting polynomial A(z) be a minimum-phase polynomial in z−1, that is, it must have
all its zeros inside the unit circle on the z-plane. This condition is in turn equivalent to
the requirement that the transmission and reflection responses T(z) and Γ(z) be stable
and causal transfer functions.

The order-increasing and order-decreasing recursions Eqs. (5.6.19) and (5.6.46) can
also be expressed in terms of the vectors of coefficients of the polynomials Ai(z) and
Bi(z). Defining the column vectors:

ai =




ai(0)
ai(1)

...
ai(M + 1− i)


 , bi =




bi(0)
bi(1)

...
bi(M + 1− i)




we obtain for Eq. (5.6.19), with i =M,M − 1, . . . ,1:

ai =
[

ai+1

0

]
+ ρi

[
0

bi+1

]

bi = ρi
[

ai+1

0

]
+
[

0
bi+1

] (forward recursion) (5.6.49)

and initialized at aM+1 = [1] and bM+1 = [ρM+1]. Similarly, the backward recur-
sions (5.6.46) are initialized at the Mth order polynomials a1 = a and b1 = b. For
i = 1,2, . . . ,M and ρi = bi(0), we have:

[
ai+1

0

]
= ai − ρibi

1− ρ2
i[

0
bi+1

]
= −ρiai + bi

1− ρ2
i

(backward recursion) (5.6.50)
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Example 5.6.1: Determine the number of layers M, the reflection coefficients at the M + 1
interfaces, and the refractive indices of theM + 2 media for a multilayer structure whose
overall reflection response is given by:

Γ(z)= B(z)
A(z)

= −0.1− 0.188z−1 − 0.35z−2 + 0.5z−3

1− 0.1z−1 − 0.064z−2 − 0.05z−3

Solution: From the degree of the polynomials, the number of layers is M = 3. The starting
polynomials in the backward recursion (5.6.50) are:

a1 = a =




1.000
−0.100
−0.064
−0.050


 , b1 = b =



−0.100
−0.188
−0.350

0.500




From the first and last coefficients of b1, we find ρ1 = −0.1 and ρ4 = 0.5. Setting i = 1,
the first step of the recursion gives:

[
a2

0

]
= a1 − ρ1b1

1− ρ2
1
=




1.000
−0.120
−0.100

0.000


 ,

[
0
b2

]
= −ρ1a1 + b1

1− ρ2
1

=




0.000
−0.200
−0.360

0.500




Thus,

a2 =



1.000
−0.120
−0.100


 , b2 =



−0.200
−0.360

0.500




The first coefficient of b2 is ρ2 = −0.2 and the next step of the recursion gives:

[
a3

0

]
= a2 − ρ2b2

1− ρ2
2
=



1.0
−0.2

0.0


 ,

[
0
b3

]
= −ρ2a2 + b2

1− ρ2
2

=



0.0
−0.4

0.5




Thus,

a3 =
[

1.0
−0.2

]
, b3 =

[
−0.4

0.5

]

The last step of the recursion for i = 3 is not necessary because we have already determined
ρ4 = 0.5. Thus, the four reflection coefficients are:

[ρ1, ρ2, ρ3, ρ4]= [−0.1,−0.2,−0.4,0.5]

The corresponding refractive indices can be obtained by solving Eq. (5.1.1), that is, ni =
ni−1(1− ρi)/(1+ ρi). Starting with i = 1 and n0 = na = 1, we obtain:

[na, n1, n2, n3, nb]= [1,1.22,1.83,4.28,1.43]

The same results can be obtained by working with the polynomial version of the recursion,
Eq. (5.6.46). ��
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Example 5.6.2: Consider the quarter-quarter antireflection coating shown in Fig. 5.2.2 with
refractive indices [na, n1, n2, nb]= [1,1.38,1.63,1.50]. Determine the reflection coef-
ficients at the three interfaces and the overall reflection response Γ(z) of the structure.

Solution: In this problem we carry out the forward layer recursion starting from the rightmost
layer. The reflection coefficients computed from Eq. (5.1.1) are:

[ρ1, ρ2, ρ3]= [−0.1597,−0.0831,0.0415]

Starting the forward recursion with a3 = [1] and b3 = [ρ3]= [0.0415], we build the first
order polynomials:

a2 =
[

a3

0

]
+ ρ2

[
0
b3

]
=
[

1.0000
0.0000

]
+ (−0.0831)

[
0.0000
0.0415

]
=
[

1.0000
−0.0034

]

b2 = ρ2

[
a3

0

]
+
[

0
b3

]
= (−0.0831)

[
1.0000
0.0000

]
+
[

0.0000
0.0415

]
=
[
−0.0831

0.0415

]

Then, we build the 2nd order polynomials at the first interface:

a1 =
[

a2

0

]
+ ρ1

[
0
b2

]
=



1.0000
0.0098
−0.0066


 , b1 = ρ1

[
a2

0

]
+
[

0
b2

]
=


−0.1597
−0.0825

0.0415




Thus, the overall reflection response is:

Γ(z)= Γ1(z)= B1(z)
A1(z)

= −0.1597− 0.0825z−1 + 0.0415z−2

1+ 0.0098z−1 − 0.0066z−2

Applying the reverse recursion on this reflection response would generate the same reflec-
tion coefficients ρ1, ρ2, ρ3. ��

Example 5.6.3: Determine the overall reflection response of the quarter-half-quarter coating of
Fig. 5.2.2 by thinking of the half-wavelength layer as two quarter-wavelength layers of the
same refractive index.

Solution: There areM = 4 quarter-wave layers with refractive indices:

[na, n1, n2, n3, n4, nb]= [1,1.38,2.20,2.20,1.63,1.50]

The corresponding reflection coefficients are:

[ρ1, ρ2, ρ3, ρ4, ρ5]= [−0.1597,−0.2291,0,0.1488,0.0415]

where the reflection coefficient at the imaginary interface separating the two halves of
the half-wave layer is zero. Starting the forward recursion with a5 = [1], b5 = [ρ5]=
[0.0415], we compute the higher-order polynomials:

a4 =
[

a5

0

]
+ ρ4

[
0
b5

]
=
[

1.0000
0.0062

]
, b4 = ρ4

[
a5

0

]
+
[

0
b5

]
=
[

0.1488
0.0415

]
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a3 =
[

a4

0

]
+ ρ3

[
0
b4

]
=



1.0000
0.0062
0.0000


 , b3 = ρ3

[
a4

0

]
+
[

0
b4

]
=



0.0000
0.1488
0.0415




a2 =
[

a3

0

]
+ ρ2

[
0
b3

]
=




1.0000
0.0062
−0.0341
−0.0095


 , b2 = ρ2

[
a3

0

]
+
[

0
b3

]
=



−0.2291
−0.0014

0.1488
0.0415




a1 =
[

a2

0

]
+ ρ1

[
0
b2

]
=




1.0000
0.0428
−0.0339
−0.0333
−0.0066



, b1 = ρ1

[
a2

0

]
+
[

0
b2

]
=




−0.1597
−0.2300

0.0040
0.1503
0.0415




Thus, the reflection response will be:

Γ(z)= B1(z)
A1(z)

= −0.1597− 0.2300z−1 + 0.0040z−2 + 0.1502z−3 + 0.0415z−4

1+ 0.0428z−1 − 0.0339z−2 − 0.0333z−3 − 0.0066z−4

We note that because ρ3 = 0, the polynomials A3(z) and A4(z) are the same and B3(z)
is simply the delayed version of B4(z), that is, B3(z)= z−1B4(z). ��

Example 5.6.4: Given the reflection coefficients {ρ1, ρ2, ρ3, ρ4} of a three-layer structure, de-
rive the polynomials Ai(z), Bi(z) at all stages i = 1,2,3,4.

Solution: Starting with A4(z)= 1 and B4(z)= ρ4, the forward recursions (5.6.19) are:

A3(z)= A4(z)+ρ3z−1B4(z)= 1+ ρ3ρ4z−1

B3(z)= ρ3A4(z)+z−1B4(z)= ρ3 + ρ4z−1

A2(z)= A3(z)+ρ2z−1B3(z)= 1+ (ρ2ρ3 + ρ3ρ4)z−1 + ρ2ρ4z−2

B2(z)= ρ2A3(z)+z−1B3(z)= ρ2 + (ρ3 + ρ2ρ3ρ4)z−1 + ρ4z−2

Finally, A1(z)= A2(z)+ρ1z−1B2(z) and B1(z)= ρ1A2(z)+z−1B2(z) give:

A1(z)= 1+ (ρ1ρ2 + ρ2ρ3 + ρ3ρ4)z−1 + (ρ1ρ3 + ρ2ρ4 + ρ1ρ2ρ3ρ4)z−2 + ρ1ρ4z−3

B1(z)= ρ1 + (ρ2 + ρ1ρ2ρ3 + ρ1ρ3ρ4)z−1 + (ρ3 + ρ1ρ2ρ4 + ρ2ρ3ρ4)z−2 + ρ4z−3

As expected, the first and last coefficients of Ai(z) are 1 and ρiρ4 and those of Bi(z) are
ρi and ρ4.

An approximation that is often made in practice is to assume that the ρis are small and
ignore all the terms that involve two or more factors of ρi. In this approximation, we have
for the polynomials and the reflection response Γ(z)= B1(z)/A1(z):

A1(z)= 1
B1(z)= ρ1 + ρ2z−1 + ρ3z−2 + ρ4z−3 ⇒ Γ(z)= ρ1 + ρ2z−1 + ρ3z−2 + ρ4z−3
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This is equivalent to ignoring all multiple reflections within each layer and considering only
a single reflection at each interface. Indeed, the term ρ2z−1 represents the wave reflected at
interface-2 and arriving back at interface-1 with a roundtrip delay of z−1. Similarly, ρ3z−2

represents the reflection at interface-3 and has a delay of z−2 because the wave must make
a roundtrip of two layers to come back to interface-1, and ρ4z−3 has three roundtrip delays
because the wave must traverse three layers. ��

The two MATLAB functions frwrec and bkwrec implement the forward and back-
ward recursions (5.6.49) and (5.6.50), respectively. They have usage:

[A,B] = frwrec(r); forward recursion - from r to A,B
[r,A,B] = bkwrec(a,b); backward recursion - from a,b to r

The input r of frwrec represents the vector of theM+ 1 reflection coefficients and
A,B are the (M + 1)×(M + 1) matrices whose columns are the polynomials ai and bi
(padded with zeros at the end to make them of lengthM+1.) The inputs a,b of bkwrec
are the final order-M polynomials a,b and the outputs r,A,B have the same meaning
as in frwrec. We note that the first row of B contains the reflection coefficients r.

The auxiliary functions r2n and n2r allow one to pass from the reflection coefficient
vector r to the refractive index vector n, and conversely. They have usage:

n = r2n(r); reflection coefficients to refractive indices

r = n2r(n); refractive indices to reflection coefficients

As an illustration, the MATLAB code:

a = [1, -0.1, -0.064, -0.05];
b = [-0.1, -0.188, -0.35, 0.5];
[r,A,B] = bkwrec(a,b);
n = r2n(r);
r = n2r(n);

will generate the output of Example 5.6.1:

r =
-0.1000 -0.2000 -0.4000 0.5000

A =
1.0000 1.0000 1.0000 1.0000
-0.1000 -0.1200 -0.2000 0
-0.0640 -0.1000 0 0
-0.0500 0 0 0

B =
-0.1000 -0.2000 -0.4000 0.5000
-0.1880 -0.3600 0.5000 0
-0.3500 0.5000 0 0
0.5000 0 0 0

n =
1.0000 1.2222 1.8333 4.2778 1.4259

r =
-0.1000 -0.2000 -0.4000 0.5000

Conversely, if the above r is the input to frwrec, the returned matrices A,B will be
identical to the above. The function r2n solves Eq. (5.1.1) for ni and always assumes that
the refractive index of the leftmost medium is unity. Once the ni are known, the function
multidiel may be used to compute the reflection response at any set of frequencies or
wavelengths.
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5.7 Applications of Layered Structures

In addition to their application in dielectric thin-film and radome design, layered struc-
tures and the corresponding forward and backward layer recursions have a number of
applications in other wave propagation problems, such as the design of broadband ter-
minations of transmission lines, the analysis and synthesis of speech, geophysical signal
processing for oil exploration, the probing of tissue by ultrasound, and the design of
acoustic reflectors for noise control.

It is remarkable also that the same forward and backward recursions (5.6.49) and
(5.6.50) are identical (up to reindexing) to the forward and backward Levinson recursions
of linear prediction [373], with the layer structures being mathematically equivalent to
the analysis and synthesis lattice filters. This connection is perhaps the reason behind
the great success of linear prediction methods in speech and geophysical signal pro-
cessing.

Moreover, the forward and backward layer recursions in their reflection forms, Eqs.
(5.6.41) and (5.6.47), and impedance forms, Eqs. (5.6.42) and (5.6.48), are the essential
mathematical tools for Schur’s characterization of lossless bounded real functions in the
z-plane and Richard’s characterization of positive real functions in the s-plane and have
been applied to network synthesis and to the development of transfer function stability
tests, such as the Schur-Cohn test [393–407].

In all wave problems there are always two associated propagating field quantities
playing the roles of the electric and magnetic fields. For forward-moving waves the
ratio of the two field quantities is constant and equal to the characteristic impedance of
the particular propagation medium for the particular type of wave.

For example, for transmission lines the two field quantities are the voltage and cur-
rent along the line, for sound waves they are the pressure and particle volume velocity,
and for seismic waves, the stress and particle displacement.

A transmission line connected to a multisegment impedance transformer and a load
is shown in Fig. 5.7.1. The characteristic impedances of the main line and the seg-
ments are Za and Z1, . . . , ZM, and the impedance of the load, Zb. Here, the impedances
{Za,Z1, . . . , ZM,Zb}, play the same role as {ηa,η1, . . . , ηM,ηb} in the dielectric stack
case.

Fig. 5.7.1 Multisegment broadband termination of a transmission line.

The segment characteristic impedances Zi and lengths li can be adjusted to obtain
an overall reflection response that is reflectionless over a wideband of frequencies [362–
372]. This design method is presented in Sec. 5.8.
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In speech processing, the vocal tract is modeled as an acoustic tube of varying cross-
sectional area. It can be approximated by the piece-wise constant area approximation
shown in Fig. 5.7.2. Typically, ten segments will suffice.

The acoustic impedance of a sound wave varies inversely with the tube area, Z =
ρc/A, where ρ, c, and A are the air density, speed of sound, and tube area, respectively.
Therefore, as the sound wave propagates from the glottis to the lips, it will suffer reflec-
tions every time it encounters an interface, that is, whenever it enters a tube segment
of different diameter.

Fig. 5.7.2 Multisegment acoustic tube model of vocal tract.

Multiple reflections will be set up within each segment and the tube will reverberate
in a complicated manner depending on the number of segments and their diameters.
By measuring the speech wave that eventually comes out of the lips (the transmission
response,) it is possible to remove, or deconvolve, the reverberatory effects of the tube
and, in the process, extract the tube parameters, such as the areas of the segments, or
equivalently, the reflection coefficients at the interfaces.

During speech, the configuration of the vocal tract changes continuously, but it does
so at mechanical speeds. For short periods of time (typically, of the order of 20–30
msec,) it may be considered to maintain a fixed configuration. From each such short
segment of speech, a set of configuration parameters, such as reflection coefficients,
is extracted. Conversely, the extracted parameters may be used to re-synthesize the
speech segment.

Such linear prediction based acoustic tube models of speech production are routinely
used in the analysis and synthesis of speech, speech recognition, speaker identification,
and speech coding for efficient data transmission, such as in wireless phones.

The seismic problem in geophysical signal processing is somewhat different. Here,
it is not the transmitted wave that is experimentally available, but rather the overall
reflected wave. Fig. 5.7.3 shows the typical case.

An impulsive input to the earth, such as an explosion near the surface, will set up
seismic elastic waves propagating downwards. As the various earth layers are encoun-
tered, reflections will take place. Eventually, each layer will be reverberating and an over-
all reflected wave will be measured at the surface. With the help of the backward recur-
sions, the parameters of the layered structure (reflection coefficients and impedances)
are extracted and evaluated to determine the presence of a layer that contains an oil
deposit.

The application of the backward recursions has been termed dynamic predictive de-
convolution in the geophysical context [380–392]. An interesting historical account of
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Fig. 5.7.3 Seismic probing of earth’s multilayer structure.

the early development of this method by Robinson and its application to oil exploration
and its connection to linear prediction is given in Ref. [386]. The connection to the con-
ventional inverse scattering methods based on the Gelfand-Levitan-Marchenko approach
is discussed in [387–392].

Fiber Bragg gratings (FBG), obtained by periodically modulating the refractive index
of the core (or the cladding) of a finite portion of a fiber, behave very similarly to di-
electric mirrors and exhibit high reflectance bands [328–348]. The periodic modulation
is achieved by exposing that portion of the fiber to intense ultraviolet radiation whose
intensity has the required periodicity. The periodicity shown in Fig. 5.7.4 can have arbi-
trary shape—not only alternating high/low refractive index layers as suggested by the
figure. We discuss FBGs further in Sec. 10.4.

Fig. 5.7.4 Fiber Bragg gratings acting as bandstop or bandpass filters.

Quarter-wave phase-shifted fiber Bragg gratings act as narrow-band transmission
filters and can be used as demultiplexing filters in WDM and dense WDM (DWDM) com-
munications systems. Assuming as in Fig. 5.7.4 that the inputs to the FBGs consist of
several multiplexed wavelengths, λ1, λ2, λ3, . . . , and that the FBGs are tuned to wave-
length λ2, then the ordinary FBG will act as an almost perfect reflector of λ2. If its
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reflecting band is narrow, then the other wavelengths will transmit through. Similarly,
the phase-shifted FBG will act as a narrow-band transmission filter allowing λ2 through
and reflecting the other wavelengths if they lie within its reflecting band.

A typical DWDM system may carry 40 wavelengths at 10 gigabits per second (Gbps)
per wavelength, thus achieving a 400 Gbps bandwidth. In the near future, DWDM sys-
tems will be capable of carrying hundreds of wavelengths at 40 Gbps per wavelength,
achieving terabit per second rates [348].

5.8 Chebyshev Design of Reflectionless Multilayers

In this section, we discuss the design of broadband reflectionless multilayer structures of
the type shown in Fig. 5.6.1 , or equivalently, broadband terminations of transmission
lines as shown in Fig. 5.7.1, using Collin’s method based on Chebyshev polynomials
[362–372,201,220].

As depicted in Fig. 5.8.1, the desired specifications are: (a) the operating center
frequency f0 of the band, (b) the bandwidth∆f , and (c) the desired amount of attenuation
A (in dB) within the desired band, measured with respect to the reflectance value at dc.

Fig. 5.8.1 Reflectance specifications for Chebyshev design.

Because the optical thickness of the layers is δ = ωTs/2 = (π/2)(f/f0) and van-
ishes at dc, the reflection response at f = 0 should be set equal to its unmatched value,
that is, to the value when there are no layers:

|Γ(0)|2 = ρ2
0 =

(
ηb − ηa
ηa + ηb

)2

=
(
na − nb
na + nb

)2

(5.8.1)

Collin’s design method [362] assumes |Γ(f)|2 has the analytical form:

|Γ(f)|2 = e2
1T

2
M(x)

1+ e2
1T

2
M(x)

, x = x0 cosδ = x0 cos
(πf

2f0

)
(5.8.2)

where TM(x)= cos
(
M acos(x)

)
is the Chebyshev polynomial (of the first kind) of order

M. The parameters M,e1, x0 are fixed by imposing the desired specifications shown in
Fig. 5.8.1.
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Once these parameters are known, the order-M polynomials A(z),B(z) are deter-
mined by spectral factorization, so that |Γ(f)|2 = |B(f)|2/|A(f)|2. The backward layer
recursions, then, allow the determination of the reflection coefficients at the layer inter-
faces, and the corresponding refractive indices. Setting f = 0, or δ = 0, or cosδ = 1, or
x = x0, we obtain the design equation:

|Γ(0)|2 = e2
1T

2
M(x0)

1+ e2
1T

2
M(x0)

= e2
0

1+ e2
0
= ρ2

0 (5.8.3)

where we defined e0 = e1TM(x0). Solving for e0, we obtain:

e2
0 =

ρ2
0

1− ρ2
0
= (na − nb)

2

4nanb
(5.8.4)

Chebyshev polynomialsTM(x) are reviewed in more detail in Sec. 19.8 that discusses
antenna array design using the Dolph-Chebyshev window. The two key properties of
these polynomials are that they have equiripple behavior within the interval −1 ≤ x ≤ 1
and grow like xM for |x| > 1; see for example, Fig. 19.8.1.

By adjusting the value of the scale parameter x0, we can arrange the entire equiripple
domain, −1 ≤ x ≤ 1, of TM(x) to be mapped onto the desired reflectionless band
[f1, f2], where f1, f2 are the left and right bandedge frequencies about f0, as shown in
Fig. 5.8.1. Thus, we demand the conditions:

x0 cos
(πf2

2f0

) = −1, x0 cos
(πf1

2f0

) = 1

These can be solved to give:

πf2
2f0

= acos
(− 1

x0

) = π
2
+ asin

( 1

x0

)
πf1
2f0

= acos
( 1

x0

) = π
2
− asin

( 1

x0

) (5.8.5)

Subtracting, we obtain the bandwidth ∆f = f2 − f1:

π
2

∆f
f0
= 2 asin

(
1

x0

)
(5.8.6)

We can now solve for the scale parameter x0 in terms of the bandwidth:

x0 = 1

sin
(
π
4

∆f
f0

) (5.8.7)

It is evident from Fig. 5.8.1 that the maximum value of the bandwidth that one can
demand is ∆fmax = 2f0. Going back to Eq. (5.8.5) and using (5.8.6), we see that f1 and
f2 lie symmetrically about f0, such that f1 = f0 −∆f/2 and f2 = f0 +∆f/2.

Next, we impose the attenuation condition. Because of the equiripple behavior over
the ∆f band, it is enough to impose the condition at the edges of the band, that is, we
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demand that when f = f1, or x = 1, the reflectance is down by A dB compared to its dc
value:

|Γ(f1)|2 = |Γ(0)|2 10−A/10 ⇒ e2
1T

2
M(1)

1+ e2
1T

2
M(1)

= e2
0

1+ e2
0

10−A/10

But, TM(1)= 1. Therefore, we obtain an equation for e2
1:

e2
1

1+ e2
1
= e2

0

1+ e2
0

10−A/10 (5.8.8)

Noting that e0 = e1TM(x0), we solve Eq. (5.8.8) for the ratio TM(x0)= e0/e1:

TM(x0)= cosh
(
M acosh(x0)

) = √(1+ e2
0)10A/10 − e2

0 (5.8.9)

where we used the definition TM(x0)= cosh
(
M acosh(x0)

)
because x0 > 1. Solving

(5.8.9) forM, we obtain:

M = ceil(Mexact) (5.8.10)

where

Mexact =
acosh

(√
(1+ e2

0)10A/10 − e2
0

)
acosh(x0)

(5.8.11)

Because Mexact is rounded up to the next integer, the attenuation will be somewhat
larger than required. In summary, we calculate e0, x0,M from Eqs. (5.8.4), (5.8.7), and
(5.8.10). Finally, e1 is calculated from:

e1 = e0

TM(x0)
= e0

cosh
(
M acosh(x0)

) (5.8.12)

Next, we construct the polynomialsA(z) and B(z). It follows from Eqs. (5.6.25) and
(5.6.31) that the reflectance and transmittance are:

|Γ(f)|2 = |B(f)|
2

|A(f)|2 , |T(f)|2 = 1− |Γ(f)|2 = σ2

|A(f)|2 ,

Comparing these with Eq. (5.8.2), we obtain:

|A(f)|2 = σ2[1+ e2
1T

2
M(x0 cosδ)

]
|B(f)|2 = σ2e2

1T
2
M(x0 cosδ)

(5.8.13)

The polynomial A(z) is found by requiring that it be a minimum-phase polynomial,
that is, with all its zeros inside the unit circle on the z-plane. To find this polynomial,
we determine the 2M roots of the right-hand-side of |A(f)|2 and keep only those M
that lie inside the unit circle. We start with the equation for the roots:

σ2[1+ e2
1T

2
M(x0 cosδ)

] = 0 ⇒ TM(x0 cosδ)= ± j
e1
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Because TM(x0 cosδ)= cos
(
M acos(x0 cosδ)

)
, the desiredM roots are given by:

x0 cosδm = cos
(acos

(− j
e1

)+mπ
M

)
, m = 0,1, . . . ,M − 1 (5.8.14)

Indeed, these satisfy:

cos
(
M acos(x0 cosδm)

) = cos
(

acos
(− j
e1

)+mπ) = − j
e1

cosmπ = ± j
e1

Solving Eq. (5.8.14) for δm, we find:

δm = acos
[

1

x0
cos

(acos
(− j
e1

)+mπ
M

)]
, m = 0,1, . . . ,M − 1 (5.8.15)

Then, theM zeros of A(z) are constructed by:

zm = e2jδm , m = 0,1, . . . ,M − 1 (5.8.16)

These zeros lie inside the unit circle, |zm| < 1. (Replacing −j/e1 by +j/e1 in
Eq. (5.8.15) would generate M zeros that lie outside the unit circle; these are the ze-
ros of Ā(z).) Finally, the polynomial A(z) is obtained by multiplying the root factors:

A(z)=
M−1∏
m=0

(1− zmz−1)= 1+ a1z−1 + a2z−2 + · · · + aMz−M (5.8.17)

Once A(z) is obtained, we may fix the scale factor σ2 by requiring that the two
sides of Eq. (5.8.13) match at f = 0. Noting that A(f) at f = 0 is equal to the sum of the
coefficients of A(z) and that e1TM(x0)= e0, we obtain the condition:

∣∣∣∣∣∣
M−1∑
m=0

am

∣∣∣∣∣∣
2

= σ2(1+ e2
0) ⇒ σ = ±

∣∣∣∣∣∣
M−1∑
m=0

am

∣∣∣∣∣∣√
1+ e2

0

(5.8.18)

Either sign of σ leads to a solution, but its physical realizability requires that we
choose the negative sign if na < nb, and the positive one if na > nb.

The polynomial B(z) can now be constructed by taking the square root of the second
equation in (5.8.13). Again, the simplest procedure is to determine the roots of the right-
hand side and multiply the root factors. The root equations are:

σ2e2
1T

2
M(x0 cosδ)= 0 ⇒ TM(x0 cosδ)= 0

withM roots:

δm = acos
(

1

x0
cos

((m+ 0.5)π
M

))
, m = 0,1, . . . ,M − 1 (5.8.19)
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The z-plane roots are zm = e2jδm ,m = 0,1, . . . ,M− 1. The polynomial B(z) is now
constructed up to a constant b0 by the product:

B(z)= b0

M−1∏
m=0

(1− zmz−1) (5.8.20)

As before, the factor b0 is fixed by matching Eq. (5.8.13) at f = 0. Because δm is
real, the zeros zm will all have unit magnitude and B(z) will be equal to its reverse
polynomial, BR(z)= B(z).

Finally, the reflection coefficients at the interfaces and the refractive indices are
obtained by sending A(z) and B(z) into the backward layer recursion.

The above design steps are implemented by the MATLAB functions chebtr, chebtr2,
and chebtr3 with usage:

[n,a,b] = chebtr(na,nb,A,DF); Chebyshev multilayer design

[n,a,b,A] = chebtr2(na,nb,M,DF); specify order and bandwidth

[n,a,b,DF] = chebtr3(na,nb,M,A); specify order and attenuation

The inputs are the refractive indices na,nb of the left and right media, the desired at-
tenuation in dB, and the fractional bandwidth ∆F = ∆f/f0. The output is the refractive
index vector n = [na, n1, n2, . . . , nM,nb] and the reflection and transmission polynomi-
als b and a. In chebtr2 and chebtr3, the orderM is given. To clarify the design steps,
we give below the essential source code for chebtr:

e0 = sqrt((nb-na)^2/(4*nb*na));
x0 = 1/sin(DF*pi/4);
M = ceil(acosh(sqrt((e0^2+1)*10^(A/10) - e0^2))/acosh(x0));
e1 = e0/cosh(M*acosh(x0));

m=0:M-1;
delta = acos(cos((acos(-j/e1)+pi*m)/M)/x0);
z = exp(2*j*delta); zeros of A(z)

a = real(poly(z)); coefficients of A(z)

sigma = sign(na-nb)*abs(sum(a))/sqrt(1+e0^2); scale factor σ

delta = acos(cos((m+0.5)*pi/M)/x0);
z = exp(2*j*delta); zeros of B(z)

b = real(poly(z)); unscaled coefficients of B(z)
b0 = sigma * e0 / abs(sum(b));
b = b0 * b; rescaled B(z)

r = bkwrec(a,b); backward recursion

n = na * r2n(r); refractive indices

Example 5.8.1: Broadband antireflection coating. Design a broadband antireflection coating on
glass with na = 1, nb = 1.5, A = 20 dB, and fractional bandwidth ∆F = ∆f/f0 = 1.5.
Then, design a coating with deeper and narrower bandwidth having parameters A = 30
dB and ∆F = ∆f/f0 = 1.0.

Solution: The reflectances of the designed coatings are shown in Fig. 5.8.2. The two cases have
M = 8 andM = 5, respectively, and refractive indices:
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n = [1,1.0309,1.0682,1.1213,1.1879,1.2627,1.3378,1.4042,1.4550,1.5]

n = [1,1.0284,1.1029,1.2247,1.3600,1.4585,1.5]

The specifications are better than satisfied because the method rounds up the exact value
of M to the next integer. These exact values were Mexact = 7.474 and Mexact = 4.728, and
were increased toM = 8 andM = 5.
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Fig. 5.8.2 Chebyshev designs. Reflectances are normalized to 0 dB at dc.

The desired bandedges shown on the graphs were computed from f1/f0 = 1−∆F/2 and
f1/f0 = 1+∆F/2. The designed polynomial coefficients a,b were in the two cases:

a =




1.0000
0.0046
0.0041
0.0034
0.0025
0.0017
0.0011
0.0005
0.0002




, b =




−0.0152
−0.0178
−0.0244
−0.0290
−0.0307
−0.0290
−0.0244
−0.0178
−0.0152




and a =




1.0000
0.0074
0.0051
0.0027
0.0010
0.0002



, b =




−0.0140
−0.0350
−0.0526
−0.0526
−0.0350
−0.0140




The zeros of the polynomials a were in the two cases:

z =




0.3978∠± 27.93o

0.3517∠± 73.75o

0.3266∠± 158.76o

0.3331∠± 116.34o


 and z =




0.2112∠± 45.15o

0.1564∠180o

0.1678∠± 116.30o




They lie inside the unit circle by design. The typical MATLAB code used to generate these
examples was:

na = 1; nb = 1.5; A = 20; DF = 1.5;
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n = chebtr(na,nb,A,DF);
M = length(n) - 2;

f = linspace(0,4,1601);
L = 0.25 * ones(1,M);

G0 = (na-nb)^2 / (na+nb)^2;
G = abs(multidiel(n,L,1./f)).^2;

plot(f, 10*log10(G/G0));

The reflectances were computed with the function multidiel. The optical thickness inputs
to multidiel were all quarter-wavelength at f0. ��

We note, in this example, that the coefficients of the polynomial B(z) are symmetric
about their middle, that is, the polynomial is self-reversing BR(z)= B(z). One conse-
quence of this property is that the vector of reflection coefficients is also symmetric
about its middle, that is,

[ρ1, ρ2, . . . , ρM, ρM+1]= [ρM+1, ρM, . . . , ρ2, ρ1] (5.8.21)

or, ρi = ρM+2−i, for i = 1,2, . . . ,M+1. These conditions are equivalent to the following
constraints among the resulting refractive indices:

ninM+2−i = nanb � ρi = ρM+2−i , i = 1,2, . . . ,M + 1 (5.8.22)

These can be verified easily in the above example. The proof of these conditions
follows from the symmetry of B(z). A simple argument is to use the single-reflection
approximation discussed in Example 5.6.4, in which the polynomial B(z) is to first-order
in the ρis:

B(z)= ρ1 + ρ2z−1 + · · · + ρM+1z−M

If the symmetry property ρi = ρM+2−i were not true, then B(z) could not satisfy the
propertyBR(z)= B(z). A more exact argument that does not rely on this approximation
can be given by considering the product of matrices (5.6.17).

Finally, we discuss the design of broadband terminations of transmission lines shown
in Fig. 5.7.1. Because the media admittances are proportional to the refractive indices,
η−1
i = niη−1

vac, we need only replace ni by the line characteristic admittances:

[na, n1, . . . , nM,nb]→ [Ya,Y1, . . . , YM,Yb]

whereYa,Yb are the admittances of the main line and the load andYi, the admittances of
the segments. Thus, the vector of designed admittances can be obtained by the MATLAB
call:

Y = chebtr(Ya, Yb, A, DF);

We also have the property (5.8.22), YiYM+2−i = YaYb, or, ZiZM+2−i = ZaZb, for
i = 1,2, . . . ,M + 1, where Yi = 1/Zi.
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In this design method, one does not have any control over the resulting refractive
indicesni or admittancesYi. This can be problematic in the design of antireflection coat-
ings because there do not necessarily exist materials with the designed nis. However,
one can replace or “simulate” any value of the refractive index of a layer by replac-
ing the layer with an equivalent set of three layers of available indices and appropriate
thicknesses [176–236].

This is not as big a problem in the case of transmission lines, because one can easily
design a line segment of a desired impedance by adjusting the geometry of the line, for
example, by changing the diameters of a coaxial cable or the width of a parallel-wire or
microstrip line.

5.9 Problems

5.1 Three identical fiberglass slabs of thickness of 3 cm and dielectric constant ε = 4ε0 are
positioned at separations d1 = d2 = 6 cm, as shown below. A wave of free-space wavelength
of 24 cm is incident normally onto the left slab.

a. Determine the percentage of reflected power.

b. Repeat if the slabs are repositioned such that d1 = 12 cm and d2 = 6 cm.

5.2 Four identical dielectric slabs of thickness of 1 cm and dielectric constant ε = 4ε0 are posi-
tioned as shown below. A uniform plane wave of frequency of 3.75 GHz is incident normally
onto the leftmost slab.

a. Determine the reflectance |Γ|2 as a percentage.

b. Determine |Γ|2 if slabs A and C are removed and replaced by air.

c. Determine |Γ|2 if the air gap B between slabsA and C is filled with the same dielectric,
so that ABC is a single slab.

5.3 Show that the antireflection coating design equations (5.2.2) can be written in the alternative
forms:

cos2 k2l2 = (n
2
2 − nanb)(n2

2na − n2
1nb)

na(n2
2 − n2

b)(n
2
2 − n2

1)
, sin2 k2l2 = n

2
2(nb − na)(n2

1 − nanb)
na(n2

2 − n2
b)(n

2
2 − n2

1)
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Making the assumptions that n2 > n1 > na, n2 > nb, and nb > na, show that for the design
to have a solution, the following conditions must be satisfied:

n1 >
√
nanb and n2 > n1

√
nb
na

5.4 Show that the characteristic polynomial of any 2×2 matrix F is expressible in terms of the
trace and the determinant of F as in Eq. (5.3.10), that is,

det(F − λI)= λ2 − (trF)λ+ detF

Moreover, for a unimodular matrix show that the two eigenvalues are λ± = e±α where
α = acosh(a) and a = trF/2.

5.5 Show that the bandedge conditiona = −1 for a dielectric mirror is equivalent to the condition
of Eq. (5.3.16). Moreover, show that an alternative condition is:

cosδH cosδL − 1

2

(
nH
nL
+ nL
nH

)
sinδH sinδL = −1

5.6 Stating with the approximate bandedge frequencies given in Eq. (5.3.19), show that the band-
width and center frequency of a dielectric mirror are given by:

∆f = f2 − f1 = 2f0 asin(ρ)
π(LH + LL) , fc = f1 + f2

2
= f0

2(LH + LL)
where LH = nHlH/λ0, LL = nLlL/λ0, and λ0 is a normalization wavelength, and f0 the
corresponding frequency f0 = c0/λ0.

5.7 Computer Experiment: Antireflection Coatings. Compute and plot over the 400–700 nm
visible band the reflectance of the following antireflection coatings on glass, defined by the
refractive indices and normalized optical thicknesses:

a. n = [1,1.38,1.5], L = [0.25]
b. n = [1,1.38,1.63,1.5], L = [0.25,0.50]
c. n = [1,1.38,2.2,1.63,1.5], L = [0.25,0.50,0.25]
d. n = [1,1.38,2.08,1.38,2.08,1.5], L = [0.25,0.527,0.0828,0.0563]

The normalization wavelength is λ0 = 550 nm. Evaluate and compare the coatings in terms
of bandwidth. Cases (a-c) are discussed in Sec. 5.2 and case (d) is from [183].

5.8 Computer Experiment: Dielectric Sunglasses. A thin-film multilayer design of dielectric sun-
glasses was carried out in Ref. [738] using 29 layers of alternating TiO2 (nH = 2.35) and SiO2

(nL = 1.45) coating materials. The design may be found on the web page:
www.sspectra.com/designs/sunglasses.html.

The design specifications for the thin-film structure were that the transmittance be: (a) less
than one percent for wavelengths 400–500 nm, (b) between 15–25 percent for 510–790 nm,
and (c) less than one percent for 800–900 nm.

Starting with the high-index layer closest to the air side and ending with the high-index layer
closest to the glass substrate, the designed lengths of the 29 layers were in nm (read across):

21.12 32.41 73.89 123.90 110.55 129.47
63.17 189.07 68.53 113.66 62.56 59.58
27.17 90.29 44.78 73.58 50.14 94.82
60.40 172.27 57.75 69.00 28.13 93.12

106.07 111.15 32.68 32.82 69.95



158 Electromagnetic Waves & Antennas – S. J. Orfanidis

Form the optical lengths nili and normalize them Li = nili/λ0, such that the maximum
optical length is a quarter wavelength at λ0. What is the value of λ0 in nm? Assuming the
glass substrate has index n = 1.5, compute and plot the reflectance and transmittance over
the band 400–900 nm.

5.9 Computer Experiment: Dielectric Mirror. Reproduce all the results and graphs of Example
5.3.2. In addition, carry out the computations for the cases of N = 16,32 bilayers.

In all cases, calculate the minimum and maximum reflectance within the high-reflectance
band. For one value ofN, calculate the reflectance using the closed-form expression (5.3.33)
and verify that it is the same as that produced by multidiel.

5.10 Computer Experiment: Dielectric Mirror. Reproduce all the results and graphs of Example
5.3.3. Repeat the computations and plots when the number of bilayers is N = 8,16. Repeat
for N = 4,8,16 assuming the layers are quarter-wavelength layers at 12.5 µm. In all cases,
calculate the minimum and maximum reflectance within the high-reflectance band.

5.11 Computer Experiment: Shortpass and Longpass Filters. Reproduce all the results and graphs
of Example 5.3.5. Redo the experiments by shifting the short-pass wavelength to λ0 = 750
nm in the first case, and the long-pass wavelength to λ0 = 350 nm in the second case. Plot
the reflectances over the extended band of 200–1000 nm.

5.12 Computer Experiment: Wide Infrared Bandpass Filter. A 47-layer infrared bandpass filter
with wide transmittance bandwidth was designed in Ref. [738]. The design may be found
on the web page www.sspectra.com/designs/irbp.html.

The alternating low- and high-index layers were ZnS and Ge with indices 2.2 and 4.2. The
substrate was Ge with index 4. The design specifications were that the transmittance be: (a)
less than 0.1% for wavelengths 2–3 µm, (b) greater than 99% for 3.3–5 µm, and (c) less than
0.1% for 5.5–7 µm.

Starting with a low-index layer near the air side and ending with a low-index layer at the
substrate, the layer lengths were in nm (read across):

528.64 178.96 250.12 123.17 294.15 156.86 265.60 134.34
266.04 147.63 289.60 133.04 256.22 165.16 307.19 125.25
254.28 150.14 168.55 68.54 232.65 125.48 238.01 138.25
268.21 98.28 133.58 125.31 224.72 40.79 564.95 398.52
710.47 360.01 724.86 353.08 718.52 358.23 709.26 370.42
705.03 382.28 720.06 412.85 761.47 48.60 97.33

Form the optical lengths nili and normalize them Li = nili/λ0, such that the maximum
optical length is a quarter wavelength at λ0. What is the value of λ0 in µm? Compute and
plot the reflectance and transmittance over the band 2–7 µm.



6
Oblique Incidence

6.1 Oblique Incidence and Snell’s Laws

With some redefinitions, the formalism of transfer matrices and wave impedances for
normal incidence translates almost verbatim to the case of oblique incidence.

By separating the fields into transverse and longitudinal components with respect
to the direction the dielectrics are stacked (the z-direction), we show that the transverse
components satisfy the identical transfer matrix relationships as in the case of normal
incidence, provided we replace the media impedances η by the transverse impedances
ηT defined below.

Fig. 6.1.1 depicts plane waves incident from both sides onto a planar interface sepa-
rating two media ε, ε′. Both cases of parallel and perpendicular polarizations are shown.

In parallel polarization, also known as p-polarization, π-polarization, or TM po-
larization, the electric fields lie on the plane of incidence and the magnetic fields are

Fig. 6.1.1 Oblique incidence for TM- and TE-polarized waves.
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perpendicular to that plane (along the y-direction) and transverse to the z-direction.
In perpendicular polarization, also known as s-polarization,† σ-polarization, or TE

polarization, the electric fields are perpendicular to the plane of incidence (along the
y-direction) and transverse to the z-direction, and the magnetic fields lie on that plane.

The figure shows the angles of incidence and reflection to be the same on either side.
This is Snell’s law of reflection and is a consequence of the boundary conditions.

The figure also implies that the two planes of incidence and two planes of reflection
all coincide with the xz-plane. This is also a consequence of the boundary conditions.

Starting with arbitrary wavevectors k± = x̂kx± + ŷky± + ẑkz± and similarly for k′±,
the incident and reflected electric fields at the two sides will have the general forms:

E+e−j k+·r , E−e−j k−·r , E′+e−j k
′+·r , E′−e−j k

′−·r

The boundary conditions state that the net transverse (tangential) component of the
electric field must be continuous across the interface. Assuming that the interface is at
z = 0, we can write this condition in a form that applies to both polarizations:

ET+e−j k+·r + ET−e−j k−·r = E′T+e
−j k′+·r + E′T−e

−j k′−·r, at z = 0 (6.1.1)

where the subscript T denotes the transverse (with respect to z) part of a vector, that is,
ET = ẑ× (E× ẑ)= E− ẑEz. Setting z = 0 in the propagation phase factors, we obtain:

ET+e−j(kx+x+ky+y) + ET−e−j(kx−x+ky−y) = E′T+e
−j(k′x+x+k′y+y) + E′T−e

−j(k′x−x+k′y−y) (6.1.2)

For the two sides to match at all points on the interface, the phase factors must be
equal to each other for all x and y:

e−j(kx+x+ky+y) = e−j(kx−x+ky−y) = e−j(k′x+x+k′y+y) = e−j(k′x−x+k′y−y) (phase matching)

and this requires the x- and y-components of the wave vectors to be equal:

kx+ = kx− = k′x+ = k′x−
ky+ = ky− = k′y+ = k′y−

(6.1.3)

If the left plane of incidence is the xz-plane, so that ky+ = 0, then all y-components
of the wavevectors will be zero, implying that all planes of incidence and reflection will
coincide with the xz-plane. In terms of the incident and reflected angles θ±, θ′±, the
conditions on the x-components read:

k sinθ+ = k sinθ− = k′ sinθ′+ = k′ sinθ′− (6.1.4)

These imply Snell’s law of reflection:

θ+ = θ− ≡ θ
θ′+ = θ′− ≡ θ′ (Snell’s law of reflection) (6.1.5)

†from the German word senkrecht for perpendicular.
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And also Snell’s law of refraction, that is, k sinθ = k′ sinθ′. Setting k = nk0, k′ = n′k0,
and k0 =ω/c0, we have:

n sinθ = n′ sinθ′ ⇒ sinθ
sinθ′

= n
′

n
(Snell’s law of refraction) (6.1.6)

It follows that the wave vectors shown in Fig. 6.1.1 will be explicitly:

k = k+ = kxx̂+ kzẑ = k sinθ x̂+ k cosθ ẑ

k− = kxx̂− kzẑ = k sinθ x̂− k cosθ ẑ

k′ = k′+ = k′xx̂+ k′zẑ = k′ sinθ′ x̂+ k′ cosθ′ ẑ

k′− = k′xx̂− k′zẑ = k′ sinθ′ x̂− k′ cosθ′ ẑ

(6.1.7)

The net transverse electric fields at arbitrary locations on either side of the interface
are given by Eq. (6.1.1). Using Eq. (6.1.7), we have:

ET(x, z)= ET+e−j k+·r + ET−e−j k−·r =
(
ET+e−jkzz + ET−ejkzz

)
e−jkxx

E′T(x, z)= E′T+e
−j k′+·r + E′T−e

−j k′−·r = (E′T+e−jk′zz + E′T−e
jk′zz

)
e−jk

′
xx

(6.1.8)

In analyzing multilayer dielectrics stacked along the z-direction, the phase factor
e−jkxx = e−jk′xx will be common at all interfaces, and therefore, we can ignore it and
restore it at the end of the calculations, if so desired. Thus, we write Eq. (6.1.8) as:

ET(z)= ET+e−jkzz + ET−ejkzz

E′T(z)= E′T+e
−jk′zz + E′T−e

jk′zz
(6.1.9)

In the next section, we work out explicit expressions for Eq. (6.1.9)

6.2 Transverse Impedance

The transverse components of the electric fields are defined differently in the two po-
larization cases. We recall from Sec. 2.9 that an obliquely-moving wave will have, in
general, both TM and TE components. For example, according to Eq. (2.9.9), the wave
incident on the interface from the left will be given by:

E+(r) =
[
(x̂ cosθ− ẑ sinθ)A+ + ŷB+

]
e−j k+·r

H+(r) = 1

η
[
ŷA+ − (x̂ cosθ− ẑ sinθ)B+

]
e−j k+·r

(6.2.1)

where the A+ and B+ terms represent the TM and TE components, respectively. Thus,
the transverse components are:

ET+(x, z) =
[
x̂A+ cosθ+ ŷB+

]
e−j(kxx+kzz)

HT+(x, z) = 1

η
[
ŷA+ − x̂B+ cosθ

]
e−j(kxx+kzz)

(6.2.2)
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Similarly, the wave reflected back into the left medium will have the form:

E−(r) =
[
(x̂ cosθ+ ẑ sinθ)A− + ŷB−

]
e−j k−·r

H−(r) = 1

η
[−ŷA− + (x̂ cosθ+ ẑ sinθ)B−

]
e−j k−·r

(6.2.3)

with corresponding transverse parts:

ET−(x, z) =
[
x̂A− cosθ+ ŷB−

]
e−j(kxx−kzz)

HT−(x, z) = 1

η
[−ŷA− + x̂B− cosθ

]
e−j(kxx−kzz)

(6.2.4)

Defining the transverse amplitudes and transverse impedances by:

AT± = A± cosθ , BT± = B±
ηTM = η cosθ , ηTE = η

cosθ
(6.2.5)

and noting that AT±/ηTM = A±/η and BT±/ηTE = B± cosθ/η, we may write Eq. (6.2.2)
in terms of the transverse quantities as follows:

ET+(x, z) =
[
x̂AT+ + ŷBT+

]
e−j(kxx+kzz)

HT+(x, z) =
[
ŷ
AT+
ηTM

− x̂
BT+
ηTE

]
e−j(kxx+kzz)

(6.2.6)

Similarly, Eq. (6.2.4) is expressed as:

ET−(x, z) =
[
x̂AT− + ŷBT−

]
e−j(kxx−kzz)

HT−(x, z) =
[−ŷ

AT−
ηTM

+ x̂
BT−
ηTE

]
e−j(kxx−kzz)

(6.2.7)

Adding up Eqs. (6.2.6) and (6.2.7) and ignoring the common factor e−jkxx, we find for
the net transverse fields on the left side:

ET(z) = x̂ETM(z)+ ŷETE(z)

HT(z) = ŷHTM(z)− x̂HTE(z)
(6.2.8)

where the TM and TE components have the same structure provided one uses the ap-
propriate transverse impedance:

ETM(z) = AT+e−jkzz +AT−ejkzz

HTM(z) = 1

ηTM

[
AT+e−jkzz −AT−ejkzz

] (6.2.9)

ETE(z) = BT+e−jkzz + BT−ejkzz

HTE(z) = 1

ηTE

[
BT+e−jkzz − BT−ejkzz

] (6.2.10)
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We summarize these in the compact form, where ET stands for either ETM or ETE :

ET(z) = ET+e−jkzz + ET−ejkzz

HT(z) = 1

ηT

[
ET+e−jkzz − ET−ejkzz

] (6.2.11)

The transverse impedance ηT stands for either ηTM or ηTE :

ηT =


η cosθ , TM, parallel, p-polarization
η

cosθ
, TE, perpendicular, s-polarization

(6.2.12)

Because η = ηo/n, it is convenient to define also a transverse refractive index
through the relationship ηT = η0/nT. Thus, we have:

nT =



n
cosθ

, TM, parallel, p-polarization

n cosθ , TE, perpendicular, s-polarization
(6.2.13)

For the right side of the interface, we obtain similar expressions:

E′T(z) = E′T+e−jk
′
zz + E′T−ejk

′
zz

H′T(z) =
1

η′T

(
E′T+e

−jk′zz − E′T−ejk
′
zz
) (6.2.14)

η′T =


η′ cosθ′ , TM, parallel, p-polarization

η′

cosθ′
, TE, perpendicular, s-polarization

(6.2.15)

n′T =



n′

cosθ′
, TM, parallel, p-polarization

n′ cosθ′ , TE, perpendicular, s-polarization
(6.2.16)

where E′T± stands for A′T± = A′± cosθ′ or B′T± = B′±.
For completeness, we give below the complete expressions for the fields on both

sides of the interface obtained by adding Eqs. (6.2.1) and (6.2.3), with all the propagation
factors restored. On the left side, we have:

E(r)= ETM(r)+ETE(r)

H(r)= HTM(r)−HTE(r)
(6.2.17)

where

ETM(r) = (x̂ cosθ− ẑ sinθ)A+e−j k+·r + (x̂ cosθ+ ẑ sinθ)A−e−j k−·r

HTM(r) = ŷ
1

η
(
A+e−j k+·r −A−e−j k−·r

)

ETE(r) = ŷ
(
B+e−j k+·r + B−e−j k−·r

)

HTE(r) = 1

η
[−(x̂ cosθ− ẑ sinθ)B+e−j k+·r + (x̂ cosθ+ ẑ sinθ)B−e−j k−·r

]
(6.2.18)
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The transverse parts of these are the same as those given in Eqs. (6.2.9) and (6.2.10).
On the right side of the interface, we have:

E ′(r)= E ′TM(r)+E ′TE(r)

H ′(r)= H ′TM(r)−H ′TE(r)
(6.2.19)

E ′TM(r) = (x̂ cosθ′ − ẑ sinθ′)A′+e−j k
′+·r + (x̂ cosθ′ + ẑ sinθ′)A′−e−j k

′−·r

H ′TM(r) = ŷ
1

η′
(
A′+e−j k

′+·r −A′−e−j k
′−·r)

E ′TE(r) = ŷ
(
B′+e−j k

′+·r + B′−e−j k
′−·r)

H ′TE(r) =
1

η′
[−(x̂ cosθ′ − ẑ sinθ′)B′+e−j k

′+·r + (x̂ cosθ′ + ẑ sinθ′)B′−e−j k
′−·r]
(6.2.20)

6.3 Propagation and Matching of Transverse Fields

Eq. (6.2.11) has the identical form of Eq. (4.1.1) of the normal incidence case, but with
the substitutions:

η→ ηT , e±jkz → e±jkzz = e±jkz cosθ (6.3.1)

Every definition and concept of Chap. 4 translates into the oblique case. For example,
we can define the transverse wave impedance at position z by:

ZT(z)= ET(z)HT(z)
= ηT ET+e

−jkzz + ET−ejkzz
ET+e−jkzz − ET−ejkzz (6.3.2)

and the transverse reflection coefficient at position z:

ΓT(z)= ET−(z)ET+(z)
= ET−ejkzz

ET+e−jkzz
= ΓT(0)e2jkzz (6.3.3)

They are related as in Eq. (4.1.7):

ZT(z)= ηT 1+ ΓT(z)
1− ΓT(z) � ΓT(z)= ZT(z)−ηTZT(z)+ηT (6.3.4)

The propagation matrices, Eqs. (4.1.11) and (4.1.13), relating the fields at two posi-
tions z1, z2 within the same medium, read now:

[
ET1+
ET1−

]
=
[
ejkzl 0

0 e−jkzl

][
ET2+
ET2−

]
(propagation matrix) (6.3.5)

[
ET1

HT1

]
=
[

coskzl jηT sinkzl
jη−1
T sinkzl coskzl

][
ET2

HT2

]
(propagation matrix) (6.3.6)
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where l = z2− z1. Similarly, the reflection coefficients and wave impedances propagate
as:

ΓT1 = ΓT2e−2jkzl , ZT1 = ηT ZT2 + jηT tankzl
ηT + jZT2 tankzl

(6.3.7)

The phase thickness δ = kl = 2π(nl)/λ of the normal incidence case, where λ is
the free-space wavelength, is replaced now by:

δz = kzl = kl cosθ = 2π
λ
nl cosθ (6.3.8)

At the interface z = 0, the boundary conditions for the tangential electric and mag-
netic fields give rise to the same conditions as Eqs. (4.2.1) and (4.2.2):

ET = E′T , HT = H′T (6.3.9)

and in terms of the forward/backward fields:

ET+ + ET− = E′T+ + E′T−
1

ηT

(
ET+ − ET−

) = 1

η′T

(
E′T+ − E′T−

) (6.3.10)

which can be solved to give the matching matrix:

[
ET+
ET−

]
= 1

τT

[
1 ρT
ρT 1

][
E′T+
E′T−

]
(matching matrix) (6.3.11)

where ρT,τT are transverse reflection coefficients, replacing Eq. (4.2.5):

ρT = η
′
T − ηT
η′T + ηT

= nT − n
′
T

nT − n′T

τT = 2η′T
η′T + ηT

= 2nT
nT − n′T

(Fresnel coefficients) (6.3.12)

where τT = 1 + ρT. We may also define the reflection coefficients from the right side
of the interface: ρ′T = −ρT and τ′T = 1 + ρ′T = 1 − ρ′T. Eqs. (6.3.12) are known as the
Fresnel reflection and transmission coefficients.

The matching conditions for the transverse fields translate into corresponding match-
ing conditions for the wave impedances and reflection responses:

ZT = Z′T � ΓT = ρT + Γ′T
1+ ρTΓ′T

� Γ′T =
ρ′T + ΓT

1+ ρ′TΓT
(6.3.13)

If there is no left-incident wave from the right, that is, E′− = 0, then, Eq. (6.3.11) takes
the specialized form:

[
ET+
ET−

]
= 1

τT

[
1 ρT
ρT 1

][
E′T+

0

]
(6.3.14)

which explains the meaning of the transverse reflection and transmission coefficients:
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ρT = ET−ET+ , τT = E
′
T+
ET+

(6.3.15)

The relationship of these coefficients to the reflection and transmission coefficients
of the total field amplitudes depends on the polarization. For TM, we have ET± =
A± cosθ and E′T± = A′± cosθ′, and for TE, ET± = B± and E′T± = B′±. For both cases,
it follows that the reflection coefficient ρT measures also the reflection of the total
amplitudes, that is,

ρTM = A− cosθ
A+ cosθ

= A−
A+
, ρTE = B−B+

whereas for the transmission coefficients, we have:

τTM = A
′+ cosθ′

A+ cosθ
= cosθ′

cosθ
A′+
A+
, τTE = B

′+
B+

In addition to the boundary conditions of the transverse field components, there are
also applicable boundary conditions for the longitudinal components. For example, in
the TM case, the component Ez is normal to the surface and therefore, we must have
the continuity condition Dz = D′z, or εEz = ε′E′z. Similarly, in the TE case, we must
have Bz = B′z. It can be verified that these conditions are automatically satisfied due to
Snell’s law (6.1.6).

The fields carry energy towards the z-direction, as well as the transverse x-direction.
The energy flux along the z-direction must be conserved across the interface. The cor-
responding components of the Poynting vector are:

Pz = 1

2
Re
[
ExH∗y − EyH∗x

]
, Px = 1

2
Re
[
EyH∗z − EzH∗y

]
For TM, we have Pz = Re[ExH∗y ]/2 and for TE, Pz = −Re[EyH∗x ]/2. Using the

above equations for the fields, we find that Pz is given by the same expression for both
TM and TE polarizations:

Pz = cosθ
2η

(|A+|2 − |A−|2), or,
cosθ

2η
(|B+|2 − |B−|2) (6.3.16)

Using the appropriate definitions for ET± and ηT, Eq. (6.3.16) can be written in terms
of the transverse components for either polarization:

Pz = 1

2ηT

(|ET+|2 − |ET−|2) (6.3.17)

As in the normal incidence case, the structure of the matching matrix (6.3.11) implies
that (6.3.17) is conserved across the interface.

6.4 Fresnel Reflection Coefficients

We look now at the specifics of the Fresnel coefficients (6.3.12) for the two polarization
cases. Inserting the two possible definitions (6.2.13) for the transverse refractive indices,
we can express ρT in terms of the incident and refracted angles:
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ρTM =
n

cosθ
− n′

cosθ′
n

cosθ
+ n′

cosθ′

= n cosθ′ − n′ cosθ
n cosθ′ + n′ cosθ

ρTE = n cosθ− n′ cosθ′

n cosθ+ n′ cosθ′

(6.4.1)

We note that for normal incidence, θ = θ′ = 0, they both reduce to the usual
reflection coefficient ρ = (n− n′)/(n+ n′).† Using Snell’s law, n sinθ = n′ sinθ′, and
some trigonometric identities, we may write Eqs. (6.4.1) in a number of equivalent ways.
In terms of the angle of incidence only, we have:

ρTM =

√(
n′

n

)2

− sin2 θ−
(
n′

n

)2

cosθ√(
n′

n

)2

− sin2 θ+
(
n′

n

)2

cosθ

ρTE =
cosθ−

√(
n′

n

)2

− sin2 θ

cosθ+
√(

n′

n

)2

− sin2 θ

(6.4.2)

Note that at grazing angles of incidence, θ→ 90o, the reflection coefficients tend to
ρTM → 1 and ρTE → −1, regardless of the refractive indices n,n′. One consequence of
this property is in wireless communications where the effect of the ground reflections
causes the power of the propagating radio wave to attenuate with the fourth (instead
of the second) power of the distance, thus, limiting the propagation range (see Example
18.3.5.)

We note also that Eqs. (6.4.1) and (6.4.2) remain valid when one or both of the media
are lossy. For example, if the right medium is lossy with complex refractive index n′c =
n′ − jκ′, then, Snell’s law, n sinθ = n′c sinθ′, is still valid but with a complex-valued θ′

and (6.4.2) remains the same with the replacement n′ → n′c. The third way of expressing
the ρs is in terms of θ,θ′ only, without the n,n′:

ρTM = sin 2θ′ − sin 2θ
sin 2θ′ + sin 2θ

= tan(θ′ − θ)
tan(θ′ + θ)

ρTE = sin(θ′ − θ)
sin(θ′ + θ)

(6.4.3)

Fig. 6.4.1 shows the special case of an air-dielectric interface. If the incident wave is
from the air side, then Eq. (6.4.2) gives with n = 1, n′ = nd, where nd is the (possibly
complex-valued) refractive index of the dielectric:

†Some references define ρTM with the opposite sign. Our convention was chosen because it has the
expected limit at normal incidence.
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ρTM =
√
n2
d − sin2 θ− n2

d cosθ√
n2
d − sin2 θ+ n2

d cosθ
, ρTE =

cosθ−
√
n2
d − sin2 θ

cosθ+
√
n2
d − sin2 θ

(6.4.4)

If the incident wave is from inside the dielectric, then we set n = nd and n′ = 1:

ρTM =
√
n−2
d − sin2 θ− n−2

d cosθ√
n−2
d − sin2 θ+ n−2

d cosθ
, ρTE =

cosθ−
√
n−2
d − sin2 θ

cosθ+
√
n−2
d − sin2 θ

(6.4.5)

Fig. 6.4.1 Air-dielectric interfaces.

The MATLAB function fresnel calculates the expressions (6.4.2) for any range of
values of θ. Its usage is as follows:

[rtm,rte] = fresnel(na,nb,theta); % Fresnel reflection coefficients

6.5 Total Internal Reflection

As the incident angle θ varies over 0 ≤ θ ≤ 90o, the angle of refraction θ′ will have a
corresponding range of variation. It can be determined by solving for θ′ from Snell’s
law, n sinθ = n′ sinθ′:

sinθ′ = n
n′

sinθ (6.5.1)

If n < n′ (we assume lossless dielectrics here,) then Eq. (6.5.1) implies that sinθ′ =
(n/n′)sinθ < sinθ, or θ′ < θ. Thus, if the incident wave is from a lighter to a denser
medium, the refracted angle is always smaller than the incident angle. The maximum
value of θ′, denoted here by θ′c, is obtained when θ has its maximum, θ = 90o:

sinθ′c =
n
n′

(maximum angle of refraction) (6.5.2)
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Fig. 6.5.1 Maximum angle of refraction and critical angle of incidence.

Thus, the angle ranges are 0 ≤ θ ≤ 90o and 0 ≤ θ′ ≤ θ′c. Fig. 6.5.1 depicts this case,
as well as the case n > n′.

On the other hand, if n > n′, and the incident wave is from a denser onto a lighter
medium, then sinθ′ = (n/n′)sinθ > sinθ, or θ′ > θ. Therefore, θ′ will reach the
maximum value of 90o before θ does. The corresponding maximum value of θ satisfies
Snell’s law, n sinθc = n′ sin(π/2)= n′, or,

sinθc = n
′

n
(critical angle of incidence) (6.5.3)

This angle is called the critical angle of incidence. If the incident wave were from the
right, θc would be the maximum angle of refraction according to the above discussion.

If θ ≤ θc, there is normal refraction into the lighter medium. But, if θ exceeds θc,
the incident wave cannot be refracted and gets completely reflected back into the denser
medium. This phenomenon is called total internal reflection. Because n′/n = sinθc, we
may rewrite the reflection coefficients (6.4.2) in the form:

ρTM =
√

sin2 θc − sin2 θ− sin2 θc cosθ√
sin2 θc − sin2 θ+ sin2 θc cosθ

, ρTE =
cosθ−

√
sin2 θc − sin2 θ

cosθ+
√

sin2 θc − sin2 θ

When θ < θc, the reflection coefficients are real-valued. At θ = θc, they have the
values, ρTM = −1 and ρTE = 1. And, when θ > θc, they become complex-valued with
unit magnitude. Indeed, switching the sign under the square roots, we have in this case:

ρTM =
j
√

sin2 θ− sin2 θc − sin2 θc cosθ

j
√

sin2 θ− sin2 θc + sin2 θc cosθ
, ρTE =

cosθ− j
√

sin2 θ− sin2 θc

cosθ+ j
√

sin2 θ− sin2 θc

Both expressions are the ratios of a complex number by its conjugate, and therefore,
they are unimodular, |ρTM| = |ρTE| = 1, for all values of θ > θc. The interface becomes
a perfect mirror, with zero transmittance into the lighter medium.

When θ > θc, the fields on the right side of the interface are not zero, but do not
propagate away to the right. Instead, they decay exponentially with the distance z. There
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is no transfer of power (on the average) to the right. To understand this behavior of the
fields, we consider the solutions given in Eqs. (6.2.18) and (6.2.20), with no incident field
from the right, that is, with A′− = B′− = 0.

The longitudinal wavenumber in the right medium, k′z, can be expressed in terms of
the angle of incidence θ as follows. We have from Eq. (6.1.7):

k2
z + k2

x = k2 = n2k2
0

kz′2 + kx′2 = k′2 = n′2k2
0

Because, k′x = kx = k sinθ = nk0 sinθ, we may solve for k′z to get:

k′2z = n′2k2
0 − k′2x = n′2k2

0 − k2
x = n′2k2

0 − n2k2
0 sin2 θ = k2

0(n′2 − n2 sin2 θ)

or, replacing n′ = n sinθc, we find:

k′2z = n2k2
0(sin2 θc − sin2 θ) (6.5.4)

If θ ≤ θc, the wavenumber k′z is real-valued and corresponds to ordinary propa-
gating fields that represent the refracted wave. But if θ > θc, we have k′2z < 0 and k′z
becomes pure imaginary, say k′z = −jα′z. The z-dependence of the fields on the right of
the interface will be:

e−jk
′
zz = e−α′zz , α′z = nk0

√
sin2 θ− sin2 θc

Such exponentially decaying fields are called evanescent waves because they are
effectively confined to within a few multiples of the distance z = 1/α′z (the penetration
length) from the interface.

The maximum value of α′z, or equivalently, the smallest penetration length 1/α′z, is
achieved when θ = 90o, resulting in:

α′max = nk0

√
1− sin2 θc = nk0 cosθc = k0

√
n2 − n′2

Inspecting Eqs. (6.2.20), we note that the factor cosθ′ becomes pure imaginary be-
cause cos2 θ′ = 1 − sin2 θ′ = 1 − (n/n′)2sin2 θ = 1 − sin2 θ/ sin2 θc ≤ 0, for θ ≥ θc.
Therefore for either the TE or TM case, the transverse components ET and HT will
have a 90o phase difference, which will make the time-average power flow into the right
medium zero: Pz = Re(ETH∗T)/2 = 0.

Example 6.5.1: Determine the maximum angle of refraction and critical angle of reflection for
(a) an air-glass interface and (b) an air-water interface. The refractive indices of glass and
water at optical frequencies are: nglass = 1.5 and nwater = 1.333.

Solution: There is really only one angle to determine, because if n = 1 and n′ = nglass, then
sin(θ′c)= n/n′ = 1/nglass, and if n = nglass and n′ = 1, then, sin(θc)= n′/n = 1/nglass.
Thus, θ′c = θc:

θc = asin
(

1

1.5

)
= 41.8o
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For the air-water case, we have:

θc = asin
(

1

1.333

)
= 48.6o

The refractive index of water at radio frequencies and below is nwater = 9 approximately.
The corresponding critical angle is θc = 6.4o. �	

Example 6.5.2: Prisms. Glass prisms with 45o angles are widely used in optical instrumentation
for bending light beams without the use of metallic mirrors. Fig. 6.5.2 shows two examples.

Fig. 6.5.2 Prisms using total internal reflection.

In both cases, the incident beam hits an internal prism side at an angle of 45o, which is
greater than the air-glass critical angle of 41.8o. Thus, total internal reflection takes place
and the prism side acts as a perfect mirror. �	

Example 6.5.3: Optical Manhole. Because the air-water interface has θc = 48.6o, if we were to
view a water surface from above the water, we could only see inside the water within the
cone defined by the maximum angle of refraction.

Conversely, were we to view the surface of the water from underneath, we would see the
air side only within the critical angle cone, as shown in Fig. 6.5.3. The angle subtended by
this cone is 2×48.6 = 97.2o.

Fig. 6.5.3 Underwater view of the outside world.

The rays arriving from below the surface at an angle greater than θc get totally reflected.
But because they are weak, the body of water outside the critical cone will appear dark.
The critical cone is known as the “optical manhole” [53]. �	

Example 6.5.4: Apparent Depth. Underwater objects viewed from the outside appear to be
closer to the surface than they really are. The apparent depth of the object depends on
our viewing angle. Fig. 6.5.4 shows the geometry of the incident and refracted rays.
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Fig. 6.5.4 Apparent depth of underwater object.

Let θ be the viewing angle and let z, z′ be the actual and apparent depths. Our perceived
depth corresponds to the extension of the incident ray at angle θ. From the figure, we
have: z = x cotθ′ and z′ = x cotθ. It follows that:

z′ = cotθ
cotθ′

z = sinθ′ cosθ
sinθ cosθ′

z

Using Snell’s law sinθ/ sinθ′ = n′/n = nwater, we eventually find:

z′ = cosθ√
n2

water − sin2 θ
z

At normal incidence, we have z′ = z/nwater = z/1.333 = 0.75z.

Reflection and refraction phenomena are very common in nature. They are responsible for
the twinkling and aberration of stars, the flattening of the setting sun and moon, mirages,
rainbows, and countless other natural phenomena. Four wonderful expositions of such
effects are in Refs. [53–56]. See also the web page [737]. �	

Example 6.5.5: Optical Fibers. Total internal reflection is the mechanism by which light is
guided along an optical fiber. Fig. 6.5.5 shows a step-index fiber with refractive index
nf surrounded by cladding material of index nc < nf .

Fig. 6.5.5 Launching a beam into an optical fiber.

If the angle of incidence on the fiber-cladding interface is greater than the critical angle,
then total internal reflection will take place. The figure shows a beam launched into the
fiber from the air side. The maximum angle of incidenceθa must be made to correspond to
the critical angle θc of the fiber-cladding interface. Using Snell’s laws at the two interfaces,
we have:
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sinθa = nfna sinθb , sinθc = ncnf

Noting that θb = 90o − θc, we find:

sinθa = nfna cosθc = nfna
√

1− sin2 θc =
√
n2
f − n2

c

na

For example, with na = 1, nf = 1.49, and nc = 1.48, we findθc = 83.4o andθa = 9.9o. The

angle θa is called the acceptance angle, and the quantity NA =
√
n2
f − n2

c , the numerical
aperture of the fiber. �	

Example 6.5.6: Fresnel Rhomb. The Fresnel rhomb is a glass prism depicted in Fig. 6.5.6 that
acts as a 90o retarder. It converts linear polarization into circular. Its advantage over the
birefringent retarders discussed in Sec. 3.1 is that it is frequency-independent or achro-
matic.

Fig. 6.5.6 Fresnel rhomb.

Assuming a refractive index n = 1.51, the critical angle is θc = 41.47o. The angle of the
rhomb, θ = 54.6o, is also the angle of incidence on the internal side. This angle has been
chosen such that, at each total internal reflection, the relative phase between the TE and
TM polarizations changes by 45o, so that after two reflections it changes by 90o.

The angle of the rhomb can be determined as follows. Forθ ≥ θc, the reflection coefficients
can be written as the unimodular complex numbers:

ρTE = 1− jx
1+ jx , ρTM = −1− jxn2

1+ jxn2
, x =

√
sin2 θ− sin2 θc

cosθ
(6.5.5)

where sinθc = 1/n. It follows that:

ρTE = e−2jψTE , ρTM = ejπ−2jψTM

where ψTE, ψTM are the phase angles of the numerators, that is,

tanψTE = x , tanψTM = xn2

The relative phase change between the TE and TM polarizations will be:

ρTE

ρTM
= e2jψTM−2jψTE−jπ

It is enough to require that ψTM −ψTE = π/8 because then, after two reflections, we will
have a 90o change:
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ρTE

ρTM
= ejπ/4−jπ ⇒

(
ρTE

ρTM

)2

= ejπ/2−2jπ = ejπ/2

From the design condition ψTM −ψTE = π/8, we obtain the required value of x and then
of θ. Using a trigonometric identity, we have:

tan(ψTM −ψTE)= tanψTM − tanψTE

1+ tanψTM tanψTE
= xn2 − x

1+ n2x2
= tan

(π
8

)

This gives the quadratic equation for x:

x2 − 1

tan(π/8)
(
1− 1

n2

)
x+ 1

n2
= x2 − cos2 θc

tan(π/8)
x+ sin2 θc = 0 (6.5.6)

Inserting the two solutions of (6.5.6) into Eq. (6.5.5), we may solve for sinθ, obtaining two
possible solutions for θ:

sinθ =
√
x2 + sin2 θc
x2 + 1

(6.5.7)

We may also eliminate x and express the design condition directly in terms of θ:

cosθ
√

sin2 θ− sin2 θc
sin2 θ

= tan
(π

8

)
(6.5.8)

However, the two-step process is computationally more convenient. For n = 1.51, we find
the two roots of Eq. (6.5.6): x = 0.822 and x = 0.534. Then, (6.5.7) gives the two values
θ = 54.623o and θ = 48.624o. The rhomb could just as easily be designed with the second
value of θ.

For n = 1.50, we find the angles θ = 53.258o and 50.229o. For n = 1.52, we have
θ = 55.458o and 47.553o. See Problem 6.5 for an equivalent approach. �	

6.6 Brewster Angle

The Brewster angle is that angle of incidence at which the TM Fresnel reflection coef-
ficient vanishes, ρTM = 0. The TE coefficient ρTE cannot vanish for any angle θ, for
non-magnetic materials. A scattering model of Brewster’s law is discussed in [237].
Fig. 6.6.1 depicts the Brewster angles from either side of an interface.

The Brewster angle is also called the polarizing angle because if a mixture of TM
and TE waves are incident on a dielectric interface at that angle, only the TE or perpen-
dicularly polarized waves will be reflected. This is not necessarily a good method of
generating polarized waves because even though ρTE is non-zero, it may be too small
to provide a useful amount of reflected power. Better polarization methods are based
on using (a) multilayer structures with alternating low/high refractive indices and (b)
birefringent and dichroic materials, such as calcite and polaroids.

The Brewster angle θB is determined by the condition, ρTM = 0, in Eq. (6.4.2). Setting
the numerator of that expression to zero, we have:
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Fig. 6.6.1 Brewster angles.

√(
n′

n

)2

− sin2 θB =
(
n′

n

)2

cosθB (6.6.1)

After some algebra, we obtain the alternative expressions:

sinθB = n′√
n2 + n′2 � tanθB = n

′

n
(Brewster angle) (6.6.2)

Similarly, the Brewster angle θ′B from the other side of the interface is:

sinθ′B =
n√

n2 + n′2 � tanθ′B =
n
n′

(Brewster angle) (6.6.3)

The angle θ′B is related to θB by Snell’s law, n′ sinθ′B = n sinθB, and corresponds
to zero reflection from that side, ρ′TM = −ρTM = 0. A consequence of Eq. (6.6.2) is that
θB = 90o − θ′B, or, θB + θ′B = 90o. Indeed,

sinθB
cosθB

= tanθB = n
′

n
= sinθB

sinθ′B

which implies cosθB = sinθ′B, or θB = 90o − θ′B. The same conclusion can be reached
immediately from Eq. (6.4.3). Because, θ′B − θB �= 0, the only way for the ratio of the
two tangents to vanish is for the denominator to be infinity, that is, tan(θ′B + θB)= ∞,
or, θB + θ′B = 90o.

As shown in Fig. 6.6.1, the angle of the refracted ray with the would-be reflected ray
is 90o. Indeed, this angle is 180o − (θ′B + θB)= 180o − 90o = 90o.

The TE reflection coefficient at θB can be calculated very simply by using Eq. (6.6.1)
into (6.4.2). After canceling a common factor of cosθB, we find:

ρTE(θB)=
1−

(
n′

n

)2

1+
(
n′

n

)2 =
n2 − n′2
n2 + n′2 (6.6.4)
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Example 6.6.1: Brewster angles for water. The Brewster angles from the air and the water sides
of an air-water interface are:

θB = atan
(

1.333

1

)
= 53.1o , θ′B = atan

(
1

1.333

)
= 36.9o

We note thatθB+θ′B = 90o. At RF, the refractive index is nwater = 9 and we findθB = 83.7o

and θ′B = 6.3o. We also find ρTE(θB)= −0.2798 and |ρTE(θB)|2 = 0.0783/ Thus, for TE
waves, only 7.83% of the incident power gets reflected at the Brewster angle. �	

Example 6.6.2: Brewster Angles for Glass. The Brewster angles for the two sides of an air-glass
interface are:

θB = atan
(

1.5
1

)
= 56.3o , θ′B = atan

(
1

1.5

)
= 33.7o

Fig. 6.6.2 shows the reflection coefficients |ρTM(θ)|, |ρTE(θ)| as functions of the angle of
incidence θ from the air side, calculated with the MATLAB function fresnel.
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Fig. 6.6.2 TM and TE reflection coefficients versus angle of incidence.

Both coefficients start at their normal-incidence value |ρ| = |(1 − 1.5)/(1 + 1.5)| = 0.2
and tend to unity at grazing angle θ = 90o. The TM coefficient vanishes at the Brewster
angle θB = 56.3o.

The right graph in the figure depicts the reflection coefficients |ρ′TM(θ′)|, |ρ′TE(θ′)| as
functions of the incidence angle θ′ from the glass side. Again, the TM coefficient vanishes
at the Brewster angle θ′B = 33.7o. The typical MATLAB code for generating this graph was:

na = 1; nb = 1.5;
[thb,thc] = brewster(na,nb); % calculate Brewster angle

th = linspace(0,90,901); % equally-spaced angles at 0.1o intervals

[rte,rtm] = fresnel(na,nb,th); % Fresnel reflection coefficients

plot(th,abs(rtm), th,abs(rte));

The critical angle of reflection is in this case θ′c = asin(1/1.5)= 41.8o. As soon as θ′

exceeds θ′c, both coefficients become complex-valued with unit magnitude.
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The value of the TE reflection coefficient at the Brewster angle is ρTE = −ρ′TE = −0.38,
and the TE reflectance |ρTE|2 = 0.144, or 14.4 percent. This is too small to be useful for
generating TE polarized waves by reflection.

Two properties are evident from Fig. 6.6.2. One is that |ρTM| ≤ |ρTE| for all angles of
incidence. The other is that θ′B ≤ θ′c. Both properties can be proved in general. �	

Example 6.6.3: Lossy dielectrics. The Brewster angle loses its meaning if one of the media is
lossy. For example, assuming a complex refractive index for the dielectric, nd = n − jκ,
we may still calculate the reflection coefficients from Eq. (6.4.4). It follows from Eq. (6.6.2)
that the Brewster angle θB will be complex-valued.

Fig. 6.6.3 shows the TE and TM reflection coefficients versus the angle of incidence θ (from
air) for the two cases nd = 1.50 − 0.15j and nd = 1.50 − 0.30j and compares them with
the lossless case of nd = 1.5. (The values for κ were chosen only for plotting purposes
and have no physical significance.)
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Fig. 6.6.3 TM and TE reflection coefficients for lossy dielectric.

The curves retain much of their lossless shape, with the TM coefficient having a minimum
near the lossless Brewster angle. The larger the extinction coefficient κ, the larger the
deviation from the lossless case. In the next section, we discuss reflection from lossy
media in more detail. �	

6.7 Complex Waves

In this section, we discuss some examples of complex waves that appear in oblique
incidence problems. We consider the cases of (a) total internal reflection, (b) reflection
from and refraction into a lossy medium, and (c) the Zenneck surface wave. Further
details may be found in [451–457] and [622].

Because the wave numbers become complex-valued, e.g., k = βββ − jααα, the angle of
refraction and possibly the angle of incidence may become complex-valued. To avoid
unnecessary complex algebra, it proves convenient to recast impedances, reflection co-
efficients, and field expressions in terms of wavenumbers. This can be accomplished by
making substitutions such as cosθ = kz/k and sinθ = kx/k.
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Using the relationships kη = ωµ and k/η = ωε, we may rewrite the TE and TM
transverse impedances in the forms:

ηTE = η
cosθ

= ηk
kz
= ωµ
kz
, ηTM = η cosθ = ηkz

k
= kz
ωε

(6.7.1)

We consider an interface geometry as shown in Fig. 6.1.1 and assume that there are
no incident fields from the right of the interface. Snell’s law implies that kx = k′x, where
kx = k sinθ =ω√µ0ε sinθ, if the incident angle is real-valued.

Assuming non-magnetic media from both sides of an interface (µ = µ′ = µ0), the TE
and TM transverse reflection coefficients will take the forms:

ρTE = η
′
TE − ηTE

η′TE + ηTE
= kz − k

′
z

kz + k′z , ρTM = η
′
TM − ηTM

η′TM + ηTM
= k

′
zε− kzε′
k′zε+ kzε′ (6.7.2)

The corresponding transmission coefficients will be:

τTE = 1+ ρTE = 2kz
kz + k′z , τTM = 1+ ρTM = 2k′zε

k′zε+ kzε′ (6.7.3)

We can now rewrite Eqs. (6.2.18) and (6.2.20) in terms of transverse amplitudes and
transverse reflection and transmission coefficients. Defining E0 = A+ cosθ or E0 = B+
in the TM or TE cases and replacing tanθ = kx/kz, tanθ′ = k′x/k′z = kx/k′z, we have for
the TE case for the fields at the left and right sides of the interface:

E(r) = ŷE0
[
e−jkzz + ρTE ejkzz

]
e−jkxx

H(r) = E0

ηTE

[(
−x̂+ kx

kz
ẑ
)
e−jkzz + ρTE

(
x̂+ kx

kz
ẑ
)
ejkzz

]
e−jkxx

E ′(r) = ŷτTE E0e−jk
′
zze−jkxx

H ′(r) = τTE E0

η′TE

(
−x̂+ kx

k′z
ẑ
)
e−jk

′
zze−jkxx

(6.7.4)

and for the TM case:

E(r) = E0

[(
x̂− kx

kz
ẑ
)
e−jkzz + ρTM

(
x̂+ kx

kz
ẑ
)
ejkzz

]
e−jkxx

H(r) = ŷ
E0

ηTM

[
e−jkzz − ρTM ejkzz

]
e−jkxx

E ′(r) = τTM E0

(
x̂− kx

k′z
ẑ
)
e−jk

′
zze−jkxx

H ′(r) = ŷ
τTM E0

η′TM
e−jk

′
zze−jkxx

(6.7.5)

Equations (6.7.4) and (6.7.5) are dual to each other, as are Eqs. (6.7.1). They transform
into each other under the duality transformation E → H, H → −E, ε → µ, and µ → ε.
See Sec. 16.2 for more on the concept of duality.

In all of our complex-wave examples, the transmitted wave will be complex with
k′ = kxx̂+k′zẑ = βββ′ −jααα′ = (βx−jαx)x̂+(β′z−jα′z)ẑ. This must satisfy the constraint
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k′ · k′ = ω2µ0ε′. Thus, the space dependence of the transmitted fields will have the
general form:

e−jk
′
zze−jkxx = e−j(β′z−jα′z)ze−j(βx−jαx)x = e−(α′zz+αxx)e−j(β′zz+βxx) (6.7.6)

For the wave to attenuate at large distances into the right medium, it is required
that α′z > 0. Except for the Zenneck-wave case, which has αx > 0, all other cases will
have αx = 0, corresponding to a real-valued angle of incidence θ, such that k′x = kx =
βx =ω√µ0ε sinθ. Fig. 6.7.1 shows the constant-amplitude and constant-phase planes
within the transmitted medium defined, respectively, by:

α′zz+αxx = const. , β′zz+ βxx = const. (6.7.7)

As shown in the figure, the corresponding angles φ and ψ that the vectors βββ′ and
ααα′ form with the z-axis are given by:

tanφ = βx
β′z
, tanψ = αx

α′z
(6.7.8)

Fig. 6.7.1 Constant-phase and constant-amplitude planes for the transmitted wave.

Total Internal Reflection

We already discussed this case in Sec. 6.5. Here, we look at it from the point of view of
complex-waves. Both media are assumed to be lossless, but with ε > ε′. The angle of
incidence θ will be real, so that k′x = kx = k sinθ and kz = k cosθ, with k = ω√µ0ε.
Setting k′z = β′z − jα′z, we have the constraint equation:

k′2x + k′2z = k′2 ⇒ ω2µ0ε sin2 θ+ (β′z − jα′z)2=ω2µ0ε′

which separates into the real and imaginary parts:

β′2z −α′2z =ω2µ0(ε′ − ε sin2 θ)= k2(sin2 θc − sin2 θ)

α′zβ′z = 0
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where we set sin2 θc = ε′/ε and k2 = ω2µ0ε. This has two solutions: (a) α′z = 0 and
β′2z = k2(sin2 θc − sin2 θ), valid when θ ≤ θc, and (b) β′z = 0 and α′2z = k2(sin2 θ −
sin2 θc), valid when θ ≥ θc.

Case (a) corresponds to ordinary refraction into the right medium, and case (b), to
total internal reflection. In the latter case, the TE and TM reflection coefficients (6.7.2)
are the unimodular complex numbers:

ρTE = kz − k
′
z

kz + k′z =
kz + jα′z
kz − jα′z , ρTM = k

′
zε− kzε′
k′zε+ kzε′ = −

kzε′ + jα′zε
kzε′ − jα′zε

The complete expressions for the fields are given by Eqs. (6.7.4) or (6.7.5). The prop-
agation phase factor in the right medium will be in case (b):

e−jk
′
zze−jkxx = e−α′zze−jkxx

Thus, the constant-phase planes are the constant-x planes (φ = 90o), or, the yz-
planes. The constant-amplitude planes are the constant-z planes (ψ = 0o), or, the xy-
planes, as shown in Fig. 6.7.2.

Fig. 6.7.2 Constant-phase and constant-amplitude planes for total internal reflection.

Oblique Incidence on a Lossy Medium

Here, we assume a lossless medium on the left side of the interface and a lossy one, such
as a conductor, on the right. The effective dielectric constant ε′ of the lossy medium is
specified by its real and imaginary parts, as in Eq. (2.6.2):

ε′ = ε′d − j
(
ε′′d +

σ
ω

)
= ε′R − jε′I (6.7.9)

Equivalently, we may characterize the lossy medium by the real and imaginary parts
of the wavenumber k′, using Eq. (2.6.12):

k′ = β′ − jα′ =ω
√
µ0ε′ =ω

√
µ0(ε′R − jε′I) (6.7.10)

In the left medium, the wavenumber is real with components kx = k sinθ, kz =
k cosθ, with k =ω√µ0ε. In the lossy medium, the wavenumber is complex-valued with
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components k′x = kx and k′z = β′z− jα′z. Using Eq. (6.7.10) in the condition k′ ·k′ = k′2,
we obtain:

k′2x + k′2z = k′2 ⇒ k2
x + (β′z − jα′z)2= (β′ − jα′)2 (6.7.11)

which separates into its real and imaginary parts:

β′2z −α′2z = β′2 −α′2 − k2
x

β′zα′z = β′α′
(6.7.12)

The solutions of these two equations leading to a non-negative α′z are:

β′z =
[√
D2 + 4β′2α′2 +D

2

]1/2

, α′z =
[√
D2 + 4β′2α′2 −D

2

]1/2

(6.7.13)

whereD = β′2−α′2−k2
x = β′2−α′2−k2 sin2 θ. These two equations define completely

the reflection coefficients (6.7.2) and field solutions for both TE and TM waves given by
Eqs. (6.7.4) and (6.7.5). For MATLAB implementation, it is simpler to solve Eq. (6.7.11)
directly as a complex equation:

k′z = β′z − jα′z =
√
k′2 − k2

x =
√
ω2µ0ε′ − k2

x =
√
ω2µ0(ε′R − jε′I)−k2

x (6.7.14)

Within the lossy medium the transmitted fields will have space-dependence:

e−jk
′
zze−jkxx = e−α′zze−j(β′zz+kxx)

The fields attenuate exponentially with distance z. The constant phase and ampli-
tude planes are shown in Fig. 6.7.3.

Fig. 6.7.3 Constant-phase and constant-amplitude planes for refracted wave.

For the reflected fields, the TE and TM reflection coefficients are given by Eqs. (6.7.2).
If the incident wave is linearly polarized having both TE and TM components, the corre-
sponding reflected wave will be elliptically polarized because the ratio ρTM/ρTE is now
complex-valued. Indeed, using the relationships k2

x+k2
z =ω2µ0ε and k2

x+k′2z =ω2µ0ε′

in ρTM of Eq. (6.7.2), it can be shown that (see Problem 6.5):

ρTM

ρTE
= kzk

′
z − k2

x
kzk′z + k2

x
= k

′
z − k sinθ tanθ
k′z + k sinθ tanθ

= β
′
z − jα′z − k sinθ tanθ
β′z − jα′z + k sinθ tanθ

(6.7.15)
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In the case of a lossless medium ε′, Eq. (6.7.13) gives β′z =ω
√
µ0(ε′ − ε sin2 θ) and

α′z = 0, resulting in the usual expressions (6.4.2) for the reflection coefficients. For the
case of a very good conductor, we find approximately:

β′z 
 α′z 
 β′ 
 α′ 

√
ωµ0σ

2
, provided

σ
ωε

� 1 (6.7.16)

In this case, the angle of refraction φ for the phase vector βββ′ becomes almost zero
so that, regardless of the incidence angle θ, the phase planes are almost parallel to the
constant-z amplitude planes. Using Eq. (6.7.16), we have:

tanφ = kx
β′z
= ω

√µ0ε sinθ√
ωµ0σ/2

=
√

2ωε
σ

sinθ

which is very small regardless of θ. For example, for copper (σ = 5.7×107 S/m) at 10
GHz, and air on the left side (ε = ε0), we find

√
2ωε/σ = 1.4×10−4.

Example 6.7.1: Fig. 6.7.4 shows the TM and TE reflection coefficients as functions of the inci-
dent angle θ, for an air-sea water interface at 100 MHz and 1 GHz. For the air side we
have ε = ε0 and for the water side: ε′ = 81ε0 − jσ/ω, with σ = 4 S/m, which gives
ε′ = (81− 71.9j)ε0 at 1 GHz and ε′ = (81− 719j)ε0 at 100 MHz.
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Fig. 6.7.4 TM and TE reflection coefficients for air-water interface.

At 1 GHz, we calculate k′ = ω√µ0ε′ = β′ − jα′ = 203.90 − 77.45j rad/m and k′ =
β′ − jα′ = 42.04 − 37.57j rad/m at 100 MHz. The following MATLAB code was used to
carry out the calculations, using the formulation of this section:

ep0 = 8.854e-12; mu0 = 4*pi*1e-7;
sigma = 4; f = 1e9; w = 2*pi*f;
ea = ep0; eb = 81*ep0 - j*sigma/w;

ka = w*sqrt(mu0*ea); kb = w*sqrt(mu0*eb); % Eq. (6.7.10)

th = linspace(0,90,901); thr = pi*th/180;

kax = ka*sin(thr); kaz = ka*cos(thr);
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kbz = sqrt(w^2*mu0*eb - kax.^2); % Eq. (6.7.14)

rte = abs((kaz - kbz)./(kaz + kbz)); % Eq. (6.7.2)

rtm = abs((kbz*ea - kaz*eb)./(kbz*ea + kaz*eb));

plot(th,rtm, th,rte);

The TM reflection coefficient reaches a minimum at the pseudo-Brewster angles 84.5o and
87.9o, respectively for 1 GHz and 100 MHz.

The reflection coefficients ρTM and ρTE can just as well be calculated from Eq. (6.4.2), with
n = 1 and n′ = √ε′/ε0, where for 1 GHz we have n′ = √81− 71.9j = 9.73−3.69j, and for
100 MHz, n′ = √81− 719j = 20.06− 17.92j. �	

Zenneck Surface Wave

For a lossy medium ε′, the TM reflection coefficient cannot vanish for any real incident

angle θ because the Brewster angle is complex valued: tanθB =
√
ε′/ε =

√
(ε′R − jε′I)/ε.

However, ρTM can vanish if we allow a complex-valued θ, or equivalently, a complex-
valued incident wavevector k = βββ − jααα, even though the left medium is lossless. This
leads to the so-called Zenneck surface wave [33,451,457,622].

The corresponding constant phase and amplitude planes in both media are shown
in Fig. 6.7.5. On the lossless side, the vectorsβββ andααα are necessarily orthogonal to each
other, as discussed in Sec. 2.10.

Fig. 6.7.5 Constant-phase and constant-amplitude planes for the Zenneck wave.

We note that the TE reflection coefficient can never vanish (unless µ �= µ′) because
this would require that k′z = kz, which together with Snell’s law k′x = kx, would imply
that k = k′, which is impossible for distinct media.

For the TM case, the fields are given by Eq. (6.7.5) with ρTM = 0 and τTM = 1. The
condition ρTM = 0 requires that k′zε = kzε′, which may be written in the equivalent form
k′zk2 = kzk′2. Together with k2

x + k2
z = k2 and k2

x + k′2z = k′2, we have three equations
in the three complex unknowns kx, kz, k′z. The solution is easily found to be:

kx = kk′√
k2 + k′2 , kz = k2

√
k2 + k′2 , k′z =

k′2√
k2 + k′2 (6.7.17)
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where k =ω√µ0ε and k′ = β′ − jα′ =ω√µ0ε′. These may be written in the form:

kx =ω√µ0

√
εε′√
ε+ ε′ , kz =ω√µ0

ε√
ε+ ε′ , k′z =ω

√
µ0

ε′√
ε+ ε′ (6.7.18)

Using k′x = kx, the space-dependence of the fields at the two sides are as follows:

e−j(kxx+kzz) = e−(αxx+αzz)e−j(βxx+βzz) , for z ≤ 0

e−j(k
′
xx+k′zz) = e−(αxx+α′zz)e−j(βxx+β′zz) , for z ≥ 0

Thus, in order for the fields not to grow exponentially with distance and to be con-
fined near the interface surface, it is required that:

αx > 0 , αz < 0 , α′z > 0 (6.7.19)

These conditions are guaranteed with the sign choices of Eq. (6.7.18). This can be
verified by writing

ε′ = |ε′|e−jδ

ε+ ε′ = |ε+ ε′|e−jδ1

ε′

ε+ ε′ =
∣∣∣∣ ε′

ε+ ε′
∣∣∣∣e−j(δ−δ1)

and noting that δ2 = δ − δ1 > 0, as follows by inspecting the triangle formed by the
three vectors ε, ε′, and ε+ ε′. Then, the phase angles of kx, kz, k′z are −δ2/2, δ1/2, and
−(δ2 + δ1/2), respectively, thus, implying the condition (6.7.19).

Although the Zenneck wave attenuates both along the x- and z-directions, the atten-
uation constant along x tends to be much smaller than that along z. For example, in the
weakly lossy approximation, we may write ε′ = ε′R(1− jτ), where τ = ε′I/ε′R� 1 is the
loss tangent of ε′. Then, we have the following first-order approximations in τ:

√
ε′ =

√
ε′R
(

1− jτ
2

)
,

1√
ε+ ε′ =

1√
ε+ ε′R

(
1− jτ

2

ε′R
ε+ ε′R

)

These leads to the first-order approximations for kx and kz:

kx =ω√µ0

√√√ εε′R
ε+ ε′R

(
1− jτ

2

ε
ε+ ε′R

)
, kz =ω√µ0

ε√
ε+ ε′R

(
1+ jτ

2

ε′R
ε+ ε′R

)

It follows that:

αx =ω√µ0

√√√ εε′R
ε+ ε′R

τ
2

ε
ε+ ε′R

, αz = −ω√µ0
ε√
ε+ ε′R

τ
2

ε′R
ε+ ε′R

⇒ αx
|αz| =

√
ε
ε′R

Typically, ε′R > ε, implying that αx < |αz|. For example, for an air-water interface
we have at microwave frequencies ε′R/ε = 81, and for an air-ground interface, ε′R/ε = 6.

If both media are lossless, then both k and k′ are real and Eqs. (6.7.17) yield the
usual Brewster angle formulas, that is,

tanθB = kxkz =
k′

k
=
√
ε′√
ε
, tanθ′B =

kx
k′z
= k
k′
=
√
ε√
ε′
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Example 6.7.2: For the data of the air-water interface of Example 6.7.1, we calculate the follow-
ing Zenneck wavenumbers at 1 GHz and 100 MHz using Eq. (6.7.18):

f = 1 GHz f = 100 MHz

kx = βx − jαx = 20.89− 0.064j kx = βx − jαx = 2.1− 0.001j
kz = βz − jαz = 1.88+ 0.71j kz = βz − jαz = 0.06+ 0.05j
k′z = β′z − jα′z = 202.97− 77.80j k′z = β′z − jα′z = 42.01− 37.59j

The units are in rads/m. As required, αz is negative. We observe that αx � |αz| and that
the attenuations are much more severe within the lossy medium. �	

6.8 Geometrical Optics

Geometrical optics and the concepts of wavefronts and rays can be derived from Maxwell’s
equations in the short-wavelength or high-frequency limit.

We saw in Chap. 2 that a uniform plane wave propagating in a lossless isotropic
dielectric in the direction of a wave vector k = k k̂ = nk0 k̂ is given by:

E(r)= E0 e−jnk0 k̂·r , H(r)= H0 e−jnk0 k̂·r , k̂ · E0 = 0 , H0 = n
η0

k̂× E0 (6.8.1)

where n is the refractive index of the medium n = √ε/ε0, k0 and η0 are the free-space
wavenumber and impedance, and k̂, the unit-vector in the direction of propagation.

The wavefronts are defined to be the constant-phase plane surfaces S(r)= const.,
where S(r)= n k̂ · r. The perpendiculars to the wavefronts are the optical rays.

In an inhomogeneous medium with a space-dependent refractive index n(r), the
wavefronts and their perpendicular rays become curved, and can be derived by consid-
ering the high-frequency limit of Maxwell’s equations. By analogy with Eqs. (6.8.1), we
look for solutions of the form:

E(r)= E0(r) e−jk0S(r) , H(r)= H0(r) e−jk0S(r) (6.8.2)

where we will assume that k0 is large and that E0,H0 are slowly-varying functions of r.
This means that their space-derivatives are small compared to k0 or to 1/λ. For example,
|∇∇∇× E0| � k0.

Inserting these expressions into Maxwell’s equations and assuming µ = µ0 and ε =
n2ε0, we obtain:

∇∇∇× E = e−jk0S
(∇∇∇× E0 − jk0∇∇∇S× E0

) = −jωµ0H0 e−jk0S

∇∇∇×H = e−jk0S
(∇∇∇×H0 − jk0∇∇∇S×H0

) = jn2ωε0E0 e−jk0S

Assuming |∇∇∇×E0| � |k0∇∇∇S×E0|, and similarly for H0, and dropping the common
phase factor e−jk0S, we obtain the high-frequency approximations:

−jk0∇∇∇S× E0 = −jωµ0H0

−jk0∇∇∇S×H0 = jn2ωε0E0
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Replacing k0 =ω√µ0ε0, and defining the vector k̂ = 1

n
∇∇∇S, we find:

H0 = n
η0

k̂× E0 , E0 = −η0

n
k̂×H0 (6.8.3)

These imply the transversality conditions k̂ · E0 = k̂ · H0 = 0. The consistency of
the equations (6.8.3) requires that k̂ be a unit vector. Indeed, using the BAC-CAB rule,
we have:

k̂× (k̂× E0)= k̂(k̂ · E0)−E0(k̂ · k̂)= −E0(k̂ · k̂)= η0

n
k̂×H0 = −E0

Thus, we obtain the unit-vector condition, known as the eikonal equation:

k̂ · k̂ = 1 ⇒ |∇∇∇S|2 = n2 (eikonal equation) (6.8.4)

This equation determines the wavefront phase function S(r). The rays are the per-
pendiculars to the constant-phase surfaces S(r)= const., so that they are in the direction
of∇∇∇S or k̂. Fig. 6.8.1 depicts these wavefronts and rays.

Fig. 6.8.1 Wavefront surfaces and rays.

The ray passing through a point r on the surface S(r)= SA, will move ahead by a
distance dr in the direction of the gradient ∇∇∇S. The length of dr is dl = (dr · dr)1/2.
The vector dr/dl is a unit vector in the direction of∇∇∇S and, therefore, it must be equal
to k̂. Thus, we obtain the defining equation for the rays:

dr

dl
= k̂ ⇒ dr

dl
= 1

n
∇∇∇S ⇒ n

dr

dl
=∇∇∇S (6.8.5)

The eikonal equation determines S, which in turn determines the rays. The ray
equation can be expressed directly in terms of the refractive index by eliminating S.
Indeed, differentiating (6.8.5), we have:

d
dl

(
n
dr

dl

)
= d
dl
(∇∇∇S)=

(
dr

dl
·∇∇∇

)
∇∇∇S = 1

n
(∇∇∇S ·∇∇∇)∇∇∇S

where, in differentiating along a ray, we used the expression for d/dl:
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d
dl
= dr

dl
·∇∇∇ (6.8.6)

But, ∇∇∇(∇∇∇S · ∇∇∇S) = 2
(∇∇∇S · ∇∇∇)∇∇∇S, which follows from the differential identity

Eq. (C.12) of the Appendix. Therefore,

d
dl

(
n
dr

dl

)
= 1

n
(∇∇∇S ·∇∇∇)∇∇∇S = 1

2n
∇∇∇(∇∇∇S ·∇∇∇S) = 1

2n
∇∇∇(n2)= 1

2n
2n∇∇∇n , or,

d
dl

(
n
dr

dl

)
=∇∇∇n (ray equation) (6.8.7)

The vectors E0,H0, k̂ form a right-handed system as in the uniform plane-wave case.
The energy density and flux are:

we = 1

2
Re
[1

2
εE · E∗

] = 1

4
ε0n2|E0|2

wm = 1

4
µ0|H0|2 = 1

4
µ0
n2

η2
0
|E0|2 = 1

4
ε0n2|E0|2 = we

w = we +wm = 1

2
ε0n2|E0|2

PPP = 1

2
Re
[
E×H∗

] = n
2η0

k̂ |E0|2

(6.8.8)

Thus, the energy transport velocity is:

v = PPP
w
= c0

n
k̂ (6.8.9)

The velocity v depends on r, because n and k̂ do.

6.9 Fermat’s Principle

An infinitesimal movement by dl along a ray will change the wavefront phase function
by dS = ndl. Indeed, using Eq. (6.8.6) and the eikonal equation we find:

dS
dl
= dr

dl
·∇∇∇S = 1

n
∇∇∇S ·∇∇∇S = 1

n
n2 = n (6.9.1)

Integrating along a ray path from a point A on wavefront S(r)= SA to a point B on
wavefront S(r)= SB, as shown in Fig. 6.8.1, gives rise to the net phase change:

SB − SA =
∫ B
A
dS =

∫ B
A
ndl (6.9.2)

The right-hand side is recognized as the optical path length fromA to B. It is propor-
tional to the travel time of moving fromA to Bwith the ray velocity v given by Eq. (6.8.9).
Indeed, we have dl = v · k̂dt = c0 dt/n, or, dS = ndl = c0dt. Thus,

SB − SA =
∫ B
A
ndl = c0

∫ tB
tA
dt = c0(tB − tA) (6.9.3)
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Fermat’s Principle states that among all possible paths connecting the two points A
and B, the geometrical optics ray path is the one the minimizes the optical path length
(6.9.3), or equivalently, the travel time between the two points. The solution to this
minimization problem is the ray equation (6.8.7).

Any path connecting the pointsA and Bmay be specified parametrically by the curve
r(τ), where the parameter τ varies over an interval τA ≤ τ ≤ τB. The length dlmay be
written as:

dl = (dr · dr
)1/2 = (ṙ · ṙ

)1/2 dτ , where ṙ = dr

dτ
(6.9.4)

Then, the functional to be minimized is:

∫ B
A
ndl =

∫ τB
τA
L(r, ṙ)dτ , where L(r, ṙ)= n(r)(ṙ · ṙ

)1/2
(6.9.5)

The minimization of Eq. (6.9.5) may be viewed as a problem in variational calculus
with Lagrangian function L. Its solution is obtained from the Euler-Lagrange equations:

d
dτ

(
∂L
∂ṙ

)
= ∂L
∂r

(6.9.6)

See [408–410] for a review of such methods. The required partial derivatives are:

∂L
∂r
= ∂n
∂r

(
ṙ · ṙ

)1/2 ,
∂L
∂ṙ
= n ṙ

(
ṙ · ṙ

)−1/2 = n dr

dτ
(
ṙ · ṙ

)−1/2

The Euler-Lagrange equations are then:

d
dτ

(
n
dr

dτ
(
ṙ · ṙ

)−1/2
)
= ∂n
∂r

(
ṙ · ṙ

)1/2
or,

(
ṙ · ṙ

)−1/2 d
dτ

(
n
dr

dτ
(
ṙ · ṙ

)−1/2
)
= ∂n
∂r

(6.9.7)

Using dl = (
ṙ · ṙ

)1/2 dτ, we may rewrite these in terms of the length variable dl,
resulting in the same equations as (6.8.7), that is,

d
dl

(
n
dr

dl

)
= ∂n
∂r

(6.9.8)

A variation of Fermat’s principle states that the phase change between two wave-
front surfaces is independent of the choice of the ray path taken between the surfaces.
Following a different ray between pointsA′ and B′, as shown in Fig. 6.8.1, gives the same
value for the net phase change as between the points A and B:

SB − SA =
∫ B
A
ndl =

∫ B′
A′
ndl′ (6.9.9)

This form is useful for deriving the shapes of parabolic reflector and hyperbolic lens
antennas discussed in Chap. 17.

It can also be used to derive Snell’s law of reflection and refraction. Fig. 6.9.1 shows
the three families of incident, reflected, and refracted plane wavefronts on a horizontal
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Fig. 6.9.1 Snell’s laws of reflection and refraction.

interface between media na and nb, such that the incident, reflected, and refracted rays
are perpendicular to their corresponding wavefronts.

For the reflection problem, we consider the ray paths between the wavefront surfaces
A0A1 and A1A′2. Fermat’s principle implies that the optical path length of the rays
AOA′, A0A′0, and A2A′2 will be the same. This gives the condition:

na(la + l′a)= naL = naL′ ⇒ L = L′

where L and L′ are the lengths of the rays A0A0 and A2A′2. It follows that the two
triangles A0A2A′2 and A0A′0A′2 will be congruent. and therefore, their angles at the
vertices A0 and A′2 will be equal. Thus, θa = θ′a.

For the refraction problem, we consider the ray pathsAOB,A0B0, andA1B1 between
the wavefronts A0A1 and B0B1. The equality of the optical lengths gives now:

nala + nblb = nbLb = naLa ⇒ La
Lb
= nb
na

But, the triangles A0A1B1 and A0B0B1 have a common base A0B1. Therefore,

La
Lb
= sinθa

sinθb

Thus, we obtain Snell’s law of refraction:

La
Lb
= sinθa

sinθb
= nb
na

⇒ na sinθa = nb sinθb

6.10 Ray Tracing

In this section, we apply Fermat’s principle of least optical path to derive the ray curves
in several integrable examples of inhomogeneous media.
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Fig. 6.10.1 Rays in an inhomogeneous medium.

As a special case of Eq. (6.9.8), we consider a stratified half-space z ≥ 0, shown in
Fig. 6.10.1, in which the refractive index is a function of z, but not of x.

Let θ be the angle formed by the tangent on the ray at point (x, z) and the vertical.
Then, we have from the figure dx = dl sinθ and dz = dl cosθ. Because ∂n/∂x = 0, the
ray equation (6.9.8) applied to the x-coordinate reads:

d
dl

(
n
dx
dl

)
= 0 ⇒ n

dx
dl
= const. ⇒ n sinθ = const. (6.10.1)

This is the generalization of Snell’s law to an inhomogeneous medium. The constant
may be determined by evaluating it at the entry point z = 0 and x = 0. We take the
constant to be na sinθa. Thus, we write (6.10.2) as:

n(z)sinθ(z)= na sinθa (generalized Snell’s law) (6.10.2)

The z-component of the ray equation is, using dz = dl cosθ:

d
dl

(
n
dz
dl

)
= dn
dz

⇒ cosθ
d
dz
(n cosθ) = dn

dz
(6.10.3)

This is a consequence of Eq. (6.10.2). To see this, we write:

n cosθ =
√
n2 − n2 sin2 θ =

√
n2 − n2

a sin2 θa (6.10.4)

Differentiating it with respect to z, we obtain Eq. (6.10.3). The ray in the left Fig. 6.10.1
is bending away from the z-axis with an increasing angle θ(z). This requires that n(z)
be a decreasing function of z. Conversely, if n(z) is increasing as in the right figure,
then θ(z) will be decreasing and the ray will curve towards the z-axis.

Thus, we obtain the rule that a ray always bends in the direction of increasing n(z)
and away from the direction of decreasing n(z).

The constants na and θa may be taken to be the launch values at the origin, that
is, n(0) and θ(0). Alternatively, if there is a discontinuous change between the lower
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and upper half-spaces, we may take na, θa to be the refractive index and incident angle
from below.

The ray curves can be determined by relating x and z. From Fig. 6.10.1, we have
dx = dz tanθ, which in conjunction with Eqs. (6.10.2) and (6.10.4) gives:

dx
dz
= tanθ = n sinθ

n cosθ
= na sinθa√

n2(z)−n2
a sin2 θa

(6.10.5)

Integrating, we obtain:

x =
∫ z

0

na sinθa√
n2(z′)−n2

a sin2 θa
dz′ (ray curve) (6.10.6)

An object at the point (x, z) will appear to an observer sitting at the entry point O
as though it is at the apparent location (x, za), as shown in Fig. 6.10.1. The apparent or
virtual height will be za = x cotθa, which can be combined with Eq. (6.10.6) to give:

za =
∫ z

0

na cosθa√
n2(z′)−n2

a sin2 θa
dz′ (virtual height) (6.10.7)

The length za can be greater or less than z. For example, if the upper half-space is
homogeneous with nb < na, then za > z. If nb > na, then za < z, as was the case in
Example 6.5.4.

Next, we discuss a number of examples in which the integral (6.10.6) can be done
explicitly to derive the ray curves.

Example 6.10.1: Ionospheric Refraction. Radio waves of frequencies typically in the range of
about 4–40 MHz can be propagated at large distances such as 2000–4000 km by bouncing
off the ionosphere. Fig. 6.10.2 depicts the case of a flat ground.

Fig. 6.10.2 Ionospheric refraction.

The atmosphere has a typical extent of 600 km and is divided in layers: the troposphere up
to 10 km, the stratosphere at 10–50 km, and the ionosphere at 50–600 km. The ionosphere
is further divided in sublayers, such as the D, E, F1, and F2 layers at 50–100 km, 100–150
km, 150–250 km, and 250–400 km, respectively.
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The ionosphere consists mostly of ionized nitrogen and oxygen at low pressure. The
ionization is due to solar radiation and therefore it varies between night and day. We
recall from Sec. 1.9 that a collisionless plasma has an effective refractive index:

n2 = ε(ω)
ε0

= 1− ω
2
p

ω2
, ω2

p =
Ne2

ε0m
(6.10.8)

The electron density N varies with the time of day and with height. Typically, N increases
through theD and E layers and reaches a maximum value in the F layer, and then decreases
after that because, even though the solar radiation is more intense, there are fewer gas
atoms to be ionized.

Thus, the ionosphere acts as a stratified medium in which n(z) first decreases with height
from its vacuum value of unity and then it increases back up to unity. We will indicate the
dependence on height by rewriting Eq. (6.10.8) in the form:

n2(z)= 1− f
2
p(z)
f2

, f2
p(z)=

N(z)e2

4π2ε0m
(6.10.9)

If the wave is launched straight up and its frequency f is larger than the largest fp, then it
will penetrate through the ionosphere be lost. But, if there is a height such that f = fp(z),
then at that height n(z)= 0 and the wave will be reflected back down.

If the wave is launched at an angle θa, then it follows from Snell’s law that while the
refractive index n(z) is decreasing, the angle of refraction θ(z) will be increasing and the
ray path will bend more and more away from z-axis as shown on the left of Fig. 6.10.1.
Below the ionosphere, we may assume that the atmosphere has refractive index na = 1.
Then, the angle θ(z) may be written as:

sin2 θ(z)= n
2
a sin2 θa
n2(z)

= sin2 θa

1− f
2
p(z)
f2

(6.10.10)

Because sinθ(z) is required to be less than unity, we obtain the restriction:

sin2 θa ≤ 1− f
2
p(z)
f2

⇒ fp(z)≤ f cosθa (6.10.11)

If there is a height, say zmax, at which this becomes an equality, fp(zmax)= f cosθa, then
Eq. (6.10.10) would imply that sinθ(zmax)= 1, or that θ(zmax)= 90o. At that height, the
ray is horizontal and it will proceed to bend downwards, effectively getting reflected from
the ionosphere.

If f is so large that Eq. (6.10.11) is satisfied only as a strict inequality, then the wave will
escape through all the layers of the ionosphere. Thus, there is a maximum frequency, the
so called maximum usable frequency (MUF), that will guarantee a reflection. There is also a
lowest usable frequency (LUF) below which there is too much absorption of the wave, such
as in the D layer, to be reflected at sufficient strength for reception.

As an oversimplified, but analytically tractable, model of the ionosphere we assume that
the electron density increases linearly with height, up to a maximal height zmax. Thus, the
quantities f2

p(z) and n2(z) will also depend linearly on height:
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f2
p(z)= f2

max
z
zmax

, n2(z)= 1− f
2
max

f2

z
zmax

, for 0 ≤ z ≤ zmax (6.10.12)

Over the assumed height range 0 ≤ z ≤ zmax, the condition (6.10.11) must also be satisfied.
This restricts further the range of z. We have:

f2
p(z)= f2

max
z
zmax

≤ f2 cos2 θa ⇒ z
zmax

≤ f
2 cos2 θa
f2

max
(6.10.13)

If the right-hand side is greater than unity, so that f cosθa > fmax, then there is no height
z at which (6.10.11) achieves an equality, and the wave will escape. But, if f cosθa ≤ fmax,
then there is height, say z0, at which the ray bends horizontally, that is,

z0

zmax
= f

2 cos2 θa
f2

max
⇒ z0 = zmaxf2 cos2 θa

f2
max

(6.10.14)

The condition f cosθa ≤ fmax can be written as f ≤ fMUF, where the MUF is in this case,
fMUF = fmax/ cosθa. The integral (6.10.6) can be done explicitly resulting in:

x = 2zmax sin2 θa
a2

[
cosθa −

√
cos2 θa − a2

z
zmax

]
(6.10.15)

where we defined a = fmax/f . Solving for z in terms of x, we obtain:

z− z0 = − 1

4F
(x− x0)2 (6.10.16)

where

x0 = 2zmax sinθa cosθa
a2

, F = zmax sin2 θa
a2

Therefore, the ray follows a downward parabolic path with vertex at (x0, z0) and focal
length F, as shown in Fig. 6.10.3. �	

Fig. 6.10.3 Parabolic ray.

Example 6.10.2: Mirages. Temperature gradients can cause several types of mirage effects that
are similar to ionospheric refraction. On a hot day, the ground is warmer than the air above
it and therefore, the refractive index of the air is lower at the ground than a short distance
above. (Normally, the air pressure causes the refractive index to be highest at the ground,
decreasing with height.)
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Because n(z) decreases downwards, a horizontal ray from an object near the ground will
initially be refracted downwards, but then it will bend upwards again and may arrive at an
observer as though it were coming from below the ground, causing a mirage. Fig. 6.10.4
depicts a typical case. The ray path is like the ionospheric case, but inverted.

Such mirages are seen in the desert and on highways, which appear wet at far distances.
Various types of mirages are discussed in [53–55,737].

As a simple integrable model, we may assume that n(z) increases linearly with height z,
that is, n(z)= n0 + κz, where κ is the rate of increase per meter. For heights near the
ground, this implies that n2(z) will also increase linearly:

n(z)= n0 + κz ⇒ n2(z)= n2
0 + 2n0κz (6.10.17)

We consider a ray launched at a downward angle θa from an object with (x, z) coordinates
(0, h), as shown. Let n2

a = n2
0 + 2n0κh be the refractive index at the launch height. For

convenience, we assume that the observer is also at height h. Because the ray will travel
downward to points z < h, and then bend upwards, we integrate the ray equation over the
limits [z, h] and find:

x =
∫ h
z

na sinθa√
n2(z′)−n2

a sin2 θa
dz′ = na sinθa

n0κ

[
na cosθa −

√
n2
a cos2 θa + 2n0κ(z− h)

]

where we used the approximation n2(z)= n2
0 + 2n0κz in the integral. Solving for z in

terms of x, we obtain the parabolic ray:

z = h+ x(x− 2x0)
4F

, x0 = d
2
= n

2
a sinθa cosθa

n0κ
, F = n

2
a sin2 θa
2n0κ

where d is the distance to the observer and F is the focal length. The apex of the parabola
is at x = x0 = d/2 at a height z0 given by:

z0 = h− x
2
0

4F
⇒ z− z0 = 1

4F
(x− x0)2

Fig. 6.10.4 Mirage due to a temperature gradient.

The launch angle that results in the ray being tangential to ground is obtained by setting
the apex height to zero, z0 = 0. This gives a condition that may be solved for θa:

x0 =
√

4Fh ⇒ sinθa = n0

na
⇒ F = n0

2κ
⇒ x0 =

√
2hn0

κ
(6.10.18)
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The corresponding d = 2x0 is the maximum distance of the observer from the object for
which a ray can just touch the ground. �	

Example 6.10.3: Atmospheric Refraction [53–55]. Because of the compression of gravity, the
density of the atmosphere† and its refractive index n are highest near the ground and
decrease exponentially with height. A simplified model [261], which assumes a uniform
temperature and constant acceleration of gravity, is as follows:

n(z)= 1+ (n0 − 1)e−z/hc (6.10.19)

The refractive index on the ground is approximately n0 = 1.0003 (it also has some de-
pendence on wavelength, which we ignore here.) The characteristic height hc is given by
hc = RT/Mg, where R,T,M,g are the universal gas constant, temperature in absolute
units, molecular mass of the atmosphere and acceleration of gravity:

R = 8.31
J

K mole
, M = 0.029

kg

mole
, g = 9.8

m

s2

For a temperature of T = 303K, or 30 oC, we find a height of hc = 8.86 km. At a height of
a few hc, the refractive index becomes unity.

The bending of the light rays as they pass through the atmosphere cause the apparent
displacement of a distant object, such as a star, the sun, or a geosynchronous satellite.
Fig. 6.10.5 illustrates this effect. The object appears to be closer to the zenith.

Fig. 6.10.5 Atmospheric refraction.

The look-angle θ0 at the ground and the true angle of the object θ1 are related by Snell’s
law n1 sinθ1 = n0 sinθ0. But at large distances (many multiples of hc), we have n1 = 1.
Therefore,

sinθ1 = n0 sinθ0 (6.10.20)

The refraction angle is r = θ1 − θ0. Assuming a small r, we may use the approximation
sin(θ0 + r)= sinθ0 + r cosθ0. Then, Eq. (6.10.20) gives the approximate expression:

r = (n0 − 1)tanθ0

The maximum viewing angle in this model is such that n0 sinθ0 = sinθ1 = 1, correspond-
ing to θ1 = 90o and θ0 = asin(1/n0)= 88.6o, for n0 = 1.0003.

†The troposphere and some of the stratosphere, consisting mostly of molecular nitrogen and oxygen.
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The model assumes a flat Earth. When the curvature of the Earth is taken into account, the
total atmospheric refraction near the horizon, that is, near θ0 = 90o, is about 0.65o for a
sea-level observer [53]. The setting sun subtends an angle of about 0.5o. Therefore, when
it appears about to set and its lower edge is touching the horizon, it has already moved
below the horizon.

The model of Eq. (6.10.19) may be integrated exactly. The ray curves are obtained from
Eq. (6.10.6). Setting na = n0, θa = θ0 and using the definition (6.10.20), we obtain:

x = hc tanθ1

[
atanh

(
A
B

)
− atanh

(
A0

B0

)]
= tanθ1

[
z+ hc ln

(
A+ B
A0 + B0

)]
(6.10.21)

where the quantities A,B,A0, B0 are defined as follows:

A = n(z)− sin2 θ1 , A0 = n0 − sin2 θ1

B = cosθ1

√
n2(z)− sin2 θ1 , B0 = cosθ1

√
n2

0 − sin2 θ1

Thus, A0, B0 are the values of A,B at z = 0. It can be shown that A > B and therefore, the
hyperbolic arc-tangents will be complex-valued. However, the difference of the two atanh
terms is real and can be transformed into the second expression in (6.10.21) with the help
of the result A2 − B2 = (A2

0 − B2
0)e−2z/hc .

In the limit of z� hc, the quantitiesA,B tend toA1 = B1 = cos2 θ1. and the ray equation
becomes the straight line with a slope of tanθ1:

x = (z+ z1)tanθ1 , z1 = hc ln
(
A1 + B1

A0 + B0

)
(6.10.22)

This asymptotic line is depicted in Fig. 6.10.5, intercepting the z-axis at an angle of θ1. �	

Example 6.10.4: Bouguer’s Law. The previous example assumed a flat Earth. For a spherical
Earth in which the refractive index is a function of the radial distance r only, that is, n(r),
the ray tracing procedure must be modified.

Snell’s law n(z)sinθ(z)= n0 sinθ0 must be replaced by Bouguer’s law [182], which states
that the quantity rn(r)sinθ remain constant:

rn(r)sinθ(r)= r0n(r0)sinθ0 (Bouguer’s law) (6.10.23)

where θ(r) is the angle of the tangent to the ray and the radial vector. This law can be
derived formally by considering the ray equations in spherical coordinates and assuming
that n(r) depends only on r [409].

A simpler derivation is to divide the atmosphere in equal-width spherical layers and assume
that the refractive index is homogeneous in each layer. In Fig. 6.10.6, the layers are defined
by the radial distances and refractive indices ri, ni, i = 0,1,2, . . . .

For sufficiently small layer widths, the ray segments between the points A0,A1,A2, . . .
are tangential to the radial circles. At the interface point A3, Snell’s law gives n2 sinφ2 =
n3 sinθ3. On the other hand, from the triangle OA2A3, we have the law of sines:

r2

sinφ2
= r3

sin(π− θ2)
= r3

sinθ2
⇒ r2 sinθ2 = r3 sinφ2

Combining with Snell’s law, we obtain:
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Fig. 6.10.6 Ray tracing in spherically stratified medium.

r2n2 sinθ2 = r3n2 sinφ2 = r3n3 sinθ3

Thus, the product rini sinθi is the same for all i = 0,1,2, . . . . Defining an effective refrac-
tive index by neff(r)= n(r)r/r0, Bouguer’s law may be written as Snell’s law:

neff(r)sinθ(r)= n0 sinθ0

where we have the initial value neff(r0)= n0r0/r0 = n0. �	

Example 6.10.5: Standard Atmosphere over Flat Earth. For radiowave propagation over ground,
the International Telecommunication Union (ITU) [417,418] defines a “standard” atmo-
sphere with the values n0 = 1.000315 and hc = 7.35 km, in Eq. (6.10.19).

For heights of about one kilometer, such that z � hc, we may linearize the exponential,
e−z/hc = 1− z/hc, and obtain the refractive index for the standard atmosphere:

n(z)= n0 − κz , κ = n0 − 1

hc
= 315× 10−6

7.35× 103
= 4.2857× 10−8 m−1 (6.10.24)

This is similar to Eq. (6.10.17), with the replacement κ → −κ. Therefore, we expect the
rays to be parabolic bending downwards as in the case of the ionosphere. A typical ray
between two antennas at height h and distance d is shown in Fig. 6.10.7.

Assuming an upward launch angle θa and defining the refractive index na at height h
through n2

a = n2
0 − 2n0κh, we obtain the ray equations by integrating over [h, z]:

x =
∫ z
h

na sinθa√
n2(z′)−n2

a sin2 θa
dz′ = na sinθa

n0κ

[
na cosθa −

√
n2
a cos2 θa − 2n0κ(z− h)

]

where we used n2(z)= n2
0 − 2n0κz. Solving for z, we obtain the parabola:



198 Electromagnetic Waves & Antennas – S. J. Orfanidis

Fig. 6.10.7 Rays in standard atmosphere over a flat Earth.

z = h− x(x− 2x0)
4F

, x0 = d
2
= n

2
a sinθa cosθa

n0κ
, F = n

2
a sin2 θa
2n0κ

where d is the distance to the observer and F is the focal length. The apex of the parabola
is at x = x0 = d/2 at a height z0 given by:

z0 = h+ x
2
0

4F
⇒ z− z0 = − 1

4F
(x− x0)2

The minus sign in the right-hand side corresponds to a downward parabola with apex at
the point (x0, z0). �	

Example 6.10.6: Standard Atmosphere over Spherical Earth. We saw in Example 6.10.4 that
in Bouguer’s law the refractive index n(r) may be replaced by an effective index ne(r)=
n(r)r/r0. Applying this to the case of the Earth with r0 = R and r = R + z, where R is
the Earth radius and z the height above the surface, we have ne(z)= n(z)(R+ z)/R, or,

ne(z)= n(z)
(

1+ z
R

)
= (n0 − κz)

(
1+ z

R

)

Thus, the spherical Earth introduces the factor (1+z/R), which increases with height and
counteracts the decreasing n(z). Keeping only linear terms in z, we find:

ne(z)= n0 + κez , κe = n0

R
− κ (6.10.25)

For the average Earth radius R = 6370 km and the ITU values of n0 and κ given in
Eq. (6.10.24), we find that the effective κe is positive:

κe = 1.1418× 10−7 m−1 (6.10.26)

Making the approximation n2(z)= n2
0 + 2n0κez will result in parabolic rays bending up-

wards as in Example 6.10.2.

Often, an equivalent Earth radius is defined by κe = n0/Re so that the effective refractive
index may be assumed to arise only from the curvature of the equivalent Earth:

ne(z)= n0 + κez = n0

(
1+ z

Re

)
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In units of R, we have:

Re
R
= n0

κeR
= n0

n0 − κR = 1.3673 (6.10.27)

which is usually replaced by Re = 4R/3. In this model, the refractive index is assumed to
be uniform above the surface of the equivalent Earth, n(z)= n0.

The ray paths are determined by considering only the geometrical effect of the spherical
surface. For example, to determine the maximum distance x0 at which a ray from a trans-
mitter at height h just grazes the ground, we may either use the results of Eq. (6.10.18), or
consider a straight path that is tangential to the equivalent Earth, as shown in Fig. 6.10.8.

Fig. 6.10.8 Rays over a spherical Earth.

Setting κe = n0/Re in Eq. (6.10.18), we obtain:

x0 =
√

2n0h
κe

=
√

2hRe (6.10.28)

On the other hand, because h� Re the arc length x0 = (OB)may be taken to be a straight
line in Fig. 6.10.8. Applying the Pythagorean theorem to the two orthogonal trianglesOAB
and CAB we find that:

x2
0 + h2 = d2 = (h+Re)2−R2

e = h2 + 2hRe ⇒ x2
0 = 2hRe

which is the same as Eq. (6.10.28). �	

Example 6.10.7: Graded-Index Optical Fibers. In Example 6.5.5, we considered a step-index
optical fiber in which the rays propagate by undergoing total internal reflection bouncing
off the cladding walls. Here, we consider a graded-index fiber in which the refractive index
of the core varies radially from the center value nf to the cladding value nc at the edge of
the core. Fig. 6.10.9 shows the geometry.

As a simple model, we assume a parabolic dependence on the radial distance. We may
write in cylindrical coordinates, where a is the radius of the core:

n2(ρ)= n2
f

(
1−∆2 ρ2

a2

)
, ∆2 = n

2
f − n2

c

n2
f

(6.10.29)
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Fig. 6.10.9 Graded-index optical fiber.

Inserting this expression into Eq. (6.10.6), and changing variables from z, x to ρ, z, the
integral can be done explicitly resulting in:

z = a sinθa
∆

asin
(

ρ∆
a cosθa

)
(6.10.30)

Inverting the arc-sine, we may solve for ρ in terms of z obtaining the following sinusoidal
variation of the radial coordinate, where we also changed from the incident angle θa to
the initial launch angle φ0 = 90o − θa:

ρ = tanφ0

κ
sin(κz) , κ = ∆

a cosφ0
(6.10.31)

For small launch angles φ0, the oscillation frequency becomes independent of φ0, that is,
κ = ∆/(a cosφ0)
 ∆/a. The rays described by Eq. (6.10.31) are meridional rays, that is,
they lie on a plane through the fiber axis, such as the xz- or yz-plane.

There exist more general ray paths that have nontrivial azimuthal dependence and prop-
agate in a helical fashion down the guide [411–416]. �	

6.11 Problems

6.1 The matching of the tangential components of the electric and magnetic fields resulted in
Snell’s laws and the matching matrix Eq. (6.3.11). In both the TE and TM polarization cases,
show that the remaining boundary conditions Bz = B′z and Dz = D′z are also satisfied.

6.2 Show that the Fresnel coefficients (6.4.2) may be expressed in the forms:

ρTM = sin 2θ′ − sin 2θ
sin 2θ′ + sin 2θ

= tan(θ′ − θ)
tan(θ′ + θ) , ρTE = sin(θ′ − θ)

sin(θ′ + θ)

6.3 Show that the refractive index ratio n′/n can be expressed in terms of the ratio r = ρTM/ρTE

and the incident angle θ by:

n′

n
= sinθ

[
1+

(
1+ r
1− r

)2

tan2 θ
]1/2

This provides a convenient way of measuring the refractive index n′ from measurements of
the Fresnel coefficients [259]. It is valid also for complex n′.
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6.4 It is desired to design a Fresnel rhomb such that the exiting ray will be elliptically polarized
with relative phase difference φ between its TE and TM components. Let sinθc = 1/n be
the critical angle within the rhomb. Show that the rhomb angle replacing the 54.6o angle in
Fig. 6.5.6 can be obtained from:

sin2 θ = cos2 θc ±
√

cos4 θc − 4 sin2 θc tan2(φ/4)

2 tan2(φ/4)+ cos2 θc ±
√

cos4 θc − 4 sin2 θc tan2(φ/4)

Show φ is required to satisfy tan(φ/4)≤ (n− n−1)/2.

6.5 Show the relationship (6.7.15) for the ratio ρTM/ρTE by first proving and then using the
following identities in the notation of Eq. (6.7.4):

(k′z ± kz)(k2
x ± kzk′z)= k2k′z ± k′2kz

Using (6.7.15), show that when both media are lossless, the ratio ρTM/ρTE can be expressed
directly in terms of the angles of incidence and refraction, θ and θ′:

ρTM

ρTE
= cos(θ+ θ′)

cos(θ− θ′)

Using this result argue that |ρTM| ≤ |ρTE| at all angles θ. Argue also that θB + θ′B = 90o,
for the Brewster angles. Finally, show that for lossless media with ε > ε′, and angles of
incidence θ ≥ θc, where sinθc =

√
ε′/ε, we have:

ρTM

ρTE
= j

√
sin2 θ− sin2 θc + sinθ tanθ

j
√

sin2 θ− sin2 θc − sinθ tanθ

Explain how this leads to the design equation (6.5.8) of the Fresnel rhomb.

6.6 Let the incident, reflected, and transmitted waves at an interface be:

E+(r)= E+e−j k+·r , E−(r)= E−e−j k−·r , E′(r)= E′0e−j k
′·r

where k± = kx x̂ ± kz ẑ and k′ = kx x̂ + k′z ẑ. Show that the reflection and transmission
coefficients defined in Eqs. (6.7.1)–(6.7.5) can be summarized compactly by the following
vectorial relationships, which are valid for both the TE and TM cases:

k± × (E′0 × k±)
k2

= 2kz
kz ± k′z E±



7
Multilayer Film Applications

7.1 Multilayer Dielectric Structures at Oblique Incidence

Using the matching and propagation matrices for transverse fields that we discussed
in Sec. 6.3, we derive here the layer recursions for multiple dielectric slabs at oblique
incidence.

Fig. 7.1.1 shows such a multilayer structure. The layer recursions relate the various
field quantities, such as the electric fields and the reflection responses, at the left of
each interface.

Fig. 7.1.1 Oblique incidence on multilayer dielectric structure.

We assume that there are no incident fields from the right side of the structure.
The reflection/refraction angles in each medium are related to each other by Snell’s law
applied to each of theM + 1 interfaces:

na sinθa = ni sinθi = nb sinθb , i = 1,2, . . . ,M (7.1.1)

It is convenient also to define by Eq. (6.3.8) the propagation phases or phase thick-
nesses for each of theM layers, that is, the quantities δi = kzili. Using kzi = k0ni cosθi,
where k0 is the free-space wavenumber, k0 = ω/c0 = 2πf/c0 = 2π/λ, we have for
i = 1,2, . . . ,M:

202
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δi = ωc0
nili cosθi = 2π

λ
nili cosθi = 2π

λ
lini

√√√√1− n
2
a sin2 θa
n2
i

(7.1.2)

where we used Eq. (7.1.1) to write cosθi =
√

1− sin2 θi =
√

1− n2
a sin2 θa/n2

i . The
transverse reflection coefficients at theM + 1 interfaces are defined as in Eq. (5.1.1):

ρTi = nT,i−1 − nTi
nT,i−1 + nTi , i = 1,2, . . . ,M + 1 (7.1.3)

where we set nT0 = nTa, as in Sec. 5.1. and nT,M+1 = nTb. The transverse refractive
indices are defined in each medium by Eq. (6.2.13):

nTi =



ni
cosθi

, TM polarization

ni cosθi , TE polarization
, i = a,1,2, . . . ,M, b (7.1.4)

To obtain the layer recursions for the electric fields, we apply the propagation matrix
(6.3.5) to the fields at the left of interface i + 1 and propagate them to the right of the
interface i, and then, apply a matching matrix (6.3.11) to pass to the left of that interface:

[
ETi+
ETi−

]
= 1

τTi

[
1 ρTi
ρTi 1

][
ejδi 0
0 e−jδi

][
ET,i+1,+
ET,i+1,−

]

Multiplying the matrix factors, we obtain:

[
ETi+
ETi−

]
= 1

τTi

[
ejδi ρTie−jδi
ρTiejδi e−jδi

][
ET,i+1,+
ET,i+1,−

]
, i =M,M − 1, . . . ,1 (7.1.5)

This is identical to Eqs. (5.1.2) with the substitutions kili → δi and ρi → ρTi. The
recursion is initialized at the left of the (M+1)st interface by performing an additional
matching to pass to the right of that interface:

[
ET,M+1,+
ET,M+1,−

]
= 1

τT,M+1

[
1 ρT,M+1

ρT,M+1 1

][
E′T.M+1,+

0

]
(7.1.6)

It follows now from Eq. (7.1.5) that the reflection responses, ΓTi = ETi−/ETi+, will
satisfy the identical recursions as Eq. (5.1.5):

ΓTi = ρTi + ΓT,i+1e−2jδi

1+ ρTiΓT,i+1e−2jδi
, i =M,M − 1, . . . ,1 (7.1.7)

and initialized at ΓT,M+1 = ρT,M+1. Similarly, we obtain the following recursions for
the total transverse electric and magnetic fields at each interface (they are continuous
across each interface):

[
ETi
HTi

]
=
[

cosδi jηTi sinδi
jη−1
Ti sinδi cosδi

][
ET,i+1

HT,i+1

]
, i =M,M − 1, . . . ,1 (7.1.8)
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where ηTi are the transverse characteristic impedances defined by Eq. (6.2.12) and re-
lated to the refractive indices by ηTi = η0/nTi. The wave impedances, ZTi = ETi/HTi,
satisfy the following recursions initialized by ZT,M+1 = ηTb:

ZTi = ηTi ZT,i+1 + jηTi tanδi
ηTi + jZT,i+1 tanδi

, i =M,M − 1, . . . ,1 (7.1.9)

The MATLAB function multidiel that was introduced in Sec. 5.1 can also be used
in the oblique case with two extra input arguments: the incidence angle from the left
and the polarization type, TE or TM. Its full usage is as follows:

[Gamma1,Z1] = multidiel(n,L,lambda,theta,pol); % multilayer dielectric structure

where theta is the angle θ = θa and pol is one of the strings ’te’ or ’tm’. If the angle
and polarization arguments are omitted, the function defaults to normal incidence for
which TE and TM are the same. The other parameters have the same meaning as in
Sec. 5.1.

In using this function, it is convenient to normalize the wavelength λ and the optical
lengths nili of the layers to some reference wavelength λ0. The frequency f will be
normalized to the corresponding reference frequency f0 = c0/λ0.

Defining the normalized thicknesses Li = nili/λ0, so that nili = Liλ0, and noting
that λ0/λ = f/f0, we may write the phase thicknesses (7.1.2) in the normalized form:

δi = 2π
λ0

λ
Li cosθi = 2π

f
f0
Li cosθi , i = 1,2, . . . ,M (7.1.10)

Typically, but not necessarily, the Li are chosen to be quarter-wavelength long at
λ0, that is, Li = 1/4. This way the same multilayer design can be applied equally well
at microwave or at optical frequencies. Once the wavelength scale λ0 is chosen, the
physical lengths of the layers li can be obtained from li = Liλ0/ni.

7.2 Single Dielectric Slab

Many features of oblique incidence on multilayer slabs can be clarified by studying the
single-slab case, shown in Fig. 7.2.1. Assuming that the media to the left and right are
the same, na = nb, it follows that θb = θa and also that ρT1 = −ρT2. Moreover, Snell’s
law implies na sinθa = n1 sinθ1.

Because there are no incident fields from the right, the reflection response at the
left of interface-2 is: ΓT2 = ρT2 = −ρT1. It follows from Eq. (7.1.7) that the reflection
response at the left of interface-1 will be:

ΓT1 = ρT1 + ρT2e−2jδ1

1+ ρT1ρT2e−2jδ1
= ρT1(1− e−2jδ1)

1− ρ2
T1e−2jδ1

(7.2.1)

This is analogous to Eq. (4.5.4). According to Eq. (7.1.10), the phase thickness can be
written in the following normalized form, where L1 = n1l1/λ0:
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Fig. 7.2.1 Oblique incidence on single dielectric slab.

δ1 = 2π
λ0

λ
L1 cosθ1 = 2π

f
f0
L1 cosθ1 = π ff1 (7.2.2)

f1 = f0
2L1 cosθ1

(7.2.3)

At frequencies that are integral multiples of f1, f = mf1, the reflection response
vanishes because 2δ1 = 2π(mf1)/f1 = 2πm and e−2jδ1 = 1. Similarly, at the half-
integral multiples, f = (m+ 0.5)f1, the response is maximum because e−2jδ1 = −1.

Because f1 depends inversely on cosθ1, then as the angle of incidence θa increases,
cosθ1 will decrease and f1 will shift towards higher frequencies. The maximum shift
will occur when θ1 reaches its maximum refraction value θ1c = asin(na/n1) (assuming
na < n1.)

Similar shifts occur for the 3-dB width of the reflection response notches. By the
same calculation that led to Eq. (4.5.9), we find for the 3-dB width with respect to the
variable δ1:

tan
(
∆δ1

2

)
= 1− ρ2

T1

1+ ρ2
T1

Setting ∆δ1 = π∆f/f1, we solve for the 3-dB width in frequency:

∆f = 2f1
π

atan

(
1− ρ2

T1

1+ ρ2
T1

)
(7.2.4)

The left/right bandedge frequencies are f1 ± ∆f/2. The dependence of ∆f on the
incidence angle θa is more complicated here because ρT1 also depends on it.

In fact, as θa tends to its grazing value θa → 90o, the reflection coefficients for
either polarization have the limit |ρT1| → 1, resulting in zero bandwidth ∆f . On the
other hand, at the Brewster angle, θaB = atan(n1/na), the TM reflection coefficient
vanishes, resulting in maximum bandwidth. Indeed, because atan(1)= π/4, we have
∆fmax = 2f1 atan(1)/π = f1/2.
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Fig. 7.2.2 illustrates some of these properties. The refractive indices were na = nb =
1 and n1 = 1.5. The optical length of the slab was taken to be half-wavelength at the
reference wavelength λ0, so that n1l1 = 0.5λ0, or, L1 = 0.5.
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Fig. 7.2.2 TE and TM reflectances of half-wavelength slab.

The graphs show the TE and TM reflectances |ΓT1(f)|2 as functions of frequency
for the angles of incidence θ1 = 75o and θa = 85o. The normal incidence case is also
included for comparison.

The corresponding refracted angles were θ1 = asin
(
na asin(θa)/n1

) = 40.09o and
θ1 = 41.62o. Note that the maximum refracted angle is θ1c = 41.81o, and the Brewster
angle, θaB = 56.31o.

The notch frequencies were f1 = f0/(2L1 cosθ1)= 1.31f0 and f1 = 1.34f0 for the
angles θa = 75o and 85o. At normal incidence we have f1 = f0/(2L1)= f0, because
L1 = 0.5.

The graphs also show the 3-dB widths of the notches, calculated from Eq. (7.2.4).
The reflection responses were computed with the help of the function multidiel with
the typical MATLAB code:

na = 1; nb = 1;
n1 = 1.5; L1 = 0.5;

f = linspace(0,3,401);
theta = 75;

G0 = abs(multidiel([na,n1,nb], L1, 1./f)).^2;
Ge = abs(multidiel([na,n1,nb], L1, 1./f, theta, ’te’)).^2;
Gm = abs(multidiel([na,n1,nb], L1, 1./f, theta, ’tm’)).^2;

The shifting of the notch frequencies and the narrowing of the notch widths is evi-
dent from the graphs. Had we chosen θa = θaB = 56.31o, the TM response would have
been identically zero because of the factor ρT1 in Eq. (7.2.1).

The single-slab case is essentially a simplified version of a Fabry-Perot interferometer
[182], used as a spectrum analyzer. At multiples of f1, there are narrow transmittance
bands. Because f1 depends on f0/ cosθ1, the interferometer serves to separate different
frequencies f0 in the input by mapping them onto different angles θ1.
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7.3 Antireflection Coatings at Oblique Incidence

Antireflection coatings are typically designed for normal incidence and then used over
a limited range of oblique incidence, such as up to about 30o. As the angle of incidence
increases, the antireflection band shifts towards lower wavelengths or higher frequen-
cies. Any designed reflection zeros at normal incidence are no longer zeros at oblique
incidence.

If a particular angle of incidence is preferred, it is possible to design the antireflection
coating to match that angle. However, like the case of normal design, the effectiveness
of this method will be over an angular width of approximately 30o about the preferred
angle.

To appreciate the effects of oblique incidence, we look at the angular behavior of
our normal-incidence designs presented in Figs. 5.2.1 and 5.2.3.

The first example was a two-layer design with refractive indices na = 1 (air), n1 =
1.38 (magnesium fluoride), n2 = 2.45 (bismuth oxide), and nb = 1.5 (glass). The de-
signed normalized optical lengths of the layers were L1 = 0.3294 and L2 = 0.0453 at
λ0 = 550 nm.

Fig. 7.3.1 shows the TE and TM reflectances |ΓT1(λ)|2 as functions of λ, for the
incidence angles θ = 0o,20o,30o,40o.
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Fig. 7.3.1 Two-layer antireflection coating at oblique incidence.

We note the shifting of the responses towards lower wavelengths. The responses
are fairly acceptable up to about 20o–30o. The typical MATLAB code used to generate
these graphs was:

n = [1, 1.38, 2.45, 1.5]; L = [0.3294, 0.0453];
la0 = 550; la = linspace(400,700,101); pol=’te’;

G0 = abs(multidiel(n, L, la/la0)).^2 * 100;
G20 = abs(multidiel(n, L, la/la0, 20, pol)).^2 * 100;
G30 = abs(multidiel(n, L, la/la0, 30, pol)).^2 * 100;
G40 = abs(multidiel(n, L, la/la0, 40, pol)).^2 * 100;

plot(la, [G0; G20; G30; G40]);
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As we mentioned above, the design can be matched at a particular angle of incidence.
As an example, we choose θa = 30o and redesign the two-layer structure.

The design equations are still (5.2.2) and (5.2.1), but with the replacement of ni,
ρi by their transverse values nTi, ρTi, and the replacement of k1l1, k2l2 by the phase
thicknesses at λ = λ0, that is, δ1 = 2πL1 cosθ1 and δ2 = 2πL2 cosθ2. Moreover, we
must choose to match the design either for TE or TM polarization.

Fig. 7.3.2 illustrates such a design. The upper left graph shows the TE reflectance
matched at 30o. The designed optical thicknesses are in this case, L1 = 0.3509 and
L2 = 0.0528. The upper right graph shows the corresponding TM reflectance, which
cannot be matched simultaneously with the TE case.

The lower graphs show the same design, but now the TM reflectance is matched at
30o. The designed lengths were L1 = 0.3554 and L2 = 0.0386.
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Fig. 7.3.2 Two-layer antireflection coating matched at 30 degrees.

The design steps are as follows. First, we calculate the refraction angles in all media
from Eq. (7.1.1), θi = asin(na sinθa/ni), for i = a,1,2, b. Then, assuming TE polariza-
tion, we calculate the TE refractive indices for all media nTi = ni cosθi, i = a,1,2, b.

Then, we calculate the transverse reflection coefficients ρTi from Eq. (7.1.3) and use
them to solve Eq. (5.2.2) and (5.2.1) for the phase thicknesses δ1, δ2. Finally, we calcu-
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late the normalized optical lengths from Li = δi/(2π cosθi), i = 1,2. The following
MATLAB code illustrates these steps:

n = [1, 1.38, 2.45, 1.5];
tha = 30; thi = asin(na*sin(pi*tha/180)./n);

nt = n.*cos(thi); % for TM use nt = n./cos(thi)
r = n2r(nt);

c = sqrt((r(1)^2*(1-r(2)*r(3))^2 - (r(2)-r(3))^2)/(4*r(2)*r(3)*(1-r(1)^2)));
de2 = acos(c);
G2 = (r(2)+r(3)*exp(-2*j*de2))/(1 + r(2)*r(3)*exp(-2*j*de2));
de1 = (angle(G2) - pi - angle(r(1)))/2;
if de1 <0, de1 = de1 + 2*pi; end

L = [de1,de2]/2/pi;
L = L./cos(thi(2:3));

la0 = 550; la = linspace(400,700,401);

G30 = abs(multidiel(n, L, la/la0, 30, ’te’)).^2 * 100;
G20 = abs(multidiel(n, L, la/la0, 20, ’te’)).^2 * 100;
G40 = abs(multidiel(n, L, la/la0, 40, ’te’)).^2 * 100;
G0 = abs(multidiel(n, L, la/la0)).^2 * 100;

plot(la, [G30; G20; G40; G0]);

Our second example in Fig. 5.2.3 was a quarter-half-quarter 3-layer design with re-
fractive indices n1 = 1 (air), n1 = 1.38 (magnesium fluoride), n2 = 2.2 (zirconium oxide),
n3 = 1.63 (cerium fluoride), and nb = 1.5 (glass). The optical lengths of the layers were
L1 = L3 = 0.25 and L2 = 0.5.

Fig. 7.3.3 shows the TE and TM reflectances |ΓT1(λ)|2 as functions of λ, for the
incidence angles θ = 0o,20o,30o,40o.
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Fig. 7.3.3 Three-layer antireflection coating at oblique incidence.

The responses are fairly acceptable up to about 20o–30o, but are shifted towards
lower wavelengths. The typical MATLAB code used to generate these graphs was:
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n = [1, 1.38, 2.2, 1.63, 1.5]; L = [0.25, 0.50, 0.25];

la0 = 550; la = linspace(400,700,401);

G0 = abs(multidiel(n, L, la/la0)).^2 * 100;
G20 = abs(multidiel(n, L, la/la0, 20, ’te’)).^2 * 100;
G30 = abs(multidiel(n, L, la/la0, 30, ’te’)).^2 * 100;
G40 = abs(multidiel(n, L, la/la0, 40, ’te’)).^2 * 100;

plot(la, [G0; G20; G30; G40]);

7.4 Omnidirectional Dielectric Mirrors

Until recently, it was generally thought that it was impossible to have an omnidirectional
dielectric mirror, that is, a mirror that is perfectly reflecting at all angles of incidence
and for both TE and TM polarizations. However, such mirrors are possible and have
recently been manufactured [317,318] and the conditions for their existence clarified
[317–321].

We consider the same dielectric mirror structure of Sec. 5.3, consisting of alternating
layers of high and low index. Fig. 7.4.1 shows such a structure under oblique incidence.
There are N bilayers and a total of M = 2N + 1 single layers, starting and ending with
a high-index layer.

Fig. 7.4.1 Dielectric mirror at oblique incidence.

The incidence angles on each interface are related by Snell’s law:

na sinθa = nH sinθH = nL sinθL = nb sinθb (7.4.1)

The phase thicknesses within the high- and low-index layers are in normalized form:

δH = 2π
f
f0
LH cosθH , δL = 2π

f
f0
LL cosθL (7.4.2)

where LH = nHlH/λ0, LL = nLlL/λ0 are the optical thicknesses normalized to some λ0,

and f0 = c0/λ0. Note also, cosθi =
√

1− n2
a sin2 θa/n2

i , i = H,L.
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A necessary (but not sufficient) condition for omnidirectional reflectivity for both
polarizations is that the maximum angle of refraction θH,max inside the first layer be
less than the Brewster angle θB of the second interface, that is, the high-low interface,
so that the Brewster angle can never be accessed by a wave incident on the first interface.
If this condition is not satisfied, a TM wave would not be reflected at the second and all
subsequent interfaces and will transmit through the structure.

Because sinθH,max = na/nH and tanθB = nL/nH, or, sinθB = nL/
√
n2
H + n2

L, the
condition θH,max < θB, or the equivalent condition sinθH,max < sinθB, can be written

as na/nH < nL/
√
n2
H + n2

L, or

na <
nHnL√
n2
H + n2

L

(7.4.3)

We note that the exact opposite of this condition is required in the design of multi-
layer Brewster polarizing beam splitters, discussed in the next section.

In addition to condition (7.4.3), in order to achieve omnidirectional reflectivity we
must require that the high-reflectance bands have a common overlapping region for all
incidence angles and for both polarizations.

To determine these bands, we note that the entire discussion of Sec. 5.3 carries
through unchanged, provided we use the transverse reflection coefficients and trans-
verse refractive indices. For example, the transverse version of the bilayer transition
matrix of Eq. (5.3.5) will be:

FT = 1

1− ρ2
T

[
ej(δH+δL) − ρ2

Tej(δH−δL) −2jρTe−jδH sinδL
2jρTejδH sinδL e−j(δH+δL) − ρ2

Te−j(δH−δL)

]
(7.4.4)

where ρT = (nHT − nLT)/(nHT + nLT) and:

nHT =



nH
cosθH
nH cosθH

nLT =



nL
cosθL
nL cosθL

(TM polarization)

(TE polarization)
(7.4.5)

Explicitly, we have for the two polarizations:

ρTM = nH cosθL − nL cosθH
nH cosθL + nL cosθH

, ρTE = nH cosθH − nL cosθL
nH cosθH + nL cosθL

(7.4.6)

The trace of FT is as in Eq. (5.3.13):

a = cos(δH + δL)−ρ2
T cos(δH − δL)

1− ρ2
T

(7.4.7)

The eigenvalues of the matrixFT areλ± = e±jKl, whereK = acos(a)/l and l = lH+lL.
The condition a = −1 determines the bandedge frequencies of the high-reflectance
bands. As in Eq. (5.3.16), this condition is equivalent to:
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cos2(δH + δL
2

) = ρ2
T cos2(δH − δL

2

)
(7.4.8)

Defining the quantities L± = LH cosθH ± LL cosθL and the normalized frequency
F = f/f0, we may write:

δH ± δL
2

= π f
f0
(LH cosθH ± LL cosθL)= πFL± (7.4.9)

Then, taking square roots of Eq. (7.4.8), we have:

cos(πFL+)= ±|ρT| cos(πFL−)

The plus sign gives the left bandedge, F1 = f1/f0, and the minus sign, the right
bandedge, F2 = f2/f0. Thus, F1, F2 are the solutions of the equations:

cos(πF1L+) = |ρT| cos(πF1L−)

cos(πF2L+) = −|ρT| cos(πF2L−)
(7.4.10)

The bandwidth and center frequency of the reflecting band are:

∆f
f0
= ∆F = F2 − F1 ,

fc
f0
= Fc = F1 + F2

2
(7.4.11)

The corresponding bandwidth in wavelengths is defined in terms of the left and right
bandedge wavelengths:

λ1 = λ0

F2
= c0

f2
, λ2 = λ0

F1
= c0

f1
, ∆λ = λ2 − λ1 (7.4.12)

An approximate solution of Eq. (7.4.10) can be obtained by setting L− = 0 in the
right-hand sides of Eq. (7.4.10):

cos(πF1L+)= |ρT| , cos(πF2L+)= −|ρT| (7.4.13)

with solutions:

F1 = acos(|ρT|)
πL+

, F2 = acos(−|ρT|)
πL+

(7.4.14)

Using the trigonometric identities acos(±|ρT|)= π/2 ∓ asin(|ρT|), we obtain the
bandwidth and center frequency:

∆f = f2 − f1 = 2f0 asin(|ρT|)
πL+

, fc = f1 + f2
2

= f0
2L+

(7.4.15)

It follows that the center wavelength will be λc = c0/fc = 2L+λ0 or,

λc = 2L+λ0 = 2(lHnH cosθH + lLnL cosθL) (7.4.16)
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At normal incidence, we have λc = 2(lHnH+ lLnL). For quarter-wavelength designs
at λ0 at normal incidence, we have L+ = 1/4+ 1/4 = 1/2, so that λc = λ0.

The accuracy of the approximate solution (7.4.14) depends on the ratio d = L−/L+.
Even if at normal incidence the layers were quarter-wavelength with LH = LL = 0.25,
the equality of LH and LL will no longer be true at other angles of incidence. In fact, the
quantity d is an increasing function of θa. For larger values of d, the exact solution of
(7.4.10) can be obtained by the following iteration:

initialize with F1 = F2 = 0,
for i = 0,1, . . . ,Niter, do:

F1 = 1

πL+
acos

(|ρT| cos(πF1L−)
)

F2 = 1

πL+
acos

(−|ρT| cos(πF2L−)
)

(7.4.17)

Evidently, the i = 0 iteration gives the zeroth-order solution (7.4.14). The iteration
converges extremely fast, requiring only 3–4 iterations Niter. The MATLAB function
omniband implements this algorithm. It has usage:

[F1,F2] = omniband(na,nH,nL,LH,LL,theta,pol,Niter) % bandedge frequencies

[F1,F2] = omniband(na,nH,nL,LH,LL,theta,pol) % equivalent to Niter = 0

where theta is the incidence angle in degrees, pol is one of the strings ’te’ or ’tm’ for
TE or TM polarization, and Niter is the desired number of iterations. If this argument
is omitted, only the i = 0 iteration is carried out.

It is straightforward but tedious to verify the following facts about the above solu-
tions. First, f1, f2 are increasing functions of θa for both TE and TM polarizations. Thus,
the center frequency of the band fc = (f1+f2)/2 shifts towards higher frequencies with
increasing angle θa. The corresponding wavelength intervals will shift towards lower
wavelengths.

Second, the bandwidth ∆f = f2 − f1 is an increasing function of θa for TE, and a
decreasing one for TM polarization. Thus, as θa increases, the reflecting band for TE
expands and that of TM shrinks, while their (slightly different) centers fc shift upwards.

In order to achieve omnidirectional reflectivity, the TE and TM bands must have a
common overlapping intersection for all angles of incidence. Because the TM band is
always narrower than the TE band, it will determine the final common omnidirectional
band.

The worst case of overlap is for the TM band at 90o angle of incidence, which must
overlap with the TM/TE band at 0o. The left bandedge of this TM band, f1,TM(90o), must
be less than the right bandedge of the 0o band, f2(0o). This is a sufficient condition for
omnidirectional reflectivity.

Thus, the minimum band shared by all angles of incidence and both polarizations
will be [f1,TM(90o), f2(0o)], having width:

∆fmin = f2(0o)−f1,TM(90o) (minimum omnidirectional bandwidth) (7.4.18)
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In a more restricted sense, the common reflecting band for both polarizations and
for angles up to a given θa will be [f1,TM(θa), f2,TM(0o)] and the corresponding band-
width:

∆f(θa)= f2(0o)−f1,TM(θa) (7.4.19)

In addition to computing the bandwidths of either the TM or the TE bands at any
angle of incidence, the function omniband can also compute the above common band-
widths. If the parameter pol is equal to ’tem’, then F1, F2 are those of Eqs. (7.4.18) and
(7.4.19). Its extended usage is as follows:

[F1,F2] = omniband(na,nH,nL,LH,LL,theta,’tem’) % Eq. (7.4.19)

[F1,F2] = omniband(na,nH,nL,LH,LL,90,’tem’) % Eq. (7.4.18)

[F1,F2] = omniband(na,nH,nL,LH,LL) % Eq. (7.4.18)

Next, we discuss some simulation examples that will help clarify the above remarks.

Example 7.4.1: The first example is the angular dependence of Example 5.3.2. In order to flatten
out and sharpen the edges of the reflecting bands, we useN = 30 bilayers. Fig. 7.4.2 shows
the TE and TM reflectances |ΓT1(λ)|2 as functions of the free-space wavelength λ, for the
two angles of incidence θa = 45o and 80o.

Fig. 7.4.3 depicts the reflectances as functions of frequency f . The refractive indices were
na = 1, nH = 2.32, nL = 1.38, nb = 1.52, and the bilayers were quarter-wavelength
LH = LL = 0.25 at the normalization wavelength λ0 = 500 nm.

The necessary condition (7.4.3) is satisfied and we find for the maximum angle of refraction
and the Brewster angle: θH,max = 25.53o and θB = 30.75o Thus, we have θH,max < θB.
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Fig. 7.4.2 TM and TE reflectances for nH = 2.32, nL = 1.38.

On each graph, we have indicated the corresponding bandwidth intervals calculated with
omniband. The indicated intervals are for 0o incidence, for TE and TM, and for the common
band Eq. (7.4.19) at θa. We observe the shifting of the bands towards higher frequencies,
or lower wavelengths, and the shrinking of the TM and expanding of the TE bands, and the
shrinking of the common band.

At 45o, there is still sufficient overlap, but at 80o, the TM band has shifted almost to the
end of the 0o band, resulting in an extremely narrow common band.
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Fig. 7.4.3 TM and TE frequency responses for nH = 2.32, nL = 1.38.

The arrows labeled fc0 and fc represent the (TM) band center frequencies at 0o and 45o or
80o. The calculated bandedges corresponding to 90o incidence were λ1 = λ0/F2,TM(0o)=
429.73 nm and λ2 = λ0/F1,TM(90o)= 432.16 nm, with bandwidth ∆λ = λ2 − λ1 = 2.43
nm. Thus, this structure does exhibit omnidirectional reflectivity, albeit over a very narrow
band. The MATLAB code used to generate these graphs was:

na = 1; nb = 1.52; nH = 2.32; nL = 1.38;
LH = 0.25; LL = 0.25;

la0 = 500;
la = linspace(300,800,501);

th = 45; N = 30;
n = [na, nH, repmat([nL,nH], 1, N), nb];
L = [LH, repmat([LL,LH], 1, N)];
Ge = 100*abs(multidiel(n,L,la/la0, th, ’te’)).^2;
Gm = 100*abs(multidiel(n,L,la/la0, th, ’tm’)).^2;
G0 = 100*abs(multidiel(n,L,la/la0)).^2;

plot(la,Gm, la,Ge, la,G0);

[F10,F20] = omniband(na,nH,nL,LH,LL, 0, ’te’);
[F1e,F2e] = omniband(na,nH,nL,LH,LL, th,’te’);
[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’);
[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’);

Because the reflectivity bands shrink with decreasing ratio nH/nL, if we were to slightly
decrease nH , then the TM band could be made to shift beyond the end of the 0o band and
there would be no common overlapping reflecting band for all angles. We can observe this
behavior in Fig. 7.4.4, which has nH = 2, with all the other parameters kept the same.

At 45o there is a common overlap, but at 80o, the TM band has already moved beyond the 0o

band, while the TE band still overlaps with the latter. This example has no omnidirectional
reflectivity, although the necessary condition (7.4.3) is still satisfied with θH,max = 30o and
θB = 34.61o.
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Fig. 7.4.4 TM and TE reflectances for nH = 2, nL = 1.38.

On the other hand, if we were to increase nH , all the bands will widen, and so will the
final common band, resulting in an omnidirectional mirror of wider bandwidth. Fig. 7.4.5
shows the case of nH = 3, exhibiting a substantial overlap and omnidirectional behavior.
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Fig. 7.4.5 TM and TE reflectances for nH = 3, nL = 1.38.

The minimum band (7.4.18) was [F1, F2]= [1.0465,1.2412] corresponding to the wave-
length bandedges λ1 = λ0/F2 = 402.84 nm and λ2 = λ0/F1 = 477.79 nm with a width of
∆λ = λ2 −λ1 = 74.95 nm, a substantial difference from that of Fig. 7.4.2. The bandedges
were computed with Nit = 0 in Eq. (7.4.17); with Nit = 3, we obtain the more accurate
values: [F1, F2]= [1.0505,1.2412].

To illustrate the dependence of the TE and TM bandwidths on the incident angle θa, we
have calculated and plotted the normalized bandedge frequencies F1(θa), F2(θa) for the
range of angles 0 ≤ θa ≤ 90o for both polarizations. The left graph of Fig. 7.4.6 shows the
case nH = 3, nL = 1.38, and the right graph, the case nH = 2, nL = 1.38.

We note that the TE band widens with increasing angle, whereas the TM band narrows. At
the same time, the band centers move toward higher frequencies. In the left graph, there
is a common band shared by both polarizations and all angles, that is, the band defined
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Fig. 7.4.6 TM/TE bandgaps versus angle for nH = 3, nL = 1.38 and nH = 2, nL = 1.38.

by F2(0o), and F1,TM(90o). For the right graph, the bandedge F1,TM(θa) increases beyond
F2(0o) for angles θa greater than about 61.8o, and therefore, there is no omnidirectional
band. The calculations of F1(θa), F2(θa) were done with omniband with Niter = 3. ��

Example 7.4.2: In Fig. 7.4.7, we study the effect of changing the optical lengths of the bilayers
from quarter-wavelength to LH = 0.3 and LL = 0.1. The main result is to narrow the
bands. This example, also illustrates the use of the iteration (7.4.17). The approximate
solution (7.4.15) and exact solutions for the 80o bandedge frequencies are obtained from
the two MATLAB calls:

[F1,F2] = omniband(na,nH,nL,LH,LL,80,’tem’,0);
[F1,F2] = omniband(na,nH,nL,LH,LL,80,’tem’,3);

with results [F1, F2]= [1.0933,1.3891] and [F1, F2]= [1.1315,1.3266], respectively.
Three iterations produce an excellent approximation to the exact solution. ��
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Fig. 7.4.7 Unequal length layers LH = 0.30, LL = 0.15.
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Example 7.4.3: Here, we revisit Example 5.3.3, whose parameters correspond to the recently
constructed omnidirectional infrared mirror [317]. Fig. 7.4.8 shows the reflectances as
functions of wavelength and frequency at θa = 45o and 80o for both TE and TM polar-
izations. At both angles of incidence there is a wide overlap, essentially over the desired
10–15 µm band.

The structure consisted of nine alternating layers of Tellurium (nH = 4.6) and Polystyrene
(nL = 1.6) on a NaCl substrate (nb = 1.48.) The physical lengths were lH = 0.8 and lL = 1.6
µm. The normalizing wavelength was λ0 = 12.5 µm. The optical thicknesses in units of
λ0 were LH = 0.2944 and LL = 0.2112.
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Fig. 7.4.8 Nine-layer Te/PS omnidirectional mirror over the infrared.

The bandedges at 0o were [F1, F2]= [0.6764,1.2875] with center frequency Fc0 = 0.9819,
corresponding to wavelength λc0 = λ0/Fc0 = 12.73 µm. Similarly, at 45o, the band centers
for TE and TM polarizations were Fc,TE = 1.0272 and Fc,TM = 1.0313, resulting in the
wavelengths λc,TE = 12.17 and λc,TM = 12.12 µm (shown on the graphs are the TE centers
only.)

The final bandedges of the common reflecting band computed from Eq. (7.4.18) were
[F1, F2]= [0.8207,1.2875], resulting in the wavelength bandedges λ1 = λ0/F2 = 9.71
and λ2 = λ0/F1 = 14.95 µm, with a width of ∆λ = λ2 − λ1 = 5.24 µm and band center
(λ1 +λ2)/2 = 12.33 µm (the approximation (7.4.15) gives 5.67 and 12.4 µm.) The graphs
were generated by the following MATLAB code:
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la0 = 12.5; la = linspace(5,25,401);
na = 1; nb = 1.48; nH = 4.6; nL = 1.6;
lH = 0.8; lL = 1.65; LH = nH*lH/la0; LL = nL*lL/la0;

th = 45;
N = 4;
n = [na, nH, repmat([nL,nH], 1, N), nb];
L = [LH, repmat([LL,LH], 1, N)];
Ge = 100*abs(multidiel(n,L,la/la0, th, ’te’)).^2;
Gm = 100*abs(multidiel(n,L,la/la0, th, ’tm’)).^2;
G0 = 100*abs(multidiel(n,L,la/la0)).^2;

plot(la,Gm, la,Ge, la,G0);

Ni = 5;
[F10,F20] = omniband(na,nH,nL,LH,LL, 0, ’te’, Ni); band at 0o

[F1e,F2e] = omniband(na,nH,nL,LH,LL, th,’te’, Ni); TE band

[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’, Ni); TM band

[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’,Ni); Eq. (7.4.19)

[F1,F2] = omniband(na,nH,nL,LH,LL, 90,’tem’,Ni); Eq. (7.4.18)

Finally, Fig. 7.4.9 shows the same example with the number of bilayers doubled to N = 8.
The mirror bands are flatter and sharper, but the widths are the same. ��
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Fig. 7.4.9 Omnidirectional mirror with N = 8.

Example 7.4.4: The last example has parameters corresponding to the recently constructed
omnidirectional reflector over the visible range [318]. The refractive indices were na = 1,
nH = 2.6 (ZnSe), nL = 1.34 (Na3AlF6 cryolite), and nb = 1.5 (glass substrate.) The layer
lengths were lH = lL = 90 nm. There were N = 9 bilayers or 2N + 1 = 19 layers, starting
and ending with nH .

With these values, the maximum angle of refraction is θH,max = 22.27o and is less than the
Brewster angle θB = 27.27o.

The normalizing wavelength was taken to beλ0 = 620 nm. Then, the corresponding optical
lengths were LL = nLlL/λ0 = 0.1945 and LH = nHlH/λ0 = 0.3774. The overall minimum
omnidirectional band is [λ1, λ2]= [605.42, 646.88] nm. It was computed by the MATLAB
call to omniband with Ni = 5 iterations:
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[F1,F2] = omniband(na,nH,nL,LH,LL,90,’tem’,Ni);
la1 = la0/F2; la2 = la0/F1;

(The values of λ1, λ2 do not depend on the choice of λ0.) Fig. 7.4.10 shows the reflectance
at 45o and 80o. The upper panel of graphs has N = 9 bilayers as in [318]. The lower panel
hasN = 18 bilayers or 38 layers, and has more well-defined band gaps. The two arrows in
the figures correspond to the values of λ1, λ2 of the minimum omnidirectional band. ��
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Fig. 7.4.10 Omnidirectional mirror over visible band.

7.5 Polarizing Beam Splitters

The objective of an omnidirectional mirror is to achieve high reflectivity for both polar-
izations. However, in polarizers, we are interested in separating the TE and TM polariza-
tions. This can be accomplished with a periodic bilayer structure of the type shown in
Fig. 7.4.1, which is highly reflecting only for TE and highly transmitting for TM polariza-
tions. This is the principle of the so-called MacNeille polarizers [184,188,191,210,213,228–
234].

If the angle of incidence θa is chosen such that the angle of refraction in the first
high-index layer is equal to the Brewster angle of the high-low interface, then the TM
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component will not be reflected at the bilayer interfaces and will transmit through. The
design condition is θH = θB, or sinθH = sinθB, which gives:

na sinθa = nH sinθH = nH sinθB = nHnL√
n2
H + n2

L

(7.5.1)

This condition can be solved either for the angleθa or for the indexna of the incident
medium:

sinθa = nHnL
na
√
n2
H + n2

L

or, na = nHnL
sinθa

√
n2
H + n2

L

(7.5.2)

In either case, the feasibility of this approach requires the opposite of the condition
(7.4.3), that is,

na >
nHnL√
n2
H + n2

L

(7.5.3)

If the angle θa is set equal to the convenient value of 45o, then, condition Eq. (7.5.2)
fixes the value of the refractive index na to be given by:

na =
√

2nHnL√
n2
H + n2

L

(7.5.4)

Fig. 7.5.1 depicts such a multilayer structure sandwiched between two glass prisms
with 45o angles. The thin films are deposited along the hypotenuse of each prism and
the prisms are then cemented together. The incident, reflected, and transmitted beams
are perpendicular to the prism sides.

Fig. 7.5.1 Polarizing beam splitter.

Not many combinations of available materials satisfy condition (7.5.4). One possible
solution is Banning’s [191] with nH = 2.3 (zinc sulfide), nL = 1.25 (cryolite), and na =
1.5532. Another solution is given in Clapham, et al, [213], with nH = 2.04 (zirconium
oxide), nL = 1.385 (magnesium fluoride), and na = 1.6205 (a form of dense flint glass.)
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Fig. 7.5.2 shows the TE and TM reflectances of the case nH = 2.3 and nL = 1.25. The
incident and output media had na = nb = 1.5532. The maximum reflectivity for the TE
component is 99.99%, while that of the TM component is 3% (note the different vertical
scales in the two graphs.)

The number of bilayers was N = 5 and the center frequency of the TE band was
chosen to correspond to a wavelength of λc = 500 nm. To achieve this, the normal-
izing wavelength was required to be λ0 = 718.38 nm. The layer lengths were quarter-
wavelengths at λ0. The TE bandwidth calculated with omniband is also shown.

The Brewster angles inside the high- and low-index layers are θH = 28.52o and
θL = 61.48o. As expected, they satisfy θH + θL = 90o.
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Fig. 7.5.2 Polarizer with nH = 2.3 and nL = 1.25.

Fig. 7.5.3 shows the second case having nH = 2.04, nL = 1.385, na = nb = 1.6205.
The normalizing wavelength was λ0 = 716.27 nm in order to give λc = 500 nm. This
case achieves a maximum TE reflectivity of 99.89% and TM reflectivity of only 0.53%.
The typical MATLAB code generating these examples was:
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Fig. 7.5.3 Polarizer with nH = 2.04 and nL = 1.385.
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nH = 2.3; nL = 1.25;
LH = 0.25; LL = 0.25;

na = nH*nL/sqrt(nH^2+nL^2)/sin(pi/4); nb=na;

[f1e,f2e] = omniband(na,nH,nL,LH,LL,th,’te’,5);
lac = 500;
la0 = lac*(f1e+f2e)/2; because λc = λ0/Fc

la = linspace(300,800,301);

N = 5;
n = [na, nH, repmat([nL,nH], 1, N), nb];
L = [LH, repmat([LL,LH], 1, N)];
Ge = 100*abs(multidiel(n,L,la/la0, th, ’te’)).^2;
Gm = 100*abs(multidiel(n,L,la/la0, th, ’tm’)).^2;

plot(la,Ge);

7.6 Reflection and Refraction in Birefringent Media

Uniform plane wave propagation in biaxial media was discussed in Sec. 3.6. We found
that there is an effective refractive index N such that k = Nk0 = Nω/c0. The index N,
given by Eq. (3.6.8), depends on the polarization of the fields and the direction of the
wave vector. The expressions for the TE and TM fields were given in Eqs. (3.6.18) and
(3.6.27).

Here, we discuss how such fields get reflected and refracted at planar interfaces
between biaxial media. Further discussion can be found in [182] and [241–259].

Fig. 6.1.1 depicts the TM and TE cases, with the understanding that the left and
right biaxial media are described by the triplets of principal indices n = [n1, n2, n3]
and n′ = [n′1, n′2, n′3], and that the E-fields are not perpendicular to the corresponding
wave vectors in the TM case. The principal indices are aligned along the xyz axes, the
xy-plane is the interface plane, and the xz-plane is the plane of incidence.

The boundary conditions require the matching of the electric field components that
are tangential to the interface, that is, the components Ex in the TM case or Ey in TE.
It proves convenient, therefore, to re-express Eq. (3.6.27) directly in terms of the Ex
component and Eq. (3.6.18) in terms of Ey.

For the TM case, we write E = x̂Ex + ẑEz = Ex(x̂− ẑ tan θ̄), for the electric field of
the left-incident field, where we used Ez = −Ex tan θ̄. Similarly, for the magnetic field
we have from Eq. (3.6.26):

H = N
η0

ŷ(Ex cosθ− Ez sinθ)= N
η0

ŷEx cosθ
(

1− Ez
Ex

tanθ
)

= N
η0

ŷEx cosθ
(

1+ n
2
1

n2
3

tan2 θ
)
= N
η0

ŷEx cosθ
(
n2

3 cos2 θ+ n2
1 sin2 θ

n2
3 cos2 θ

)

= N
η0

ŷEx cosθ
(

n2
3n

2
1

N2n2
3 cos2 θ

)
= Ex
η0

n2
1

N cosθ
ŷ

where we replaced Ez/Ex = − tan θ̄ = −(n2
1/n

2
3)tanθ and used Eq. (3.7.10). Thus,
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E(r) = Ex
(

x̂− ẑ
n2

1

n2
3

tanθ
)
e−j k·r

H(r) = Ex
η0

n2
1

N cosθ
ŷe−j k·r = Ex

ηTM
ŷe−j k·r

(TM) (7.6.1)

Similarly, we may rewrite the TE case of Eq. (3.6.18) in the form:

E(r) = Eyŷe−j k·r

H(r) = Ey
η0
n2 cosθ(−x̂+ ẑ tanθ)e−j k·r = Ey

ηTE
(−x̂+ ẑ tanθ)e−j k·r

(TE) (7.6.2)

The propagation phase factors are:

e−j k·r = e−jk0xN sinθ−jk0zN cosθ (TM and TE propagation factors) (7.6.3)

Unlike the isotropic case, the phase factors are different in the TM and TE cases
because the value of N is different, as given by Eq. (3.6.8), or,

N =




n1n3√
n2

1 sin2 θ+ n2
3 cos2 θ

, (TM or p-polarization)

n2, (TE or s-polarization)

(7.6.4)

In Eqs. (7.6.1) and (7.6.2), the effective transverse impedances are defined by ηTM =
Ex/Hy and ηTE = −Ey/Hx, and are given as follows:

ηTM = η0
N cosθ
n2

1
, ηTE = η0

n2 cosθ
(transverse impedances) (7.6.5)

Defining the TM and TE effective transverse refractive indices through ηTM = η0/nTM

and ηTE = η0/nTE, we have:

nTM = n2
1

N cosθ
= n1n3√

n2
3 −N2 sin2 θ

nTE = n2 cosθ

(transverse refractive indices) (7.6.6)

where we used Eq. (3.6.23) for the TM case, that is,

N cosθ = n1

n3

√
n2

3 −N2 sin2 θ (7.6.7)

In the isotropic case,N = n1 = n2 = n3 = n, Eqs. (7.6.6) reduce to Eq. (6.2.13). Next,
we discuss the TM and TE reflection and refraction problems of Fig. 6.1.1.
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Assuming that the interface is at z = 0, the equality of the total tangential electric
fields (Ex component for TM and Ey for TE), implies as in Sec. 6.1 that the propagation
phase factors must match at all values of x:

e−jkx+x = e−jkx−x = e−jk′x+x = e−jk′x−x

which requires that kx+ = kx− = k′x+ = k′x−, or, because kx = k sinθ = Nk0 sinθ:

N sinθ+ = N sinθ− = N′ sinθ′+ = N′ sinθ′−

This implies Snell’s law of reflection, that is, θ+ = θ− ≡ θ and θ′+ = θ′− ≡ θ′, and
Snell’s law of refraction,

N sinθ = N′ sinθ′ (Snell’s law for birefringent media) (7.6.8)

Thus, Snell’s law is essentially the same as in the isotropic case, provided one uses
the effective refractive index N. Because N depends on the polarization, there will be
two different refraction angles† for the same angle of incidence. In particular, Eq. (7.6.8)
can be written explicitly in the two polarization cases:

n1n3 sinθ√
n2

1 sin2 θ+ n2
3 cos2 θ

= n′1n′3 sinθ′√
n′21 sin2 θ′ + n′23 cos2 θ′

(TM) (7.6.9a)

n2 sinθ = n′2 sinθ′ (TE) (7.6.9b)

Both expressions reduce to Eq. (6.1.6) in the isotropic case. The explicit solutions of
Eq. (7.6.9a) for sinθ′ and sinθ are:

sinθ′ = n1n3n′3 sinθ√[
n′21 n′23 (n2

1 − n2
3)−n2

1n
2
3(n

′2
1 − n′23 )

]
sin2 θ+ n′21 n′23 n2

3

sinθ = n′1n′3n3 sinθ′√[
n2

1n
2
3(n

′2
1 − n′23 )−n′21 n′23 (n2

1 − n2
3)
]

sin2 θ′ + n2
1n

2
3n
′2
3

(7.6.10)

The MATLAB function snell, solves Eqs. (7.6.9) for θ′ given the angle of incidence
θ and the polarization type. It works for any type of medium, isotropic, uniaxial, or
biaxial. It has usage:

thb = snell(na,nb,tha,pol); % refraction angle from Snell’s law

The refractive index inputs na, nb may be entered as 1-, 2-, or 3-dimensional column
or row vectors, for example, na = [na] (isotropic), na = [nao, nae] (uniaxial), or na =
[na1, na2, na3] (biaxial).

Next, we discuss the propagation and matching of the transverse fields. All the
results of Sec. 6.3 translate verbatim to the birefringent case, provided one uses the
proper transverse refractive indices according to Eq. (7.6.6).

†Hence, the name birefringent.
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In particular, the propagation equations (6.3.5)–(6.3.7) for the transverse fields, for
the transverse reflection coefficients ΓT, and for the transverse wave impedances ZT,
remain unchanged.

The phase thickness δz for propagating along z by a distance l also remains the same
as Eq. (6.3.8), except that the index N must be used in the optical length, and therefore,
δz depends on the polarization:

δz = kzl = kl cosθ = Nk0l cosθ = 2π
λ
lN cosθ (7.6.11)

Using Eq. (7.6.7), we have explicitly:

δz = 2π
λ
l
n1

n3

√
n2

3 −N2 sin2 θ , (TM) (7.6.12a)

δz = 2π
λ
ln2 cosθ , (TE) (7.6.12b)

The transverse matching matrix (6.3.11) and Fresnel reflection coefficients (6.3.12)
remain the same. Explicitly, we have in the TM and TE cases:

ρTM = nTM − n′TM

nTM + n′TM
=

n2
1

N cosθ
− n′21
N′ cosθ′

n2
1

N cosθ
+ n′21
N′ cosθ′

ρTE = nTE − n′TE

nTE + n′TE
= n2 cosθ− n′2 cosθ′

n2 cosθ+ n′2 cosθ′

(7.6.13)

Using Eq. (7.6.6) and the TM and TE Snell’s laws, Eqs. (7.6.9), we may rewrite the
reflection coefficients in terms of the angle θ only:

ρTM =
n1n3

√
n′23 −N2 sin2 θ− n′1n′3

√
n2

3 −N2 sin2 θ

n1n3

√
n′23 −N2 sin2 θ+ n′1n′3

√
n2

3 −N2 sin2 θ

ρTE =
n2 cosθ−

√
n′22 − n2

2 sin2 θ

n2 cosθ+
√
n′22 − n2

2 sin2 θ

(7.6.14)

The quantity N2 sin2 θ can be expressed directly in terms of θ and the refractive
indices of the incident medium. Using Eq. (7.6.4), we have:

N2 sin2 θ = n2
1n

2
3 sin2 θ

n2
1 sin2 θ+ n2

3 cos2 θ
(7.6.15)

The TE reflection coefficient behaves like the TE isotropic case. The TM coefficient
exhibits a much more complicated behavior. If n1 = n′1 but n3 	= n′3, it behaves like the
TM isotropic case. If n3 = n′3 but n1 	= n′1, the square-root factors cancel and it becomes
independent of θ:
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ρTM = n1 − n′1
n1 + n′1

(7.6.16)

Another interesting case is when both media are uniaxial and n′3 = n1 and n′1 = n3,
that is, the refractive index vectors are n = [n1, n1, n3] and n′ = [n3, n3, n1]. It is
straightforward to show in this case that ρTM = ρTE at all angles of incidence. Multilayer
films made from alternating such materials exhibit similar TM and TE optical properties
[241].

The MATLAB function fresnel can evaluate Eqs. (7.6.14) at any range of incident
angles θ. The function determines internally whether the media are isotropic, uniaxial,
or biaxial.

7.7 Brewster and Critical Angles in Birefringent Media

The maximum angle of refraction, critical angle of incidence, and Brewster angle, have
their counterparts in birefringent media.

It is straightforward to verify that θ′ is an increasing function of θ in Eq. (7.6.9). The
maximum angle of refraction θ′c is obtained by setting θ = 90o in Eq. (7.6.9).

For the TE case, we obtain sinθ′c = n2/n′2. As in the isotropic case of Eq. (6.5.2), this
requires that n2 < n′2, that is, the incident medium is less dense than the transmitted
medium, with respect to the index n2. For the TM case, we obtain from Eq. (7.6.9a):

sinθ′c =
n3n′3√

n2
3n
′2
3 + n′21 (n′23 − n2

3)
(maximum TM refraction angle) (7.7.1)

This requires that n3 < n′3. On the other hand, if n3 > n′3, we obtain the critical
angle of incidence θc that corresponds to θ′ = 90o in Eq. (7.6.10):

sinθc = n3n′3√
n2

3n
′2
3 + n2

1(n
2
3 − n′23 )

(critical TM angle) (7.7.2)

whereas for the TE case, we have sinθc = n′2/n2, which requires n2 > n′2.
In the isotropic case, a Brewster angle always exists at which the TM reflection coeffi-

cient vanishes, ρTM = 0. In the birefringent case, the Brewster angle does not necessarily
exist, as is the case of Eq. (7.6.16), and it can also have the value zero, or even be imagi-
nary.

The Brewster angle condition ρTM = 0 is equivalent to the equality of the transverse
refractive indices nTM = n′TM. Using Eq. (7.6.6), we obtain:

nTM = n′TM ⇒ n1n3√
n2

3 −N2 sin2 θ
= n′1n′3√

n′23 −N2 sin2 θ
(7.7.3)

where N2 sin2 θ is given by Eq. (7.6.15). Solving for θ, we obtain the expression for the
Brewster angle from the left medium:
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tanθB = n3n′3
n2

1

√√√√n2
1 − n′21
n2

3 − n′23
(Brewster angle) (7.7.4)

Working instead with N′ sinθ′ = N sinθ, we obtain the Brewster angle from the
right medium, interchanging the roles of the primed and unprimed quantities:

tanθ′B =
n3n′3
n′21

√√√√n2
1 − n′21
n2

3 − n′23
(Brewster angle) (7.7.5)

Eqs. (7.7.4) and (7.7.5) reduce to Eqs. (6.6.2) and (6.6.3) in the isotropic case. It is
evident from Eq. (7.7.4) that θB is a real angle only if the quantity under the square
root is non-negative, that is, only if n1 > n′1 and n3 > n′3, or if n1 < n′1 and n3 < n′3.
Otherwise, θB is imaginary. In the special case, n1 = n′1 but n3 	= n′3, the Brewster
angle vanishes. If n3 = n′3, the Brewster angle does not exist, since then ρTM is given by
Eq. (7.6.16) and cannot vanish.

The MATLAB function brewster computes the Brewster angle θB, as well as the
critical angles θc and θ′c. For birefringent media the critical angles depend on the po-
larization. Its usage is as follows:

[thB,thc] = brewster(na,nb) % isotropic case

[thB,thcTE,thcTM] = brewster(na,nb) % birefringent case

In multilayer systems, it is convenient to know if the Brewster angle of an internal
interface is accessible from the incident medium. Using Snell’s law we have in this case
Na sinθa = N sinθ, where θa is the incident angle and Na the effective index of the
incident medium. It is simpler, then, to solve Eq. (7.7.3) directly for θa:

N2
a sinθ2

a = N2 sin2 θB = n
2
3n
′2
3 (n

2
1 − n′21 )

n2
1n

2
3 − n′23 n′21

(7.7.6)

Example 7.7.1: To illustrate the variety of possible Brewster angle values, we consider the fol-
lowing birefringent cases:

(a) n = [1.63,1.63,1.5], n′ = [1.63,1.63,1.63]
(b) n = [1.54,1.54,1.63], n′ = [1.5,1.5,1.5]
(c) n = [1.8,1.8,1.5], n′ = [1.5,1.5,1.5]
(d) n = [1.8,1.8,1.5], n′ = [1.56,1.56,1.56]

These cases were discussed in [241]. The corresponding materials are: (a) birefringent
polyester and isotropic polyester, (b) syndiotactic polystyrene and polymethylmethacrylate
(PMMA), (c) birefringent polyester and PMMA, and (d) birefringent polyester and isotropic
polyester.

Because n1 = n′1 in case (a), the Brewster angle will be zero, θB = 0o. In case (b), we
calculate θB = 29.4o. Because n2 > n′2 and n3 > n′3, there will be both TE and TM critical
angles of reflection: θc,TE = 76.9o and θc,TM = 68.1o.
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In case (c), the Brewster angle does not exist because n3 = n′3, and in fact, the TM reflection
coefficient is independent of the incident angle as in Eq. (7.6.16). The corresponding critical
angles of reflection are: θc,TE = 56.4o and θc,TM = 90o.

Finally, in case (d), because n2 > n′2 but n3 < n′3, the Brewster angle will be imaginary,
and there will be a TE critical angle of reflection and a TM maximum angle of refraction:
θc,TE = 60.1o and θ′c,TM = 74.1o.

Fig. 7.7.1 shows the TM and TE reflection coefficients |ρTM(θ)| of Eq. (7.6.14) versus θ in
the range 0 ≤ θ ≤ 90o.
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Fig. 7.7.1 TM and TE birefringent Fresnel reflection coefficients versus incident angle.

The TE coefficient in case (a) is not plotted because it is identically zero. In order to expand
the vertical scales, Fig. 7.7.2 shows the TM reflectances normalized by their values at θ =
0o, that is, it plots the quantities |ρTM(θ)/ρTM(0o)|2. Because in case (a) ρTM(0o)= 0, we
have plotted instead the scaled-up quantity |100ρTM(θ)|2.
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Fig. 7.7.2 TM reflectances normalized at normal incidence.

The typical MATLAB code used to compute the critical angles and generate these graphs
was:
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th = linspace(0,90,361); % θ at 1/4o intervals

na = [1.63,1.63,1.5]; nb = [1.63,1.63,1.63]; % note the variety of
[rte1,rtm1] = fresnel(na,nb,th); % equivalent ways of
[thb1,thcTE1,thcTM1] = brewster(na,nb); % entering na and nb

na = [1.54,1.63];
nb = [1.5, 1.5]; % FRESNEL and BREWSTER
[rte2,rtm2] = fresnel(na,nb,th); % internally extend
[thb2,thcTE2,thcTM2] = brewster(na,nb); % na,nb into 3-d arrays

na = [1.8, 1.5]; % same as na=[1.8,1.8,1.5]
nb = 1.5; % and nb=[1.5,1.5,1.5]
[rte3,rtm3] = fresnel(na,nb,th);
[thb3,thcTE3,thcTM3] = brewster(na,nb); % in this case, θB = []

na = [1.8,1.5];
nb = 1.56;
[rte4,rtm4] = fresnel(na,nb,th);
[thb4,thcTE4,thcTM4] = brewster(na,nb);

plot(th, abs([rtm1; rtm2; rtm3; rtm4]));

We note four striking properties of the birefringent cases that have no counterparts
for isotropic materials: (i) The Brewster angle can be zero, (ii) the Brewster angle may not
exist, (iii) the Brewster angle may be imaginary with the TE and TM reflection coefficients
both increasing monotonically with the incident angle, and (iv) there may be total internal
reflection in one polarization but not in the other.

7.8 Multilayer Birefringent Structures

With some redefinitions, all the results of Sec. 7.1 on multilayer dielectric structures
translate essentially unchanged to the birefringent case.

We assume the sameM-layer configuration shown in Fig. 7.1.1, where now each layer
is a biaxial material. The orthogonal optic axes of all the layers are assumed to be aligned
with the xyz film axes. The xz-plane is the plane of incidence, the layer interfaces are
parallel to the xy-plane, and the layers are arranged along the z-axis.

The ith layer is described by the triplet of refractive indices ni = [ni1, ni2, ni3],
i = 1,2, . . . ,M. The incident and exit media a,b may also be birefringent with na =
[na1, na2, na3] and nb = [nb1, nb2, nb3], although in our examples, we will assume that
they are isotropic.

The reflection/refraction angles in each layer depend on the assumed polarization
and are related to each other by the birefringent version of Snell’s law, Eq. (7.6.8):

Na sinθa = Ni sinθi = Nb sinθb , i = 1,2 . . . ,M (7.8.1)

where Na,Ni,Nb are the effective refractive indices given by Eq. (7.6.4). The phase
thickness of the ith layer depends on the polarization:
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δi = 2π
λ
liNi cosθi =




2π
λ
lini1

√√√√1− N
2
a sin2 θa
n2
i3

, (TM)

2π
λ
lini2

√√√√1− N
2
a sin2 θa
n2
i2

, (TE)

(7.8.2)

where we used Eq. (7.6.7) and Snell’s law to write in the TM and TE cases:

Ni cosθi =




ni1
ni3

√
n2
i3 −N2

i sin2 θi = ni1
√√√√1− N

2
i sin2 θi
n2
i3

= ni1
√√√√1− N

2
a sin2 θa
n2
i3

ni2 cosθi = ni2
√

1− sin2 θi = ni2
√√√√1− N

2
a sin2 θa
n2
i2

To use a unified notation for the TM and TE cases, we define the layer optical lengths
at normal-incidence, normalized by a fixed free-space wavelength λ0:

Li =



lini1
λ0
, (TM)

lini2
λ0
, (TE)

, i = 1,2, . . . ,M (7.8.3)

We define also the cosine coefficients ci, which represent cosθi in the TE birefringent
case and in the TM isotropic case:

ci =




√√√√1− N
2
a sin2 θa
n2
i3

, (TM)

√√√√1− N
2
a sin2 θa
n2
i2

, (TE)

, i = 1,2, . . . ,M (7.8.4)

At normal incidence the cosine factors are unity, ci = 1. With these definitions,
Eq. (7.8.2) can be written compactly in the form:

δi = 2π
λ0

λ
Lici = 2π

f
f0
Lici , i = 1,2, . . . ,M (7.8.5)

where λ is the operating free-space wavelength and f = c0/λ, f0 = c0/λ0. This is
the birefringent version of Eq. (7.1.10). A typical design might use quarter-wave layers,
Li = 1/4, at λ0 and at normal incidence.

The reflection coefficients ρTi at the interfaces are given by Eq. (7.1.3), but now the
transverse refractive indices are defined by the birefringent version of Eq. (7.1.4):

nTi =




n2
i1

Ni cosθi
= ni1ni3√

n2
i3 −N2

a sin2 θa
, (TM)

ni2 cosθi =
√
n2
i2 −N2

a sin2 θa , (TE)

, i = a,1,2, . . . ,M, b (7.8.6)
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With the above redefinitions, the propagation and matching equations (7.1.5)–(7.1.9)
remain unchanged. The MATLAB function multidiel can also be used in the birefrin-
gent case to compute the frequency reflection response of a multilayer structure. Its
usage is still:

[Gamma1,Z1] = multidiel(n,L,lambda,theta,pol); % birefringent multilayer structure

where the input n is a 1×(M + 2) vector of refractive indices in the isotropic case, or a
3×(M + 2) matrix, where each column represents the triplet of birefringent indices of
each medium. For uniaxial materials, n may be entered as a 2×(M + 2) matrix.

7.9 Giant Birefringent Optics

The results of Sec. 7.4 can be applied almost verbatim to the birefringent case. In
Fig. 7.4.1, we assume that the high and low alternating layers are birefringent, described
by the triplet indices nH = [nH1, nH2, nH3] and nL = [nL1, nL2, nL3]. The entry and exit
media may also be assumed to be birefringent. Then, Snell’s laws give:

Na sinθa = NH sinθH = NL sinθL = Nb sinθb (7.9.1)

The phase thicknesses δH and δL within the high and low index layers are:

δH = 2π
f
f0
LHcH , δL = 2π

f
f0
LLcL (7.9.2)

where LH, cH and LL, cL are defined by Eqs. (7.8.3) and (7.8.4) for i = H,L. The effective
transverse refractive indices within the high and low index layers are given by Eq. (7.8.6),
again with i = H,L.

The alternating reflection coefficient ρT between the high/low interfaces is given by
Eq. (7.6.14), with the quantity N2 sin2 θ replaced by N2

a sin2 θa by Snell’s law:

ρTM =
nH1nH3

√
n2
L3 −N2

a sin2 θa − nL1nL3

√
n2
H3 −N2

a sin2 θa

nH1nH3

√
n2
L3 −N2

a sin2 θa + nL1nL3

√
n2
H3 −N2

a sin2 θa

ρTE =
√
n2
H2 −N2

a sin2 θa −
√
n2
L2 −N2

a sin2 θa√
n2
H2 −N2

a sin2 θa +
√
n2
L2 −N2

a sin2 θa

(7.9.3)

The multilayer structure will exhibit reflection bands whose bandedges can be cal-
culated from Eqs. (7.4.7)–(7.4.17), with the redefinition L± = LHcH±LLcL. The MATLAB
function omniband2 calculates the bandedges. It has usage:

[F1,F2] = omniband2(na,nH,nL,LH,LL,th,pol,N);

where pol is one of the strings ’te’ or ’tm’ for TE or TM polarization, and na, nH, nL
are 1-d, 2-d, or 3-d row or column vectors of birefringent refractive indices.

Next, we discuss some mirror design examples from [241] that illustrate some prop-
erties that are specific to birefringent media. The resulting optical effects in such mirror
structures are referred to as giant birefringent optics (GBO) in [241,746].
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Example 7.9.1: We consider a GBO mirror consisting of 50-bilayers of high and low index
quarter-wave layers with refractive indices nH = [1.8,1.8,1.5], nL = [1.5,1.5,1.5] (bire-
fringent polyester and isotropic PMMA.) The surrounding media are air, na = nb = 1.

The layers are quarter wavelength at the normalization wavelength λ0 = 700 nm at normal
incidence, so that for both polarizations we take LH = LL = 1/4.

Because the high/low index layers are matched along the z-direction, nH3 = nL3, the TM
reflection coefficient at the high/low interface will be constant, independent of the incident
angle θa, as in Eq. (7.6.16). However, some dependence on θa is introduced through the
cosine factors cH, cL of Eq. (7.9.2).

The left graph of Fig. 7.9.1 shows the reflectance |ΓT(λ)|2 as a function of λ for an an-
gle of incidence θa = 60o. The TM and TE bandedge wavelengths were calculated from
omniband2 to be: [λ1, λ2]= [540.24,606.71] and [λ1, λ2]= [548.55,644.37] nm.
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Fig. 7.9.1 Reflectance of birefringent mirror.

The typical MATLAB code used to generate the left graph and the bandedge wavelengths
was as follows:

LH = 0.25; LL = 0.25;

na = [1; 1; 1];
nH = [1.8; 1.8; 1.5];
nL = [1.5; 1.5; 1.5];
nb = [1; 1; 1];

la0 = 700;
la = linspace(400,1000,601);

th = 60; % angle of incidence

N = 50; % number of bilayers

n = [na, repmat([nH,nL], 1, N), nb]; % 3×(2N + 2) matrix

L = [repmat([LH,LL], 1, N)];

Ge = 100*abs(multidiel(n, L, la/la0, th, ’te’)).^2;
Gm = 100*abs(multidiel(n, L, la/la0, th, ’tm’)).^2;
G0 = 100*abs(multidiel(n, L, la/la0)).^2;



234 Electromagnetic Waves & Antennas – S. J. Orfanidis

plot(la,Gm,’-’, la,Ge,’--’, la,G0,’:’);

[F1,F2]=omniband2(na,nH,nL,LH,LL,th,’tm’,3);
la1 = la0/F2; la2 = la0/F1; % TM bandedge wavelengths

The right graph shows the reflectance with a 25% thickness gradient (the layer thicknesses
LH,LL decrease linearly from quarter-wavelength to 25% less than that at the end.) This
can be implemented in MATLAB by defining the thickness vector L by:

L = [repmat([LH,LL], 1, N)];
L = L .* (1 - linspace(0, 0.25, 2*N)); % 25% thickness gradient

The thickness gradient increases the effective bandwidth of the reflecting bands [240].
However, the bandwidth calculation can no longer be done with omniband2. The band
centers can be shifted to higher wavelengths by choosing λ0 higher. The reflecting bands
can be made flatter by increasing the number of bilayers. ��

Example 7.9.2: In this example, we design a 30-bilayer GBO mirror with nH = [1.8,1.8,1.5]
and nL = [1.5,1.5,1.8], so that nH1 = nH2 = nL3 and nH3 = nL1 = nL2. As we discussed
in Sec. 7.6, it follows from Eq. (7.6.14) that ρTM = ρTE for all angles of incidence.

As in Ref. [241], the media a,b are taken to be isotropic with na = nb = 1.4. The
normalization wavelength at which the high/low index layer are quarter-wavelength is
λ0 = 700 nm.

The left graph of Fig. 7.9.2 shows the reflectance for a 45o angle of incidence. Because
ρTM = ρTE, the reflection bands for the TM and TE cases are essentially the same.
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Fig. 7.9.2 Birefringent mirror with identical TM and TE reflection bands.

The right graph depicts the asymptotic (for large number of bilayers) bandedges of the
reflecting band versus incident angle. They were computed with omniband2. Unlike the
isotropic case, the TM and TE bands are exactly identical. This is a consequence of the
following relationships between the cosine factors in this example: cH,TM = cL,TE and
cH,TE = cL,TM. Then, because we assume quarter-wave layers in both the TE and TM cases,
LH = LL = 1/4, we will have:
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L+,TM = LH,TMcH,TM + LL,TMcL,TM == 1

4
(cH,TM + cL,TM)= 1

4
(cL,TE + cH,TE)= L+,TE

L−,TM = LH,TMcH,TM − LL,TMcL,TM == 1

4
(cH,TM − cL,TM)= 1

4
(cL,TE − cH,TE)= −L+,TE

Because the computational algorithm (7.4.17) for the bandwidth does not depend on the
sign of L−, it follows that Eq. (7.4.17) will have the same solution for the TM and TE cases.
The typical MATLAB code for this example was:

LH = 0.25; LL = 0.25;

na = [1.4; 1.4; 1.4];
nb = [1.4; 1.4; 1.4];
nH = [1.8; 1.8; 1.5];
nL = [1.5; 1.5; 1.8];

la0 = 700;
la = linspace(400,1000,601);

tha = 45;

N = 30;
n = [na, repmat([nH,nL], 1, N), nb];
L = [repmat([LH,LL], 1, N)];

Ge = 100*abs(multidiel(n, L, la/la0, tha, ’te’)).^2;
Gm = 100*abs(multidiel(n, L, la/la0, tha, ’tm’)).^2;
G0 = 100*abs(multidiel(n, L, la/la0)).^2;

plot(la,Gm,’-’, la,Ge,’--’, la,G0,’:’);

In Fig. 7.9.3, the low-index material is changed slightly to nL = [1.5,1.5,1.9]. The main
behavior of the structure remains the same, except now the TM and TE bands are slightly
different.
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Fig. 7.9.3 Birefringent mirror with slightly different TM and TE reflection bands.

The MATLAB code used to compute the right graph was:
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theta = linspace(0,90,361); % incident angles

F1e = []; F2e = [];
F1m = []; F2m = [];

Ni = 3; % refinement iterations

for i=1:length(theta),
[f1e,f2e] = omniband2(na,nH,nL,LH,LL,theta(i),’te’,Ni);
[f1m,f2m] = omniband2(na,nH,nL,LH,LL,theta(i),’tm’,Ni);
F1e = [F1e,f1e]; F2e = [F2e,f2e];
F1m = [F1m,f1m]; F2m = [F2m,f2m]; % frequency bandedges

end

la1e = la0 ./ F2e; la2e = la0 ./ F1e; % wavelength bandedges

la1m = la0 ./ F2m; la2m = la0 ./ F1m;

plot(theta,la1m,’-’, theta,la2m,’-’, theta,la1e,’--’, theta,la2e,’--’);

As the incident angle increases, not only does the TM band widen but it also becomes wider
than the TE band—exactly the opposite behavior from the isotropic case. ��

Example 7.9.3: GBO Reflective Polarizer. By choosing biaxial high/low layers whose refractive
indices are mismatched only in the x or the y direction, one can design a mirror structure
that reflects only the TM or only the TE polarization.

Fig. 7.9.4 shows the reflectance of an 80-bilayer mirror with nH = [1.86,1.57,1.57] for
the left graph, and nH = [1.57,1.86,1.57] for the right one. In both graphs, the low index
material is the same, with nL = [1.57,1.57,1.57].
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Fig. 7.9.4 TM and TE mirror polarizers.

The angle of incidence was θa = 0o. The typical MATLAB code was:

LH = 0.25; LL = 0.25;

na = [1; 1; 1];
nb = [1; 1; 1];
nH = [1.86; 1.57; 1.57];
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nL = [1.57; 1.57; 1.57];

la0 = 700;
la = linspace(400,1000,601);

N = 80;
n = [na, repmat([nH,nL], 1, N), nb];
L = [repmat([LH,LL], 1, N)];
L = L .* linspace(1,0.75,2*N); % 25% thickness gradient

Ge = 100*abs(multidiel(n, L, la/la0, 0, ’te’)).^2;
Gm = 100*abs(multidiel(n, L, la/la0, 0, ’tm’)).^2;

plot(la,Gm,’-’, la,Ge,’--’);

A 25% thickness gradient was assumed in both cases. In the first case, the x-direction
indices are different and the structure will act as a mirror for the TM polarization. The TE
polarization will be reflected only by the air-high interface.

In the second case, the materials are matched in their y-direction indices and therefore,
the structure becomes a mirror for the TE polarization, assuming as always that the plane
of incidence is still the xz plane. ��

Giant birefringent optics is a new paradigm in the design of multilayer mirrors and
polarizers [241], offering increased flexibility in the control of reflected light. The re-
cently manufactured multilayer optical film by 3M Corp. [746] consists of hundreds to
thousands of birefringent polymer layers with individual thicknesses of the order of a
wavelength and total thickness of a sheet of paper. The optical working range of such
films are between 400–2500 nm.

Applications include the design of efficient waveguides for transporting visible light
over long distances and piping sunlight into interior rooms, reflective polarizers for
improving liquid crystal displays, and other products, such as various optoelectronic
components, cosmetics, and ”hot” and ”cold” mirrors for architectural and automotive
windows.

7.10 Problems
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Waveguides

Waveguides are used to transfer electromagnetic power efficiently from one point in
space to another. Some common guiding structures are shown in the figure below.
These include the typical coaxial cable, the two-wire and mictrostrip transmission lines,
hollow conducting waveguides, and optical fibers.

In practice, the choice of structure is dictated by: (a) the desired operating frequency
band, (b) the amount of power to be transferred, and (c) the amount of transmission
losses that can be tolerated.

Fig. 8.0.1 Typical waveguiding structures.

Coaxial cables are widely used to connect RF components. Their operation is practi-
cal for frequencies below 3 GHz. Above that the losses are too excessive. For example,
the attenuation might be 3 dB per 100 m at 100 MHz, but 10 dB/100 m at 1 GHz, and
50 dB/100 m at 10 GHz. Their power rating is typically of the order of one kilowatt at
100 MHz, but only 200 W at 2 GHz, being limited primarily because of the heating of
the coaxial conductors and of the dielectric between the conductors (dielectric voltage
breakdown is usually a secondary factor.)

Another issue is the single-mode operation of the line. At higher frequencies, in order
to prevent higher modes from being launched, the diameters of the coaxial conductors
must be reduced, diminishing the amount of power that can be transmitted.

Two-wire lines are not used at microwave frequencies because they are not shielded
and can radiate. One typical use is for connecting indoor antennas to TV sets. Microstrip
lines are used widely in microwave integrated circuits.
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Rectangular waveguides are used routinely to transfer large amounts of microwave
power at frequencies greater than 3 GHz. For example at 5 GHz, the transmitted power
might be one megawatt and the attenuation only 4 dB/100 m.

Optical fibers operate at optical and infrared frequencies, allowing a very wide band-
width. Their losses are very low, typically, 0.2 dB/km. The transmitted power is of the
order of milliwatts.

8.1 Longitudinal-Transverse Decompositions

In a waveguiding system, we are looking for solutions of Maxwell’s equations that are
propagating along the guiding direction (the z direction) and are confined in the near
vicinity of the guiding structure. Thus, the electric and magnetic fields are assumed to
have the form:

E(x, y, z, t)= E(x, y)ejωt−jβz

H(x, y, z, t)= H(x, y)ejωt−jβz
(8.1.1)

where β is the propagation wavenumber along the guide direction. The corresponding
wavelength, called the guide wavelength, is denoted by λg = 2π/β.

The precise relationship betweenω and β depends on the type of waveguiding struc-
ture and the particular propagating mode. Because the fields are confined in the trans-
verse directions (the x, y directions,) they cannot be uniform (except in very simple
structures) and will have a non-trivial dependence on the transverse coordinates x and
y. Next, we derive the equations for the phasor amplitudes E(x, y) and H(x, y).

Because of the preferential role played by the guiding direction z, it proves con-
venient to decompose Maxwell’s equations into components that are longitudinal, that
is, along the z-direction, and components that are transverse, along the x, y directions.
Thus, we decompose:

E(x, y)= x̂Ex(x, y)+ŷEy(x, y)︸ ︷︷ ︸
transverse

+ ẑEz(x, y)︸ ︷︷ ︸
longitudinal

≡ ET(x, y)+ẑEz(x, y) (8.1.2)

In a similar fashion we may decompose the gradient operator:

∇∇∇ = x̂∂x + ŷ∂y︸ ︷︷ ︸
transverse

+ ẑ∂z =∇∇∇T + ẑ∂z =∇∇∇T − jβ ẑ (8.1.3)

where we made the replacement ∂z → −jβ because of the assumed z-dependence. In-
troducing these decompositions into the source-free Maxwell’s equations we have:

∇∇∇× E = −jωµH

∇∇∇×H = jωεE
∇∇∇ · E = 0

∇∇∇ ·H = 0

⇒

(∇∇∇T − jβẑ)×(ET + ẑEz)= −jωµ(HT + ẑHz)

(∇∇∇T − jβẑ)×(HT + ẑHz)= jωε(ET + ẑEz)

(∇∇∇T − jβẑ)·(ET + ẑEz)= 0

(∇∇∇T − jβẑ)·(HT + ẑHz)= 0

(8.1.4)
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where ε, µ denote the permittivities of the medium in which the fields propagate, for
example, the medium between the coaxial conductors in a coaxial cable, or the medium
within the hollow rectangular waveguide. This medium is assumed to be lossless for
now.

We note that ẑ · ẑ = 1, ẑ × ẑ = 0, ẑ · ET = 0, ẑ · ∇∇∇TEz = 0 and that ẑ × ET and
ẑ×∇∇∇TEz are transverse while∇∇∇T × ET is longitudinal. Indeed, we have:

ẑ× ET = ẑ× (x̂Ex + ŷEy)= ŷEx − x̂Ey
∇∇∇T × ET = (x̂∂x + ŷ∂y)×(x̂Ex + ŷEy)= ẑ(∂xEy − ∂yEx)

Using these properties and equating longitudinal and transverse parts in the two
sides of Eq. (8.1.4), we obtain the equivalent set of Maxwell equations:

∇∇∇TEz × ẑ− jβ ẑ× ET = −jωµHT
∇∇∇THz × ẑ− jβ ẑ×HT = jωεET
∇∇∇T × ET + jωµ ẑHz = 0

∇∇∇T ×HT − jωε ẑEz = 0

∇∇∇T · ET − jβEz = 0

∇∇∇T ·HT − jβHz = 0

(8.1.5)

Depending on whether both, one, or none of the longitudinal components are zero,
we may classify the solutions as transverse electric and magnetic (TEM), transverse elec-
tric (TE), transverse magnetic (TM), or hybrid:

Ez = 0, Hz = 0, TEM modes
Ez = 0, Hz �= 0, TE or H modes
Ez �= 0, Hz = 0, TM or E modes
Ez �= 0, Hz �= 0, hybrid or HE or EH modes

In the case of TEM modes, which are the dominant modes in two-conductor trans-
mission lines such as the coaxial cable, the fields are purely transverse and the solution
of Eq. (8.1.5) reduces to an equivalent two-dimensional electrostatic problem. We will
discuss this case later on.

In all other cases, at least one of the longitudinal fields Ez,Hz is non-zero. It is then
possible to express the transverse field components ET, HT in terms of the longitudinal
ones, Ez, Hz.

Forming the cross-product of the second of equations (8.1.5) with ẑ and using the
BAC-CAB vector identity, ẑ × (ẑ × HT)= ẑ(ẑ · HT)−HT(ẑ · ẑ)= −HT, and similarly,
ẑ× (∇∇∇THz × ẑ)=∇∇∇THz, we obtain:

∇∇∇THz + jβHT = jωε ẑ× ET

Thus, the first two of (8.1.5) may be thought of as a linear system of two equations
in the two unknowns ẑ× ET and HT, that is,

β ẑ× ET −ωµHT = jẑ×∇∇∇TEz
ωε ẑ× ET − βHT = −j∇∇∇THz

(8.1.6)
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The solution of this system is:

ẑ× ET = − jβk2
c

ẑ×∇∇∇TEz − jωµk2
c
∇∇∇THz

HT = − jωεk2
c

ẑ×∇∇∇TEz − jβk2
c
∇∇∇THz

(8.1.7)

where we defined the so-called cutoff wavenumber kc by:

k2
c =ω2εµ− β2 = ω

2

c2
− β2 = k2 − β2 (cutoff wavenumber) (8.1.8)

The quantity k = ω/c = ω√εµ is the wavenumber a uniform plane wave would
have in the propagation medium ε, µ.

Although k2
c stands for the difference ω2εµ − β2, it turns out that the boundary

conditions for each waveguide type force k2
c to take on certain values, which can be

positive, negative, or zero, and characterize the propagating modes. For example, in a
dielectric waveguide k2

c is positive inside the guide and negative outside it; in a hollow
conducting waveguide k2

c takes on certain quantized positive values; in a TEM line, k2
c

is zero. Some related definitions are the cutoff frequency and the cutoff wavelength
defined as follows:

ωc = ckc , λc = 2π
kc

(cutoff frequency and wavelength) (8.1.9)

We can then express β in terms of ω and ωc, or ω in terms of β and ωc. Taking
the positive square roots of Eq. (8.1.8), we have:

β = 1

c

√
ω2 −ω2

c = ωc

√
1− ω

2
c

ω2
and ω =

√
ω2
c + β2c2 (8.1.10)

Often, Eq. (8.1.10) is expressed in terms of the wavelengths λ = 2π/k = 2πc/ω,
λc = 2π/kc, and λg = 2π/β. It follows from k2 = k2

c + β2 that

1

λ2
= 1

λ2
c
+ 1

λ2
g

⇒ λg = λ√
1− λ

2

λ2
c

(8.1.11)

Note that λ is related to the free-space wavelength λ0 = 2πc0/ω = c0/f by the
refractive index of the dielectric material λ = λ0/n.

It is convenient at this point to introduce the transverse impedances for the TE and
TM modes by the definitions:

ηTE = ωµβ = η ω
βc
, ηTM = β

ωε
= η βc

ω
(TE and TM impedances) (8.1.12)

where the medium impedance is η = √µ/ε, so that η/c = µ and ηc = 1/ε. We note the
properties:
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ηTEηTM = η2 ,
ηTE

ηTM
= ω2

β2c2
(8.1.13)

Because βc/ω =
√

1−ω2
c/ω2, we can write also:

ηTE = η√
1− ω

2
c

ω2

, ηTM = η
√

1− ω
2
c

ω2
(8.1.14)

With these definitions, we may rewrite Eq. (8.1.7) as follows:

ẑ× ET = − jβk2
c

(
ẑ×∇∇∇TEz + ηTE∇∇∇THz

)

HT = − jβk2
c

( 1

ηTM
ẑ×∇∇∇TEz +∇∇∇THz

) (8.1.15)

Using the result ẑ× (ẑ× ET)= −ET, we solve for ET and HT:

ET = − jβk2
c

(∇∇∇TEz − ηTE ẑ×∇∇∇THz
)

HT = − jβk2
c

(∇∇∇THz + 1

ηTM
ẑ×∇∇∇TEz

) (transverse fields) (8.1.16)

An alternative and useful way of writing these equations is to form the following
linear combinations, which are equivalent to Eq. (8.1.6):

HT − 1

ηTM
ẑ× ET = jβ∇∇∇THz

ET − ηTE HT × ẑ = j
β
∇∇∇TEz

(8.1.17)

So far we only used the first two of Maxwell’s equations (8.1.5) and expressed ET,HT
in terms of Ez,Hz. Using (8.1.16), it is easily shown that the left-hand sides of the
remaining four of Eqs. (8.1.5) take the forms:

∇∇∇T × ET + jωµ ẑHz = jωµk2
c

ẑ
(∇2

THz + k2
cHz

)

∇∇∇T ×HT − jωε ẑEz = − jωεk2
c

ẑ
(∇2

TEz + k2
cEz

)

∇∇∇T · ET − jβEz = − jβk2
c

(∇2
TEz + k2

cEz
)

∇∇∇T ·HT − jβHz = − jβk2
c

(∇2
THz + k2

cHz
)

where ∇2
T is the two-dimensional Laplacian operator:
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∇2
T =∇∇∇T ·∇∇∇T = ∂2

x + ∂2
y (8.1.18)

and we used the vectorial identities∇∇∇T ×∇∇∇TEz = 0,∇∇∇T × (ẑ×∇∇∇THz)= ẑ∇2
THz, and

∇∇∇T · (ẑ×∇∇∇THz)= 0.
It follows that in order to satisfy all of the last four of Maxwell’s equations (8.1.5), it

is necessary that the longitudinal fields Ez(x, y),Hz(x, y) satisfy the two-dimensional
Helmholtz equations:

∇2
TEz + k2

cEz = 0

∇2
THz + k2

cHz = 0
(Helmholtz equations) (8.1.19)

These equations are to be solved subject to the appropriate boundary conditions for
each waveguide type. Once, the fields Ez,Hz are known, the transverse fields ET,HT are
computed from Eq. (8.1.16), resulting in a complete solution of Maxwell’s equations for
the guiding structure. To get the full x, y, z, t dependence of the propagating fields, the
above solutions must be multiplied by the factor ejωt−jβz.

The cross-sections of practical waveguiding systems have either cartesian or cylin-
drical symmetry, such as the rectangular waveguide or the coaxial cable. Below, we
summarize the form of the above solutions in the two types of coordinate systems.

Cartesian Coordinates

The cartesian component version of Eqs. (8.1.16) and (8.1.19) is straightforward. Using
the identity ẑ×∇∇∇THz = ŷ∂xHz − x̂∂yHz, we obtain for the longitudinal components:

(∂2
x + ∂2

y)Ez + k2
cEz = 0

(∂2
x + ∂2

y)Hz + k2
cHz = 0

(8.1.20)

Eq. (8.1.16) becomes for the transverse components:

Ex = − jβk2
c

(
∂xEz + ηTE ∂yHz

)

Ey = − jβk2
c

(
∂yEz − ηTE ∂xHz

) ,
Hx = − jβk2

c

(
∂xHz − 1

ηTM
∂yEz

)

Hy = − jβk2
c

(
∂yHz + 1

ηTM
∂xEz

) (8.1.21)

Cylindrical Coordinates

The relationship between cartesian and cylindrical coordinates is shown in Fig. 8.1.1.
From the triangle in the figure, we have x = ρ cosφ and y = ρ sinφ. The transverse
gradient and Laplace operator are in cylindrical coordinates:

∇∇∇T = ρ̂ρρ ∂∂ρ + φ̂φφ
1

ρ
∂
∂φ

, ∇∇∇2
T =

1

ρ
∂
∂ρ

(
ρ
∂
∂ρ

)
+ 1

ρ2

∂2

∂φ2
(8.1.22)

The Helmholtz equations (8.1.19) now read:
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Fig. 8.1.1 Cylindrical coordinates.

1

ρ
∂
∂ρ

(
ρ
∂Ez
∂ρ

)
+ 1

ρ2

∂2Ez
∂φ2

+ k2
cEz = 0

1

ρ
∂
∂ρ

(
ρ
∂Hz
∂ρ

)
+ 1

ρ2

∂2Hz
∂φ2

+ k2
cHz = 0

(8.1.23)

Noting that ẑ× ρ̂ρρ = φ̂φφ and ẑ× φ̂φφ = −ρ̂ρρ, we obtain:

ẑ×∇∇∇THz = φ̂φφ(∂ρHz)−ρ̂ρρ 1

ρ
(∂φHz)

The decomposition of a transverse vector is ET = ρ̂ρρEρ + φ̂φφEφ. The cylindrical
coordinates version of (8.1.16) are:

Eρ = − jβk2
c

(
∂ρEz − ηTE

1

ρ
∂φHz

)

Eφ = − jβk2
c

( 1

ρ
∂φEz + ηTE∂ρHz

) ,
Hρ = − jβk2

c

(
∂ρHz + 1

ηTMρ
∂φEz

)

Hφ = − jβk2
c

( 1

ρ
∂φHz − 1

ηTM
∂ρEz

) (8.1.24)

For either coordinate system, the equations for HT may be obtained from those of
ET by a so-called duality transformation, that is, making the substitutions:

E→ H , H→ −E , ε→ µ , µ→ ε (duality transformation) (8.1.25)

These imply that η → η−1 and ηTE → η−1
TM. Duality is discussed in greater detail in

Sec. 16.2.

8.2 Power Transfer and Attenuation

With the field solutions at hand, one can determine the amount of power transmitted
along the guide, as well as the transmission losses. The total power carried by the fields
along the guide direction is obtained by integrating the z-component of the Poynting
vector over the cross-sectional area of the guide:
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PT =
∫
S
Pz dS , where Pz = 1

2
Re(E×H∗)·ẑ (8.2.1)

It is easily verified that only the transverse components of the fields contribute to
the power flow, that is, Pz can be written in the form:

Pz = 1

2
Re(ET ×H∗T)·ẑ (8.2.2)

For waveguides with conducting walls, the transmission losses are due primarily to
ohmic losses in (a) the conductors and (b) the dielectric medium filling the space between
the conductors and in which the fields propagate. In dielectric waveguides the losses
are due to absorption and scattering by imperfections.

The transmission losses can be quantified by replacing the propagation wavenumber
β by its complex-valued version βc = β− jα, where α is the attenuation constant. The
z-dependence of all the field components is replaced by:

e−jβz → e−jβcz = e−(α+jβ)z = e−αze−jβz (8.2.3)

The quantityα is the sum of the attenuation constants arising from the various loss
mechanisms. For example, if αd and αc are the attenuations due to the ohmic losses in
the dielectric and in the conducting walls, then

α = αd +αc (8.2.4)

The ohmic losses in the dielectric can be characterized either by its loss tangent, say
tanδ, or by its conductivity σd—the two being related by σd =ωε tanδ. The effective
dielectric constant of the medium is then ε(ω)= ε − jσd/ω = ε(1 − j tanδ). The
corresponding complex-valued wavenumber βc is obtained by the replacement:

β =
√
ω2µε− k2

c → βc =
√
ω2µε(ω)−k2

c

For weakly conducting dielectrics, we may make the approximation:

βc =
√
ω2µε

(
1− j σd

ωε
)− k2

c =
√
β2 − jωµσd = β

√
1− jωµσd

β2
� β− j1

2
σd
ωµ
β

Recalling the definition ηTE =ωµ/β, we obtain for the attenuation constant:

αd = 1

2
σdηTE = 1

2

ω2

βc2
tanδ = ω tanδ

2c
√

1−ω2
c/ω2

(dielectric losses) (8.2.5)

which is similar to Eq. (2.7.2), but with the replacement ηd → ηTE.
The conductor losses are more complicated to calculate. In practice, the following

approximate procedure is adequate. First, the fields are determined on the assumption
that the conductors are perfect.



246 Electromagnetic Waves & Antennas – S. J. Orfanidis

Second, the magnetic fields on the conductor surfaces are determined and the corre-
sponding induced surface currents are calculated by Js = n̂×H, where n̂ is the outward
normal to the conductor.

Third, the ohmic losses per unit conductor area are calculated by Eq. (2.8.7). Figure
8.2.1 shows such an infinitesimal conductor area dA = dldz, where dl is along the
cross-sectional periphery of the conductor. Applying Eq. (2.8.7) to this area, we have:

dPloss

dA
= dPloss

dldz
= 1

2
Rs|Js|2 (8.2.6)

where Rs is the surface resistance of the conductor given by Eq. (2.8.4),

Rs =
√
ωµ
2σ

= η
√
ωε
2σ
= 1

2
δωµ , δ =

√
2

ωµσ
= skin depth (8.2.7)

Integrating Eq. (8.2.6) around the periphery of the conductor gives the power loss per
unit z-length due to that conductor. Adding similar terms for all the other conductors
gives the total power loss per unit z-length:

P′loss =
dPloss

dz
=
∮
Ca

1

2
Rs|Js|2 dl+

∮
Cb

1

2
Rs|Js|2 dl (8.2.8)

Fig. 8.2.1 Conductor surface absorbs power from the propagating fields.

where Ca and Cb indicate the peripheries of the conductors. Finally, the corresponding
attenuation coefficient is calculated from Eq. (2.6.22):

αc = P
′
loss

2PT
(conductor losses) (8.2.9)

Equations (8.2.1)–(8.2.9) provide a systematic methodology by which to calculate the
transmitted power and attenuation losses in waveguides. We will apply it to several
examples later on.

8.3 TEM, TE, and TM modes

The general solution described by Eqs. (8.1.16) and (8.1.19) is a hybrid solution with non-
zero Ez and Hz components. Here, we look at the specialized forms of these equations
in the cases of TEM, TE, and TM modes.
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One common property of all three types of modes is that the transverse fields ET,HT
are related to each other in the same way as in the case of uniform plane waves propagat-
ing in the z-direction, that is, they are perpendicular to each other, their cross-product
points in the z-direction, and they satisfy:

HT = 1

ηT
ẑ× ET (8.3.1)

where ηT is the transverse impedance of the particular mode type, that is, η,ηTE, ηTM

in the TEM, TE, and TM cases.
Because of Eq. (8.3.1), the power flow per unit cross-sectional area described by the

Poynting vector Pz of Eq. (8.2.2) takes the simple form in all three cases:

Pz = 1

2
Re(ET ×H∗T)·ẑ =

1

2ηT
|ET|2 = 1

2
ηT|HT|2 (8.3.2)

TEM modes

In TEM modes, both Ez and Hz vanish, and the fields are fully transverse. One can set
Ez = Hz = 0 in Maxwell equations (8.1.5), or equivalently in (8.1.16), or in (8.1.17).

From any point view, one obtains the condition k2
c = 0, or ω = βc. For example, if

the right-hand sides of Eq. (8.1.17) vanish, the consistency of the system requires that
ηTE = ηTM, which by virtue of Eq. (8.1.13) impliesω = βc. It also implies that ηTE, ηTM

must both be equal to the medium impedance η. Thus, the electric and magnetic fields
satisfy:

HT = 1

η
ẑ× ET (8.3.3)

These are the same as in the case of a uniform plane wave, except here the fields
are not uniform and may have a non-trivial x, y dependence. The electric field ET is
determined from the rest of Maxwell’s equations (8.1.5), which read:

∇∇∇T × ET = 0

∇∇∇T · ET = 0
(8.3.4)

These are recognized as the field equations of an equivalent two-dimensional elec-
trostatic problem. Once this electrostatic solution is found, ET(x, y), the magnetic field
is constructed from Eq. (8.3.3). The time-varying propagating fields will be given by
Eq. (8.1.1), withω = βc. (For backward moving fields, replace β by −β.)

We explore this electrostatic point of view further in Sec. 9.1 and discuss the cases
of the coaxial, two-wire, and strip lines. Because of the relationship between ET and HT,
the Poynting vector Pz of Eq. (8.2.2) will be:

Pz = 1

2
Re(ET ×H∗T)·ẑ =

1

2η
|ET|2 = 1

2
η|HT|2 (8.3.5)
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TE modes

TE modes are characterized by the conditions Ez = 0 and Hz �= 0. It follows from the
second of Eqs. (8.1.17) that ET is completely determined from HT, that is, ET = ηTEHT×ẑ.

The field HT is determined from the second of (8.1.16). Thus, all field components
for TE modes are obtained from the equations:

∇2
THz + k2

cHz = 0

HT = − jβk2
c
∇∇∇THz

ET = ηTE HT × ẑ

(TE modes) (8.3.6)

The relationship of ET and HT is identical to that of uniform plane waves propagating
in the z-direction, except the wave impedance is replaced by ηTE. The Poynting vector
of Eq. (8.2.2) then takes the form:

Pz = 1

2
Re(ET ×H∗T)·ẑ =

1

2ηTE
|ET|2 = 1

2
ηTE|HT|2 = 1

2
ηTE

β2

k4
c
|∇∇∇THz|2 (8.3.7)

The cartesian coordinate version of Eq. (8.3.6) is:

(∂2
x + ∂2

y)Hz + k2
cHz = 0

Hx = − jβk2
c
∂xHz , Hy = − jβk2

c
∂yHz

Ex = ηTEHy , Ey = −ηTEHx

(8.3.8)

And, the cylindrical coordinate version:

1

ρ
∂
∂ρ

(
ρ
∂Hz
∂ρ

)
+ 1

ρ2

∂2Hz
∂φ2

+ k2
cHz = 0

Hρ = − jβk2
c

∂Hz
∂ρ

, Hφ = − jβk2
c

1

ρ
∂Hz
∂φ

Eρ = ηTEHφ , Eφ = −ηTEHρ

(8.3.9)

where we used HT × ẑ = (ρ̂ρρHρ + φ̂φφHφ)×ẑ = −φ̂φφHρ + ρ̂ρρHφ.

TM modes

TM modes have Hz = 0 and Ez �= 0. It follows from the first of Eqs. (8.1.17) that HT is
completely determined from ET, that is, HT = η−1

TMẑ × ET. The field ET is determined
from the first of (8.1.16), so that all field components for TM modes are obtained from
the following equations, which are dual to the TE equations (8.3.6):
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∇2
TEz + k2

cEz = 0

ET = − jβk2
c
∇∇∇TEz

HT = 1

ηTM
ẑ× ET

(TM modes) (8.3.10)

Again, the relationship of ET and HT is identical to that of uniform plane waves
propagating in the z-direction, but the wave impedance is now ηTM. The Poynting vector
takes the form:

Pz = 1

2
Re(ET ×H∗T)·ẑ =

1

2ηTM
|ET|2 = 1

2ηTM

β2

k4
c
|∇∇∇TEz|2 (8.3.11)

8.4 Rectangular Waveguides

Next, we discuss in detail the case of a rectangular hollow waveguide with conducting
walls, as shown in Fig. 8.4.1. Without loss of generality, we may assume that the lengths
a,b of the inner sides satisfy b ≤ a. The guide is typically filled with air, but any other
dielectric material ε, µ may be assumed.

Fig. 8.4.1 Rectangular waveguide.

The simplest and dominant propagation mode is the so-called TE10 mode and de-
pends only on the x-coordinate (of the longest side.) Therefore, we begin by looking
for solutions of Eq. (8.3.8) that depend only on x. In this case, the Helmholtz equation
reduces to:

∂2
xHz(x)+k2

cHz(x)= 0

The most general solution is a linear combination of coskcx and sinkcx. However,
only the former will satisfy the boundary conditions. Therefore, the solution is:

Hz(x)= H0 coskcx (8.4.1)

where H0 is a (complex-valued) constant. Because there is no y-dependence, it follows
from Eq. (8.3.8) that ∂yHz = 0, and hence Hy = 0 and Ex = 0. It also follows that:

Hx(x)= − jβk2
c
∂xHz = − jβk2

c
(−kc)H0 sinkcx = jβkc H0 sinkcx ≡ H1 sinkcx
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Then, the corresponding electric field will be:

Ey(x)= −ηTEHx(x)= −ηTE
jβ
kc
H0 sinkcx ≡ E0 sinkcx

where we defined the constants:

H1 = jβkc H0

E0 = −ηTEH1 = −ηTE
jβ
kc
H0 = −jη ωωc H0

(8.4.2)

where we used ηTE = ηω/βc. In summary, the non-zero field components are:

Hz(x)= H0 coskcx

Hx(x)= H1 sinkcx

Ey(x)= E0 sinkcx

⇒
Hz(x, y, z, t)= H0 coskcx ejωt−jβz

Hx(x, y, z, t)= H1 sinkcx ejωt−jβz

Ey(x, y, z, t)= E0 sinkcx ejωt−jβz
(8.4.3)

Assuming perfectly conducting walls, the boundary conditions require that there be
no tangential electric field at any of the wall sides. Because the electric field is in the
y-direction, it is normal to the top and bottom sides. But, it is parallel to the left and
right sides. On the left side, x = 0, Ey(x) vanishes because sinkcx does. On the right
side, x = a, the boundary condition requires:

Ey(a)= E0 sinkca = 0 ⇒ sinkca = 0

This requires that kca be an integral multiple of π:

kca = nπ ⇒ kc = nπa (8.4.4)

These are the so-called TEn0 modes. The corresponding cutoff frequencyωc = ckc,
fc =ωc/2π, and wavelength λc = 2π/kc = c/fc are:

ωc = cnπa , fc = cn
2a
, λc = 2a

n
(TEn0 modes) (8.4.5)

The dominant mode is the one with the lowest cutoff frequency or the longest cutoff
wavelength, that is, the mode TE10 having n = 1. It has:

kc = πa , ωc = cπa , fc = c
2a
, λc = 2a (TE10 mode) (8.4.6)

Fig. 8.4.2 depicts the electric field Ey(x)= E0 sinkcx = E0 sin(πx/a) of this mode
as a function of x.
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Fig. 8.4.2 Electric field inside a rectangular waveguide.

8.5 Higher TE and TM modes

To construct higher modes, we look for solutions of the Helmholtz equation that are
factorable in their x and y dependence:

Hz(x, y)= F(x)G(y)
Then, Eq. (8.3.8) becomes:

F′′(x)G(y)+F(x)G′′(y)+k2
cF(x)G(y)= 0 ⇒ F′′(x)

F(x)
+ G

′′(y)
G(y)

+ k2
c = 0 (8.5.1)

Because these must be valid for all x, y (inside the guide), the F- and G-terms must
be constants, independent of x and y. Thus, we write:

F′′(x)
F(x)

= −k2
x ,

G′′(y)
G(y)

= −k2
y or

F′′(x)+k2
xF(x)= 0 , G′′(y)+k2

yG(y)= 0 (8.5.2)

where the constants k2
x and k2

y are constrained from Eq. (8.5.1) to satisfy:

k2
c = k2

x + k2
y (8.5.3)

The most general solutions of (8.5.2) that will satisfy the TE boundary conditions are
coskxx and coskyy. Thus, the longitudinal magnetic field will be:

Hz(x, y)= H0 coskxx coskyy (TEnm modes) (8.5.4)

It then follows from the rest of the equations (8.3.8) that:

Hx(x, y) = H1 sinkxx coskyy

Hy(x, y) = H2 coskxx sinkyy

Ex(x, y) = E1 coskxx sinkyy

Ey(x, y) = E2 sinkxx coskyy
(8.5.5)

where we defined the constants:

H1 = jβkxk2
c
H0 , H2 = jβkyk2

c
H0

E1 = ηTEH2 = jη ωkyωckc
H0 , E2 = −ηTEH1 = −jη ωkxωckc

H0



252 Electromagnetic Waves & Antennas – S. J. Orfanidis

The boundary conditions are that Ey vanish on the right wall, x = a, and that Ex
vanish on the top wall, y = b, that is,

Ey(a, y)= E0y sinkxa coskyy = 0 , Ex(x, b)= E0x coskxx sinkyb = 0

The conditions require that kxa and kyb be integral multiples of π:

kxa = nπ , kyb =mπ ⇒ kx = nπa , ky = mπb (8.5.6)

These correspond to the TEnm modes. Thus, the cutoff wavenumbers of these modes

kc =
√
k2
x + k2

y take on the quantized values:

kc =
√(

nπ
a

)2

+
(
mπ
b

)2

(TEnm modes) (8.5.7)

The cutoff frequencies fnm =ωc/2π = ckc/2π and wavelengths λnm = c/fnm are:

fnm = c
√(

n
2a

)2

+
(
m
2b

)2

, λnm = 1√(
n
2a

)2

+
(
m
2b

)2
(8.5.8)

The TE0m modes are similar to the TEn0 modes, but with x and a replaced by y and
b. The family of TM modes can also be constructed in a similar fashion from Eq. (8.3.10).

Assuming Ez(x, y)= F(x)G(y), we obtain the same equations (8.5.2). Because Ez
is parallel to all walls, we must now choose the solutions sinkx and sinkyy. Thus, the
longitudinal electric fields is:

Ez(x, y)= E0 sinkxx sinkyy (TMnm modes) (8.5.9)

The rest of the field components can be worked out from Eq. (8.3.10) and one finds
that they are given by the same expressions as (8.5.5), except now the constants are
determined in terms of E0:

E1 = − jβkxk2
c
E0 , E2 = − jβkyk2

c
E0

H1 = − 1

ηTM
E2 = jωkyωckc

1

η
E0 , H2 = 1

ηTM
E1 = − jωkxωckc

1

η
H0

where we used ηTM = ηβc/ω. The boundary conditions on Ex, Ey are the same as
before, and in addition, we must require that Ez vanish on all walls.

These conditions imply that kx, ky will be given by Eq. (8.5.6), except both n and m
must be non-zero (otherwise Ez would vanish identically.) Thus, the cutoff frequencies
and wavelengths are the same as in Eq. (8.5.8).

Waveguide modes can be excited by inserting small probes at the beginning of the
waveguide. The probes are chosen to generate an electric field that resembles the field
of the desired mode.
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8.6 Operating Bandwidth

All waveguiding systems are operated in a frequency range that ensures that only the
lowest mode can propagate. If several modes can propagate simultaneously,† one has
no control over which modes will actually be carrying the transmitted signal. This may
cause undue amounts of dispersion, distortion, and erratic operation.

A mode with cutoff frequency ωc will propagate only if its frequency is ω ≥ ωc,
or λ < λc. If ω < ωc, the wave will attenuate exponentially along the guide direction.
This follows from theω,β relationship (8.1.10):

ω2 =ω2
c + β2c2 ⇒ β2 = ω

2 −ω2
c

c2

If ω ≥ ωc, the wavenumber β is real-valued and the wave will propagate. But if
ω < ωc, β becomes imaginary, say, β = −jα, and the wave will attenuate in the z-
direction, with a penetration depth δ = 1/α:

e−jβz = e−αz

If the frequency ω is greater than the cutoff frequencies of several modes, then all
of these modes can propagate. Conversely, ifω is less than all cutoff frequencies, then
none of the modes can propagate.

If we arrange the cutoff frequencies in increasing order, ωc1 < ωc2 < ωc3 < · · · ,
then, to ensure single-mode operation, the frequency must be restricted to the interval
ωc1 < ω < ωc2, so that only the lowest mode will propagate. This interval defines the
operating bandwidth of the guide.

These remarks apply to all waveguiding systems, not just hollow conducting wave-
guides. For example, in coaxial cables the lowest mode is the TEM mode having no cutoff
frequency, ωc1 = 0. However, TE and TM modes with non-zero cutoff frequencies do
exist and place an upper limit on the usable bandwidth of the TEM mode. Similarly, in
optical fibers, the lowest mode has no cutoff, and the single-mode bandwidth is deter-
mined by the next cutoff frequency.

In rectangular waveguides the smallest cutoff frequencies are f10 = c/2a, f20 =
c/a = 2f10, and f01 = c/2b. Because we assumed that b ≤ a, it follows that always
f10 ≤ f01. If b ≤ a/2, then 1/a ≤ 1/2b and therefore, f20 ≤ f01, so that the two lowest
cutoff frequencies are f10 and f20.

On the other hand, if a/2 ≤ b ≤ a, then f01 ≤ f20 and the two smallest frequencies
are f10 and f01 (except when b = a, in which case f01 = f10 and the smallest frequencies
are f10 and f20.) The two cases b ≤ a/2 and b ≥ a/2 are depicted in Fig. 8.6.1.

It is evident from this figure that in order to achieve the widest possible usable
bandwidth for the TE10 mode, the guide dimensions must satisfy b ≤ a/2 so that the
bandwidth is the interval [fc,2fc], where fc = f10 = c/2a. In terms of the wavelength
λ = c/f , the operating bandwidth becomes: 0.5 ≤ a/λ ≤ 1, or, a ≤ λ ≤ 2a.

We will see later that the total amount of transmitted power in this mode is propor-
tional to the cross-sectional area of the guide, ab. Thus, if in addition to having the

†Murphy’s law for waveguides states that “if a mode can propagate, it will.”
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Fig. 8.6.1 Operating bandwidth in rectangular waveguides.

widest bandwidth, we also require to have the maximum power transmitted, the dimen-
sion bmust be chosen to be as large as possible, that is, b = a/2. Most practical guides
follow these side proportions.

If there is a “canonical” guide, it will have b = a/2 and be operated at a frequency
that lies in the middle of the operating band [fc,2fc], that is,

f = 1.5fc = 0.75
c
a

(8.6.1)

Table 8.6.1 lists some standard air-filled rectangular waveguides with their naming
designations, inner side dimensions a,b in inches, cutoff frequencies in GHz, minimum
and maximum recommended operating frequencies in GHz, power ratings, and attenua-
tions in dB/m (the power ratings and attenuations are representative over each operating
band.) We have chosen one example from each microwave band.

name a b fc fmin fmax band P α

WR-510 5.10 2.55 1.16 1.45 2.20 L 9 MW 0.007
WR-284 2.84 1.34 2.08 2.60 3.95 S 2.7 MW 0.019
WR-159 1.59 0.795 3.71 4.64 7.05 C 0.9 MW 0.043
WR-90 0.90 0.40 6.56 8.20 12.50 X 250 kW 0.110
WR-62 0.622 0.311 9.49 11.90 18.00 Ku 140 kW 0.176
WR-42 0.42 0.17 14.05 17.60 26.70 K 50 kW 0.370
WR-28 0.28 0.14 21.08 26.40 40.00 Ka 27 kW 0.583
WR-15 0.148 0.074 39.87 49.80 75.80 V 7.5 kW 1.52
WR-10 0.10 0.05 59.01 73.80 112.00 W 3.5 kW 2.74

Table 8.6.1 Characteristics of some standard air-filled rectangular waveguides.

8.7 Power Transfer, Energy Density, and Group Velocity

Next, we calculate the time-averaged power transmitted in the TE10 mode. We also calcu-
late the energy density of the fields and determine the velocity by which electromagnetic
energy flows down the guide and show that it is equal to the group velocity. We recall
that the non-zero field components are:

Hz(x)= H0 coskcx , Hx(x)= H1 sinkcx , Ey(x)= E0 sinkcx (8.7.1)
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where

H1 = jβkc H0 , E0 = −ηTEH1 = −jη ωωc H0 (8.7.2)

The Poynting vector is obtained from the general result of Eq. (8.3.7):

Pz = 1

2ηTE
|ET|2 = 1

2ηTE
|Ey(x)|2 = 1

2ηTE
|E0|2 sin2 kcx

The transmitted power is obtained by integrating Pz over the cross-sectional area
of the guide:

PT =
∫ a

0

∫ b
0

1

2ηTE
|E0|2 sin2 kcxdxdy

Noting the definite integral,

∫ a
0

sin2 kcxdx =
∫ a

0
sin2(πx

a
)
dx = a

2
(8.7.3)

and using ηTE = ηω/βc = η/
√

1−ω2
c/ω2, we obtain:

PT = 1

4ηTE
|E0|2ab = 1

4η
|E0|2ab

√
1− ω

2
c

ω2
(transmitted power) (8.7.4)

We may also calculate the distribution of electromagnetic energy along the guide, as
measured by the time-averaged energy density. The energy densities of the electric and
magnetic fields are:

we = 1

2
Re
(1

2
εE · E∗

) = 1

4
ε|Ey|2

wm = 1

2
Re
(1

2
µH ·H∗

) = 1

4
µ
(|Hx|2 + |Hz|2)

Inserting the expressions for the fields, we find:

we = 1

4
ε|E0|2 sin2 kcx , wm = 1

4
µ
(|H1|2 sin2 kcx+ |H0|2 cos2 kcx

)

Because these quantities represent the energy per unit volume, if we integrate them
over the cross-sectional area of the guide, we will obtain the energy distributions per
unit z-length. Using the integral (8.7.3) and an identical one for the cosine case, we find:

W′e =
∫ a

0

∫ b
0
We(x, y)dxdy =

∫ a
0

∫ b
0

1

4
ε|E0|2 sin2 kcxdxdy = 1

8
ε|E0|2ab

W′m =
∫ a

0

∫ b
0

1

4
µ
(|H1|2 sin2 kcx+ |H0|2 cos2 kcx

)
dxdy = 1

8
µ
(|H1|2 + |H0|2

)
ab
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Although these expressions look different, they are actually equal, W′e = W′m. In-
deed, using the property β2/k2

c +1 = (β2+k2
c)/k2

c = k2/k2
c =ω2/ω2

c and the relation-
ships between the constants in (8.7.1), we find:

µ
(|H1|2 + |H0|2

) = µ(|H0|2β
2

k2
c
+ |H0|2

) = µ|H0|2ω
2

ω2
c
= µ
η2
|E0|2 = ε|E0|2

The equality of the electric and magnetic energies is a general property of wavegui-
ding systems. We also encountered it in Sec. 2.3 for uniform plane waves. The total
energy density per unit length will be:

W′ =W′e +W′m = 2W′e =
1

4
ε|E0|2ab (8.7.5)

According to the general relationship between flux, density, and transport velocity
given in Eq. (1.5.2), the energy transport velocity will be the ratio ven = PT/W′. Using
Eqs. (8.7.4) and (8.7.5) and noting that 1/ηε = 1/√µε = c, we find:

ven = PTW′ = c
√

1− ω
2
c

ω2
(energy transport velocity) (8.7.6)

This is equal to the group velocity of the propagating mode. For any dispersion
relationship betweenω and β, the group and phase velocities are defined by

vgr = dωdβ , vph = ωβ (group and phase velocities) (8.7.7)

For uniform plane waves and TEM transmission lines, we haveω = βc, so that vgr =
vph = c. For a rectangular waveguide, we haveω2 =ω2

c +β2c2. Taking differentials of
both sides, we find 2ωdω = 2c2βdβ, which gives:

vgr = dωdβ =
βc2

ω
= c

√
1− ω

2
c

ω2
(8.7.8)

where we used Eq. (8.1.10). Thus, the energy transport velocity is equal to the group
velocity, ven = vgr. We note that vgr = βc2/ω = c2/vph, or

vgrvph = c2 (8.7.9)

The energy or group velocity satisfies vgr ≤ c, whereas vph ≥ c. Information trans-
mission down the guide is by the group velocity and, consistent with the theory of
relativity, it is less than c.

8.8 Power Attenuation

In this section, we calculate the attenuation coefficient due to the ohmic losses of the
conducting walls following the procedure outlined in Sec. 8.2. The losses due to the
filling dielectric can be determined from Eq. (8.2.5).
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The field expressions (8.4.3) were derived assuming the boundary conditions for
perfectly conducting wall surfaces. The induced surface currents on the inner walls of
the waveguide are given by Js = n̂ × H, where the unit vector n̂ is ±x̂ and ±ŷ on the
left/right and bottom/top walls, respectively.

The surface currents and tangential magnetic fields are shown in Fig. 8.8.1. In par-
ticular, on the bottom and top walls, we have:

Fig. 8.8.1 Currents on waveguide walls.

Js = ±ŷ×H = ±ŷ×(x̂Hx+ ẑHz)= ±(−ẑHx+ x̂Hz)= ±(−ẑH1 sinkcx+ x̂H0 coskcx)

Similarly, on the left and right walls:

Js = ±x̂×H = ±x̂× (x̂Hx + ẑHz)= ∓ŷHz = ∓ŷH0 coskcx

At x = 0 and x = a, this gives Js = ∓ŷ(±H0)= ŷH0. Thus, the magnitudes of the
surface currents are on the four walls:

|Js|2 =
{
|H0|2 , (left and right walls)
|H0|2 cos2 kcx+ |H1|2 sin2 kcx , (top and bottom walls)

The power loss per unit z-length is obtained from Eq. (8.2.8) by integrating |Js|2
around the four walls, that is,

P′loss = 2
1

2
Rs
∫ a

0
|Js|2 dx+ 2

1

2
Rs
∫ b

0
|Js|2 dy

= Rs
∫ a

0

(|H0|2 cos2 kcx+ |H1|2 sin2 kcx
)
dx+Rs

∫ b
0
|H0|2 dy

= Rs a
2

(|H0|2 + |H1|2
)+Rsb|H0|2 = Rsa

2

(|H0|2 + |H1|2 + 2b
a
|H0|2

)

Using |H0|2+|H1|2 = |E0|2/η2 from Sec. 8.7, and |H0|2 = (|E0|2/η2)ω2
c/ω2, which

follows from Eq. (8.4.2), we obtain:

P′loss =
Rsa|E0|2

2η2

(
1+ 2b

a
ω2
c

ω2

)

The attenuation constant is computed from Eqs. (8.2.9) and (8.7.4):
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αc = P
′
loss

2PT
=
Rsa|E0|2

2η2

(
1+ 2b

a
ω2
c

ω2

)

2
1

4η
|E0|2ab

√
1− ω

2
c

ω2

which gives:

αc = Rsηb

(
1+ 2b

a
ω2
c

ω2

)
√

1− ω
2
c

ω2

(attenuation of TE10 mode) (8.8.1)

This is in units of nepers/m. Its value in dB/m is obtained by αdB = 8.686αc. For a
given ratio a/b, αc increases with decreasing b, thus the smaller the guide dimensions,
the larger the attenuation. This trend is noted in Table 8.6.1.

The main tradeoffs in a waveguiding system are that as the operating frequency f
increases, the dimensions of the guide must decrease in order to maintain the operat-
ing band fc ≤ f ≤ 2fc, but then the attenuation increases and the transmitted power
decreases as it is proportional to the guide’s area.

Example 8.8.1: Design a rectangular air-filled waveguide to be operated at 5 GHz, then, re-
design it to be operated at 10 GHz. The operating frequency must lie in the middle of the
operating band. Calculate the guide dimensions, the attenuation constant in dB/m, and
the maximum transmitted power assuming the maximum electric field is one-half of the
dielectric strength of air. Assume copper walls with conductivity σ = 5.8×107 S/m.

Solution: If f is in the middle of the operating band, fc ≤ f ≤ 2fc, where fc = c/2a, then
f = 1.5fc = 0.75c/a. Solving for a, we find

a = 0.75c
f

= 0.75×30 GHz cm

5
= 4.5 cm

For maximum power transfer, we require b = a/2 = 2.25 cm. Because ω = 1.5ωc, we
haveωc/ω = 2/3. Then, Eq. (8.8.1) gives αc = 0.037 dB/m. The dielectric strength of air
is 3 MV/m. Thus, the maximum allowed electric field in the guide is E0 = 1.5 MV/m. Then,
Eq. (8.7.4) gives PT = 1.12 MW.

At 10 GHz, because f is doubled, the guide dimensions are halved, a = 2.25 and b = 1.125
cm. Because Rs depends on f like f1/2, it will increase by a factor of

√
2. Then, the factor

Rs/b will increase by a factor of 2
√

2. Thus, the attenuation will increase to the value
αc = 0.037 · 2

√
2 = 0.105 dB/m. Because the area ab is reduced by a factor of four, so

will the power, PT = 1.12/4 = 0.28 MW = 280 kW.

The results of these two cases are consistent with the values quoted in Table 8.6.1 for the
C-band and X-band waveguides, WR-159 and WR-90. 
�

Example 8.8.2: WR-159 Waveguide. Consider the C-band WR-159 air-filled waveguide whose
characteristics were listed in Table 8.6.1. Its inner dimensions are a = 1.59 and b = a/2 =
0.795 inches, or, equivalently, a = 4.0386 and b = 2.0193 cm.
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The cutoff frequency of the TE10 mode is fc = c/2a = 3.71 GHz. The maximum operating
bandwidth is the interval [fc,2fc]= [3.71,7.42] GHz, and the recommended interval is
[4.64,7.05] GHz.

Assuming copper walls with conductivity σ = 5.8×107 S/m, the calculated attenuation
constant αc from Eq. (8.8.1) is plotted in dB/m versus frequency in Fig. 8.8.2.
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Fig. 8.8.2 Attenuation constant and transmitted power in a WR-159 waveguide.

The power transmitted PT is calculated from Eq. (8.7.4) assuming a maximum breakdown
voltage of E0 = 1.5 MV/m, which gives a safety factor of two over the dielectric breakdown
of air of 3 MV/m. The power in megawatt scales is plotted in Fig. 8.8.2.

Because of the factor
√

1−ω2
c/ω2 in the denominator of αc and the numerator of PT ,

the attenuation constant becomes very large near the cutoff frequency, while the power is
almost zero. A physical explanation of this behavior is given in the next section. 
�

8.9 Reflection Model of Waveguide Propagation

An intuitive model for the TE10 mode can be derived by considering a TE-polarized
uniform plane wave propagating in the z-direction by obliquely bouncing back and forth
between the left and right walls of the waveguide, as shown in Fig. 8.9.1.

If θ is the angle of incidence, then the incident and reflected (from the right wall)
wavevectors will be:

k = x̂kx + ẑkz = x̂k cosθ+ ẑk sinθ

k′ = −x̂kx + ẑkz = −x̂k cosθ+ ẑk sinθ

The electric and magnetic fields will be the sum of an incident and a reflected com-
ponent of the form:

E = ŷE1e−jk·r + ŷE′1e−jk
′·r = ŷE1e−jkxxe−jkzz + ŷE′1ejkxxe−jkzz = E1 + E′1

H = 1

η
k̂× E1 + 1

η
k̂
′ × E′1
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Fig. 8.9.1 Reflection model of TE10 mode.

where the electric field was taken to be polarized in the y direction. These field expres-
sions become component-wise:

Ey =
(
E1e−jkxx + E′1ejkxx

)
e−jkzz

Hx = − 1

η
sinθ

(
E1e−jkxx + E′1ejkxx

)
e−jkzz

Hz = 1

η
cosθ

(
E1e−jkxx − E′1ejkxx

)
e−jkzz

(8.9.1)

The boundary condition on the left wall, x = 0, requires that E1+E′1 = 0. We may write
therefore, E1 = −E′1 = jE0/2. Then, the above expressions simplify into:

Ey = E0 sinkxx e−jkzz

Hx = − 1

η
sinθE0 sinkxx e−jkzz

Hz = jη cosθE0 coskxx e−jkzz

(8.9.2)

These are identical to Eq. (8.4.3) provided we identify β with kz and kc with kx, as
shown in Fig. 8.9.1. It follows from the wavevector triangle in the figure that the angle
of incidence θ will be given by cosθ = kx/k = kc/k, or,

cosθ = ωc
ω
, sinθ =

√
1− ω

2
c

ω2
(8.9.3)

The ratio of the transverse components,−Ey/Hx, is the transverse impedance, which
is recognized to be ηTE. Indeed, we have:

ηTE = − EyHx =
η

sinθ
= η√

1− ω
2
c

ω2

(8.9.4)
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The boundary condition on the right wall requires sinkxa = 0, which gives rise to
the same condition as (8.4.4), that is, kca = nπ.

This model clarifies also the meaning of the group velocity. The plane wave is bounc-
ing left and right with the speed of light c. However, the component of this velocity in
the z-direction will be vz = c sinθ. This is equal to the group velocity. Indeed, it follows
from Eq. (8.9.3) that:

vz = c sinθ = c
√

1− ω
2
c

ω2
= vgr (8.9.5)

Eq. (8.9.3) implies also that atω =ωc, we have sinθ = 0, or θ = 0, that is, the wave
is bouncing left and right at normal incidence, creating a standing wave, and does not
propagate towards the z-direction. Thus, the transmitted power is zero and this also
implies, through Eq. (8.2.9), that αc will be infinite.

On the other hand, for very large frequencies,ω�ωc, the angle θ will tend to 90o,
causing the wave to zoom through guide almost at the speed of light.

8.10 Resonant Cavities

Cavity resonators are metallic enclosures that can trap electromagnetic fields. The
boundary conditions on the cavity walls force the fields to exist only at certain quantized
resonant frequencies. For highly conducting walls, the resonances are extremely sharp,
having a very high Q of the order of 10,000.

Because of their high Q, cavities can be used not only to efficiently store electro-
magnetic energy at microwave frequencies, but also to act as precise oscillators and to
perform precise frequency measurements.

Fig. 8.10.1 shows a rectangular cavity with z-length equal to l formed by replacing
the sending and receiving ends of a waveguide by metallic walls. A forward-moving wave
will bounce back and forth from these walls, resulting in a standing-wave pattern along
the z-direction.

Fig. 8.10.1 Rectangular cavity resonator (and induced wall currents for the TEn0p mode.)

Because the tangential components of the electric field must vanish at the end-walls,
these walls must coincide with zero crossings of the standing wave, or put differently, an
integral multiple of half-wavelengths must fit along the z-direction, that is, l = pλg/2 =
pπ/β, or β = pπ/l, where p is a non-zero integer. For the same reason, the standing-
wave patterns along the transverse directions require a = nλx/2 and b = mλy/2, or
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kx = nπ/a and ky = mπ/b. Thus, all three cartesian components of the wave vector

are quantized, and therefore, so is the frequency of the waveω = c
√
k2
x + k2

y + β2 :

ωnmp = c
√(

nπ
a

)2

+
(
mπ
b

)2

+
(
pπ
l

)2

(resonant frequencies) (8.10.1)

Such modes are designated as TEnmp or TMnmp. For simplicity, we consider the case
TEn0p. Eqs. (8.3.6) also describe backward-moving waves if one replaces β by −β, which
also changes the sign of ηTE = ηω/βc. Starting with a linear combination of forward
and backward waves in the TEn0 mode, we obtain the field components:

Hz(x, z) = H0 coskcx
(
Ae−jβz + Bejβz),

Hx(x, z) = jH1 sinkcx
(
Ae−jβz − Bejβz), H1 = β

kc
H0

Ey(x, z) = −jE0 sinkcx
(
Ae−jβz + Bejβz), E0 = ω

ωc
ηH0

(8.10.2)

where ωc = ckc. By requiring that Ey(x, z) have z-dependence of the form sinβz, the
coefficients A,B must be chosen as A = −B = j/2. Then, Eq. (8.10.2) specializes into:

Hz(x, z) = H0 coskcx sinβz ,

Hx(x, z) = −H1 sinkcx cosβz , H1 = β
kc
H0

Ey(x, z) = −jE0 sinkcx sinβz , E0 = ω
ωc
ηH0

(8.10.3)

As expected, the vanishing of Ey(x, z) on the front/back walls, z = 0 and z = l, and
on the left/right walls, x = 0 and x = a, requires the quantization conditions: β = pπ/l
and kc = nπ/a. The Q of the resonator can be calculated from its definition:

Q =ω W
Ploss

(8.10.4)

where W is the total time-averaged energy stored within the cavity volume and Ploss is
the total power loss due to the wall ohmic losses (plus other losses, such as dielectric
losses, if present.) The ratio ∆ω = Ploss/W is usually identified as the 3-dB width of the
resonance centered at frequencyω. Therefore, we may write Q =ω/∆ω.

It is easily verified that the electric and magnetic energies are equal, therefore, W
may be calculated by integrating the electric energy density over the cavity volume:

W = 2We = 2
1

4

∫
vol
ε|Ey(x, z)|2 dxdydz = 1

2
ε|E0|2

∫ a
0

∫ b
0

∫ l
0

sin2 kcx cos2 βzdxdydz

= 1

8
ε|E0|2(abl)= 1

8
µ|H0|2ω

2

ω2
c
(abl)= 1

8
µ |H0|2

[
k2
c + β2

k2
c

]
(abl)

where we used the following definite integrals (valid because kc = nπ/a, β = pπ/l) :∫ a
0

sin2 kcxdx =
∫ a

0
cos2 kcxdx = a

2
,
∫ l

0
sin2 βzdz =

∫ l
0

cos2 βzdz = l
2

(8.10.5)
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The ohmic losses are calculated from Eq. (8.2.6), integrated over all six cavity sides.
The surface currents induced on the walls are related to the tangential magnetic fields
by J s = n̂×Htan. The directions of these currents are shown in Fig. 8.10.1. Specifically,
we find for the currents on the six sides:

|J s|2 =



H2

0 sin2 βz (left & right)

H2
0 cos2 kcx sin2 βz+H2

1 sin2 kcx cos2 βz (top & bottom)

H2
1 sin2 kcx (front & back)

The power loss can be computed by integrating the loss per unit conductor area,
Eq. (8.2.6), over the six wall sides, or doubling the answer for the left, top, and front
sides. Using the integrals (8.10.5), we find:

Ploss = 1

2
Rs
∫

walls
|J s|2 dA = Rs

[
H2

0
bl
2
+ (H2

0 +H2
1)
al
4
+H2

1
ab
2

]

= 1

4
RsH2

0

[
l(2b+ a)+β

2

k2
c
a(2b+ l)

] (8.10.6)

where we substituted H2
1 = H2

0β2/k2
c . It follows that the Q-factor will be:

Q =ω W
Ploss

= ωµ
2Rs

(k2
c + β2)(abl)

k2
cl(2b+ a)+β2a(2b+ l)

For the TEn0p mode we have β = pπ/l and kc = nπ/a. Using Eq. (8.2.7) to replace
Rs in terms of the skin depth δ, we find:

Q = 1

δ

n2

a2
+ p

2

l2
n2

a2

(
2

a
+ 1

b

)
+ p

2

l2

(
2

l
+ 1

b

) (8.10.7)

The lowest resonant frequency corresponds to n = p = 1. For a cubic cavity, a =
b = l, the Q and the lowest resonant frequency are:

Q = a
3δ
, ω101 = cπ

√
2

a
, f101 = ω

2π
= c
a
√

2
(8.10.8)

For an air-filled cubic cavity with a = 3 cm, we find f101 = 7.07 GHz, δ = 7.86×10−5

cm, andQ = 12724. As in waveguides, cavities can be excited by inserting small probes
that generate fields resembling a particular mode.

8.11 Dielectric Slab Waveguides

A dielectric slab waveguide is a planar dielectric sheet or thin film of some thickness,
say 2a, as shown in Fig. 8.11.1. Wave propagation in the z-direction is by total internal
reflection from the left and right walls of the slab. Such waveguides provide simple
models for the confining mechanism of waves propagating in optical fibers.
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Fig. 8.11.1 Dielectric slab waveguide.

The propagating fields are confined primarily inside the slab, however, they also
exist as evanescent waves outside it, decaying exponentially with distance from the slab.
Fig. 8.11.1 shows a typical electric field pattern as a function of x.

For simplicity, we assume that the media to the left and right of the slab are the
same. To guarantee total internal reflection, the dielectric constants inside and outside
the slab must satisfy ε1 > ε2, and similarly for the refractive indices, n1 > n2.

We look for TE solutions that depend only on the x coordinate. The cutoff wavenum-
ber kc appearing in the Helmholtz equation forHz(x) depends on the dielectric constant
of the propagation medium, k2

c =ω2εµ−β2. Therefore, k2
c takes different values inside

and outside the guide:

k2
c1 =ω2ε1µ0 − β2 =ω2ε0µ0n2

1 − β2 = k2
0n

2
1 − β2 (inside)

k2
c2 =ω2ε2µ0 − β2 =ω2ε0µ0n2

2 − β2 = k2
0n

2
2 − β2 (outside)

(8.11.1)

where k0 =ω/c0 is the free-space wavenumber. We note thatω,β are the same inside
and outside the guide. This follows from matching the tangential fields at all times t
and all points z along the slab walls. The corresponding Helmholtz equations in the
regions inside and outside the guide are:

∂2
xHz(x)+k2

c1Hz(x)= 0 for |x| ≤ a
∂2
xHz(x)+k2

c2Hz(x)= 0 for |x| ≥ a
(8.11.2)

Inside the slab, the solutions are sinkc1x and coskc1x, and outside, sinkc2x and
coskc2x, or equivalently, e±jkc2x. In order for the waves to remain confined in the near
vicinity of the slab, the quantity kc2 must be imaginary, for if it is real, the fields would
propagate at large x distances from the slab (they would correspond to the rays refracted
from the inside into the outside.)

If we set kc2 = −jαc, the solutions outside will be e±αcx. If αc is positive, then only
the solution e−αcx is physically acceptable to the right of the slab, x ≥ a, and only eαcx

to the left, x ≤ −a. Thus, the fields attenuate exponentially with the transverse distance
x, and exist effectively within a skin depth distance 1/αc from the slab. Setting kc1 = kc
and kc2 = −jαc, Eqs. (8.11.1) become in this new notation:
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k2
c = k2

0n
2
1 − β2

−α2
c = k2

0n
2
2 − β2

⇒
k2
c = k2

0n
2
1 − β2

α2
c = β2 − k2

0n
2
2

(8.11.3)

Similarly, Eqs. (8.11.2) read:

∂2
xHz(x)+k2

cHz(x)= 0 for |x| ≤ a
∂2
xHz(x)−α2

cHz(x)= 0 for |x| ≥ a
(8.11.4)

The two solutions sinkcx and coskcx inside the guide give rise to the so-called even
and odd TE modes (referring to the even-ness or oddness of the resulting electric field.)
For the even modes, the solutions of Eqs. (8.11.4) have the form:

Hz(x)=



H1 sinkcx , if −a ≤ x ≤ a
H2e−αcx , if x ≥ a
H3eαcx , if x ≤ −a

(8.11.5)

The corresponding x-components are obtained by applying Eq. (8.3.8) using the ap-
propriate value for k2

c , that is, k2
c2 = −α2

c outside and k2
c1 = k2

c inside:

Hx(x)=




− jβ
k2
c
∂xHz(x)= − jβkc H1 coskcx , if −a ≤ x ≤ a

− jβ
−α2

c
∂xHz(x)= − jβαc H2e−αcx , if x ≥ a

− jβ
−α2

c
∂xHz(x)= jβαc H3eαcx , if x ≥ a

(8.11.6)

The electric fields are Ey(x)= −ηTEHx(x), where ηTE = ωµ0/β is the same inside
and outside the slab. Thus, the electric field has the form:

Ey(x)=



E1 coskcx , if −a ≤ x ≤ a
E2e−αcx , if x ≥ a
E3eαcx , if x ≤ −a

(even TE modes) (8.11.7)

where we defined the constants:

E1 = jβkc ηTEH1 , E2 = jβαc ηTEH2 , E3 = − jβαc ηTEH3 (8.11.8)

The boundary conditions state that the tangential components of the magnetic and
electric fields, that is, Hz,Hx, Ey, are continuous across the dielectric interfaces at x =
−a and x = a. Because Ey = −ηTEHx and ηTE is the same in both media, the continuity
of Ey follows from the continuity of Hx. The continuity of Hz at x = a and x = −a
implies that:

H1 sinkca = H2e−αca and −H1 sinkca = H3e−αca (8.11.9)

Similarly, the continuity of Hx implies (after canceling a factor of −jβ):
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1

kc
H1 coskca = 1

αc
H2e−αca and

1

kc
H1 coskca = − 1

αc
H3e−αca (8.11.10)

Eqs. (8.11.9) and (8.11.10) imply:

H2 = −H3 = H1eαca sinkca = H1eαca
αc
kc

coskca (8.11.11)

Similarly, we find for the electric field constants:

E2 = E3 = E1eαca coskca = E1eαca
kc
αc

sinkca (8.11.12)

The consistency of the last equations in (8.11.11) or (8.11.12) requires that:

coskca = kcαc sinkca ⇒ αc = kc tankca (8.11.13)

For the odd TE modes, we have for the solutions of Eq. (8.11.4):

Hz(x)=



H1 coskcx , if −a ≤ x ≤ a
H2e−αcx , if x ≥ a
H3eαcx , if x ≤ −a

(8.11.14)

The resulting electric field is:

Ey(x)=



E1 sinkcx , if −a ≤ x ≤ a
E2e−αcx , if x ≥ a
E3eαcx , if x ≤ −a

(odd TE modes) (8.11.15)

The boundary conditions imply in this case:

H2 = H3 = H1eαca coskca = −H1eαca
αc
kc

sinkca (8.11.16)

and, for the electric field constants:

E2 = −E3 = E1eαca sinkca = −E1eαca
kc
αc

coskca (8.11.17)

The consistency of the last equation requires:

αc = −kc cotkca (8.11.18)

We note that the electric fields Ey(x) given by Eqs. (8.11.7) and (8.11.15) are even or
odd functions of x for the two families of modes. Expressing E2 and E3 in terms of E1,
we summarize the forms of the electric fields in the two cases:
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Ey(x)=



E1 coskcx , if −a ≤ x ≤ a
E1 coskcae−αc(x−a) , if x ≥ a
E1 coskcaeαc(x+a) , if x ≤ −a

(even TE modes) (8.11.19)

Ey(x)=



E1 sinkcx , if −a ≤ x ≤ a
E1 sinkcae−αc(x−a) , if x ≥ a
−E1 sinkcaeαc(x+a) , if x ≤ −a

(odd TE modes) (8.11.20)

Given the operating frequencyω, Eqs. (8.11.3) and (8.11.13) or (8.11.18) provide three
equations in the three unknowns kc,αc, β. To solve them, we add the two equations
(8.11.3) to eliminate β:

α2
c + k2

c = k2
0(n

2
1 − n2

2)=
ω2

c2
0
(n2

1 − n2
2) (8.11.21)

Next, we discuss the numerical solutions of these equations. Defining the dimen-
sionless quantities u = kca and v = αca, we may rewrite Eqs. (8.11.13), (8.11.18), and
(8.11.21) in the equivalent forms:

v = u tanu

v2 + u2 = R2
(even modes) ,

v = −u cotu

v2 + u2 = R2
(odd modes) (8.11.22)

where R is the normalized frequency variable:

R = k0aNA = ωac0
NA = 2πfa

c0
NA = 2πa

λ
NA (8.11.23)

whereNA =
√
n2

1 − n2
2 is the numerical aperture of the slab and λ = c0/f , the free-space

wavelength.
Because the functions tanu and cotu have many branches, there may be several

possible solution pairs u, v for each value of R. These solutions are obtained at the
intersections of the curves v = u tanu and v = −u cotu with the circle of radius R,
that is, v2 + u2 = R2. Fig. 8.11.2 shows the solutions for various values of the radius R
corresponding to various values ofω.

It is evident from the figure that for small enough R, that is, 0 ≤ R < π/2, there
is only one solution and it is even (for an optical fiber, the single-mode condition reads
2πaNA/λ < 2.405, where a is the core radius.) For π/2 ≤ R < π, there are two
solutions, one even and one odd. For π ≤ R < 3π/2, there are three solutions, two
even and one odd, and so on. In general, there will be M + 1 solutions, alternating
between even and odd, if R falls in the interval:

Mπ
2
≤ R < (M + 1)π

2
(8.11.24)
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Fig. 8.11.2 Even and odd TE modes at different frequencies.

Given a value of R, we determine M as that integer satisfying Eq. (8.11.24), or, M ≤
2R/π < M + 1, that is, the largest integer less than 2R/π:

M = floor
(

2R
π

)
(maximum mode number) (8.11.25)

Then, there will beM+1 solutions indexed bym = 0,1, . . . ,M, which will correspond
to even modes ifm is even and to odd modes ifm is odd. TheM+ 1 branches of tanu
and cotu being intersected by the R-circle are those contained in the u-ranges:

Rm ≤ u < Rm+1 , m = 0,1, . . . ,M (8.11.26)

where

Rm = mπ
2

, m = 0,1, . . . ,M (8.11.27)

Ifm is even, the u-range (8.11.26) defines a branch of tanu, and ifm is odd, a branch
of cotu. We can combine the even and odd cases of Eq. (8.11.22) into a single case by
noting the identity:

tan(u−Rm)=



tanu , ifm is even

− cotu , ifm is odd
(8.11.28)

This follows from the trigonometric identity:

tan(u−mπ/2)= sinu cos(mπ/2)− cosu sin(mπ/2)
cosu cos(mπ/2)+ sinu sin(mπ/2)

Therefore, to find the mth mode, whether even or odd, we must find the unique
solution of the following system in the u-range Rm ≤ u < Rm+1:
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v = u tan(u−Rm)
v2 + u2 = R2

(mth mode) (8.11.29)

If one had an approximate solutionu, v for themth mode, one could refine it by using
Newton’s method, which converges very fast provided it is close to the true solution. Just
such an approximate solution, accurate to within one percent of the true solution, was
given by Lotspeich [439]. Without going into the detailed justification of this method,
the approximation is as follows:

u = Rm +w1(m)u1(m)+w2(m)u2(m) , m = 0,1, . . . ,M (8.11.30)

where u1(m), u2(m) are approximate solutions near and far from the cutoff Rm, and
w1(m), w2(m) are weighting factors:

u1(m)=
√

1+ 2R(R−Rm)− 1

R
, u2(m)= π

2

R−m
R+ 1

w1(m)= exp
(−(R−Rm)2/V2

m
)
, w2(m)= 1−w1(m)

Vm = 1√
ln 1.25

(
π/4+Rm
cos(π/4)

−Rm
) (8.11.31)

This solution serves as the starting point to Newton’s iteration for solving the equa-
tion F(u)= 0, where F(u) is defined by

F(u)= u tan(u−Rm)−v = u tan(u−Rm)−
√
R2 − u2 (8.11.32)

Newton’s iteration is:

for i = 1,2 . . . ,Nit do:

u = u− F(u)
G(u)

(8.11.33)

where G(u) is the derivative F′(u), correct to order O(F):

G(u)= v
u
+ u
v
+ R

2

u
(8.11.34)

The solution steps defined in Eqs. (8.11.29)–(8.11.34) have been implemented in the
MATLAB function dslab.m, with usage:

[u,v,err] = dslab(R,Nit); % TE-mode cutoff wavenumbers in a dielectric slab

whereNit is the desired number of Newton iterations (8.11.33), err is the value of F(u)
at the end of the iterations, and u, v are the (M + 1)-dimensional vectors of solutions.
The number of iterations is typically very small, Nit = 2–3.

The related MATLAB function dguide.m uses dslab to calculate the solution param-
eters β, kc,αc, given the frequency f , the half-length a, and the refractive indices n1, n2

of the slab. It has usage:
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[be,kc,ac,fc,err] = dguide(f,a,n1,n2,Nit); % dielectric slab guide

where f is in GHz, a in cm, and β, kc,αc in cm−1. The quantity fc is the vector of
the M + 1 cutoff frequencies defined by the branch edges Rm = mπ/2, that is, Rm =
ωmaNA/c0 = 2πfmaNA/c0 =mπ/2, or,

fm = mc0

4aNA
, m = 0,1, . . . ,M (8.11.35)

The meaning of fm is that there are m + 1 propagating modes for each f is in the
interval fm ≤ f < fm+1.

Example 8.11.1: Dielectric Slab Waveguide. Determine the propagating TE modes of a dielectric
slab of half-length a = 0.5 cm at frequency f = 30 GHz. The refractive indices of the slab
and the surrounding dielectric are n1 = 2 and n2 = 1.

Solution: The solution is obtained by the MATLAB call:

f = 30; a = 0.5; n1 = 2; n2 = 1; Nit = 3;
[be,kc,ac,fc,err] = dguide(f,a,n1,n2,Nit)

The frequency radius is R = 5.4414, which gives 2R/π = 3.4641, and therefore, M = 3.
The resulting solutions, depicted in Fig. 8.11.3, are as follows:
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Fig. 8.11.3 TE modes and corresponding E-field patterns.

m u v β kc αc fm
0 1.3248 5.2777 12.2838 2.6497 10.5553 0.0000
1 2.6359 4.7603 11.4071 5.2718 9.5207 8.6603
2 3.9105 3.7837 9.8359 7.8210 7.5675 17.3205
3 5.0793 1.9519 7.3971 10.1585 3.9037 25.9808

The cutoff frequencies fm are in GHz. We note that as the mode number m increases,
the quantity αc decreases and the effective skin depth 1/αc increases, causing the fields
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outside the slab to be less confined. The electric field patterns are also shown in the figure
as functions of x.

The approximation error, err, is found to be 4.885×10−15 using only three Newton itera-
tions. Using two, one, and no (the Lotspeich approximation) iterations would result in the
errors 2.381×10−8, 4.029×10−4, and 0.058.

The lowest non-zero cutoff frequency is f1 = 8.6603 GHz, implying that there will be a
single solution if f is in the interval 0 ≤ f < f1. For example, if f = 5 GHz, the solution is
β = 1.5649 rad/cm, kc = 1.3920 rad/cm, and αc = 1.1629 nepers/cm.

The frequency range over which there are only four solutions is [25.9808,34.6410] GHz,
where the upper limit is 4f1. 
�

In terms of the ray picture of the propagating wave, the angles of total internal
reflection are quantized according to the values of the propagation wavenumber β for
the various modes.

If we denote by k1 = k0n1 the wavenumber within the slab, then the wavenumbers
β, kc are the z- and x-components kz, kx of k1 with an angle of incidenceθ. (The vectorial
relationships are the same as those in Fig. 8.9.1.) Thus, we have:

β = k1 sinθ = k0n1 sinθ

kc = k1 cosθ = k0n1 cosθ
(8.11.36)

The value of β for each mode will generate a corresponding value for θ. The at-
tenuation wavenumber αc outside the slab can also be expressed in terms of the total
internal reflection angles:

αc =
√
β2 − k2

0n
2
2 = k0

√
n2

1 sin2 θ− n2
2

Since the critical angle is sinθc = n2/n1, we may also express αc as:

αc = k0n1

√
sin2 θ− sinθ2

c (8.11.37)

Example 8.11.2: For the Example 8.11.1, we calculate k0 = 6.2832 and k1 = 12.5664 rad/cm.
The critical and total internal reflection angles of the four modes are found to be:

θc = asin
(
n2

n1

)
= 30o

θ = asin
(
β
k1

)
= {77.8275o, 65.1960o, 51.5100o, 36.0609o}

As required, all θs are greater than θc. 
�

8.12 Problems

8.1 An air-filled 1.5 cm×3 cm waveguide is operated at a frequency that lies in the middle of its
TE10 mode band. Determine this operating frequency in GHz and calculate the maximum
power in Watts that can be transmitted without causing dielectric breakdown of air. The
dielectric strength of air is 3 MV/m.
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8.2 It is desired to design an air-filled rectangular waveguide such that (a) it operates only in the
TE10 mode with the widest possible bandwidth, (b) it can transmit the maximum possible
power, and (c) the operating frequency is 12 GHz and it lies in the middle of the operating
band. What are the dimensions of the guide in cm?

8.3 An air-filled rectangular waveguide is used to transfer power to a radar antenna. The guide
must meet the following specifications: The two lowest modes are TE10 and TE20. The op-
erating frequency is 3 GHz and must lie exactly halfway between the cutoff frequencies of
these two modes. The maximum electric field within the guide may not exceed, by a safety
margin of 3, the breakdown field of air 3 MV/m.

a. Determine the smallest dimensions a,b for such a waveguide, if the transmitted power
is required to be 1 MW.

b. What are the dimensions a,b if the transmitted power is required to be maximum?
What is that maximum power in MW?

8.4 It is desired to design an air-filled rectangular waveguide operating at 5 GHz, whose group
velocity is 0.8c. What are the dimensions a,b of the guide (in cm) if it is also required to carry
maximum power and have the widest possible bandwidth? What is the cutoff frequency of
the guide in GHz and the operating bandwidth?

8.5 Show the following relationship between guide wavelength and group velocity in an arbitrary
air-filled waveguide: vgλg = cλ , where λg = 2π/β and λ is the free-space wavelength.
Moreover, show that the λ and λg are related to the cutoff wavelength λc by:

1

λ2
= 1

λ2
g
+ 1

λ2
c

8.6 Determine the four lowest modes that can propagate in a WR-159 and a WR-90 waveguide.
Calculate the cutoff frequencies (in GHz) and cutoff wavelengths (in cm) of these modes.

8.7 An air-filled WR-90 waveguide is operated at 9 GHz. Calculate the maximum power that
can be transmitted without causing dielectric breakdown of air. Calculate the attenuation
constant in dB/m due to wall ohmic losses. Assume copper walls.

8.8 A rectangular waveguide has sides a,b such that b ≤ a/2. Determine the cutoff wavelength
λc of this guide. Show that the operating wavelength band of the lowest mode is 0.5λc ≤
λ ≤ λc. Moreover, show that the allowed range of the guide wavelength is λg ≥ λc/

√
3.

8.9 The TE10 mode operating bandwidth of an air-filled waveguide is required to be 4–7 GHz.
What are the dimensions of the guide?

8.10 Computer Experiment: WR-159 Waveguide. Reproduce the two graphs of Fig. 8.8.2.

8.11 Computer Experiment: Dielectric Slab Waveguide. Using the MATLAB functions dslab and
dguide, write a program that reproduces all the results and graphs of Examples 8.11.1 and
8.11.2.

8.12 A TM mode is propagated along a waveguide of arbitrary but uniform cross section. Assume
perfectly conducting walls.

a. Show that the Ez(x, y) component satisfies:

∫
S
|∇∇∇Ez|2 dS = k2

c

∫
S
|Ez|2 dS

b. Using the above result, show that the energy velocity is equal to the group velocity.
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Transmission Lines

9.1 General Properties of TEM Transmission Lines

We saw in Sec. 8.3 that TEM modes are described by Eqs. (8.3.3) and (8.3.4), the latter
being equivalent to a two-dimensional electrostatic problem:

HT = 1

η
ẑ× ET

∇∇∇T × ET = 0

∇∇∇T · ET = 0

(TEM modes) (9.1.1)

The second of (9.1.1) implies that ET can be expressed as the (two-dimensional)
gradient of a scalar electrostatic potential. Then, the third equation becomes Laplace’s
equation for the potential. Thus, the electric field can be obtained from:

∇2
Tϕ = 0

ET = −∇∇∇Tϕ
(equivalent electrostatic problem) (9.1.2)

Because in electrostatic problems the electric field lines must start at positively
charged conductors and end at negatively charged ones, a TEM mode can be supported
only in multi-conductor guides, such as the coaxial cable or the two-wire line. Hollow
conducting waveguides cannot support TEM modes.

Fig. 9.1.1 depicts the transverse cross-sectional area of a two-conductor transmission
line. The cross-section shapes are arbitrary.

The conductors are equipotentials of the electrostatic solution. Let ϕa,ϕb be the
constant potentials on the two conductors. The voltage difference between the conduc-
tors will be V =ϕa −ϕb. The electric field lines start perpendicularly on conductor (a)
and end perpendicularly on conductor (b).

The magnetic field lines, being perpendicular to the electric lines according to Eq. (9.1.1),
are recognized to be the equipotential lines. As such, they close upon themselves sur-
rounding the two conductors.

273
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Fig. 9.1.1 Two-conductor transmission line.

In particular, on the conductor surfaces the magnetic field is tangential. According
to Ampère’s law, the line integrals of the magnetic field around each conductor will
result into total currents I and −I flowing on the conductors in the z-direction. These
currents are equal and opposite.

Impedance, Inductance, and Capacitance

Because the fields are propagating along the z-direction with frequencyω and wavenum-
ber β =ω/c, the z, t dependence of the voltage V and current I will be:

V(z, t)= Vejωt−jβz
I(z, t)= Iejωt−jβz (9.1.3)

For backward-moving voltage and current waves, we must replace β by−β. The ratio
V(z, t)/I(z, t)= V/I remains constant and independent of z. It is called the character-
istic impedance of the line:

Z = V
I

(line impedance) (9.1.4)

In addition to the impedance Z, a TEM line is characterized by its inductance per unit
length L′ and its capacitance per unit length C′. For lossless lines, the three quantities
Z,L′, C′ are related as follows:

L′ = µ Z
η
, C′ = ε η

Z
(inductance and capacitance per unit length) (9.1.5)

where η = √µ/ε is the characteristic impedance of the dielectric medium between the
conductors.† By multiplying and dividing L′ and C′, we also obtain:

Z =
√
L′

C′
, c = 1√εµ =

1√
L′C′

(9.1.6)

†These expressions explain why µ and ε are sometimes given in units of henry/m and farad/m.
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The velocity factor of the line is the ratio c/c0 = 1/n, where n = √ε/ε0 = √εr is the
refractive index of the dielectric, which is assumed to be non-magnetic.

Because ω = βc, the guide wavelength will be λ = 2π/β = c/f = c0/fn = λ0/n,
where λ0 is the free-space wavelength. For a finite length l of the transmission line, the
quantity l/λ = nl/λ0 is referred to as the electrical length of the line and plays the same
role as the optical length in thin-film layers.

Eqs. (9.1.5) and (9.1.6) are general results that are valid for any TEM line. They can
be derived with the help of Fig. 9.1.2.

Fig. 9.1.2 Surface charge and magnetic flux linkage.

The voltage V is obtained by integrating ET ·dl along any path from (a) to (b). How-
ever, if that path is chosen to be an E-field line, then ET · dl = |ET|dl, giving:

V =
∫ b
a
|ET|dl (9.1.7)

Similarly, the current I can be obtained by the integral of HT · dl along any closed
path around conductor (a). If that path is chosen to be an H-field line, such as the
periphery Ca of the conductor, we will obtain:

I =
∮
Ca
|HT|dl (9.1.8)

The surface charge accumulated on an infinitesimal area dldz of conductor (a) is
dQ = ρsdldz, where ρs is the surface charge density. Because the conductors are
assumed to be perfect, the boundary conditions require that ρs be equal to the normal
component of the D-field, that is, ρs = ε|ET|. Thus, dQ = ε|ET|dldz.

If we integrate over the peripheryCa of conductor (a), we will obtain the total surface
charge per unit z-length:

Q′ = dQ
dz
=
∮
Ca
ε|ET|dl

But because of the relationship |ET| = η|HT|, which follows from the first of Eqs. (9.1.1),
we have:

Q′ =
∮
Ca
ε|ET|dl = εη

∮
Ca
|HT|dl = εηI (9.1.9)

where we used Eq. (9.1.8). Because Q′ is related to the capacitance per unit length and
the voltage by Q′ = C′V, we obtain
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Q′ = C′V = εηI ⇒ C′ = εη I
V
= ε η

Z

Next, we consider an E-field line between pointsA and B on the two conductors. The
magnetic flux through the infinitesimal area dldz will be dΦ = |BT|dldz = µ|HT|dldz
because the vector HT is perpendicular to the area.

If we integrate from (a) to (b), we will obtain the total magnetic flux linking the two
conductors per unit z-length:

Φ′ = dΦ

dz
=
∫ b
a
µ|HT|dl

replacing |HT| = |ET|/η and using Eq. (9.1.7), we find:

Φ′ =
∫ b
a
µ|HT|dl = µη

∫ b
a
|ET|dl = µη V

The magnetic flux is related to the inductance via Φ′ = L′I. Therefore, we get:

Φ′ = L′I = µ
η
V ⇒ L′ = µ

η
V
I
= µ Z

η

Transmitted Power

The relationships among Z,L′, C′ can also be derived using energy considerations. The
power transmitted along the line is obtained by integrating the z-component of the
Poynting vector over the cross-section S of the line. For TEM modes we have Pz =
|ET|2/2η, therefore,

PT = 1

2η

∫∫
S
|ET|2dxdy = 1

2η

∫∫
S
|∇∇∇Tϕ|2dxdy (9.1.10)

It can be shown in general that Eq. (9.1.10) can be rewritten as:

PT = 1

2
Re(V∗I)= 1

2
Z|I|2 = 1

2Z
|V|2 (9.1.11)

We will verify this in the various examples below. It can be proved using the following
Green’s identity:

|∇∇∇Tϕ|2 +ϕ∗∇2
Tϕ =∇∇∇T · (ϕ∗∇∇∇Tϕ)

Writing ET = −∇∇∇Tϕ and noting that ∇2
Tϕ = 0, we obtain:

|ET|2 = −∇∇∇T · (ϕ∗ET)

Then, the two-dimensional Gauss’ theorem implies:
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PT = 1

2η

∫∫
S
|ET|2dxdy = − 1

2η

∫∫
S
∇∇∇T · (ϕ∗ET)dxdy

= − 1

2η

∮
Ca
ϕ∗ET · (−n̂)dl− 1

2η

∮
Cb
ϕ∗ET · (−n̂)dl

= 1

2η

∮
Ca
ϕ∗(ET · n̂)dl+ 1

2η

∮
Cb
ϕ∗(ET · n̂)dl

where n̂ are the outward normals to the conductors (the quantity −n̂ is the normal
outward from the region S.) Because the conductors are equipotential surfaces, we have
ϕ∗ =ϕ∗a on conductor (a) andϕ∗ =ϕ∗b on conductor (b). Using Eq. (9.1.9) and noting
that ET · n̂ = ±|ET| on conductors (a) and (b), we obtain:

PT = 1

2η
ϕ∗a

∮
Ca
|ET|dl− 1

2η
ϕ∗b

∮
Cb
|ET|dl = 1

2η
ϕ∗a
Q′

ε
− 1

2η
ϕ∗b
Q′

ε

= 1

2
(ϕ∗a −ϕ∗b )

Q′

εη
= 1

2
V∗
εηI
εη
= 1

2
V∗I = 1

2
Z|I|2

The distribution of electromagnetic energy along the line is described by the time-
averaged electric and magnetic energy densities per unit length, which are given by:

W′e =
1

4
ε
∫∫
S
|ET|2dxdy , W′m =

1

4
µ
∫∫
S
|HT|2dxdy

Using Eq. (9.1.10), we may rewrite:

W′e =
1

2
εηPT = 1

2c
PT , W′m =

1

2

µ
η
PT = 1

2c
PT

Thus, W′e = W′m and the total energy density is W′ = W′e +W′m = PT/c, which
implies that the energy velocity will be ven = PT/W′ = c. We may also express the
energy densities in terms of the capacitance and inductance of the line:

W′e =
1

4
C′|V|2 , W′m =

1

4
L′|I|2 (9.1.12)

Power Losses, Resistance, and Conductance

Transmission line losses can be handled in the manner discussed in Sec. 8.2. The field
patterns and characteristic impedance are determined assuming the conductors are per-
fectly conducting. Then, the losses due to the ohmic heating of the dielectric and the
conductors can be calculated by Eqs. (8.2.5) and (8.2.9).

These losses can be quantified by two more characteristic parameters of the line, the
resistance and conductance per unit length, R′ and G′. The attenuation coefficients due
to conductor and dielectric losses are then expressible in terms R′, G′ and Z by:

αc = R
′

2Z
, αd = 1

2
G′Z (9.1.13)
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They can be derived in general terms as follows. The induced surface currents on
the conductor walls are Js = n̂×HT = n̂× (ẑ× ET)/η, where n̂ is the outward normal
to the wall.

Using the BAC-CAB rule, we find Js = ẑ(n̂ · ET)/η. But, n̂ is parallel to ET on the
surface of conductor (a), and anti parallel on (b). Therefore, n̂ · ET = ±|ET|. It follows
that Js = ±ẑ|ET|/η = ±ẑ|HT|, pointing in the +z direction on (a) and −z direction on
(b). Inserting these expressions into Eq. (8.2.8), we find for the conductor power loss per
unit z-length:

P′loss =
dPloss

dz
= 1

2
Rs
∮
Ca
|HT|2 dl+ 1

2
Rs
∮
Cb
|HT|2 dl (9.1.14)

Because HT is related to the total current I via Eq. (9.1.8), we may define the resistance
per unit length R′ through the relationship:

P′loss =
1

2
R′|I|2 (conductor ohmic losses) (9.1.15)

Using Eq. (9.1.11), we find for the attenuation coefficient:

αc = P
′
loss

2PT
=

1

2
R′|I|2

2
1

2
Z|I|2

= R
′

2Z
(9.1.16)

If the dielectric between the conductors is slightly conducting with conductivity σd
or loss tangent tanδ = σd/εω, then there will be some current flow between the two
conductors.

The induced shunt current per unit z-length is related to the conductance by I′d =
G′V. The shunt current density within the dielectric is Jd = σdET. The total shunt
current flowing out of conductor (a) towards conductor (b) is obtained by integrating Jd
around the periphery of conductor (a):

I′d =
∮
Ca

Jd · n̂dl = σd
∮
Ca
|ET|dl

Using Eq. (9.1.9), we find:

I′d = σd
Q′

ε
= G′V ⇒ G′ = σd

ε
C′ = σd ηZ

It follows that the dielectric loss constant (8.2.5) will be:

αd = 1

2
σdη = 1

2
G′Z

Alternatively, the power loss per unit length due to the shunt current will be P′d =
Re(I′dV∗)/2 = G′|V|2/2, and therefore, αd can be computed from:

αd = P′d
2PT

=
1

2
G′|V|2

2
1

2Z
|V|2

= 1

2
G′Z
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It is common practice to express the dielectric losses and shunt conductance in terms
of the loss tangent tanδ and the wavenumber β =ω/c =ωεη:

αd = 1

2
σdη = 1

2
ωεη tanδ = 1

2
β tanδ and G′ = σd

ε
C′ =ωC′ tanδ (9.1.17)

Next, we discuss four examples: the parallel plate line, the microstrip line, the coaxial
cable, and the two-wire line. In each case, we discuss the nature of the electrostatic
problem and determine the characteristic impedance Z and the attenuation coefficients
αc and αd.

9.2 Parallel Plate Lines

The parallel plate line shown in Fig. 9.2.1 consists of two parallel conducting plates of
width w separated by height h by a dielectric material ε. Examples of such lines are
microstrip lines used in microwave integrated circuits.

For arbitrary values of w and h, the fringing effects at the ends of the plates cannot
be ignored. In fact, fringing requires the fields to have longitudinal components, and
therefore TEM modes are not strictly-speaking supported.

Fig. 9.2.1 Parallel plate transmission line.

However, assuming the width is much larger than the height, w� h, we may ignore
the fringing effects and assume that the fields have no dependence on the x-coordinate.

The electrostatic problem is equivalent to that of a parallel plate capacitor. Thus,
the electric field will have only a y component and will be constant between the plates.
Similarly, the magnetic field will have only an x component. It follows from Eqs. (9.1.7)
and (9.1.8) that:

V = −Eyh , I = Hxw
Therefore, the characteristic impedance of the line will be:

Z = V
I
= −Eyh
Hxw

= η h
w

(9.2.1)

where we used Ey = −ηHx. The transmitted power is obtained from Eq. (9.1.10):

PT = 1

2η
|Ey|2(wh)= 1

2η
V2

h2
wh = 1

2η
w
h
V2 = 1

2Z
V2 = 1

2
ZI2 (9.2.2)
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The inductance and capacitance per unit length are obtained from Eq. (9.1.5):

L′ = µ h
w
, C′ = εw

h
(9.2.3)

The surface current on the top conductor is Js = n̂ × H = (−ŷ)×H = ẑHx. On the
bottom conductor, it will be Js = −ẑHx. Therefore, the power loss per unit z-length is
obtained from Eq. (8.2.8):

P′loss = 2
1

2
Rs|Hx|2w = 1

w
RsI2

Comparing with Eq. (9.1.15), we identify the resistance per unit length R′ = 2Rs/w.
Then, the attenuation constant due to conductor losses will be:

αc = P
′
loss

2PT
= R

′

2Z
= Rs
wZ

= Rs
hη

(9.2.4)

9.3 Microstrip Lines

Practical microstrip lines, shown in Fig. 9.3.1, have width-to-height ratios w/h that are
not necessarily much greater than unity, and can vary over the interval 0.1 < w/h < 10.
Typical heights h are of the order of millimeters.

Fig. 9.3.1 A microstrip transmission line.

Fringing effects cannot be ignored completely and the simple assumptions about the
fields of the parallel plate line are not valid. For example, assuming a propagating wave
in the z-direction with z, t dependence of ejωt−jβz with a common β in the dielectric
and air, the longitudinal-transverse decomposition (8.1.5) gives:

∇∇∇TEz × ẑ− jβ ẑ× ET = −jωµHT ⇒ ẑ× (∇∇∇TEz + jβET)= jωµHT

In particular, we have for the y-component:

∂xEz + jβEx = jωµHy
The boundary conditions require that the components By = µHy and Dx = εEx be

continuous across the dielectric-air interface. This gives the conditions:

∂xEair
z + jβEair

x = ∂xEdiel
z + jβEdiel

x

ε0Eair
x = εEdiel

x
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Combining the two conditions, we obtain:

∂x
(
Ediel
z − Eair

z
) = jβε− ε0

ε
Eair
x (9.3.1)

Inspecting the fringing patterns of Fig. 9.2.1, we note that the electric field has a
non-zero x-component on the air side, Eair

x �= 0. Thus, the left-hand side of Eq. (9.3.1)
cannot be zero and the wave cannot be assumed to be strictly TEM.

However, Ex can be assumed to be small in both the air and the dielectric because
the dominant direction of the transverse electric field is in the y-direction. This gives
rise to the so-called quasi-TEM approximation in which the fields are assumed to be
approximately TEM and the effect of the deviation from TEM is taken into account by
empirical formulas for the line impedance and velocity factor.

In particular, the air-dielectric interface is replaced by an effective dielectric, filling
uniformly the entire space, and in which there would be a TEM propagating mode. If
we denote by εeff the relative permittivity of the effective dielectric, the wavelength and
velocity factor of the line will be given in terms of their free-space values λ0, c0:

λ = λ0√
εeff

, c = c0√
εeff

(9.3.2)

There exist many empirical formulas for the characteristic impedance of the line
and the effective dielectric constant. Hammerstad and Jensen’s are some of the most
accurate ones [444,450]:

εeff = εr + 1

2
+ εr − 1

2

(
1+ 10

u

)−ab
, u = w

h
(9.3.3)

where εr = ε/ε0 is the relative permittivity of the dielectric and the quantities a,b are
defined by:

a = 1+ 1

49
ln

[
u4 + (u/52)2

u4 + 0.432

]
+ 1

18.7
ln

[
1+

(
u

18.1

)3
]

b = 0.564
(
εr − 0.9
εr + 3

)0.053
(9.3.4)

The accuracy of these formulas is better than 0.01% foru < 1 and 0.03% foru < 1000.
Similarly, the characteristic impedance is given by the empirical formula:

Z = η0

2π
√
εeff

ln


 f(u)
u
+
√

1+ 4

u2


 (9.3.5)

where η0 =
√
µ0/ε0 and the function f(u) is defined by:

f(u)= 6+ (2π− 6)exp

[
−
(

30.666

u

)0.7528
]

(9.3.6)

The accuracy is better than 0.2% for 0.1 ≤ u ≤ 100 and εr < 128. In the limit of
large ratiow/h, or, u→∞, Eqs. (9.3.3) and (9.3.5) tend to those of the parallel plate line
of the previous section:
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εeff → εr , Z → η0√
εr
h
w
= η h

w

Some typical substrate dielectric materials used in microstrip lines are alumina, a
ceramic form of Al2O4 with er = 9.8, and RT-Duroid, a teflon composite material with
εr = 2.2. Practical values of the width-to-height ratio are in the range 0.1 ≤ u ≤ 10 and
practical values of characteristic impedances are between 10–200 ohm. Fig. 9.3.2 shows
the dependence of Z and εeff on u for the two cases of εr = 2.2 and εr = 9.8.

0 1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225
Characteristic Impedance

w/h

Z
  (

oh
m

)

 εr = 2.2
 εr = 9.8

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10
Effective Permittivity

w/h

ε e
ff  εr = 2.2

 εr = 9.8

Fig. 9.3.2 Characteristic impedance and effective permittivity of microstrip line.

The synthesis of a microstrip line requires that we determine the ratiow/h that will
achieve a given characteristic impedance Z. The inverse of Eq. (9.3.5)—solving for u in
terms of Z—is not practical. Direct synthesis empirical equations exist [445,450], but
are not as accurate as (9.3.5). Given a desired Z, the ratio u = w/h is calculated as
follows. If u ≤ 2,

u = 8

eA − 2e−A
(9.3.7)

and, if u > 2,

u = εr − 1

πεr

[
ln(B− 1)+0.39− 0.61

εr

]
+ 2

π
[
B− 1− ln(2B− 1)

]
(9.3.8)

where A,B are given by:

A = π√2(εr + 1)
Z
η0
+ εr − 1

εr + 1

(
0.23+ 0.11

εr

)

B = π
2
√
εr
η0

Z

(9.3.9)

The accuracy of these formulas is about 1%. The method can be improved iteratively
by a process of refinement to achieve essentially the same accuracy as Eq. (9.3.5). Start-
ing with u computed from Eqs. (9.3.7) and (9.3.8), a value of Z is computed through
Eq. (9.3.5). If that Z is more than, say, 0.2% off from the desired value of the line
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impedance, then u is slightly changed, and so on, until the desired level of accuracy
is reached [450]. Because Z is monotonically decreasing with u, if Z is less than the de-
sired value, then u is decreased by a small percentage, else, u is increased by the same
percentage.

The three MATLAB functions mstripa, mstrips, and mstripr implement the anal-
ysis, synthesis, and refinement procedures. They have usage:

[eff,Z] = mstripa(er,u); % analysis equations (9.3.3) and (9.3.5)

u = mstrips(er,Z); % synthesis equations (9.3.7) and (9.3.8)

[u,N] = mstripr(er,Z0,per); % refinement

The function mstripa accepts also a vector of several u’s, returning the correspond-
ing vector of values of εeff and Z. In mstripr, the output N is the number of iterations
required for convergence, and per is the desired percentage error, which defaults to
0.2% if this parameter is omitted.

Example 9.3.1: Given εr = 2.2 andu = w/h = 2,4,6, the effective permittivities and impedances
are computed from the MATLAB call:

u = [2; 4; 6];
[eff, Z] = mstripa(er,u);

The resulting output vectors are:

u =



2
4
6


 ⇒ εeff =




1.8347
1.9111
1.9585


 , Z =




65.7273
41.7537
30.8728


 ohm

Example 9.3.2: To compare the outputs of mstrips and mstripr, we design a microstrip line
with εr = 2.2 and characteristic impedance Z = 50 ohm. We find:

u = mstrips(2.2,50)= 3.0779 ⇒ [εeff, Z]= mstripa(2.2, u)= [1.8811, 50.0534]

u = mstripr(2.2,50)= 3.0829 ⇒ [εeff, Z]= mstripa(2.2, u)= [1.8813, 49.9990]

The first solution has an error of 0.107% from the desired 50 ohm impedance, and the
second, a 0.002% error.

As another example, if Z = 100 Ω, the function mstrips results in u = 0.8949, Z =
99.9495 Ω, and a 0.050% error, whereas mstripr gives u = 0.8939, Z = 99.9980 Ω, and a
0.002% error. ��

In using microstrip lines several other effects must be considered, such as finite strip
thickness, frequency dispersion, dielectric and conductor losses, radiation, and surface
waves. Guidelines for such effects can be found in [444–450].

The dielectric losses are obtained from Eq. (9.1.17) by multiplying it by an effective
dielectric filling factor q:

αd = qω
2c

tanδ = f
c0
πq
√
εeff tanδ = 1

λ0
πq
√
εeff tanδ , q = 1− ε−1

eff

1− ε−1
r

(9.3.10)
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Typical values of the loss tangent are of the order of 0.001 for alumina and duroid
substrates. The conductor losses are approximately computed from Eq. (9.2.4):

αc = Rs
wZ

(9.3.11)

9.4 Coaxial Lines

The coaxial cable, depicted in Fig. 9.4.1, is the most widely used TEM transmission line.
It consists of two concentric conductors of inner and outer radii of a and b, with the
space between them filled with a dielectric ε, such as polyethylene or teflon.

The equivalent electrostatic problem can be solved conveniently in cylindrical coor-
dinates ρ,φ. The potential ϕ(ρ,φ) satisfies Laplace’s equation:

∇2
Tϕ =

1

ρ
∂
∂ρ

(
ρ
∂ϕ
∂ρ

)
+ 1

ρ2

∂2ϕ
∂2φ

= 0

Because of the cylindrical symmetry, the potential does not depend on the azimuthal
angle φ. Therefore,

1

ρ
∂
∂ρ

(
ρ
∂ϕ
∂ρ

)
= 0 ⇒ ρ

∂ϕ
∂ρ
= B ⇒ ϕ(ρ)= A+ B lnρ

where A,B are constants of integration. Assuming the outer conductor is grounded,
ϕ(ρ)= 0 at ρ = b, and the inner conductor is held at voltageV,ϕ(a)= V, the constants
A,B are determined to be B = −V ln(b/a) and A = −B lnb, resulting in the potential:

ϕ(ρ)= V
ln(b/a)

ln(b/ρ) (9.4.1)

It follows that the electric field will have only a radial component, Eρ = −∂ρϕ, and
the magnetic field only an azimuthal component Hφ = Eρ/η:

Eρ = V
ln(b/a)

1

ρ
, Hφ = V

η ln(b/a)
1

ρ
(9.4.2)

Integrating Hφ around the inner conductor we obtain the current:

Fig. 9.4.1 Coaxial transmission line.
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I =
∫ 2π

0
Hφ ρdφ =

∫ 2π

0

V
η ln(b/a)

1

ρ
ρdφ = 2πV

η ln(b/a)
(9.4.3)

It follows that the characteristic impedance of the line Z = V/I, and hence the
inductance and capacitance per unit length, will be:

Z = η
2π

ln(b/a), L′ = µ
2π

ln(b/a), C′ = 2πε
ln(b/a)

(9.4.4)

Using Eq. (9.4.3) into (9.4.2), we may express the magnetic field in the form:

Hφ = I
2πρ

(9.4.5)

This is also obtainable by the direct application of Ampère’s law around the loop of
radius ρ encircling the inner conductor, that is, I = (2πρ)Hφ.

The transmitted power can be expressed either in terms of the voltage V or in terms
of the maximum value of the electric field inside the line, which occurs at ρ = a, that is,
Ea = V/

(
a ln(b/a)

)
:

PT = 1

2Z
|V|2 = π|V|2

η ln(b/a)
= 1

η
|Ea|2(πa2)ln(b/a) (9.4.6)

Example 9.4.1: A commercially available polyethylene-filled RG-58/U cable is quoted to have
impedance of 53.5 Ω, velocity factor of 66 percent, inner conductor radius a = 0.406 mm
(AWG 20-gauge wire), and maximum operating RMS voltage of 1900 volts. Determine the
outer-conductor radius b, the capacitance per unit length C′, the maximum power PT that
can be transmitted, and the maximum electric field inside the cable. What should be the
outer radius b if the impedance were required to be exactly 50 Ω?

Solution: Polyethylene has a relative dielectric constant of εr = 2.25, so that n = √εr = 1.5.
The velocity factor is c/c0 = 1/n = 0.667. Given that η = η0/n = 376.73/1.5 = 251.15
Ω, we have:

Z = η
2π

ln(b/a) ⇒ b = ae2πZ/η = 0.406e2π53.5/251.15 = 1.548 mm

Therefore, b/a = 3.81. If Z = 50, the above calculation would give b = 1.418 mm and
b/a = 3.49. The capacitance per unit length is found from:

C′ = εη
Z
= 1

cZ
= n
c0Z

= 1.5
3×108×53.5

= 93.46 pF/m

For Z = 50 Ω, we find C′ = 100 pF/m. The peak voltage is related to its RMS value by
|V| = √2Vrms. It follows that the maximum power transmitted is:

PT = 1

2Z
|V|2 = V

2
rms

Z
= 19002

53.5
= 67.5 kW

The peak value of the electric field occurring at the inner conductor will be:
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|Ea| = |V|
a ln(b/a)

=
√

2Vrms

a ln(b/a)
=

√
21900

0.406×10−2 ln(3.096/0.406)
= 0.5 MV/m

This is to be compared with the dielectric breakdown of air of 3 MV/m. For a 73-Ω RG-
59/U cable with a = 0.322 mm (AWG 22-gauge wire), we find b = 2 mm, C′ = 68.5 pF/m,
PT = 49.5 kW, and Emax = 0.46 MV/m. ��

Example 9.4.2: Most cables have a nominal impedance of either 50 or 75 Ω. The precise value
depends on the manufacturer and the cable. For example, a 50-Ω cable might actually have
an impedance of 52 Ω and a 75-Ω cable might actually be a 73-Ω cable.

The table below lists some commonly used cables with their AWG-gauge number of the
inner conductor, the inner conductor radius a in mm, and their nominal impedance. Their
dielectric filling is polyethylene with εr = 2.25 or n = √εr = 1.5.

type AWG a Z

RG-6/U 18 0.512 75
RG-8/U 11 1.150 50
RG-11/U 14 0.815 75
RG-58/U 20 0.406 50
RG-59/U 22 0.322 75
RG-174/U 26 0.203 50
RG-213/U 13 0.915 50

The most commonly used cables are 50-Ω ones, such as the RG-58/U. Home cable-TV uses
75-Ω cables, such as the RG-59/U or RG-6/U.

The thin ethernet computer network, known as 10base-2, uses RG-58/U or RG-58A/U,
which is similar to the RG-58/U but has a stranded inner copper core. Thick ethernet
(10base-5) uses the thicker RG-8/U cable.

Because a dipole antenna has an input impedance of about 73 Ω, the RG-11, RG-6, and
RG-59 75-Ω cables can be used to feed the antenna. ��

Next, we determine the attenuation coefficient due to conductor losses. The power
loss per unit length is given by Eq. (9.1.14). The magnetic fields at the surfaces of
conductors (a) and (b) are obtained from Eq. (9.4.5) by setting ρ = a and ρ = b:

Ha = I
2πa

, Hb = I
2πb

Because these are independent of the azimuthal angle, the integrations around the
peripheries dl = adφ or dl = bdφ will contribute a factor of (2πa) or (2πb). Thus,

P′loss =
1

2
Rs
[
(2πa)|Ha|2 + (2πb)|Hb|2

] = Rs|I|2
4π

(
1

a
+ 1

b

)
(9.4.7)

It follows that:

αc = P
′
loss

2PT
=
Rs|I|2

4π

(
1

a
+ 1

b

)

2
1

2
Z|I|2
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Using Eq. (9.4.4), we finally obtain:

αc = Rs
2η

(
1

a
+ 1

b

)

ln
(
b
a

) (9.4.8)

The ohmic losses in the dielectric are described by Eq. (9.1.17). The total attenuation
constant will be the sum of the conductor and dielectric attenuations:

α = αc +αd = Rs
2η

(
1

a
+ 1

b

)

ln
(
b
a

) + ω
2c

tanδ (attenuation) (9.4.9)

The attenuation in dB/m will be αdB = 8.686α. This expression tends to somewhat
underestimate the actual losses, but it is generally a good approximation. The αc term
grows in frequency like

√
f and the term αd, like f .

The smaller the dimensions a,b, the larger the attenuation. The loss tangent tanδ
of a typical polyethylene or teflon dielectric is of the order of 0.0004–0.0009 up to about
3 GHz.

The ohmic losses and the resulting heating of the dielectric and conductors also
limits the power rating of the line. For example, if the maximum supported voltage is
1900 volts as in Example 9.4.2, the RMS value of the current for an RG-58/U line would
be Irms = 1900/53.5 = 35.5 amps, which would melt the conductors. Thus, the actual
power rating is much smaller than that suggested by the maximum voltage rating. The
typical power rating of an RG-58/U cable is 1 kW, 200 W, and 80 W at 10 MHz, 200 MHz,
and 1 GHz.

Example 9.4.3: The table below lists the nominal attenuations in dB per 100 feet of the RG-8/U
and RG-213/U cables. The data are from [739].

f (MHz) 50 100 200 400 900 1000 3000 5000

α (dB/100ft) 1.3 1.9 2.7 4.1 7.5 8.0 16.0 27.0

Both are 50-ohm cables and their radii a are 1.15 mm and 0.915 mm for RG-8/U and RG-
213/U. In order to compare these ratings with Eq. (9.4.9), we took a to be the average of
these two values, that is, a = 1.03 mm. The required value of b to give a 50-ohm impedance
is b = 3.60 mm.

Fig. 9.4.2 shows the attenuations calculated from Eq. (9.4.9) and the nominal ones from the
table. We assumed copper conductors with σ = 5.8×107 S/m and polyethylene dielectric
with n = 1.5, so that η = η0/n = 376.73/1.5 = 251.15 Ω and c = c0/n = 2×108 m/sec.
The loss tangent was taken to be tanδ = 0.0007.

The conductor and dielectric attenuations αc and αd become equal around 2.3 GHz, and
αd dominates after that.

It is evident that the useful operation of the cable is restricted to frequencies up to 1 GHz.
Beyond that, the attenuations are too excessive and the cable may be used only for short
lengths. ��
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Fig. 9.4.2 Attenuation coefficient α versus frequency.

Optimum Coaxial Cables

Given a fixed outer-conductor radius b, one may ask three optimization questions: What
is the optimum value of a, or equivalently, the ratio b/a that (a) minimizes the electric
field Ea inside the guide, (b) maximizes the power transfer PT, and (c) minimizes the
conductor attenuation αc.

The three quantities Ea, PT,αc can be thought of as functions of the ratio x = b/a
and take the following forms:

Ea = Vb
x

lnx
, PT = 1

η
|Ea|2πb2 lnx

x2
, αc = Rs

2ηb
x+ 1

lnx
(9.4.10)

Setting the derivatives of the three functions of x to zero, we obtain the three
conditions: (a) lnx = 1, (b) lnx = 1/2, and (c) lnx = 1 + 1/x, with solutions (a)
b/a = e1 = 2.7183, (b) b/a = e1/2 = 1.6487 and (c) b/a = 3.5911.

Unfortunately, the three optimization problems have three different answers, and
it is not possible to satisfy them simultaneously. The corresponding impedances Z for
the three values of b/a are 60 Ω, 30 Ω, and 76.7 Ω for an air-filled line and 40 Ω, 20 Ω,
and 51 Ω for a polyethylene-filled line.

The value of 50 Ω is considered to be a compromise between 30 and 76.7 Ω corre-
sponding to maximum power and minimum attenuation. Actually, the minimum of αc
is very broad and any neighboring value to b/a = 3.5911 will result in an αc very near
its minimum.

Higher Modes

The TEM propagation mode is the dominant one and has no cutoff frequency. However,
TE and TM modes with higher cutoff frequencies also exist in coaxial lines [419], with
the lowest being a TE11 mode with cutoff wavelength and frequency:

λc = 1.873
π
2
(a+ b) , fc = c

λc
= c0

nλc
(9.4.11)
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This is usually approximated by λc = π(a + b). Thus, the operation of the TEM
mode is restricted to frequencies that are less than fc.

Example 9.4.4: For the RG-58/U line of Example 9.4.2, we have a = 0.406 mm and b = 1.548
mm, resulting in λc = 1.873π(a+b)/2 = 5.749 mm, which gives for the cutoff frequency
fc = 20/0.5749 = 34.79 GHz, where we used c = c0/n = 20 GHz cm.

For the RG-8/U and RG-213/U cables, we may use a = 1.03 mm and b = 3.60 as in Example
9.4.3, resulting in λc = 13.622 mm, and cutoff frequency of fc = 14.68 GHz.

The above cutoff frequencies are far above the useful operating range over which the
attenuation of the line is acceptable. ��

9.5 Two-Wire Lines

The two-wire transmission line consists of two parallel cylindrical conductors of radius
a separated by distance d from each other, as shown in Fig. 9.5.1.

Fig. 9.5.1 Two-wire transmission line.

We assume that the conductors are held at potentials ±V/2 with charge per unit
length ±Q′. The electrostatic problem can be solved by the standard technique of re-
placing the finite-radius conductors by two thin line-charges ±Q′.

The locations b1 and b2 of the line-charges are determined by the requirement that
the cylindrical surfaces of the original conductors be equipotential surfaces, the idea
being that if these equipotential surfaces were to be replaced by the conductors, the
field patterns will not be disturbed.

The electrostatic problem of the two lines is solved by invoking superposition and
adding the potentials due to the two lines, so that the potential at the field point P will
be:

ϕ(ρ,φ)= − Q
′

2πε
lnρ1 − −Q

′

2πε
lnρ2 = Q′

2πε
ln

(
ρ2

ρ1

)
(9.5.1)

where the ρ1, ρ2 are the distances from the line charges to P. From the triangles
OP(+Q′) and OP(−Q′), we may express these distances in terms of the polar co-
ordinates ρ,φ of the point P:
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ρ1 =
√
ρ2 − 2ρb1 cosφ+ b2

1 , ρ2 =
√
ρ2 − 2ρb2 cosφ+ b2

2 (9.5.2)

Therefore, the potential function becomes:

ϕ(ρ,φ)= Q′

2πε
ln

(
ρ2

ρ1

)
= Q′

2πε
ln



√√√√ρ2 − 2ρb2 cosφ+ b2

2

ρ2 − 2ρb1 cosφ+ b2
1


 (9.5.3)

In order that the surface of the left conductor at ρ = a be an equipotential surface,
that is, ϕ(a,φ)= V/2, the ratio ρ2/ρ1 must be a constant independent of φ. Thus, we
require that for some constant k and all angles φ:

ρ2

ρ1

∣∣∣∣∣
ρ=a
=
√√√√a2 − 2ab2 cosφ+ b2

2

a2 − 2ab1 cosφ+ b2
1
= k

which can be rewritten as:

a2 − 2ab2 cosφ+ b2
2 = k2(a2 − 2ab1 cosφ+ b2

1)

This will be satisfied for all φ provided we have:

a2 + b2
2 = k2(a2 + b2

1) , b2 = k2b1

These may be solved for b1, b2 in terms of k:

b2 = ka , b1 = ak (9.5.4)

The quantity k can be expressed in terms of a,d by noting that because of symmetry,
the charge −Q′ is located also at distance b1 from the center of the right conductor.
Therefore, b1 + b2 = d. This gives the condition:

b1 + b2 = d ⇒ a(k+ k−1)= d ⇒ k+ k−1 = d
a

with solution for k:

k = d
2a
+
√(

d
2a

)2

− 1 (9.5.5)

An alternative expression is obtained by setting k = eχ. Then, we have the condition:

b1 + b2 = d ⇒ a(eχ + e−χ)= 2a coshχ = d ⇒ χ = acosh
(
d
2a

)
(9.5.6)

Because χ = lnk, we obtain for the potential value of the left conductor:

ϕ(a,φ)= Q′

2πε
lnk = Q′

2πε
χ = 1

2
V

This gives for the capacitance per unit length:



9.6. Distributed Circuit Model of a Transmission Line 291

C′ = Q
′

V
= πε
χ
= πε

acosh
(
d
2a

) (9.5.7)

The corresponding line impedance and inductance are obtained from C′ = εη/Z
and L′ = µZ/η. We find:

Z = η
π
χ = η

π
acosh

(
d
2a

)
L′ = µ

π
χ = µ

π
acosh

(
d
2a

)
(9.5.8)

In the common case when d � a, we have approximately k 
 d/a, and therefore,
χ = lnk = ln(d/a). Then, Z can be written approximately as:

Z = η
π

ln(d/a) (9.5.9)

To complete the electrostatic problem and determine the electric and magnetic fields
of the TEM mode, we replace b2 = ak and b1 = a/k in Eq. (9.5.3) and write it as:

ϕ(ρ,φ)= Q′

2πε
ln


k
√
ρ2 − 2akρ cosφ+ a2k2

ρ2k2 − 2akρ cosφ+ a2


 (9.5.10)

The electric and magnetic field components are obtained from:

Eρ = ηHφ = −∂ϕ∂ρ , Eφ = −ηHρ = − ∂ϕρ∂φ (9.5.11)

Performing the differentiations, we find:

Eρ = − Q
′

2πε

[
ρ− ak cosφ

ρ2 − 2akρ cosφ+ a2k2
− ρk2 − ak cosφ
ρ2k2 − 2akρ cosφ+ a2

]

Eφ = − Q
′

2πε

[
ak sinφ

ρ2 − 2ak cosφ+ a2k2
− akρ sinφ
ρ2k2 − 2akρ cosφ+ a2

] (9.5.12)

The resistance per unit length and corresponding attenuation constant due to con-
ductor losses are calculated in Problem 9.3:

R′ = Rs
πa

d√
d2 − 4a2

, αc = R
′

2Z
= Rs

2ηa
d

acosh(d/2a)
√
d2 − 4a2

(9.5.13)

9.6 Distributed Circuit Model of a Transmission Line

We saw that a transmission line has associated with it the parameters L′, C′ describing
its lossless operation, and in addition, the parameters R′, G′ which describe the losses.
It is possible then to define a series impedance Z′ and a shunt admittance Y′ per unit
length by combining R′ with L′ and G′ with C′:
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Z′ = R′ + jωL′
Y′ = G′ + jωC′ (9.6.1)

This leads to a so-called distributed-parameter circuit, which means that every in-
finitesimal segment ∆z of the line can be replaced by a series impedance Z′∆z and a
shunt admittance Y′∆z, as shown in Fig. 9.6.1. The voltage and current at location z
will be V(z), I(z) and at location z+∆z, V(z+∆z), I(z+∆z).

Fig. 9.6.1 Distributed parameter model of a transmission line.

The voltage across the branch a–b is Vab = V(z + ∆z) and the current through it,
Iab = (Y′∆z)Vab = Y′∆zV(z + ∆z). Applying Kirchhoff’s voltage and current laws,
we obtain:

V(z) = (Z′∆z) I(z)+Vab = Z′∆zI(z)+V(z+∆z)
I(z) = Iab + I(z+∆z)= Y′∆zV(z+∆z)+I(z+∆z)

(9.6.2)

Using a Taylor series expansion, we may expand I(z + ∆z) and V(z + ∆z) to first
order in ∆z:

I(z+∆z) = I(z)+I′(z)∆z
V(z+∆z) = V(z)+V′(z)∆z and Y′∆zV(z+∆z)= Y′∆zV(z)

Inserting these expressions in Eq. (9.6.2) and matching the zeroth- and first-order
terms in the two sides, we obtain the equivalent differential equations:

V′(z)= −Z′I(z)= −(R′ + jωL′)I(z)
I′(z)= −Y′V(z)= −(G′ + jωC′)V(z) (9.6.3)

It is easily verified that the most general solution of this coupled system is express-
ible as a sum of a forward and a backward moving wave:

V(z) = V+e−jβcz +V−ejβcz

I(z) = 1

Zc

(
V+e−jβcz −V−ejβcz

) (9.6.4)



9.7. Wave Impedance and Reflection Response 293

where βc,Zc are the complex wavenumber and complex impedance:

βc =
√−Z′Y′ =ω

√(
L′ + 1

jω
R′
)(
C′ + 1

jω
G′
)
, Zc =

√
Z′

Y′
=
√
R′ + jωL′
G′ + jωC′

The real and imaginary parts of βc = β− jα define the propagation and attenuation
constants. In the case of a lossless line, R′ = G′ = 0, we obtain using Eq. (9.1.6):

βc =ω
√
L′C′ =ω√µε = ω

c
= β , Zc =

√
L′

C′
= Z (9.6.5)

In practice, we always assume a lossless line and then take into account the losses by
assuming that R′ andG′ are small quantities, which can be evaluated by the appropriate
expressions that can be derived for each type of line, as we did for the parallel-plate,
coaxial, and two-wire lines. The lossless solution (9.6.4) takes the form:

V(z) = V+e−jβz +V−ejβz = V+(z)+V−(z)

I(z) = 1

Z
(
V+e−jβz −V−ejβz

) = 1

Z
(
V+(z)−V−(z)

) (9.6.6)

This solution is identical to that of uniform plane waves of Chap. 4, provided we
make the identifications:

V(z)←→ E(z)
I(z)←→ H(z)
Z ←→ η

and
V+(z)←→ E+(z)
V−(z)←→ E−(z)

9.7 Wave Impedance and Reflection Response

All the concepts of Chap. 4 translate verbatim to the transmission line case. For example,
we may define the wave impedance and reflection response at location z:

Z(z)= V(z)
I(z)

= Z0
V+(z)+V−(z)
V+(z)−V−(z) , Γ(z)= V−(z)

V+(z)
(9.7.1)

To avoid ambiguity in notation, we will denote the characteristic impedance of the
line by Z0. It follows from Eq. (9.7.1) that Z(z) and Γ(z) are related by:

Z(z)= Z0
1+ Γ(z)
1− Γ(z) , Γ(z)= Z(z)−Z0

Z(z)+Z0
(9.7.2)

For a forward-moving wave, the conditions Γ(z)= 0 and Z(z)= Z0 are equivalent.
The propagation equations of Z(z) and Γ(z) between two points z1, z2 along the line
separated by distance l = z2 − z1 are given by:

Z1 = Z0
Z2 + jZ0 tanβl
Z0 + jZ1 tanβl

� Γ1 = Γ2e−2jβl (9.7.3)
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where we have the relationships between Z1, Z2 and Γ1, Γ2:

Z1 = Z0
1+ Γ1

1− Γ1
, Z2 = Z0

1+ Γ2

1− Γ2
(9.7.4)

We may also express Z1 in terms of Γ2:

Z1 = Z0
1+ Γ1

1− Γ1
= Z0

1+ Γ2e−2jβl

1− Γ2e−2jβl (9.7.5)

The relationship between the voltage and current waves at points z1 and z2 is ob-
tained by the propagation matrix:

[
V1

I1

]
=
[

cosβl jZ0 sinβl
jZ−1

0 sinβl cosβl

][
V2

I2

]
(propagation matrix) (9.7.6)

Similarly, we may relate the forward/backward voltages at the points z1 and z2:

[
V1+
V1−

]
=
[
ejβl 0
0 e−jβl

][
V2+
V2−

]
(propagation matrix) (9.7.7)

It follows from Eq. (9.6.6) that V1±, V2± are related to V1, I1 and V2, I2 by:

V1± = 1

2
(V1 ± Z0I1) , V2± = 1

2
(V2 ± Z0I2) (9.7.8)

Fig. 9.7.1 depicts these various quantities. We note that the behavior of the line
remains unchanged if the line is cut at the point z2 and the entire right portion of the
line is replaced by an impedance equal to Z2, as shown in the figure.

Fig. 9.7.1 Length segment on infinite line and equivalent terminated line.

This is so because in both cases, all the points z1 to the left of z2 see the same
voltage-current relationship at z2, that is, V2 = Z2I2.
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Sometimes, as in the case of designing stub tuners for matching a line to a load,
it is more convenient to work with the wave admittances. Defining Y0 = 1/Z0, Y1 =
1/Z1, and Y2 = 1/Z2, it is easily verified that the admittances satisfy exactly the same
propagation relationship as the impedances:

Y1 = Y0
Y2 + jY0 tanβl
Y0 + jY2 tanβl

(9.7.9)

As in the case of dielectric slabs, the half- and quarter-wavelength separations are
of special interest. For a half-wave distance, we have βl = 2π/2 = π, which translates
to l = λ/2, where λ = 2π/β is the wavelength along the line. For a quarter-wave, we
have βl = 2π/4 = π/2 or l = λ/4. Setting βl = π or π/2 in Eq. (9.7.3), we obtain:

l = λ
2

⇒ Z1 = Z2, Γ1 = Γ2

l = λ
4

⇒ Z1 = Z
2
0

Z2
, Γ1 = −Γ2

(9.7.10)

The MATLAB functions z2g.m and g2z.m compute Γ from Z and conversely, by
implementing Eq. (9.7.2). The functions gprop.m, zprop.m and vprop.m implement the
propagation equations (9.7.3) and (9.7.6). The usage of these functions is:

G = z2g(Z,Z0); % Z to Γ

Z = g2z(G,Z0); % Γ to Z

G1 = gprop(G2,bl); % propagates Γ2 to Γ1

Z1 = zprop(Z2,Z0,bl); % propagates Z2 to Z1

[V1,I1] = vprop(V2,I2,Z0,bl); % propagates V2, I2 to V1, I1

The parameter bl is βl. The propagation equations and these MATLAB functions
also work for lossy lines. In this case, β must be replaced by the complex wavenumber
βc = β− jα. The propagation phase factors become now:

e±jβl −→ e±jβcl = e±αle±jβl (9.7.11)

9.8 Two-Port Equivalent Circuit

Any length-l segment of a transmission line may be represented as a two-port equivalent
circuit. Rearranging the terms in Eq. (9.7.6), we may write it in impedance-matrix form:

[
V1

V2

]
=
[
Z11 Z12

Z21 Z22

][
I1
−I2

]
(impedance matrix) (9.8.1)

where the impedance elements are:

Z11 = Z22 = −jZ0 cotβl

Z12 = Z21 = −jZ0
1

sinβl
(9.8.2)
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The negative sign, −I2, conforms to the usual convention of having the currents
coming into the two-port from either side. This impedance matrix can also be realized
in a T-section configuration as shown in Fig. 9.8.1.

Fig. 9.8.1 Length-l segment of a transmission line and its equivalent T-section.

Using Eq. (9.8.1) and some trigonometry, the impedances Za,Zb,Zc of the T-section
are found to be:

Za = Z11 − Z12 = jZ0 tan(βl/2)

Zb = Z22 − Z12 = jZ0 tan(βl/2)

Zc = Z12 = −jZ0
1

sinβl

(9.8.3)

The MATLAB function tsection.m implements Eq. (9.8.3). Its usage is:

[Za,Zc] = tsection(Z0,bl);

9.9 Terminated Transmission Lines

We can use the results of the previous section to analyze the behavior of a transmission
line connected between a generator and a load. For example in a transmitting antenna
system, the transmitter is the generator and the antenna, the load. In a receiving system,
the antenna is the generator and the receiver, the load.

Fig. 9.9.1 shows a generator of voltage VG and internal impedance ZG connected
to the load impedance ZL through a length d of a transmission line of characteristic
impedance Z0. We wish to determine the voltage and current at the load in terms of the
generator voltage.

We assume that the line is lossless and hence Z0 is real. The generator impedance
is also assumed to be real but it does not have to be. The load impedance will have in
general both a resistive and a reactive part, ZL = RL + jXL.
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Fig. 9.9.1 Terminated line and equivalent circuit.

At the load location, the voltage, current, and impedance are VL, IL, ZL and play
the same role as the quantities V2, I2, Z2 of the previous section. They are related by
VL = ZLIL. The reflection coefficient at the load will be:

ΓL = ZL − Z0

ZL + Z0
� ZL = Z0

1+ ΓL
1− ΓL (9.9.1)

The quantities ZL, ΓL can be propagated now by a distance d to the generator at the
input to the line. The corresponding voltage, current, and impedance Vd, Id, Zd play
the role of V1, I1, Z1 of the previous section, and are related by Vd = ZdId. We have the
propagation relationships:

Zd = Z0
ZL + jZ0 tanβd
Z0 + jZL tanβd

� Γd = ΓLe−2jβd (9.9.2)

where

Γd = Zd − Z0

Zd + Z0
� Zd = Z0

1+ Γd
1− Γd = Z0

1+ ΓLe−2jβd

1− ΓLe−2jβd (9.9.3)

At the line input, the entire length-d line segment and load can be replaced by the
impedance Zd, as shown in Fig. 9.9.1. We have now a simple voltage divider circuit.
Thus,

Vd = VG − IdZG = VGZd
ZG + Zd , Id = VG

ZG + Zd (9.9.4)

Once we have Vd, Id in terms of VG, we can invert the propagation matrix (9.7.6) to
obtain the voltage and current at the load:

[
VL
IL

]
=
[

cosβd −jZ0 sinβd
−jZ−1

0 sinβd cosβd

][
Vd
Id

]
(9.9.5)

It is more convenient to express Vd, Id in terms of the reflection coefficients Γd and
ΓG, the latter being defined by:
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ΓG = ZG − Z0

ZG + Z0
� ZG = Z0

1+ ΓG
1− ΓG (9.9.6)

It is easy to verify using Eqs. (9.9.3) and (9.9.6) that:

ZG + Zd = 2Z0
1− ΓGΓd

(1− ΓG)(1− Γd) , ZG + Z0 = 2Z0
1

1− ΓG
From these, it follows that:

Vd = VGZ0

ZG + Z0

1+ Γd
1− ΓGΓd , Id = VG

ZG + Z0

1− Γd
1− ΓGΓd (9.9.7)

where Γd may be replaced by Γd = ΓLe−2jβd. If the line and load are matched so that
ZL = Z0, then ΓL = 0 and Γd = 0 and Zd = Z0 for any distance d. Eq. (9.9.7) then
reduces to:

Vd = VGZ0

ZG + Z0
, Id = VG

ZG + Z0
(matched load) (9.9.8)

In this case, there is only a forward-moving wave along the line. The voltage and
current at the load will correspond to the propagation of these quantities to location
l = 0, which introduces a propagation phase factor e−jβd:

V0 = VGZ0

ZG + Z0
e−jβd , I0 = VG

ZG + Z0
e−jβd (matched load) (9.9.9)

where V0, I0 denote VL, IL when ZL = Z0. It is convenient also to express VL directly in
terms of Vd and the reflection coefficients Γd and ΓL. We note that:

VL = VL+(1+ ΓL) , VL+ = Vd+e−jβd , Vd+ = Vd
1+ Γd

It follows that the voltage VL and current IL = VL/ZL are:

VL = Vde−jβd 1+ ΓL
1+ Γd , IL = Ide−jβd 1− ΓL

1− Γd (9.9.10)

Expressing VL and also IL = VL/ZL directly in terms of VG, we have:

VL = VGZ0

ZG + Z0

1+ ΓL
1− ΓGΓd e

−jβd , IL = VG
ZG + Z0

1− ΓL
1− ΓGΓd e

−jβd (9.9.11)

It should be emphasized that d refers to the fixed distance between the generator
and the load. For any other distance, say l, from the load (or, distance z = d − l from
the generator,) the voltage and current can be expressed in terms of the load voltage
and current as follows:

Vl = VLejβl 1+ Γl
1+ ΓL , Il = ILejβl 1− Γl

1− ΓL , Γl = ΓLe−2jβl (9.9.12)



9.10. Power Transfer from Generator to Load 299

9.10 Power Transfer from Generator to Load

The total power delivered by the generator is dissipated partly in its internal resistance
and partly in the load. The power delivered to the load is equal (for a lossless line) to
the net power traveling to the right at any point along the line. Thus, we have:

Ptot = Pd + PG = PL + PG (9.10.1)

This follows from VG = Vd + IdZG, which implies

VGI∗d = VdI∗d + ZG|Id|2 (9.10.2)

Eq. (9.10.1) is a consequence of (9.10.2) and the definitions:

Ptot = 1

2
Re(V∗GId)=

1

2
Re
[
(Vd + ZGId)∗Id

]
PG = 1

2
Re(ZGIdI∗d )=

1

2
Re(ZG)|Id|2

Pd = 1

2
Re(V∗d Id)=

1

2
Re(V∗L IL)= PL

(9.10.3)

The last equality follows from Eq. (9.9.5) or from Vd± = VL±e±jβd:

1

2
Re(V∗d Id)=

1

2Z0

(|Vd+|2 − |Vd−|2) = 1

2Z0

(|VL+|2 − |VL−|2) = 1

2
Re(V∗L IL)

In the special case when the generator and the load are matched to the line, so that
ZG = ZL = Z0, then we find the standard result that half of the generated power is
delivered to the load and half is lost in the internal impedance. Using Eq. (9.9.8) with
ZG = Z0, we obtain Vd = IdZG = VG/2, which gives:

Ptot = |VG|
2

4Z0
, PG = |VG|

2

8Z0
= 1

2
Ptot , Pd = PL = |VG|

2

8Z0
= 1

2
Ptot (9.10.4)

Example 9.10.1: A load ZL = 50+ j10 Ω is connected to a generator VG = 10∠0o volts with a
100-ft (30.48 m) cable of a 50-ohm transmission line. The generator’s internal impedance
is 20 ohm, the operating frequency is 10 MHz, and the velocity factor of the line, 2/3.

Determine the voltage across the load, the total power delivered by the generator, the
power dissipated in the generator’s internal impedance and in the load.

Solution: The propagation speed is c = 2c0/3 = 2×108 m/sec. The line wavelength λ = c/f =
20 m and the propagation wavenumber β = 2π/λ = 0.3142 rads/m. The electrical length
is d/λ = 30.48/20 = 1.524 and the phase length βd = 9.5756 radians.

Next, we calculate the reflection coefficients:

ΓL = ZL − Z0

ZL + Z0
= 0.0995∠84.29o , ΓG = ZG − Z0

ZG + Z0
= −0.4286

and Γd = ΓLe−2jβd = 0.0995∠67.01o. It follows that:
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Zd = Z0
1+ Γd
1− Γd = 53.11+ j9.83 , Vd = VGZd

ZG + Zd = 7.31+ j0.36 = 7.32∠2.83o

The voltage across the load will be:

VL = Vde−jβd 1+ ΓL
1+ Γd = −7.09+ j0.65 = 7.12∠174.75o V

The current through the generator is:

Id = VdZd = 0.13+ j0.02 = 0.14∠−7.66o A

It follows that the generated and dissipated powers will be:

Ptot = 1

2
Re(V∗GId)= 0.6718 W

PG = 1

2
Re(ZG)|Id|2 = 0.1388 W

PL = Pd = 1

2
Re(V∗d Id)= 0.4880 W

We note that Ptot = PG + PL. ��

If the line is lossy, with a complex wavenumber βc = β − jα, the power PL at the
output of the line is less than the power Pd at the input of the line. Writing Vd± =
VL±e±αde±jβd, we find:

Pd = 1

2Z0

(|Vd+|2 − |Vd−|2) = 1

2Z0

(|VL+|2e2αd − |VL−|2e−2αd)
PL = 1

2Z0

(|VL+|2 − |VL−|2)

We note that Pd > PL for all ΓL. In terms of the incident forward power at the load,
Pinc = |VL+|2/2Z0, we have:

Pd = Pinc
(
e2αd − |ΓL|2e−2αd) = Pince2αd(1− |Γd|2)

PL = Pinc
(
1− |ΓL|2

) (9.10.5)

where |Γd| = |ΓL|e−2αd. The total attenuation or loss of the line is Pd/PL (the inverse
PL/Pd is the total gain, which is less than one.) In decibels, the loss is:

L = 10 log10

(
Pd
PL

)
= 10 log10

(
e2αd − |ΓL|2e−2αd

1− |ΓL|2
)

(total loss) (9.10.6)

If the load is matched to the line, ZL = Z0, so that ΓL = 0, the loss is referred to as
the matched-line loss and is due only to the transmission losses along the line:
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LM = 10 log10

(
e2αd) = 8.686αd (matched-line loss) (9.10.7)

Denoting the matched-line loss in absolute units by a = 10LM/10 = e2αd, we may
write Eq. (9.10.6) in the equivalent form:

L = 10 log10

(
a2 − |ΓL|2
a(1− |ΓL|2)

)
(total loss) (9.10.8)

The additional loss due to the mismatched load is the difference:

L− LM = 10 log10

(
1− |ΓL|2e−4αd

1− |ΓL|2
)
= 10 log10

(
1− |Γd|2
1− |ΓL|2

)
(9.10.9)

Example 9.10.2: A 150 ft long RG-58 coax is connected to a load ZL = 25 + 50j ohm. At the
operating frequency of 10 MHz, the cable is rated to have 1.2 dB/100 ft of matched-line
loss. Determine the total loss of the line and the excess loss due to the mismatched load.

Solution: The matched-line loss of the 150 ft cable is LM = 150×1.2/100 = 1.8 dB or in absolute
units, a = 101.8/10 = 1.51. The reflection coefficient has magnitude computed with the
help of the MATLAB function z2g:

|ΓL| = abs(z2g(25+ 50j,50)= 0.62

It follows that the total loss will be:

L = 10 log10

(
a2 − |ΓL|2
a(1− |ΓL|2)

)
= 10 log10

(
1.512 − 0.622

1.51(1− 0.622)

)
= 3.1 dB

The excess loss due to the mismatched load is 3.1 − 1.8 = 1.3 dB. At the line input, we
have |Γd| = |ΓL|e−2αd = |ΓL|/a = 0.62/1.51 = 0.41. Therefore, from the point of view of
the input the line appears to be more matched. ��

9.11 Open- and Short-Circuited Transmission Lines

Open- and short-circuited transmission lines are widely used to construct resonant cir-
cuits as well as matching stubs. They correspond to the special cases for the load
impedance: ZL = ∞ for an open-circuited line and ZL = 0 for a short-circuited one.
Fig. 9.11.1 shows these two cases.

Knowing the open-circuit voltage and the short-circuit current at the end terminals
a,b, allows us also to replace the entire left segment of the line, including the generator,
with a Thévenin-equivalent circuit. Connected to a load impedance ZL, the equivalent
circuit will produce the same load voltage and current VL, IL as the original line and
generator.

Setting ZL = ∞ and ZL = 0 in Eq. (9.9.2), we obtain the following expressions for the
wave impedance Zl at distance l from the open- or short-circuited termination:
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Fig. 9.11.1 Open- and short-circuited line and Thévenin-equivalent circuit.

Zl = −jZ0 cotβl

Zl = jZ0 tanβl

(open-circuited)

(short-circuited)
(9.11.1)

The corresponding admittances Yl = 1/Zl will be:

Yl = jY0 tanβl

Yl = −jY0 cotβl

(open-circuited)

(short-circuited)
(9.11.2)

To determine the Thévenin-equivalent circuit that replaces everything to the left of
the terminals a,b, we must find the open-circuit voltage Vth, the short-circuit current
Isc, and the Thévenin impedance Zth.

The impedance Zth can be determined either by Zth = Vth/Isc, or by disconnecting
the generator and finding the equivalent impedance looking to the left of the terminals
a,b. It is obtained by propagating the generator impedance ZG by a distance d:

Zth = Z0
ZG + jZ0 tanβd
Z0 + jZG tanβd

= Z0
1+ Γth

1− Γth
, Γth = ΓGe−2jβd (9.11.3)

The open-circuit voltage can be determined from Eq. (9.9.11) by setting ZL = ∞,
which implies that ΓL = 1, Γd = e−2jβd, and ΓGΓd = ΓGe−2jβd = Γth. The short-
circuit current is also obtained from (9.9.11) by setting ZL = 0, which gives ΓL = −1,
Γd = −e−2jβd, and ΓGΓd = −ΓGe−2jβd = −Γth. Then, we find:

Vth = VGZ0

ZG + Z0

2e−jβd

1− Γth
, Isc = VG

ZG + Z0

2e−jβd

1+ Γth
(9.11.4)

It follows that Vth/Isc = Zth, as given by Eq. (9.11.3). A more convenient way of
writing Eq. (9.11.4) is by noting the relationships:
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1− Γth = 2Z0

Zth + Z0
, 1+ Γth = 2Zth

Zth + Z0

Then, Eq. (9.11.4) becomes:

Vth = V0
Zth + Z0

Z0
, Isc = I0 Zth + Z0

Zth
(9.11.5)

where V0, I0 are the load voltage and currents in the matched case, given by Eq. (9.9.9).
The intuitive meaning of these expressions can be understood by writing them as:

V0 = Vth
Z0

Zth + Z0
, I0 = Isc

Zth

Zth + Z0
(9.11.6)

These are recognized to be the ordinary voltage and current dividers obtained by
connecting the Thévenin and Norton equivalent circuits to the matched load impedance
Z0, as shown in Fig. 9.11.2.

Fig. 9.11.2 Thévenin and Norton equivalent circuits connected to a matched load.

The quantities V0, I0 are the same as those obtained by connecting the actual line to
the matched load, as was done in Eq. (9.9.9).

An alternative way of determining the quantities Vth and Zth is by replacing the
length-d transmission line segment by its T-section equivalent circuit, as shown in
Fig. 9.11.3.

Fig. 9.11.3 T-section and Thévenin equivalent circuits.
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The Thévenin equivalent circuit to the left of the terminals a,b is easily determined
by shorting the generator and finding the Thévenin impedance and then finding the
open-circuit voltage. We have:

Zth = Zb + Zc(Za + ZG)Zc + Za + ZG , Vth = VGZc
Zc + Za + ZG (9.11.7)

where Za,Zb,Zc for a length-d segment are given by Eq. (9.8.3):

Za = Zb = jZ0 tan
(
βd
2

)
, Zc = −jZ0

1

sinβd

It is straightforward to verify that the expressions in Eq. (9.11.7) are equivalent to
those in Eq. (9.11.3) and (9.11.4).

Example 9.11.1: For the generator, line, and load of Example 9.10.1, determine the Thévenin
equivalent circuit. Using this circuit determine the load voltage.

Solution: We work with the T-section approach. The following MATLAB call gives Za and Zc,
with Z0 = 50 and βd = 9.5756:

[Za,Zc]= tsection(50, 9.5756)= [−661.89j, 332.83j]

Then, Eq. (9.11.7) gives with Zb = Za:

Zth = Zb + Zc(Za + ZG)Zc + Za + ZG = 20.39+ j6.36 Ω

Vth = VGZc
Zc + Za + ZG = −10.08+ j0.61 = 10.10∠176.52o V

Alternatively, Zth can be computed by propagating ZG = 20 by a distance d:

Zth = zprop(20,50,9.5756)= 20.39+ j6.36 Ω

The load voltage is found from the Thévenin circuit:

VL = VthZL
ZL + Zth

= −7.09+ j0.65 = 7.12∠174.75o V

which agrees with that found in Example 9.10.1. ��

9.12 Standing Wave Ratio

The line voltage at a distance l from the load is given by Eq. (9.9.12), which can be written
as follows in terms of the forward wave VL+ = VL/(1+ ΓL):

Vl = VL+ejβl(1+ Γl) (9.12.1)

The magnitude of Vl will be:
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|Vl| = |VL+||1+ Γl| = |VL+||1+ ΓLe−2jβl| (9.12.2)

It follows that |Vl| will vary sinusoidally as a function of l. Its limits of variation are
determined by noting that the quantity |1+ Γl| varies between:

1− |ΓL| = 1− |Γl| ≤ |1+ Γl| ≤ 1+ |Γl| = 1+ |ΓL|

where we used |Γl| = |ΓL|. Thus, |Vl| will vary over the limits:

Vmin ≤ |Vl| ≤ Vmax (9.12.3)

where

Vmin = |VL+| − |VL−| = |VL+|
(
1− |ΓL|

)
Vmax = |VL+| + |VL−| = |VL+|

(
1+ |ΓL|

) (9.12.4)

We note that the reflection coefficient at a load ZL = RL+jXL has always magnitude
less than unity, |ΓL| ≤ 1. Indeed, this follows from the positivity ofRL and the following
property:

ZL = Z0
1+ ΓL
1− ΓL ⇒ RL = Re(ZL)= Z0

1− |ΓL|2
|1+ ΓL|2 (9.12.5)

The voltage standing wave ratio (SWR) of a terminated transmission line is a measure
of the degree of matching of the line to the load and is defined as the ratio of the
maximum to minimum voltage along the line:

S = Vmax

Vmin
= 1+ |ΓL|

1− |ΓL| � |ΓL| = S− 1

S+ 1
(9.12.6)

Because |ΓL| ≤ 1, the SWR will always be S ≥ 1. A matched load, ΓL = 0, has S = 1.
The more unmatched the load is, the larger the SWR. Indeed, S → ∞ as |ΓL| → 1. A
matched line has Vmin = |Vl| = Vmax at all points l, and is sometimes referred to as a
flat line. The MATLAB function swr.m calculates the SWR from Eq. (9.12.6):

S = swr(Gamma); % calculates SWR from reflection coefficient Γ

The SWR can be used to quantify the amount of power delivered to the load. The
percentage of reflected power from the load is |ΓL|2. Therefore, the percentage of the
power delivered to the load relative to the incident power will be:

PL
Pinc

= 1− |ΓL|2 = 4S
(S+ 1)2

(9.12.7)

The larger the SWR, the smaller the percentage of delivered power. For example, if
S = 9, the reflection coefficient will have magnitude |ΓL| = 0.8, resulting in 1− |ΓL|2 =
0.36, that is, only 36 percent of the incident power gets transferred to the load.

Example 9.12.1: If the reflected wave at the load of a transmission line is 6 dB below the incident
wave, what is the SWR at the load? What percentage of the incident power gets transferred
to the load?
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Solution: The relative power levels of the reflected and incident waves will be:

|ΓL|2 = |V−|
2

|V+|2 = 10−6/10 = 1

4
⇒ |ΓL| = 1

2
⇒ S = 1+ 0.5

1− 0.5
= 3

The fraction of power transferred to the load is 1− |ΓL|2 = 0.75, or 75 percent. ��

If both the line and load impedances are real-valued, then the standing wave ratio is
S = ZL/Z0 if ZL ≥ Z0, and S = Z0/ZL, if ZL ≤ Z0. This follows from the identity:

S = 1+ |ΓL|
1− |ΓL| =

|ZL + Z0| + |ZL − Z0|
|ZL + Z0| − |ZL − Z0| =

max(ZL,Z0)
min(ZL,Z0)

(9.12.8)

or, explicitly:

S = 1+ |ΓL|
1− |ΓL| =



ZL
Z0
, if ZL ≥ Z0

Z0

ZL
, if ZL ≤ Z0

(9.12.9)

9.13 Determining an Unknown Load Impedance

Often a transmission line is connected to an unknown impedance, and we wish to de-
termine that impedance by making appropriate measurements of the voltage along the
line.

The SWR can be readily determined by measuring |Vl| and finding its maximum and
minimum values Vmax and Vmin. From the SWR, we then determine the magnitude of
the reflection coefficient |ΓL|.

The phase of ΓL can be determined by finding the locations along the line at which
a voltage maximum or a voltage minimum is measured. If θL is the required phase, so
that ΓL = |ΓL|ejθL , then we have:

|Vl| = |VL+||1+ Γl| = |VL+||1+ ΓLe−2jβl| = |VL+|
∣∣1+ |ΓL|ej(θL−2βl)∣∣

At all locations l for which θL − 2βl = ±2πn, where n is an integer, we will have
Γl = |ΓL| and |Vl| will be equal to Vmax. Similarly, at all locations for which θL − 2βl =
±(2n+ 1)π, we will have Γl = −|ΓL| and |Vl| will be equal to Vmin.

We note that two successive maxima, or two successive minima, are separated by a
distance λ/2 and a maximum is separated by the next minimum by a distance λ/4, so
that |lmax − lmin| = λ/4.

Once such distances lmax, lmin have been determined, the full reflection coefficient
can be constructed fromΓL = Γle2jβl, whereΓl = ±|ΓL| depending on using a maximum-
or minimum-voltage distance l. From ΓL and the knowledge of the line impedance Z0,
the load impedance ZL can be computed. Thus, we have:

ΓL = |ΓL|ejθL = |ΓL|e2jβlmax = −|ΓL|e2jβlmin ⇒ ZL = Z0
1+ ΓL
1− ΓL (9.13.1)
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If 0 ≤ θL ≤ π, the locations for the closest maxima and minima to the load are
determined from the conditions:

θL − 2βlmax = 0 , θL − 2βlmin = −π

resulting in the distances:

lmax = θL
4π
λ , lmin = θL +π

4π
λ , (0 ≤ θL ≤ π) (9.13.2)

Similarly, if −π ≤ θL ≤ 0, we must solve θL − 2βlmax = −2π and θL − 2βlmin = −π:

lmax = θL + 2π
4π

λ , lmin = θL +π
4π

λ , (−π ≤ θL ≤ 0) (9.13.3)

Of course, one wants to solve for θL in terms of the measured lmax or lmin. Using lmin

is more convenient than using lmax because θL is given by the same expression in both
cases. The lengths lmax, lmin may be assumed to be less than λ/2 (if not, we may subtract
enough multiples of λ/2 until they are.) Expressing θL in terms of the measured lmin,
we have:

θL = 4πlmin

λ
−π = 2βlmin −π (9.13.4)

Alternatively, we have in terms of lmax:

θL =




4πlmax

λ
= 2βlmax if 0 ≤ lmax ≤ λ

4
4πlmax

λ
− 2π = 2βlmax − 2π if

λ
4
≤ lmax ≤ λ

2

(9.13.5)

Example 9.13.1: A 50-ohm line is connected to an unknown impedance. Voltage measurements
along the line reveal that the maximum and minimum voltage values are 1.75 V and 0.25
V. Moreover, the closest distance to the load at which a voltage maximum is observed is
0.125λ.

Determine the reflection coefficient ΓL, the load impedance ZL, and the closest distance
to the load at which a voltage minimum is observed.

For another load, the same maxima and minima are observed, but now the closest distance
to the load at which a minimum is observed is 0.125λ. Determine ΓL and ZL.

Solution: The SWR is determined to be S = Vmax/Vmin = 1.75/0.25 = 7. Then, the magnitude
of the reflection coefficient is found to be |ΓL| = (S−1)/(S+1)= (7−1)/(7+1)= 0.75.

Given that at lmax = λ/8 we observe a voltage maximum, we compute the phase from
Eq. (9.13.5), θL = 2βlmax = 4π/8 = π/2. Then, the reflection coefficient will be:

ΓL = |ΓL|ejθL = 0.75ejπ/2 = 0.75j

It follows that the load impedance will be:
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ZL = Z0
1+ ΓL
1− ΓL = 50

1+ 0.75j
1− 0.75j

= 14+ 48j Ω

The closest voltage minimum will occur at lmin = lmax + λ/4 = 0.375λ = 3λ/8. Al-
ternatively, we could have determined the phase from Eq. (9.13.4), θL = 2βlmin − π =
4π(3/8)−π = π/2. The left graph of Fig. 9.13.1 shows a plot of |Vl| versus l.
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Fig. 9.13.1 Standing wave patterns.

Note the locations of the closest voltage maxima and minima to the load, that is λ/8 and
3λ/8. In the second case, we are given lmin = λ/8. It follows that θL = 2βlmin − π =
π/2 − π = −π/2. Alternatively, we may work with lmax = lmin + λ/4 = 3λ/8. Because
lmax > λ/4, Eq. (9.13.5) will giveθL = 2βlmax−2π = 4π(3/8)−2π = −π/2. The reflection
coefficient and load impedance will be:

ΓL = |ΓL|ejθL = 0.75e−jπ/2 = −0.75j ⇒ ZL = 14− 48j Ω

The right graph of Fig. 9.13.1 depicts the standing wave pattern in this case. ��

It is interesting also to determine the wave impedances at the locations along the
line at which we have voltage maxima or minima, that is, at l = lmax or lmin. The answers
are expressed in terms of the SWR. Indeed, at l = lmax, we have Γl = |ΓL| which gives:

Zmax = Z0
1+ Γl
1− Γl = Z0

1+ |ΓL|
1− |ΓL| = SZ0 (9.13.6)

Similarly, at l = lmin, we have Γl = −|ΓL| and find:

Zmin = Z0
1+ Γl
1− Γl = Z0

1− |ΓL|
1+ |ΓL| =

1

S
Z0 (9.13.7)

We note that ZmaxZmin = Z2
0, as is expected because the points lmax and lmin are

separated by a quarter-wavelength distance λ/4.
Because at lmax and lmin the wave impedances are real-valued, these points can be

used as convenient locations at which to insert a quarter-wave transformer to match a
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line with real Z0 to a complex load ZL. Given θL, the required locations are determined
from Eq. (9.13.2) or (9.13.3). We discuss this matching method later on.

The MATLAB function lmin.m calculates the locations lmin and lmax from Eqs. (9.13.2)
and (9.13.3), and the corresponding impedances Zmin and Zmax. It has usage:

[lm,Zm] = lmin(ZL,Z0,’min’); % locations of voltage minima

[lm,Zm] = lmin(ZL,Z0,’max’); % locations of voltage maxima

For a lossless line the power delivered to the load can be measured at any point l
along the line, and in particular, at lmax and lmin. Then, Eq. (9.12.7) can be written in the
alternative forms:

PL = 1

2Z0

(|VL+|2 − |VL−|2) = VmaxVmin

2Z0
= V2

min

2Zmin
= V2

max

2Zmax
= V

2
max

2SZ0
(9.13.8)

The last expression shows that for a given maximum voltage that can be supported
along a line, the power transmitted to the load is S times smaller than it could be if the
load were matched.

Conversely, for a given amount PL of transmitted power, the maximum voltage will
be Vmax =

√
2SPLZ0. One must ensure that for a highly unmatched load, Vmax remain

less than the breakdown voltage of the line.
If the line is lossy, measurements of the SWR along its length will give misleading

results. Because the reflected power attenuates as it propagates backwards away from
the load, the SWR will be smaller at the line input than at the load.

For a lossy line with βc = β− jα, the reflection coefficient at the line input will be:
Γd = ΓLe−2(α+jβ)d, which gives for the input SWR:

Sd = 1+ |Γd|
1− |Γd| =

1+ |ΓL|e−2αd

1− |ΓL|e−2αd =
e2αd + |ΓL|
e2αd − |ΓL| =

a+ |ΓL|
a− |ΓL| (9.13.9)

where we expressed it in terms of the matched-line loss of Eq. (9.10.7).

Example 9.13.2: For the RG-58 coax cable of Example 9.10.2, we find the SWRs:

SL = 1+ |ΓL|
1− |ΓL| =

1+ 0.62

1− 0.62
= 4.26 , Sd = 1+ |Γd|

1− |Γd| =
1+ 0.41

1− 0.41
= 2.39

If one does not know that the line is lossy, and measures the SWR at the line input, one
would think that the load is more matched than it actually is. ��

Example 9.13.3: The SWR at the load of a line is 9. If the matched-line loss is 10 dB, what is
the SWR at the line input?

Solution: We calculate the reflection coefficient at the load:

|ΓL| = S− 1

S+ 1
= 9− 1

9+ 1
= 0.8

The matched-line loss is a = 10LM/10 = 1010/10 = 10. Thus, the reflection coefficient
at the input will be |Γd| = |ΓL|/a = 0.8/10 = 0.08. The corresponding SWR will be
S = (1+ 0.08)/(1− 0.08)= 1.17. ��
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Example 9.13.4: A 50-ohm line feeds a half-wave dipole antenna with impedance of 73+ j42.5
ohms. The line has matched-line loss of 3 dB. What is the total loss of the line? What is
the SWR at the load and at the line input?

If the line length is doubled, what is the matched-line loss, the total loss, the input and
load SWRs?

Solution: The matched-line loss in absolute units isa = 103/10 = 2. Using the MATLAB functions
z2g and swr, we compute the reflection coefficient at the load and its SWR:

|ΓL| =
∣∣∣∣ZL − Z0

ZL + Z0

∣∣∣∣ =
∣∣∣∣∣73+ j42.5− 50

73+ j42.5+ 50

∣∣∣∣∣ = abs(z2g(73+ 42.5j,50))= 0.3713

The SWR will be S = swr(0.3713)= 2.1814. The reflection coefficient at the line input will
be |Γd| = |ΓL|e−2αd = |ΓL|/a = 0.1857, and its SWR, S = swr(0.1857)= 1.4560.

If the line length is doubled, the matched-line loss in dB will double to 6 dB, since it is
given by LM = 8.686αd. In absolute units, it is a = 22 = 4.

The corresponding reflection coefficient at the line input will be |Γd| = |ΓL|/a = 0.0928,
and its SWR, S = swr(0.0928)= 1.2047. ��

9.14 Smith Chart

The relationship between the wave impedance Z and the corresponding reflection re-
sponse Γ along a transmission line Z0 can be stated in terms the normalized impedance
z = Z/Z0 as follows:

Γ = z− 1

z+ 1
� z = 1+ Γ

1− Γ (9.14.1)

It represents a mapping between the complex impedance z-plane and the complex
reflection coefficient Γ-plane, as shown in Fig. 9.14.1. The mapping is similar to the
bilinear transformation mapping in linear system theory between the s-plane (playing
the role of the impedance plane) and the z-plane of the z-transform (playing the role of
the Γ-plane.)

A complex impedance z = r + jx with positive resistive part, r > 0, gets mapped
onto a point Γ that lies inside the unit-circle in the Γ-plane, that is, satisfying |Γ| < 1.

An entire resistance line z = r (a vertical line on the z-plane) gets mapped onto
a circle on the Γ-plane that lies entirely inside the unit-circle, if r > 0. Similarly, a
reactance line z = jx (a horizontal line on the z-plane) gets mapped onto a circle on the
Γ-plane, a portion of which lies inside the unit-circle.

The Smith chart is a graphical representation of the Γ-plane with a curvilinear grid
of constant resistance and constant reactance circles drawn inside the unit-circle. In
effect, the Smith chart is a curvilinear graph paper.

Any reflection coefficient point Γ falls at the intersection of a resistance and a reac-
tance circle, r, x, from which the corresponding impedance can be read off immediately
as z = r + jx. Conversely, given z = r + jx and finding the intersection of the r, x
circles, the complex point Γ can be located and its value read off in polar or cartesian
coordinates.
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Fig. 9.14.1 Mapping between z-plane and Γ-plane.

To determine the centers and radii of the resistance and reactance circles, we use
the result that a circle with center C and radius R on the Γ-plane has the following two
equivalent representations:

|Γ|2 −C∗Γ−CΓ∗ = B � |Γ−C| = R , where B = R2 − |C|2 (9.14.2)

Setting z = r+ jx in Eq. (9.14.1) and extracting the real and imaginary parts, we can
write r and x in terms of Γ, as follows:

r = Rez = 1− |Γ|2
|1− Γ|2 , x = Imz = j(Γ

∗ − Γ)
|1− Γ|2 (9.14.3)

In particular, the expression for the resistive part implies that the condition r > 0 is
equivalent to |Γ| < 1. The r, x circles are obtained by putting Eqs. (9.14.3) in the form
of Eq. (9.14.2). We have:

r|Γ− 1|2 = 1− |Γ|2 ⇒ r
(|Γ|2 − Γ− Γ∗ + 1

) = 1− |Γ|2

and rearranging terms:

|Γ|2 − r
r + 1

Γ− r
1+ rΓ

∗ = 1− r
1+ r ⇒

∣∣∣∣Γ− r
1+ r

∣∣∣∣2

= 1− r
1+ r +

r2

(1+ r)2
=
(

1

1+ r
)2

Similarly, we have

x|Γ− 1|2 = j(Γ∗ − Γ) ⇒ x
(|Γ|2 − Γ− Γ∗ + 1

) = j(Γ∗ − Γ)
which can be rearranged as:

|Γ|2−
(

1− j
x

)
Γ−

(
1+ j

x

)
Γ∗ = −1 ⇒

∣∣∣∣Γ−
(

1+ j
x

)∣∣∣∣2

= −1+
(

1+ 1

x2

)
=
(

1

x

)2
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To summarize, the constant resistance and reactance circles are:

∣∣∣∣Γ− r
1+ r

∣∣∣∣ = 1

1+ r (resistance circles)

∣∣∣∣Γ−
(

1+ j
x

)∣∣∣∣ = 1

|x| (reactance circles)

(9.14.4)

The centers of the resistance circles are on the positive half of the real axis on the Γ-
plane, lying between 0 ≤ Γ ≤ 1. When r = 0, the impedance circle is the entire unit-circle
with center at Γ = 0. As r increases, the radii become smaller and the centers move
towards Γ = 1. The centers of the reactance circles lie on the tangent of the unit-circle
at Γ = 1.

Example 9.14.1: Fig. 9.14.2 depicts the resistance and reactance circles for the following values
of r, x:

r = [0.2, 0.5, 1, 2, 5] , x = [0.2, 0.5, 1, 2, 5]

Because the point A is at the intersection of the r = 0.2 and x = 0.5 circles, the corre-
sponding impedance will be zA = 0.2+ 0.5j. We list below the impedances and reflection
coefficients at the points A,B,C,D,E, S, P,O:

zA = 0.2+ 0.5j, ΓA = −0.420+ 0.592j = 0.726∠125.37o

zB = 0.5− j, ΓB = 0.077− 0.615j = 0.620∠−82.88o

zC = 2− 2j, ΓC = 0.539− 0.308j = 0.620∠−29.74o

zD = j, ΓD = j = 1∠90o

zE = −j, ΓE = −j = 1∠−90o

(short circuit) zS = 0, ΓS = −1 = 1∠180o

(open circuit) zP = ∞, ΓP = 1 = 1∠0o

(matched) zO = 1, ΓO = 0 = 0∠0o

The points S and P correspond to a short-circuited and an open-circuited impedance. The
center of the Smith chart at point O corresponds to z = 1, that is, an impedance matched
to the line. ��

The Smith chart helps one visualize the wave impedance as one moves away from
or towards a load. Assuming a lossless line, the wave impedance and corresponding
reflection response at a distance l from the load are given by:

zl = zL + j tanβl
1+ jzL tanβl

� Γl = e−2jβlΓL (9.14.5)

The magnitude of Γl remains constant as l varies, indeed, |Γl| = |ΓL|. On the Smith
chart, this represents a circle centered at the origin Γ = 0 of radius |ΓL|. Such circles
are called constant SWR circles because the SWR is related to the circle radius by

S = 1+ |ΓL|
1− |ΓL|

The relative phase angle between Γl and ΓL is negative,−2βl, and therefore, the point
Γl moves clockwise along the constant SWR circle, as shown in Fig. 9.14.3. Conversely,
if l is decreasing towards the load, the point Γl will be moving counter-clockwise.
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Fig. 9.14.2 Smith chart example.

Fig. 9.14.3 Moving towards the generator along a constant SWR circle.

The rotation angle φl = 2βl can be read off in degrees from the outer periphery of
the Smith chart. The corresponding length l can also be read off in units of wavelengths
towards the generator (WTG) or wavelengths towards the load (WTL). Moving towards
the generator by a distance l = λ/8 corresponds to a clockwise rotation by an angle of
φl = 2(2π/8)= π/2, that is, 90o. Moving by l = λ/4 corresponds to a 180o rotation,
and by l = λ/2, to a full 360o rotation.

Smith charts provide an intuitive geometrical representation of a load in terms of
its reflection coefficient and help one design matching circuits—where matching means
moving towards the center of the chart. However, the computational accuracy of the
Smith chart is not very high, about 5–10%, because one must visually interpolate between
the grid circles of the chart.
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Smith charts are used widely to display S-parameters of microwave amplifiers and
help with the design of matching circuits. Some of the tools used in such designs are the
stability circles, gain circles, and noise figure circles of an amplifier, which are intuitively
represented on a Smith chart. We discuss them in Chap. 12.

Various resources, including a history of the Smith chart and high-quality download-
able charts in Postscript format can be found on the web site [734].

Laursen’s Smith chart MATLAB toolbox can be used to draw Smith charts. It is avail-
able from the Mathworks web site [745]. Our MATLAB function smith.m can be used to
draw simple Smith charts.

9.15 Time-Domain Response of Transmission Lines

So far we discussed only the sinusoidal response of transmission lines. The response to
arbitrary time-domain inputs can be obtained by writing Eq. (9.6.3) in the time domain
by replacing jω→ ∂/∂t. We will assume a lossless line and set R′ = G′ = 0.† We obtain
then the system of coupled equations:

∂V
∂z
= −L′∂I

∂t
,

∂I
∂z
= −C′∂V

∂t
(9.15.1)

The are called telegrapher’s equations. By differentiating again with respect to z, it
is easily verified that V and I satisfy the uncoupled one-dimensional wave equations:

∂2V
∂z2

− 1

c2

∂2V
∂t2

= 0 ,
∂2I
∂z2

− 1

c2

∂2I
∂t2

= 0

where c = 1/
√
L′C′. As in Sec. 2.1, it is better to deal directly with the first-order coupled

system (9.15.1). This system can be uncoupled by defining the forward and backward
wave components:

V±(t, z)= V(t, z)±Z0I(t, z)
2

, where Z0 =
√
L′

C′
(9.15.2)

They satisfy the uncoupled equations:

∂V±
∂z

= ∓1

c
∂V±
∂t

(9.15.3)

with general solutions given in terms of two arbitrary functions f(t), g(t):

V+(t, z)= f(t − z/c) , V−(t, z)= g(t + z/c) (9.15.4)

They satisfy the basic forward and backward propagation property:

V+(t, z+∆z) = V+(t −∆t, z)
V−(t, z+∆z) = V−(t +∆t, z)

, where ∆t = ∆z
c

(9.15.5)

†At RF,R′, G′may be small but cannot be assumed to be frequency-independent, for example,R′ depends
on the surface impedance Rs, which grows like f1/2.
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In particular, we have:

V+(t, z) = V+(t − z/c,0)
V−(t, z) = V−(t + z/c,0)

(9.15.6)

These allow the determination of the line voltages at any point z along the line from
the knowledge of the voltages at z = 0. Next, we consider a terminated line, shown in
Fig. 9.15.1, driven by a generator voltage VG(t), which is typically turned on at t = 0 as
indicated by the closing of the switch.

Fig. 9.15.1 Transient response of terminated line.

In general, ZG and ZL may have inductive or capacitive parts. To begin with, we will
assume that they are purely resistive. Let the length of the line be d, so that the one-
and two-way travel-time delays will be T = d/c and 2T = 2d/c.

When the switch closes, an initial waveform is launched forward along the line. When
it reaches the load T seconds later, it gets reflected, picking up a factor of ΓL, and begins
to travel backward. It reaches the generator T seconds later, or 2T seconds after the
initial launch, and gets reflected there traveling forward again, and so on. The total
forward- and backward-moving componentsV±(t, z) include all the multiple reflections.

Before we sum up the multiple reflections, we can express V±(t, z) in terms of the
total forward-moving component V+(t)≡ V+(t,0) at the generator end, with the help
of (9.15.6). In fact, we have V+(t, z)= V+(t−z/c). Applying this at the load end z = d,
we have V+L (t)= V+(t, d)= V+(t−d/c)= V+(t−T). Because of Ohm’s law at the load,
VL(t)= ZLIL(t), we have for the forward/backward components:

V±L (t)=
VL(t)±Z0IL(t)

2
= ZL ± Z0

2
IL(t) ⇒ V−L (t)=

ZL − Z0

ZL + Z0
V+L (t)= ΓL V+(t−T)

Therefore, we find the total voltage at the load end:

VL(t)= V+L (t)+V−L (t)= (1+ ΓL)V+(t −T) (9.15.7)

Using (9.15.6), the backward component at z = 0 is:

V−(t +T) = V−(t + d/c,0)= V−(t, d)= V−L (t)= ΓLV+(t −T) , or,

V−(t) = ΓLV+(t − 2T)
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Thus, the total line voltage at the generator end will be:

Vd(t)= V+(t)+V−(t)= V+(t)+ΓLV+(t − 2T) (9.15.8)

More generally, the voltage at any point z along the line will be:

V(t, z)= V+(t, z)+V−(t, z)= V+(t − z/c)+ΓLV+(t + z/c− 2T) (9.15.9)

It remains to determine the total forward component V+(t) in terms of the multiple
reflections of the initially launched wave along the line. We see below that:

V+(t) =
∞∑
m=0

(ΓGΓL)m V(t − 2mT)

= V(t)+(ΓGΓL)V(t − 2T)+(ΓGΓL)2V(t − 4T)+· · ·
(9.15.10)

where V(t) is the initially launched waveform:

V(t)= Z0

ZG + Z0
VG(t) (9.15.11)

Thus, initially the transmission line can be replaced by a voltage divider with Z0 in
series with ZL. For a right-sided signal V(t), such as that generated after closing the
switch, the number of terms in (9.15.10) is finite, but growing with time. Indeed, the
requirement that the argument of V(t − 2mT) be non-negative, t − 2mT ≥ 0, may be
solved for the limits onm:

0 ≤m ≤M(t) , where M(t)= floor
(
t

2T

)
(9.15.12)

To justify (9.15.10) and (9.15.11), we may start with the single-frequency case dis-
cussed in Sec. 9.9 and perform an inverse Fourier transform. Defining the z-transform
variable ζ = ejωT = ejβd,† we may rewrite Eq. (9.9.7) in the form:

Vd = V 1+ ΓLζ−2

1− ΓGΓLζ−2
, Z0Id = V 1− ΓLζ−2

1− ΓGΓLζ−2
, where V = VGZ0

ZG + Z0

The forward and backward waves at z = 0 will be:

V+ = Vd + Z0Id
2

= V
1− ΓGΓLζ−2

V− = Vd − Z0Id
2

= VΓLζ−2

1− ΓGΓLζ−2
= ΓLζ−2V+

Vd = V+ +V− = V+ + ΓLζ−2V+ ⇒ Vd(ω)= V+(ω)+ΓLe−2jωTV+(ω)

(9.15.13)

where in the last equation we indicated explicitly the dependence onω. Using the delay
theorem of Fourier transforms, it follows that the equation for Vd(ω) is the Fourier
transform of (9.15.8). Similarly, we have at the load end:

†We use ζ instead of z to avoid confusion with the position variable z.
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VL = VGZ0

ZG + Z0

1+ ΓL
1− ΓGΓLζ−2

ζ−1 = (1+ ΓL)ζ−1V+

which is recognized as the Fourier transform of Eq. (9.15.7). Next, we expand V+ using
the geometric series noting that |ΓGΓLζ−2| = |ΓGΓL| < 1:

V+ = V
1− ΓGΓLζ−2

= V + (ΓGΓL)ζ−2V + (ΓGΓL)2ζ−4V + · · · (9.15.14)

which is equivalent to the Fourier transform of Eq. (9.15.10). The same results can be
obtained using a lattice timing diagram, shown in Fig. 9.15.2, like that of Fig. 4.6.1.

Fig. 9.15.2 Lattice timing diagram.

Each propagation segment introduces a delay factor ζ−1, forward or backward, and
each reflection at the load and generator ends introduces a factor ΓL or ΓG. Summing
up all the forward-moving waves at the generator end gives Eq. (9.15.14). Similarly, the
summation of the backward terms at the generator, and the summation of the forward
and backward terms at the load, generate:

V− = VΓLζ−2[1+ (ΓGΓL)ζ−2 + (ΓGΓL)2ζ−4 + · · · ] = ΓLζ−2V+

V+L = Vζ−1[1+ (ΓGΓL)ζ−2 + (ΓGΓL)2ζ−4 + · · · ] = ζ−1V+

V−L = ΓLVζ−1[1+ (ΓGΓL)ζ−2 + (ΓGΓL)2ζ−4 + · · · ] = ΓLζ−1V+ = ΓLV+L
Replacing V+(t) in terms of (9.15.10), we obtain from (9.15.7) and (9.15.8):

Vd(t) = V(t)+
(

1+ 1

ΓG

) ∞∑
m=1

(ΓGΓL)m V(t − 2mT)

VL(t) = (1+ ΓL)
∞∑
m=0

(ΓGΓL)m V
(
t − (2m+ 1)T

) (9.15.15)
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The line voltage at an arbitrary location z along the line, can be determined from
(9.15.9). The substitution of the series expansion of V+ leads to the expression:

V(t, z)=
∞∑
m=0

(ΓGΓL)m V(t − z/c− 2mT)+ΓL
∞∑
k=0

(ΓGΓL)k V(t + z/c− 2kT − 2T)

For a causal input V(t), the allowed ranges for the summation indicesm,k are:

0 ≤m ≤ floor
(
t − z/c

2T

)
, 0 ≤ k ≤ floor

(
t + z/c− 2T

2T

)

Example 9.15.1: A terminated line has Z0 = 50, ZG = 450, ZL = 150 Ω. The corresponding
reflection coefficients are calculated to be: ΓG = 0.8 and ΓL = 0.5. For simplicity, we
take c = 1, d = 1, T = d/c = 1. First, we consider the transient response of the line
to a step generator voltage VG(t)= 10u(t). The initial voltage input to the line will be:
V(t)= VG(t)Z0/(ZG+Z0)= 10u(t)·50/(450+50)= u(t). It follows from (9.15.15) that:

Vd(t)= u(t)+2.25
∞∑
m=1

(0.4)m u(t − 2mT) , VL(t)= 1.5
∞∑
m=1

(0.4)m u
(
t − (2m+ 1)T

)
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Fig. 9.15.3 Transient step and pulse responses of a terminated line.

These functions are plotted in Fig. 9.15.3. The successive step levels are calculated by:

Vd(t) VL(t)
1 0
1+ 2.25[0.41]= 1.90 1.5
1+ 2.25[0.41 + 0.42]= 2.26 1.5[1+ 0.41]= 2.10
1+ 2.25[0.41 + 0.42 + 0.43]= 2.40 1.5([1+ 0.41 + 0.42]= 2.34
1+ 2.25[0.41 + 0.42 + 0.43 + 0.44]= 2.46 1.5([1+ 0.41 + 0.42 + 0.43]= 2.44

Both Vd and VL converge to the same asymptotic value:

1+2.25[0.41+0.42+0.43+0.44+· · · ]= 1.5[1+0.41+0.42+0.43+· · · ]= 1.5
1− 0.4

= 2.5
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More generally, the asymptotic level for a step input VG(t)= VGu(t) is found to be:

V∞ = V 1+ ΓL
1− ΓGΓL =

VGZ0

ZG + Z0

1+ ΓL
1− ΓGΓL =

VGZL
ZG + ZL (9.15.16)

Thus, the line behaves asymptotically like a lumped circuit voltage divider with ZL in series
with ZG. We consider next, the response to a pulse input VG(t)= 10

[
u(t)−u(t − τ)], so

that V(t)= u(t)−u(t−τ), where τ is the pulse duration. Fig. 9.15.3 shows the generator
and load line voltages for the case τ = T/10 = 1/10. The pulse levels are:

[1, 2.25(0.4)m] = [1.00, 0.90, 0.36, 0.14, 0.06, . . . ] (at generator)

1.5(0.4)m = [1.50, 0.60, 0.24, 0.10, 0.04, . . . ] (at load)

The following MATLAB code illustrates the computation of Vd(t):

d = 1; c=1; T = d/c; tau = T/10; VG = 10;
Z0 = 50; ZG = 450; ZL = 150;
V = VG * Z0 / (ZG+Z0);
gG = z2g(ZG,Z0); gL = z2g(ZL,Z0); % reflection coefficients ΓG, ΓL

t = 0 : T/1500 : 10*T;

for i=1:length(t),
M = floor(t(i)/2/T);
Vd(i) = V * upulse(t(i), tau);
if M >= 1,

m = 1:M;
Vd(i) = Vd(i) + (1+1/gG)*V*sum((gG*gL).^m .* upulse(t(i)-2*m*T, tau));

end
end

plot(t, Vd, ’r’);

where upulse(t, τ) generates the unit-pulse function u(t)−u(t − τ). The code can be
adapted for any other input function V(t).

The MATLAB file pulsemovie.m generates a movie of the step or pulse input as it propa-
gates back and forth between generator and load. It plots the voltage V(t, z) as a function
of z at successive time instants t. ��

Next, we discuss briefly the case of reactive terminations. These are best han-
dled using Laplace transforms. Introducing the s-domain variable s = jω, we write
ζ−1 = e−jωT = e−sT. The terminating impedances, and hence the reflection coeffi-
cients, become functions of s. For example, if the load is a resistor in series with an
inductor, we have ZL(s)= R+ sL. Indicating explicitly the dependence on s, we have:

V+(s)= V(s)
1− ΓG(s)ΓL(s)e−2sT , where V(s)= VG(s)Z0

ZG(s)+Z0
(9.15.17)

In principle, we may perform an inverse Laplace transform on V+(s) to find V+(t).
However, this is very tedious and we will illustrate the method only in the case of a
matched generator, that is, when ZG = Z0, or, ΓG = 0. Then, V+(s)= V(s), where
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V(s)= VG(s)Z0/2Z0 = VG(s)/2. The line voltages at the generator and load ends will
be from (9.15.13) and (9.15.7):

Vd(s) = V(s)+ΓL(s)e−2sTV(s)

VL(s) =
[
1+ ΓL(s)

]
e−sTV(s)

(9.15.18)

We consider the four typical cases of series and parallel R–L and series and parallel
R–C loads. The corresponding ZL(s) and ΓL(s) are shown below, where in all cases
ΓR = (R − Z0)/(R + Z0) and the parameter a gives the effective time constant of the
termination, τ = 1/a:

series R–L parallel R–L series R–C parallel R–C

ZL(s)= R+ sL ZL(s)= RsL
R+ sL ZL = R+ 1

sC
ZL(s)= R

1+RCs
ΓL(s)= s+ aΓRs+ a ΓL(s)= sΓR − as+ a ΓL(s)= sΓR + as+ a ΓL(s)= −s+ aΓRs+ a
a = R+ Z0

L
a = Z0R

(R+ Z0)L
a = 1

(R+ Z0)C
a = R+ Z0

RZ0C
We note that in all cases ΓL(s) has the form: ΓL(s)= (b0s+b1)/(s+a). Assuming

a step-input VG(t)= 2V0 u(t), we have V(t)= V0 u(t), so that V(s)= V0/s. Then,

Vd(s)= V0

[
1

s
+ ΓL(s)1

s
e−2sT

]
= V0

[
1

s
+ b0s+ b1

s(s+ a)e
−2sT

]
(9.15.19)

Using partial-fraction expansions and the delay theorem of Laplace transforms, we
find the inverse Laplace transform:

Vd(t)= V0 u(t)+V0

[
b1

a
+
(
b0 − b1

a

)
e−a(t−2T)

]
u(t − 2T) (9.15.20)

Applying this result to the four cases, we find:

Vd(t)= V0 u(t)+V0
[
ΓR + (1− ΓR)e−a(t−2T)]u(t − 2T) (series R–L)

Vd(t)= V0 u(t)+V0
[−1+ (1+ ΓR)e−a(t−2T)]u(t − 2T) (parallel R–L)

Vd(t)= V0 u(t)+V0
[
1− (1− ΓR)e−a(t−2T)]u(t − 2T) (series R–C)

Vd(t)= V0 u(t)+V0
[
ΓR − (1+ ΓR)e−a(t−2T)]u(t − 2T) (parallel R–C)

(9.15.21)

In a similar fashion, we determine the load voltage:

VL(t)= V0
[
(1+ ΓR)+(1− ΓR)e−a(t−T)

]
u(t −T) (series R–L)

VL(t)= V0(1+ ΓR)e−a(t−T) u(t −T) (parallel R–L)

VL(t)= V0
[
2− (1− ΓR)e−a(t−T)

]
u(t −T) (series R–C)

VL(t)= V0(1+ ΓR)
[
1− e−a(t−T)]u(t −T) (parallel R–C)

(9.15.22)
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Example 9.15.2: We take V0 = 1, Z0 = 50, R = 150 Ω, and, as before, d = 1, c = 1, T = 1. We
find ΓR = 0.5. Fig. 9.15.4 shows the voltages Vd(t) and VL(t) in the four cases.

In all cases, we adjusted L and C such that a = 1. This gives L = 200 and C = 1/200, and
L = 37.5 and C = 1/37.5, for the series and parallel cases.

Asymptotically, the series R–L and the parallel R–C cases look like a voltage divider Vd =
VL = VGR/(R + Z0)= 1.5, the parallel R–L case looks like a short-circuited load Vd =
VL = 0, and the series R–C looks like and open circuit so that Vd = VL = VG = 2.

Using the expressions for V(t, z) of Problem 9.30, the MATLAB file RLCmovie.m makes a
movie of the step input as it propagates to and gets reflected from the reactive load. ��
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Fig. 9.15.4 Transient response of reactive terminations.

9.16 Problems

9.1 Design a two-wire line made of two AWG 20-gauge (diameter 0.812 mm) copper wires that
has a 300-ohm impedance. Calculate its capacitance per unit length.

9.2 For the two-wire line shown in Fig. 9.5.1, show that the tangential component of the electric
field vanishes on both cylindrical conductor surfaces. Show that the surface charge and
current densities on the positively charged conductor are given in terms of the azimuthal
angle φ as follows:

ρs(φ)= Q′

2πa
k2 − 1

k2 − 2k cosφ+ 1
, Jsz(φ)= I

2πa
k2 − 1

k2 − 2k cosφ+ 1

Show and interpret the following:
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∫ 2π

0
ρs(φ)adφ = Q′ ,

∫ 2π

0
Jsz(φ)adφ = I

9.3 For the two-wire line of the previous problem, show that the power loss per unit length due
to ohmic conductor losses is given by:

P′loss = Rs
∫ 2π

0
|Jsz(φ)|2adφ = Rs|I|

2

2πa
k2 + 1

k2 − 1

From this result, derive Eq. (9.5.13) for R′ and αc.

9.4 A polyethylene-filled RG-59 coaxial cable has impedance of 75 ohm and velocity factor of
2/3. If the radius of the inner conductor is 0.322 mm, determine the radius of the outer
conductor in mm. Determine the capacitance and inductance per unit length. Assuming
copper conductors and a loss tangent of 7×10−4 for the polyethylene dielectric, calculate
the attenuation of the cable in dB/100-ft at 50 MHz and at 1 GHz. Finally, calculate the cutoff
frequency of higher propagating modes.

9.5 Computer Experiment: Coaxial Cable Attenuation. Consider the attenuation data of an RG-
8/U cable given in Example 9.4.3.

a. Reproduce the graph of that Example. Show that with the assumed characteristics of
the cable, the total attenuation may be written as a function of frequency in the form,
where α is in dB per 100 ft and f is in GHz:

α(f)= 4.3412 f1/2 + 2.9131 f

b. Carry out a least-squares fit of the attenuation data given in the table of that Exam-
ple by fitting them to a function of the form α(f)= Af1/2 + Bf , and determine the
fitted coefficients A,B. This requires that you find A,B by minimizing the weighted
performance index:

J =∑
i
wi
(
αi −Af1/2

i − Bfi
)2 = min

where you may take the weights wi = 1. Show that the minimization problem gives
rise to a 2×2 linear system of equations in the unknowns A,B, and solve this system
with MATLAB.

Plot the resulting function of α(f) on the same graph as that of part (a). How do the
fitted coefficients compare with those of part (a)?

Given the fitted coefficients A,B, extract from them the estimated values of the loss
tangent tanδ and the refractive index n of the dielectric filling (assuming the cable
radii a,b and conductivity σ are as given.)

c. Because it appears that the 5-GHz data point is not as accurate as the others, redo part
(b) by assigning only 1/2 weight to that point in the least-squares fit. Finally, redo part
(b) by assigning zero weight to that point (i.e., not using it in the fit.)

9.6 Computer Experiment: Optimum Coaxial Cables. Plot the three quantities Ea, PT , and αc
given in Eq. (9.4.10) versus the ratio b/a over the range 1.5 ≤ b/a ≤ 4. Indicate on the
graphs the positions of the optimum ratios that correspond to the minima of Ea and αc,
and the maximum of PT .

Moreover, write a MATLAB function that solves iteratively (for example, using Newton’s
method) the equation for minimizing αc, that is, lnx = 1+ 1/x.
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9.7 Let Zl = Rl + jXl be the wave impedance on a lossless line at a distance l from a purely
resistive load ZL. Derive explicit expressions for Rl and Xl in terms of ZL and the charac-
teristic impedance Z0 of the line for the distances l = nλ/8, where n = 1,2,3,4,5,6,7,8.
Discuss the signs of Xl (inductive or capacitive) for the two cases ZL > Z0 and ZL < Z0.
What happens to the above expressions when ZL = Z0?

9.8 A dipole antenna operating in the 30-meter band is connected to a transmitter by a 20-meter
long lossless coaxial cable having velocity factor of 0.66 and characteristic impedance of 50
ohm. The wave impedance at the transmitter end of the cable is measured and found to be
39.9+ 34.2j ohm. Determine the input impedance of the antenna.

9.9 It is desired to measure the characteristic impedanceZ0 and propagation constantγ = α+jβ
of a lossy line. To this end, a length l of the line is short-circuited and its input impedanceZsc

is measured. Then, the segment is open-circuited and its input impedance Zoc is measured.
Explain how to extract the two unknown quantities Z0 and γ from Zsc and Zoc.

9.10 The wave impedances of a 100-meter long short- and open-circuited segment of a lossy
transmission line were measured to be Zsc = 68.45+ 128.13j ohm and Zoc = 4.99− 16.65j
ohm at 10 MHz. Using the results of the previous problem, determine the characteristic
impedance of the line Z0, the attenuation constant α in dB/100-m, and the velocity factor
of the cable noting that the cable length is at least two wavelengths long.

9.11 For a lossless line, show the inequality:

1− |ΓL|
1+ |ΓL| ≤

∣∣∣∣∣1+ ΓLe−2jβl

1− ΓLe−2jβl

∣∣∣∣∣ ≤ 1+ |ΓL|
1− |ΓL|

where ΓL is the load reflection coefficient. Then, show that the magnitude of the wave
impedance Zl along the line varies between the limits:

Zmin ≤ |Zl| ≤ Zmax , Zmin = 1

S
Z0 , Zmax = SZ0

where Z0 is the characteristic impedance of the line and S, the voltage SWR.

9.12 For a lossless line, show that the current Il at a distance l from a load varies between the
limits:

Imin ≤ |Il| ≤ Imax , where Imin = 1

Z0
Vmin , Imax = 1

Z0
Vmax

where Vmin and Vmax are the minimum and maximum voltage along the line. Then, show
that the minimum and maximum wave impedances of the previous problem can be written
in the alternative forms:

Zmax = Vmax

Imin
, Zmin = Vmin

Imax

Recall from Sec. 9.13 that Zmax, Zmin correspond to the distances lmax and lmin. However,
show that Imin and Imax correspond to lmax and lmin, respectively.

9.13 If 500 W of power are delivered to a load by a 50-ohm lossless line and the SWR on the line is
5, determine the maximum voltage Vmax along the line. Determine also the quantities Vmin,
Imax, Imin, Zmax, and Zmin.

9.14 A transmitter is connected to an antenna by an 80-ft length of coaxial cable of characteristic
impedance of 50 ohm and matched-line loss of 0.6 dB/100-ft. The antenna impedance is
30+40j ohm. The transmitter delivers 1 kW of power into the line. Calculate the amount of
power delivered to the load and the power lost in the line. Calculate the SWR at the antenna
and transmitter ends of the line.
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9.15 Let SL and Sd be the SWRs at the load and at distance d from the load on a lossy and
mismatched line. Let a = e2αd be the matched-line loss for the length-d segment. Show that
the SWRs are related by:

Sd = SL − (a− 1)(S2
L − 1)

a(SL + 1)−(SL − 1)
and SL = Sd + (a− 1)(S2

d − 1)
(Sd + 1)−a(Sd − 1)

Show that 1 ≤ Sd ≤ SL. When are the equalities valid? Show also that Sd → 1 as d→∞.

9.16 A 100-Ω lossless transmission line is terminated at an unknown load impedance. The line
is operated at a frequency corresponding to a wavelength λ = 40 cm. The standing wave
ratio along this line is measured to be S = 3. The distance from the load where there is a
voltage minimum is measured to be 5 cm. Based on these two measurements, determine the
unknown load impedance.

9.17 The wavelength on a 50 Ω transmission line is 80 cm. Determine the load impedance if the
SWR on the line is 3 and the location of the first voltage minimum is 10 cm from the load.
At what other distances from the load would one measure a voltage minimum? A voltage
maximum?

9.18 A 75-ohm line is connected to an unknown load. Voltage measurements along the line reveal
that the maximum and minimum voltage values are 6 V and 2 V. It is observed that a voltage
maximum occurs at the distance from the load:

l = 0.5λ− λ
4π

atan(0.75)= 0.44879λ

Determine the reflection coefficient ΓL (in cartesian form) and the load impedance ZL.

9.19 A load is connected to a generator by a 30-ft long 75-ohm RG-59/U coaxial cable. The SWR
is measured at the load and the generator and is found to be equal to 3 and 2, respectively.
Determine the attenuation of the cable in dB/ft. Assuming the load is resistive, what are all
possible values of the load impedance in ohm?

9.20 A lossless 50-ohm line with velocity factor of 0.8 is connected to an unknown load. The
operating frequency is 1 GHz. Voltage measurements along the line reveal that the maximum
and minimum voltage values are 6 V and 2 V. It is observed that a voltage minimum occurs
at a distance of 3 cm from the load. Determine the load reflection coefficient ΓL and the
load impedance ZL.

9.21 The next four problems are based on Ref. [506]. A lossless transmission line with real
characteristic impedance Z0 is connected to a series RLC circuit.

a. Show that the corresponding load impedance may be written as a function of frequency
in the form (with f , f0 in Hz):

ZL = R+ jRQ
(
f
f0
− f0
f

)

where f0 and Q are the frequency and Q-factor at resonance. Such a load impedance
provides a simplified model for the input impedance of a resonant dipole antenna.

Show that the corresponding SWR SL satisfies SL ≥ S0 for all f , where S0 is the SWR
at resonance, that is, corresponding to ZL = R.
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b. The SWR bandwidth is defined by ∆f = f2 − f1, where f1, f2 are the left and right
bandedge frequencies at which the SWR SL reaches a certain level, say SL = SB, such
that SB > S0. Often the choice SB = 2 is made. Assuming that Z0 ≥ R, show that the
bandedge frequencies satisfy the conditions:

f1f2 = f2
0 , f2

1 + f2
2 = 2f2

0 + f2
0
(S0 + 1)2Γ2

B − (S0 − 1)2

Q2(1− Γ2
B)

, where ΓB = SB − 1

SB + 1

c. Show that the normalized bandwidth is given by:

Q
∆f
f0
=
√
(SB − S0)(S0 − S−1

B ) =
√√√√ 4(Γ2

B − Γ2
0)

(1− Γ0)2(1− Γ2
B)
, with Γ0 = S0 − 1

S0 + 1

Show that the left and right bandedge frequencies are given by:

f1 =
√
f2

0 +
(∆f)2

4
− ∆f

2
, f2 =

√
f2

0 +
(∆f)2

4
+ ∆f

2

d. Show that the maximum bandwidth is realized for a mismatched load that has the
following optimum SWR at resonance:

S0 = SB + S
−1
B

2
, Γ0 = Γ2

B ⇒ Q
∆fmax

f0
= S

2
B − 1

2SB
= 2ΓB

1− Γ2
B

For example, if SB = 2, we have ΓB = 1/3, S0 = 1.25, and ∆f/f0 = 0.75/Q, whereas
for a matched load we have S0 = 1 and ∆f/f0 = 0.50/Q.

9.22 We assume now that the transmission line of the previous problem is lossy and that the
RLC load is connected to a generator by a length-d segment of the line. Let a = e2αd be the
matched-line loss. For such lossy line, we may define the bandwidth in terms of the SWR Sd
at the generator end.

Show that the normalized bandwidth is given by the same expression as in the previous
problem, but with the replacement ΓB → ΓLB, where ΓLB ≡ aΓB:

Q
∆f
f0
=
√
(SLB − S0)(S0 − S−1

LB) =
√√√√ 4(Γ2

LB − Γ2
0)

(1− Γ0)2(1− Γ2
LB)

, where SLB = 1+ ΓLB
1− ΓLB

Show that ΓLB, SLB are the quantities ΓB, SB referred to the load end of the line. Show
that the meaningful range of the bandwidth formula is 1 ≤ S0 ≤ SLB in the lossy case, and
1 ≤ So ≤ SB for the lossless case. Show that for the same S0 the bandwidth for the lossy
case is always greater than the bandwidth of the lossless case.

Show that this definition of bandwidth makes sense as long as the matched line loss satisfies
aΓB < 1. Show that the bandwidth vanishes at the S0 that has Γ0 = aΓB. Show that the
maximum bandwidth is realized for the optimum S0:

S0 = SLB + S
−1
LB

2
, Γ0 = Γ2

LB ⇒ Q
∆fmax

f0
= S

2
LB − 1

2SLB
= 2ΓLB

1− Γ2
LB
= 2aΓB

1− a2Γ2
B

Show that the optimum S0 is given at the load and generator ends of the line by:

S0 = 1+ a2Γ2
B

1− a2Γ2
B
, Sd0 = 1+ aΓ2

B

1− aΓ2
B
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9.23 Assume now that Z0 ≤ R in the previous problem. Show that the normalized bandwidth is
given by:

Q
∆f
f0
=
√
(SLB − S−1

0 )(S−1
0 − S−1

LB) =
√√√√ 4(Γ2

LB − Γ2
0)

(1+ Γ0)2(1− Γ2
LB)

Show that the maximum always occurs at S0 = 1. Show that the conditions aΓB < 1 and
0 ≤ S0 ≤ SLB are still required.

Show that, for the same S0, the bandwidth of the case Z0 ≤ R is always smaller than that of
the case Z0 ≥ R.

9.24 Computer Experiment: Antenna Bandwidth. An 80-meter dipole antenna is resonant at f0 =
3.75 MHz. Its input impedance is modeled as a series RLC circuit as in Problem 9.21. Its
Q-factor is Q = 13 and its resistance R at resonance will be varied to achieve various values
of the SWR S0. The antenna is connected to a transmitter with a length of 75-ohm coaxial
cable with matched-line loss of a = e2αd.

a. For a lossless line (a = 0 dB), plot the normalized bandwidths Q(∆f)/f0 versus the
SWR at the antenna at resonance S0. Do two such plots corresponding to SWR band-
width levels of SB = 2 and SB = 1.75. On the same graphs, add the normalized
bandwidth plots for the case of a lossy line with a = 2 dB. Identify on each graph the
optimum bandwidth points and the maximum range of S0 (for convenience, use the
same vertical and horizontal scales in all graphs.)

b. Assume now that S0 = 1.25. What are the two possible values of R? For these two
cases and assuming a lossy line with a = 2 dB, plot the SWR at the antenna end of
the line versus frequency in the interval 3.5 ≤ f ≤ 4 MHz. Then, plot the SWRs at
the transmitter end of the line. Using common scales on all four graphs, add on each
graph the left and right bandedge frequencies corresponding to the two SWR levels of
SB = 2 and SB = 1.75. Note the wider bandwidth in the lossy case and for the case
having Z0 ≥ R.

9.25 For the special case of a matched generator havingZL = Z0, or, ΓG = 0, show that Eq. (9.15.15)
reduces to:

Vd(t)= V(t)+ΓLV(t − 2T) and VL(t)= (1+ ΓL)V(t −T)

9.26 A terminated transmission line may be thought of as a sampled-data linear system. Show
that Eq. (9.15.15) can be written in the convolutional form:

Vd(t)=
∫∞
−∞
hd(t′)V(t − t′)dt′ , VL(t)=

∫∞
−∞
hL(t′)V(t − t′)dt′

so that V(t) may be considered to be the input and Vd(t) and VL(t), the outputs. Show
that the corresponding impulse responses have the sampled-data forms:

hd(t) = δ(t)+
(

1+ 1

ΓG

) ∞∑
m=1

(ΓGΓL)m δ(t − 2mT)

hL(t) = (1+ ΓL)
∞∑
m=0

(ΓGΓL)m δ
(
t − (2m+ 1)T

)

What are the corresponding frequency responses? Show that the effective time constant of
the system may be defined as:
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τ = 2T
ln ε

ln |ΓGΓL|

where ε is a small number, such as ε = 10−2. Provide an interpretation of τ.

9.27 Computer Experiment: Rise Time and Propagation Effects. In digital systems where pulses
are transmitted along various interconnects, a rule of thumb is used according to which if
the rise time-constant of a pulse is tr ≤ 2.5T, where T = d/c is the propagation delay along
the interconnect, then propagation effects must be taken into account. If tr > 5T, then a
lumped circuit approach may be used.

Consider the transmission line of Example 9.15.1. Using the MATLAB function upulse.m,
generate four triangular pulses of duration td = 20T and rise times tr = 0, 2.5T, 5T, 10T.
You may take the fall-times to be equal to the rise-times.

For each pulse, calculate and plot the line voltages Vd(t),VL(t) at the generator and load
ends for the time period 0 ≤ t ≤ 80T. Superimpose on these graphs the initial triangular
waveform that is launched along the line. Discuss the above rule of thumb in the light of
your results.

9.28 Two coaxial transmission lines of lengths d1, d2, impedances Z01, Z02, and propagation
speeds c1, c2 are connected in cascade as shown below. Define the one-way travel times
and z-transform variables by T1 = d1/c1, T2 = d2/c2, ζ1 = ejωT1 , and ζ2 = ejωT2 .

Show that the reflection response at the left of the junction is given by:

Γ1 = ρ+ ΓLζ−2
2

1+ ρΓLζ−2
2
= ρ+ ΓL(1− ρ

2)ζ−2
2

1+ ρΓLζ−2
2

where ρ = (Z02 − Z01)/(Z02 + Z01) and ΓL is the load reflection coefficient. Show that the
forward and backward voltages at the generator end and to the right of the junction are:

V+ = V
1− ΓGΓ1ζ−2

1
, V− = Γ1ζ−2

1 V+ , where V = VGZ01

ZG + Z01

V′1+ =
(1+ ρ)ζ−1

1

1+ ρΓLζ−2
2
V+ , V′1− =

(1+ ρ)ΓLζ−1
1 ζ−2

2

1+ ρΓLζ−2
2

V+

Assume a matched generator, that is, having ZG = Z01, or, ΓG = 0, and a purely resistive
load. Show that the time-domain forward and backward transient voltages are given by:

V+(t)= V(t)= 1

2
VG(t)

V−(t)= ρV(t − 2T1)+ΓL(1− ρ2)
∞∑
m=0

(−ρΓL)m V(t − 2mT2 − 2T2 − 2T1)

V′+(t)= (1+ ρ)
∞∑
m=0

(−ρΓL)m V(t − 2mT2 −T1)

V′−(t)= ΓL(1+ ρ)
∞∑
m=0

(−ρΓL)m V(t − 2mT2 − 2T2 −T1)
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Show that the line voltage V(t, z) is given in terms of the above quantities by:

V(t, z)=

V+(t − z/c1)+V−(t + z/c1), for 0 ≤ z ≤ d1

V′1+
(
t − (z− d1)/c2

)+V′1−(t + (z− d1)/c2
)
, for d1 ≤ z ≤ d1 + d2

9.29 Computer Experiment: Transient Response of Cascaded Lines. For the previous problem,
assume the numerical values d1 = 8, d2 = 2, c1 = c2 = 1, Z01 = 50, Z02 = 200, ZG = 50,
and ZL = 600 Ω.

Plot the line voltage Vd(t)= V+(t)+V−(t) at the generator end for 0 ≤ t ≤ 5T1, in the
two cases of (a) a step input VG(t)= 3.25u(t), and (b) a pulse input of width τ = T1/20
defined by VG(t)= 3.25

[
u(t)−u(t−τ)]. You may use the MATLAB functions ustep.m and

upulse.m.

For case (a), explain also the initial and final voltage levels. In both cases, explain the reasons
for the time variations of Vd(t).
The MATLAB file pulse2movie.m generates a movie of the pulse or step signal V(t, z) as it
propagates through this structure.

9.30 Equations (9.15.21) and (9.15.22) represent the line voltages at the generator and load ends
of a line terminated by a reactive load. Using inverse Laplace transforms, show that the line
voltage at any point z along such a line is given by:

V(t, z)= V0 u(t − z/c)+V0
[
ΓR + (1− ΓR)e−a(t+z/c−2T)]u(t + z/c− 2T) (series R–L)

V(t, z)= V0 u(t − z/c)+V0
[−1+ (1+ ΓR)e−a(t+z/c−2T)]u(t + z/c− 2T) (parallel R–L)

V(t, z)= V0 u(t − z/c)+V0
[
1− (1− ΓR)e−a(t+z/c−2T)]u(t + z/c− 2T) (series R–C)

V(t, z)= V0 u(t − z/c)+V0
[
ΓR − (1+ ΓR)e−a(t+z/c−2T)]u(t + z/c− 2T) (parallel R–C)

The MATLAB file RLCmovie.m generates a movie of these waves as they propagate to and get
reflected from the reactive load.

9.31 Time-domain reflectometry (TDR) is used in a number of applications, such as determining
fault locations in buried transmission lines, or probing parts of circuit that would otherwise
be inaccessible. As a fault-location example, consider a transmission line of impedance Z0

matched at both the generator and load ends, having a fault at a distance d1 from the source,
or distance d2 from the load, as shown below.

The fault is shown as a shunt or series capacitor C. But C can equally well be replaced by
an inductor L, or a resistor R. Assuming a unit-step input VG(t)= 2V0 u(t), show that the
TDR voltage Vd(t) measured at the generator end will be given by:

Vd(t)= V0 u(t)−V0 e−a(t−2T1)u(t − 2T1) (shunt C)

Vd(t)= V0 u(t)−V0
[
1− e−a(t−2T1)

]
u(t − 2T1) (shunt L)

Vd(t)= V0 u(t)+V0
[
1− e−a(t−2T1)

]
u(t − 2T1) (series C)

Vd(t)= V0 u(t)+V0 e−a(t−2T1)u(t − 2T1) (series L)

Vd(t)= V0 u(t)+V0 Γ1 u(t − 2T1) (shunt or series R)
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where T1 = d1/c is the one-way travel time to the fault. Show that the corresponding time
constant τ = 1/a is in the four cases:

τ = Z0C
2
, τ = 2Z0C , τ = 2L

Z0
, τ = L

2Z0

For a resistive fault, show that Γ1 = −Z0/(2R + Z0), or, Γ1 = R/(2R + Z0), for a shunt
or series R. For a series C, show that the voltage wave along the two segments is given as
follows, and also derive similar expressions for all the other cases:

V(t, z)=

V0 u(t − z/c)+V0 e−a(t+z/c−2T1)u(t + z/c− 2T1), for 0 ≤ z < d1

V0 e−a(t−z/c)u(t − z/c), for d1 < z ≤ d1 + d2

Make a plot of Vd(t) for 0 ≤ t ≤ 5T1, assuming a = 1 for the C and L faults, and Γ1 = ∓1
corresponding to a shorted shunt or an opened series fault.

The MATLAB file TDRmovie.m generates a movie of the step input as it propagates and gets
reflected from the fault. The lengths were d1 = 6, d2 = 4 (in units such that c = 1), and the
input was V0 = 1.



10
Coupled Lines

10.1 Coupled Transmission Lines

Coupling between two transmission lines is introduced by their proximity to each other.
Coupling effects may be undesirable, such as crosstalk in printed circuits, or they may
be desirable, as in directional couplers where the objective is to transfer power from one
line to the other.

In Sections 10.1–10.3, we discuss the equations, and their solutions, describing cou-
pled lines and crosstalk [458–475]. In Sec. 10.4, we discuss directional couplers, as well
as fiber Bragg gratings, based on coupled-mode theory [476–497]. Fig. 10.1.1 shows an
example of two coupled microstrip lines over a common ground plane, and also shows
a generic circuit model for coupled lines.

Fig. 10.1.1 Coupled Transmission Lines.

For simplicity, we assume that the lines are lossless. Let Li,Ci, i = 1,2 be the
distributed inductances and capacitances per unit length when the lines are isolated from
each other. The corresponding propagation velocities and characteristic impedances
are: vi = 1/

√
LiCi, Zi =

√
Li/Ci, i = 1,2. The coupling between the lines is modeled

by introducing a mutual inductance and capacitance per unit length, Lm,Cm. Then, the
coupled versions of telegrapher’s equations (9.15.1) become:†

†C1 is related to the capacitance to ground C1g via C1 = C1g + Cm, so that the total charge per unit
length on line-1 is Q1 = C1V1 −CmV2 = C1g(V1 −Vg)+Cm(V1 −V2), where Vg = 0.

330
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∂V1

∂z
= −L1

∂I1
∂t
− Lm∂I2∂t ,

∂I1
∂z
= −C1

∂V1

∂t
+Cm∂V2

∂t
∂V2

∂z
= −L2

∂I2
∂t
− Lm∂I1∂t ,

∂I2
∂z
= −C2

∂V2

∂t
+Cm∂V1

∂t

(10.1.1)

When Lm = Cm = 0, they reduce to the uncoupled equations describing the isolated
individual lines. Eqs. (10.1.1) may be written in the 2×2 matrix forms:

∂V

∂z
= −

[
L1 Lm
Lm L2

]
∂I

∂t

∂I

∂z
= −

[
C1 −Cm
−Cm C2

]
∂V

∂t

(10.1.2)

where V, I are the column vectors:

V =
[
V1

V2

]
, I =

[
I1
I2

]
(10.1.3)

For sinusoidal time dependence ejωt, the system (10.1.2) becomes:

dV

dz
= −jω

[
L1 Lm
Lm L2

]
I

dI

dz
= −jω

[
C1 −Cm
−Cm C2

]
V

(10.1.4)

It proves convenient to recast these equations in terms of the forward and backward
waves that are normalized with respect to the uncoupled impedances Z1, Z2 :

a1 = V1 + Z1I1√
2Z1

, b1 = V1 − Z1I1√
2Z1

a2 = V2 + Z2I2√
2Z2

, b2 = V2 − Z2I2√
2Z2

⇒ a =
[
a1

a2

]
, b =

[
b1

b2

]
(10.1.5)

The a,b waves are similar to the power waves defined in Sec. 12.7. The total average
power on the line can be expressed conveniently in terms of these:

P = 1

2
Re[V †I]= 1

2
Re[V∗1 I1]+

1

2
Re[V∗2 I2]= P1 + P2

= (|a1|2 − |b1|2
)+ (|a2|2 − |b2|2

) = (|a1|2 + |a2|2
)− (|b1|2 + |b2|2

)
= a†a− b†b

(10.1.6)

where the dagger operator denotes the conjugate-transpose, for example, a† = [a∗1 , a∗2 ].
Thus, the a-waves carry power forward, and the b-waves, backward. After some algebra,
it can be shown that Eqs. (10.1.4) are equivalent to the system:

da

dz
= −jF a+ jGb

db

dz
= −jG a+ jF b

⇒ d
dz

[
a
b

]
= −j

[
F −G
G −F

][
a
b

]
(10.1.7)
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with the matrices F,G given by:

F =
[
β1 κ
κ β2

]
, G =

[
0 χ
χ 0

]
(10.1.8)

where β1, β2 are the uncoupled wavenumbers βi = ω/vi = ω
√
LiCi, i = 1,2 and the

coupling parameters κ,χ are:

κ = 1

2
ω
(
Lm√
Z1Z2

−Cm
√
Z1Z2

)
= 1

2

√
β1β2

(
Lm√
L1L2

− Cm√
C1C2

)

χ = 1

2
ω
(
Lm√
Z1Z2

+Cm
√
Z1Z2

)
= 1

2

√
β1β2

(
Lm√
L1L2

+ Cm√
C1C2

) (10.1.9)

A consequence of the structure of the matrices F,G is that the total power P defined
in (10.1.6) is conserved along z. This follows by writing the power in the following form,
where I is the 2×2 identity matrix:

P = a†a− b†b = [a†,b†]
[
I 0
0 −I

][
a
b

]

Using (10.1.7), we find:

dP
dz
= j[a†,b†]

([
F† G†

−G† −F†
][

I 0
0 −I

]
−
[
I 0
0 −I

][
F −G
G −F

])[
a
b

]
= 0

the latter following from the conditions F† = F and G† = G. Eqs. (10.1.6) and (10.1.7)
form the basis of coupled-mode theory.

Next, we specialize to the case of two identical lines that have L1 = L2 ≡ L0 and
C1 = C2 ≡ C0, so that β1 = β2 =ω

√
L0C0 ≡ β and Z1 = Z2 =

√
L0/C0 ≡ Z0, and speed

v0 = 1/
√
L0C0. Then, the a,b waves and the matrices F,G take the simpler forms:

a = V+ Z0I√
2Z0

, b = V− Z0I√
2Z0

⇒ a = V+ Z0I

2
, b = V− Z0I

2
(10.1.10)

F =
[
β κ
κ β

]
, G =

[
0 χ
χ 0

]
(10.1.11)

where, for simplicity, we removed the common scale factor
√

2Z0 from the denominator
of a,b. The parameters κ,χ are obtained by setting Z1 = Z2 = Z0 in (10.1.9):

κ = 1

2
β
(
Lm
L0
− Cm
C0

)
, χ = 1

2
β
(
Lm
L0
+ Cm
C0

)
, (10.1.12)

The matrices F,G commute with each other. In fact, they are both examples of
matrices of the form:

A =
[
a0 a1

a1 a0

]
= a0I + a1J , I =

[
1 0
0 1

]
, J =

[
0 1
1 0

]
(10.1.13)
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where a0, a1 are real such that |a0| �= |a1|. Such matrices form a commutative subgroup
of the group of nonsingular 2×2 matrices. Their eigenvalues are λ± = a0±a1 and they
can all be diagonalized by a common unitary matrix:

Q = 1√
2

[
1 1
1 −1

]
= [e+, e−] , e+ = 1√

2

[
1
1

]
, e− = 1√

2

[
1
−1

]
(10.1.14)

so that we have QQ† = Q†Q = I and Ae± = λ±e±.
The eigenvectors e± are referred to as the even and odd modes. To simplify sub-

sequent expressions, we will denote the eigenvalues of A by A± = a0 ± a1 and the
diagonalized matrix by Ā. Thus,

A = QĀQ† , Ā =
[
A+ 0
0 A−

]
=
[
a0 + a1 0

0 a0 − a1

]
(10.1.15)

Such matrices, as well as any matrix-valued function thereof, may be diagonalized
simultaneously. Three examples of such functions appear in the solution of Eqs. (10.1.7):

B =
√
(F +G)(F −G) = Q

√
(F̄ + Ḡ)(F̄ − Ḡ)Q†

Z = Z0

√
(F +G)(F −G)−1 = Z0Q

√
(F̄ + Ḡ)(F̄ − Ḡ)−1Q†

Γ = (Z − Z0 I)(Z + Z0 I)−1= Q(Z̄ − Z0 I)(Z̄ + Z0 I)−1Q†

(10.1.16)

Using the property FG = GF, and differentiating (10.1.7) one more time, we obtain
the decoupled second-order equations, with B as defined in (10.1.16):

d2a

dz2
= −B2 a ,

d2b

dz2
= −B2 b

However, it is better to work with (10.1.7) directly. This system can be decoupled by
forming the following linear combinations of the a,b waves:

A = a− Γb

B = b− Γa
⇒

[
A
B

]
=
[

I −Γ
−Γ I

][
a
b

]
(10.1.17)

The A,B can be written in terms of V, I and the impedance matrix Z as follows:

A = (2D)−1(V+ ZI)

B = (2D)−1(V− ZI)
⇒

V = D(A+ B)

ZI = D(A− B)
D = Z + Z0 I

2Z0
(10.1.18)

Using (10.1.17), we find that A,B satisfy the decoupled first-order system:

d
dz

[
A
B

]
= −j

[
B 0
0 −B

][
A
B

]
⇒ dA

dz
= −jBA ,

dB

dz
= jBB (10.1.19)

with solutions expressed in terms of the matrix exponentials e±jBz:

A(z)= e−jBzA(0) , B(z)= ejBzB(0) (10.1.20)
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Using (10.1.18), we obtain the solutions for V, I :

V(z) = D[e−jBzA(0)+ejBzB(0)]
ZI(z) = D[e−jBzA(0)−ejBzB(0)] (10.1.21)

To complete the solution, we assume that both lines are terminated at common
generator and load impedances, that is, ZG1 = ZG2 ≡ ZG and ZL1 = ZL2 ≡ ZL. The
generator voltagesVG1, VG2 are assumed to be different. We define the generator voltage
vector and source and load matrix reflection coefficients:

VG =
[
VG1

VG2

]
,

ΓG = (ZGI − Z)(ZGI + Z)−1

ΓL = (ZLI − Z)(ZLI + Z)−1 (10.1.22)

The terminal conditions for the line are at z = 0 and z = l :
VG = V(0)+ZGI(0) , V(l)= ZLI(l) (10.1.23)

They may be re-expressed in terms of A,B with the help of (10.1.18):

A(0)−ΓGB(0)= D−1Z(Z + ZGI)−1VG , B(l)= ΓLA(l) (10.1.24)

But from (10.1.19), we have:†

ejBlB(0)= B(l)= ΓLA(l)= ΓLe−jBlA(0) ⇒ B(0)= ΓLe−2jBlA(0) (10.1.25)

Inserting this into (10.1.24), we may solve for A(0) in terms of the generator voltage:

A(0)= D−1[I − ΓGΓLe−2jBl]−1Z(Z + ZGI)−1VG (10.1.26)

Using (10.1.26) into (10.1.21), we finally obtain the voltage and current at an arbitrary
position z along the lines:

V(z) = [e−jBz + ΓLe−2jBlejBz
][
I − ΓGΓLe−2jBl]−1Z(Z + ZGI)−1VG

I(z) = [e−jBz − ΓLe−2jBlejBz
][
I − ΓGΓLe−2jBl]−1(Z + ZGI)−1VG

(10.1.27)

These are the coupled-line generalizations of Eqs. (9.9.7). Resolving VG and V(z)
into their even and odd modes, that is, expressing them as linear combinations of the
eigenvectors e±, we have:

VG = VG+e+ +VG−e− , where VG± = VG1 ±VG2√
2

V(z)= V+(z)e+ +V−(z)e− , V±(z)= V1(z)±V2(z)√
2

(10.1.28)

In this basis, the matrices in (10.1.27) are diagonal resulting in the equivalent solution:

V(z)= V+(z)e+ +V−(z)e− =e
−jβ+z + ΓL+e−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
Z+

Z+ + ZG VG+e+

+e
−jβ−z + ΓL−e−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
Z−

Z− + ZG VG−e−

(10.1.29)

†The matrices D,Z, ΓG, ΓL, Γ,B all commute with each other.
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where β± are the eigenvalues of B, Z± the eigenvalues of Z, and ΓG±, ΓL± are:

ΓG± = ZG − Z±ZG + Z± , ΓL± = ZL − Z±ZL + Z± (10.1.30)

The voltages V1(z),V2(z) are obtained by extracting the top and bottom compo-
nents of (10.1.29), that is, V1,2(z)=

[
V+(z)±V−(z)

]
/
√

2 :

V1(z) = e
−jβ+z + ΓL+e−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
V+ + e

−jβ−z + ΓL−e−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
V−

V2(z) = e
−jβ+z + ΓL+e−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
V+ − e

−jβ−z + ΓL−e−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
V−

(10.1.31)

where we defined:

V± =
(

Z±
Z± + ZG

)
VG±√

2
= 1

4
(1− ΓG±)(VG1 ±VG2) (10.1.32)

The parametersβ±, Z± are obtained using the rules of Eq. (10.1.15). From Eq. (10.1.12),
we find the eigenvalues of the matrices F ±G:

(F +G)± = β± (κ+ χ)= β
(

1± Lm
L0

)
=ω 1

Z0
(L0 ± Lm)

(F −G)± = β± (κ− χ)= β
(

1∓ Cm
C0

)
=ωZ0(C0 ∓Cm)

Then, it follows that:

β+ =
√
(F +G)+(F −G)+ =ω

√
(L0 + Lm)(C0 −Cm)

β− =
√
(F +G)−(F −G)− =ω

√
(L0 − Lm)(C0 +Cm)

(10.1.33)

Z+ = Z0

√
(F +G)+
(F −G)+ =

√
L0 + Lm
C0 −Cm

Z− = Z0

√
(F +G)−
(F −G)− =

√
L0 − Lm
C0 +Cm

(10.1.34)

Thus, the coupled system acts as two uncoupled lines with wavenumbers and char-
acteristic impedances β±, Z±, propagation speeds v± = 1/

√
(L0 ± Lm)(C0 ∓Cm), and

propagation delays T± = l/v±. The even mode is energized when VG2 = VG1, or,
VG+ �= 0, VG− = 0, and the odd mode, when VG2 = −VG1, or, VG+ = 0, VG− �= 0.

When the coupled lines are immersed in a homogeneous medium, such as two parallel
wires in air over a ground plane, then the propagation speeds must be equal to the speed
of light within this medium [468], that is, v+ = v− = 1/√µε. This requires:

(L0 + Lm)(C0 −Cm)= µε
(L0 − Lm)(C0 +Cm)= µε

⇒
L0 = µεC0

C2
0 −C2

m

Lm = µεCm
C2

0 −C2
m

(10.1.35)

Therefore, Lm/L0 = Cm/C0, or, equivalently, κ = 0. On the other hand, in an
inhomogeneous medium, such as for the case of the microstrip lines shown in Fig. 10.1.1,
the propagation speeds may be different, v+ �= v−, and hence T+ �= T−.
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10.2 Crosstalk Between Lines

When only line-1 is energized, that is, VG1 �= 0, VG2 = 0, the coupling between the lines
induces a propagating wave in line-2, referred to as crosstalk, which also has some minor
influence back on line-1. The near-end and far-end crosstalk are the values of V2(z) at
z = 0 and z = l, respectively. Setting VG2 = 0 in (10.1.32), we have from (10.1.31):

V2(0) = 1

2

(1− ΓG+)(1+ ΓL+ζ−2+ )
1− ΓG+ΓL+ζ−2+

V − 1

2

(1− ΓG−)(1+ ΓL−ζ−1− )
1− ΓG−ΓL−ζ−2

V

V2(l) = 1

2

ζ−1+ (1− ΓG+)(1+ ΓL+)
1− ΓG+ΓL+ζ−2+

V − 1

2

ζ−1− (1− ΓG−)(1+ ΓL−)
1− ΓG−ΓL−ζ−2−

V

(10.2.1)

where we defined V = VG1/2 and introduced the z-transform delay variables ζ± =
ejωT± = ejβ±l. Assuming purely resistive termination impedances ZG,ZL, we may use
Eq. (9.15.15) to obtain the corresponding time-domain responses:

V2(t,0) = 1

2
(1− ΓG+)


V(t)+(1+ 1

ΓG+

) ∞∑
m=1

(ΓG+ΓL+)m V(t − 2mT+)




− 1

2
(1− ΓG−)


V(t)+(1+ 1

ΓG−

) ∞∑
m=1

(ΓG−ΓL−)m V(t − 2mT−)




V2(t, l) = 1

2
(1− ΓG+)(1+ ΓL+)

∞∑
m=0

(ΓG+ΓL+)m V(t − 2mT+ −T+)

− 1

2
(1− ΓG−)(1+ ΓL−)

∞∑
m=0

(ΓG−ΓL−)m V(t − 2mT− −T−)

(10.2.2)

where V(t)= VG1(t)/2.† Because Z± �= Z0, there will be multiple reflections even when
the lines are matched to Z0 at both ends. Setting ZG = ZL = Z0, gives for the reflection
coefficients (10.1.30):

ΓG± = ΓL± = Z0 − Z±
Z0 + Z± = −Γ± (10.2.3)

In this case, we find for the crosstalk signals:

V2(t,0) = 1

2
(1+ Γ+)


V(t)−(1− Γ+)

∞∑
m=1

Γ2m−1+ V(t − 2mT+)




− 1

2
(1+ Γ−)


V(t)−(1− Γ−)

∞∑
m=1

Γ2m−1− V(t − 2mT−)




V2(t, l) = 1

2
(1− Γ2+)

∞∑
m=0

Γ2m+ V(t − 2mT+ −T+)

− 1

2
(1− Γ2−)

∞∑
m=0

Γ2m− V(t − 2mT− −T−)

(10.2.4)

†V(t) is the signal that would exist on a matched line-1 in the absence of line-2, V = Z0VG1/(Z0+ZG)=
VG1/2, provided ZG = Z0.



10.2. Crosstalk Between Lines 337

Similarly, the near-end and far-end signals on the driven line are found by adding,
instead of subtracting, the even- and odd-mode terms:

V1(t,0) = 1

2
(1+ Γ+)


V(t)−(1− Γ+)

∞∑
m=1

Γ2m−1+ V(t − 2mT+)




+ 1

2
(1+ Γ−)


V(t)−(1− Γ−)

∞∑
m=1

Γ2m−1− V(t − 2mT−)




V1(t, l) = 1

2
(1− Γ2+)

∞∑
m=0

Γ2m+ V(t − 2mT+ −T+)

+ 1

2
(1− Γ2−)

∞∑
m=0

Γ2m− V(t − 2mT− −T−)

(10.2.5)

These expressions simplify drastically if we assume weak coupling. It is straightfor-
ward to verify that to first-order in the parameters Lm/L0, Cm/C0, or equivalently, to
first-order in κ,χ, we have the approximations:

β± = β±∆β = β± κ , Z± = Z0 ±∆Z = Z0 ± Z0
χ
β
, v± = v0 ∓ v0

κ
β

Γ± = 0±∆Γ = ± χ
2β
, T± = T ±∆T = T ±T κβ

(10.2.6)

where T = l/v0. Because the Γ±s are already first-order, the multiple reflection terms
in the above summations are a second-order effect, and only the lowest terms will con-
tribute, that is, the termm = 1 for the near-end, andm = 0 for the far end. Then,

V2(0, t) = 1

2
(Γ+ − Γ−)V(t)−1

2

[
Γ+V(t − 2T+)−Γ−V(t − 2T−)

]

V2(l, t) = 1

2

[
V(t −T+)−V(t −T−)]

Using a Taylor series expansion and (10.2.6), we have to first-order:

V(t − 2T±)= V(t − 2T ∓∆T)� V(t − 2T)∓(∆T)V̇(t − 2T) , V̇ = dV
dt

V(t −T±)= V(t −T ∓∆T)� V(t −T)∓(∆T)V̇(t −T)
Therefore, Γ±V(t − 2T±)= Γ±

[
V(t − 2T)∓(∆T)V̇] � Γ±V(t − 2T), where we

ignored the second-order terms Γ±(∆T)V̇. It follows that:

V2(0, t) = 1

2
(Γ+ − Γ−)

[
V(t)−V(t − 2T)

] = (∆Γ)[V(t)−V(t − 2T)
]

V2(l, t) = 1

2

[
V(t −T)−(∆T)V̇ −V(t −T)−(∆T)V̇] = −(∆T)dV(t −T)

dt
These can be written in the commonly used form:

V2(0, t)= Kb
[
V(t)−V(t − 2T)

]

V2(l, t)= Kf dV(t −T)dt

(near- and far-end crosstalk) (10.2.7)
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where Kb,Kf are known as the backward and forward crosstalk coefficients:

Kb = χ
2β
= v0

4

(
Lm
Z0
+CmZ0

)
, Kf = −T κβ = −

v0T
2

(
Lm
Z0
−CmZ0

)
(10.2.8)

where we may replace l = v0T. The same approximations give for line-1,V1(0, t)= V(t)
and V1(l, t)= V(t −T). Thus, to first-order, line-2 does not act back to disturb line-1.

Example 10.2.1: Fig. 10.2.1 shows the signals V1(0, t), V1(l, t), V2(0, t), V2(l, t) for a pair of
coupled lines matched at both ends. The uncoupled line impedance was Z0 = 50 Ω.
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Fig. 10.2.1 Near- and far-end crosstalk signals on lines 1 and 2.

For the left graph, we chose Lm/L0 = 0.4, Cm/C0 = 0.3, which results in the even and odd
mode parameters (using the exact formulas):

Z+ = 70.71 Ω , Z− = 33.97 Ω , v+ = 1.01v0 , v− = 1.13v0

Γ+ = −0.17 , Γ− = 0.19 , T+ = 0.99T , T− = 0.88T , Kb = 0.175 , Kf = 0.05

The right graph corresponds to Lm/L0 = 0.8, Cm/C0 = 0.7, with parameters:

Z+ = 122.47 Ω , Z− = 17.15 Ω , v+ = 1.36v0 , v− = 1.71v0

Γ+ = −0.42 , Γ− = 0.49 , T+ = 0.73T , T− = 0.58T , Kb = 0.375 , Kf = 0.05

The generator input to line-1 was a rising step with rise-time tr = T/4, that is,

V(t)= 1

2
VG1(t)= t

tr

[
u(t)−u(t − tr)

]+ u(t − tr)
The weak-coupling approximations are more closely satisfied for the left case. Eqs. (10.2.7)
predict for V2(0, t) a trapezoidal pulse of duration 2T and height Kb, and for V2(l, t), a
rectangular pulse of width tr and height Kf/tr = −0.2 starting at t = T:

V2(l, t)= Kf dV(t −T)dt
= Kf
tr

[
u(t −T)−u(t −T − tr)]

These predictions are approximately correct as can be seen in the figure. The approxima-
tion predicts also that V1(0, t)= V(t) and V1(l, t)= V(t −T), which are not quite true—
the effect of line-2 on line-1 cannot be ignored completely.
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The interaction between the two lines is seen better in the MATLAB movie xtalkmovie.m,
which plots the waves V1(z, t) and V2(z, t) as they propagate to and get reflected from
their respective loads, and compares them to the uncoupled case V0(z, t)= V(t − z/v0).
The waves V1,2(z, t) are computed by the same method as for the movie pulsemovie.m

of Example 9.15.1, applied separately to the even and odd modes. 	


10.3 Weakly Coupled Lines with Arbitrary Terminations

The even-odd mode decomposition can be carried out only in the case of identical lines
both of which have the same load and generator impedances. The case of arbitrary
terminations has been solved in closed form only for homogeneous media [465,468]. It
has also been solved for arbitrary media under the weak coupling assumption [475].

Following [475], we solve the general equations (10.1.7)–(10.1.9) for weakly coupled
lines assuming arbitrary terminating impedances ZLi, ZGi, with reflection coefficients:

ΓLi = ZLi − ZiZLi + Zi , ΓGi = ZGi − ZiZGi + Zi , i = 1,2 (10.3.1)

Working with the forward and backward waves, we write Eq. (10.1.7) as the 4×4
matrix equation:

dc

dz
= −jMc , c =



a1

a2

b1

b2


 , M =



β1 κ 0 −χ
κ β2 −χ 0
0 χ −β1 −κ
χ 0 −κ −β2




The weak coupling assumption consists of ignoring the coupling of a1, b1 on a2, b2.
This amounts to approximating the above linear system by:

dc

dz
= −jM̂c , M̂ =



β1 0 0 0
κ β2 −χ 0
0 0 −β1 0
χ 0 −κ −β2


 (10.3.2)

Its solution is given by c(z)= e−jM̂zc(0), where the transition matrix e−jM̂z can be
expressed in closed form as follows:

e−jM̂z =




e−jβ1z 0 0 0

κ̂(e−jβ1z − e−jβ2z) e−jβ2 χ̂(ejβ1z − e−jβ2z) 0

0 0 ejβ1z 0

χ̂(e−jβ1z − ejβ2z) 0 κ̂(ejβ1z − ejβ2z) ejβ2z


 ,

κ̂ = κ
β1 − β2

χ̂ = χ
β1 + β2

The transition matrix e−jM̂l may be written in terms of the z-domain delay variables
ζi = ejβil = eiωTi , i = 1,2, where Ti are the one-way travel times along the lines, that is,
Ti = l/vi. Then, we find:


a1(l)
a2(l)
b1(l)
b2(l)


 =




ζ−1
1 0 0 0

κ̂(ζ−1
1 − ζ−1

2 ) ζ−1
2 χ̂(ζ1 − ζ−1

2 ) 0
0 0 ζ1 0

χ̂(ζ−1
1 − ζ2) 0 κ̂(ζ1 − ζ2) ζ2





a1(0)
a2(0)
b1(0)
b2(0)


 (10.3.3)
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These must be appended by the appropriate terminating conditions. Assuming that
only line-1 is driven, we have:

V1(0)+ZG1I1(0)= VG1 , V1(l)= ZL1I1(l)
V2(0)+ZG2I2(0)= 0 , V2(l)= ZL2I2(l)

which can be written in terms of the a,b waves:

a1(0)−ΓG1b1(0)= U1 , b1(l)= ΓL1a1(l)
a2(0)−ΓG2b2(0)= 0 , b2(l)= ΓL2a2(l)

, U1 =
√

2

Z1
(1− ΓG1)

VG1

2
(10.3.4)

Eqs. (10.3.3) and (10.3.4) provide a set of eight equations in eight unknowns. Once
these are solved, the near- and far-end voltages may be determined. For line-1, we find:

V1(0)=
√
Z1

2

[
a1(0)+b1(0)

] = 1+ ΓL1ζ−2
1

1− ΓG1ΓL1ζ−2
1
V

V1(l)=
√
Z1

2

[
a1(l)+b1(l)

] = ζ−1
1 (1+ ΓL1)

1− ΓG1ΓL1ζ−2
1
V

(10.3.5)

where V = (1− ΓG1)VG1/2 = Z1VG1/(Z1 + ZG1). For line-2, we have:

V2(0) = κ̄(ζ
−1
1 − ζ−1

2 )(ΓL1ζ−1
1 + ΓL2ζ−1

2 )+χ̄(1− ζ−1
1 ζ

−1
2 )(1+ ΓL1ΓL2ζ−1

1 ζ
−1
2 )

(1− ΓG1ΓL1ζ−2
1 )(1− ΓG2ΓL2ζ−2

2 )
V20

V2(l) = κ̄(ζ
−1
1 − ζ−1

2 )(1+ ΓL1ΓG2ζ−1
1 ζ

−1
2 )+χ̄(1− ζ−1

1 ζ
−1
2 )(ΓL1ζ−1

1 + ΓG2ζ−1
2 )

(1− ΓG1ΓL1ζ−2
1 )(1− ΓG2ΓL2ζ−2

2 )
V2l

(10.3.6)
where V20 = (1 + ΓG2)V = (1 + ΓG2)(1 − ΓG1)VG1/2 and V2l = (1 + ΓL2)V, and we
defined κ̄, χ̄ by:

κ̄ =
√
Z2

Z1
κ̂ =

√
Z2

Z1

κ
β1 − β2

= ω
β1 − β2

1

2

(
Lm
Z1
−CmZ2

)

χ̄ =
√
Z2

Z1
χ̂ =

√
Z2

Z1

χ
β1 + β2

= ω
β1 + β2

1

2

(
Lm
Z1
+CmZ2

) (10.3.7)

In the case of identical lines with Z1 = Z2 = Z0 and β1 = β2 = β =ω/v0, we must
use the limit:

lim
β2→β1

e−jβ1l − e−jβ2l

β1 − β2
= d
dβ1

e−jβ1l = −jle−jβ1l

Then, we obtain:

κ̄(ζ−1
1 − ζ−1

2 )→ jωKfe−jβl = −jω
l
2

(
Lm
Z0
−CmZ0

)
e−jβl

χ̄→ Kb = v0

4

(
Lm
Z0
+CmZ0

) (10.3.8)

where Kf ,Kb were defined in (10.2.8). Setting ζ1 = ζ2 = ζ = ejβl = ejωT, we find the
crosstalk signals:
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V2(0) = jωKf(ΓL1 + ΓL2)ζ−2 +Kb(1− ζ−2)(1+ ΓL1ΓL2ζ−2)
(1− ΓG1ΓL1ζ−2)(1− ΓG2ΓL2ζ−2)

V20

V2(l) = jωKf(1+ ΓL1ΓG2ζ−2)ζ−1 +Kb(1− ζ−2)(ΓL1 + ΓG2)ζ−1

(1− ΓG1ΓL1ζ−2)(1− ΓG2ΓL2ζ−2)
V2l

(10.3.9)

The corresponding time-domain signals will involve the double multiple reflections
arising from the denominators. However, if we assume the each line is matched in at
least one of its ends, so that ΓG1ΓL1 = ΓG2ΓL2 = 0, then the denominators can be
eliminated. Replacing jω by the time-derivative d/dt and each factor ζ−1 by a delay by
T, we obtain:

V2(t,0)= Kf(ΓL1 + ΓL2 + ΓL1ΓG2)V̇(t − 2T)

+Kb(1+ ΓG2)
[
V(t)−V(t − 2T)

]+KbΓL1ΓL2
[
V(t − 2T)−V(t − 4T)

]
V2(t, l)= Kf

[
(1+ ΓL2)V̇(t −T)+ΓL1ΓG2V̇(t − 3T)

]
+Kb(ΓL1 + ΓG2 + ΓL1ΓL2)

[
V(t −T)−V(t − 3T)

]
(10.3.10)

where V(t)= (1− ΓG1)VG1(t)/2, and we used the property ΓG2ΓL2 = 0 to simplify the
expressions. Eqs. (10.3.10) reduce to (10.2.7) when the lines are matched at both ends.

10.4 Coupled-Mode Theory

In its simplest form, coupled-mode or coupled-wave theory provides a paradigm for the
interaction between two waves and the exchange of energy from one to the other as
they propagate. Reviews and earlier literature may be found in Refs. [476–497], see also
[328–347] for the relationship to fiber Bragg gratings and distributed feedback lasers.

There are several mechanical and electrical analogs of coupled-mode theory, such as
a pair of coupled pendula, or two masses at the ends of two springs with a third spring
connecting the two, or two LC circuits with a coupling capacitor between them. In these
examples, the exchange of energy is taking place over time instead of over space.

Coupled-wave theory is inherently directional. If two forward-moving waves are
strongly coupled, then their interactions with the corresponding backward waves may
be ignored. Similarly, if a forward- and a backward-moving wave are strongly coupled,
then their interactions with the corresponding oppositely moving waves may be ignored.
Fig. 10.4.1 depicts these two cases of co-directional and contra-directional coupling.

Fig. 10.4.1 Directional Couplers.

Eqs. (10.1.7) form the basis of coupled-mode theory. In the co-directional case, if
we assume that there are only forward waves at z = 0, that is, a(0)�= 0 and b(0)= 0,
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then it may shown that the effect of the backward waves on the forward ones becomes
a second-order effect in the coupling constants, and therefore, it may be ignored. To
see this, we solve the second of Eqs. (10.1.7) for b in terms of a, assuming zero initial
conditions, and substitute it in the first:

b(z)= −j
∫ z

0
ejF(z−z

′)G a(z′)dz′ ⇒ da

dz
= −jF a+

∫ z
0
GejF(z−z

′)G a(z′)dz′

The second term is second-order in G, or in the coupling constant χ. Ignoring this
term, we obtain the standard equations describing a co-directional coupler:

da

dz
= −jF a ⇒ d

dz

[
a1

a2

]
= −j

[
β1 κ
κ β2

][
a1

a2

]
(10.4.1)

For the contra-directional case, a similar argument that assumes the initial conditions
a2(0)= b1(0)= 0 gives the following approximation that couples the a1 and b2 waves:

d
dz

[
a1

b2

]
= −j

[
β1 −χ
χ −β2

][
a1

b2

]
(10.4.2)

The conserved powers are in the two cases:

P = |a1|2 + |a2|2 , P = |a1|2 − |b2|2 (10.4.3)

The solution of Eq. (10.4.1) is obtained with the help of the transition matrix e−jFz :

e−jFz = e−jβz

 cosσz− j δ

σ
sinσz −j κ

σ
sinσz

−j κ
σ

sinσz cosσz+ j δ
σ

sinσz


 (10.4.4)

where

β = β1 + β2

2
, δ = β1 − β2

2
, σ =

√
δ2 + κ2 (10.4.5)

Thus, the solution of (10.4.1) is:

[
a1(z)
a2(z)

]
= e−jβz


 cosσz− j δ

σ
sinσz −j κ

σ
sinσz

−j κ
σ

sinσz cosσz− j δ
σ

sinσz



[
a1(0)
a2(0)

]
(10.4.6)

Starting with initial conditions a1(0)= 1 and a2(0)= 0, the total initial power will
be P = |a1(0)|2+|a2(0)|2 = 1. As the waves propagate along the z-direction, power is
exchanged between lines 1 and 2 according to:

P1(z)= |a1(z)|2 = cos2σz+ δ
2

σ2
sin2σz

P2(z)= |a2(z)|2 = κ
2

σ2
sin2σz = 1− P1(z)

(10.4.7)

Fig. 10.4.2 shows the two cases for which δ/κ = 0 and δ/κ = 0.5. In both cases,
maximum exchange of power occurs periodically at distances that are odd multiples of
z = π/2σ. Complete power exchange occurs only in the case δ = 0, or equivalently,
when β1 = β2. In this case, we have σ = κ and P1(z)= cos2 κz, P2(z)= sin2 κz.
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Fig. 10.4.2 Power exchange in co-directional couplers.

10.5 Fiber Bragg Gratings

As an example of contra-directional coupling, we consider the case of a fiber Bragg
grating (FBG), that is, a fiber with a segment that has a periodically varying refractive
index, as shown in Fig. 10.5.1.

Fig. 10.5.1 Fiber Bragg grating.

The backward wave is generated by the reflection of a forward-moving wave incident
on the interface from the left. The grating behaves very similarly to a periodic multilayer
structure, such as a dielectric mirror at normal incidence, exhibiting high-reflectance
bands. A simple model for an FBG is as follows [328–347]:

d
dz

[
a(z)
b(z)

]
= −j

[
β κe−jKz

−κ∗ejKz −β
][
a(z)
b(z)

]
(10.5.1)

whereK = 2π/Λ is the Bloch wavenumber,Λ is the period, anda(z), b(z) represent the
forward and backward waves. The following transformation removes the phase factor
e−jKz from the coupling constant:

[
A(z)
B(z)

]
=
[
ejKz/2 0

0 e−jKz/2

][
a(z)
b(z)

]
=
[
ejKz/2a(z)
e−jKz/2b(z)

]
(10.5.2)

d
dz

[
A(z)
B(z)

]
= −j

[
δ κ
−κ∗ −δ

][
A(z)
B(z)

]
(10.5.3)
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where δ = β−K/2 is referred to as a detuning parameter. The conserved power is given
by P(z)= |a(z)|2 − |b(z)|2. The fields at z = 0 are related to those at z = l by:

[
A(0)
B(0)

]
= ejFl

[
A(l)
B(l)

]
, with F =

[
δ κ
−κ∗ −δ

]
(10.5.4)

The transfer matrix ejFl is given by:

ejFl =


 cosσl+ j δ

σ
sinσl j

κ
σ

sinσl

−j κ
∗

σ
sinσl cosσl− j δ

σ
sinσl


 ≡

[
U11 U12

U∗12 U∗11

]
(10.5.5)

where σ = √δ2 − |κ|2. If |δ| < |κ|, then σ becomes imaginary. In this case, it is more
convenient to express the transfer matrix in terms of the quantity γ = √|κ|2 − δ2:

ejFl =




coshγl+ j δ
γ

sinhγl j
κ
γ

sinhγl

−j κ
∗

γ
sinhγl coshγl− j δ

γ
sinhγl


 (10.5.6)

The transfer matrix has unit determinant, which implies that |U11|2 − |U12|2 = 1.
Using this property, we may rearrange (10.5.4) into its scattering matrix form that relates
the outgoing fields to the incoming ones:

[
B(0)
A(l)

]
=
[
Γ T
T Γ′

][
A(0)
B(l)

]
, Γ = U

∗
12

U11
, Γ′ = −U12

U11
, T = 1

U11
(10.5.7)

where Γ, Γ′ are the reflection coefficients from the left and right, respectively, and T is
the transmission coefficient. We have explicitly,

Γ =
−j κ

∗

σ
sinσl

cosσl+ j δ
σ

sinσl
, T = 1

cosσl+ j δ
σ

sinσl
(10.5.8)

If there is only an incident wave from the left, that is, A(0)�= 0 and B(l)= 0, then
(10.5.7) implies that B(0)= ΓA(0) and A(l)= TA(0).

A consequence of power conservation, |A(0)|2 − |B(0)|2 = |A(l)|2 − |B(l)|2, is
the unitarity of the scattering matrix, which implies the property |Γ|2 + |T|2 = 1. The
reflectance |Γ|2 may be expressed in the following two forms, the first being appropriate
when |δ| ≥ |κ|, and the second when |δ| ≤ |κ|:

|Γ|2 = 1− |T|2 = |κ|2 sin2σl
σ2 cos2σl+ δ2 sin2σl

= |κ|2 sinh2 γl
γ2 cosh2 γl+ δ2 sinh2 γl

(10.5.9)

Fig. 10.5.2 shows |Γ|2 as a function of δ. The high-reflectance band corresponds to
the range |δ| ≤ |κ|. The left graph has κl = 3 and the right one κl = 6.

As κl increases, the reflection band becomes sharper. The asymptotic width of the
band is −|κ| ≤ δ ≤ |κ|. For any finite value of κl, the maximum reflectance achieved
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Fig. 10.5.2 Reflectance of fiber Bragg gratings.

at the center of the band, δ = 0, is given by |Γ|2max = tanh2 |κl|. The reflectance at the
asymptotic band edges is given by:

|Γ|2 = |κl|2
1+ |κl|2 , at δ = ±|κ|

The zeros of the reflectance correspond to sinσl = 0, or, σ = mπ/l, which gives
δ = ±√|κ|2 + (mπ/l)2, wherem is a non-zero integer.

The Bragg wavelength λB is the wavelength at the center of the reflecting band, that
is, corresponding to δ = 0, or, β = K/2, or λB = 2π/β = 4π/K = 2Λ.

By concatenating two identical FBGs separated by a “spacer” of length d = λB/4 =
Λ/2, we obtain a quarter-wave phase-shifted FBG, which has a narrow transmission
window centered at δ = 0. Fig. 10.5.3 depicts such a compound grating. Within the
spacer, the A,B waves propagate with wavenumber β as though they are uncoupled.

Fig. 10.5.3 Quarter-wave phase-shifted fiber Bragg grating.

The compound transfer matrix is obtained by multiplying the transfer matrices of
the two FBGs and the spacer: V = UFBGUspacerUFBG, or, explicitly:[

V11 V12

V∗12 V∗11

]
=
[
U11 U12

U∗12 U∗11

][
ejβd 0

0 e−jβd

][
U11 U12

U∗12 U∗11

]
(10.5.10)

where the Uij are given in Eq. (10.5.5). It follows that the matrix elements of V are:

V11 = U2
11ejβd + |U12|2e−jβd , V12 = U12

(
U11ejβd +U∗11e−jβd

)
(10.5.11)

The reflection coefficient of the compound grating will be:

Γcomp = V
∗
12

V11
= U12

(
U11ejβd +U∗11e−jβd

)
U2

11ejβd + |U12|2e−jβd = Γ
(
T∗ejβd +Te−jβd)

T∗ejβd + |Γ|2Te−jβd (10.5.12)
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where we replaced U∗12 = Γ/T and U11 = 1/T. Assuming a quarter-wavelength spacing
d = λB/4 = Λ/2, we have βd = (δ+π/Λ)d = δd+π/2. Replacing ejβd = ejδd+jπ/2 =
j ejδd, we obtain:

Γcomp = Γ
(
T∗ejδd −Te−jδd)

T∗ejδd − |Γ|2Te−jδd (10.5.13)

At δ = 0, we have T = T∗ = 1/ cosh |κ|l, and therefore, Γcomp = 0. Fig. 10.5.4 depicts
the reflectance, |Γcomp|2, and transmittance, 1− |Γcomp|2, for the case κl = 2.

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Compound Grating,  κ l = 2

δ /κ

R
ef

le
ct

an
ce

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Compound Grating,  κ l = 2

δ /κ

T
ra

n
sm

it
ta

n
ce

Fig. 10.5.4 Quarter-wave phase-shifted Bragg grating.

Quarter-wave phase-shifted FBGs are similar to the Fabry-Perot resonators discussed
in Sec. 5.5. Improved designs having narrow and flat transmission bands can be obtained
by cascading several quarter-wave FBGs with different lengths [328–348]. Some appli-
cations of FBGs in DWDM systems were pointed out in Sec. 5.7.

10.6 Problems

10.1 Consider the practical case in which two lines are coupled only over a middle portion of
length l, with their beginning and ending segments being uncoupled, as shown below:

Assuming weakly coupled lines, how should Eqs. (10.3.6) and (10.3.9) be modified in this
case? [Hint: Replace the segments to the left of the reference plane A and to the right of
plane B by their Thévenin equivalents.]



11
Impedance Matching

11.1 Conjugate and Reflectionless Matching

The Thévenin equivalent circuits depicted in Figs. 9.11.1 and 9.11.3 also allow us to
answer the question of maximum power transfer. Given a generator and a length-d
transmission line, maximum transfer of power from the generator to the load takes
place when the load is conjugate matched to the generator, that is,

ZL = Z∗th (conjugate match) (11.1.1)

The proof of this result is postponed until Sec. 14.4. Writing Zth = Rth + jXth and
ZL = RL+jXL, the condition is equivalent to RL = Rth andXL = −Xth. In this case, half
of the generated power is delivered to the load and half is dissipated in the generator’s
Thévenin resistance. From the Thévenin circuit shown in Fig. 9.11.1, we find for the
current through the load:

IL = Vth

Zth + ZL =
Vth

(Rth +RL)+j(Xth +XL) =
Vth

2Rth

Thus, the total reactance of the circuit is canceled. It follows then that the power de-
livered by the Thévenin generator and the powers dissipated in the generator’s Thévenin
resistance and the load will be:

Ptot = 1

2
Re(V∗thIL)=

|Vth|2
4Rth

Pth = 1

2
Rth|IL|2 = |Vth|2

8Rth
= 1

2
Ptot , PL = 1

2
RL|IL|2 = |Vth|2

8Rth
= 1

2
Ptot

(11.1.2)

Assuming a lossless line (real-valued Z0 and β), the conjugate match condition can
also be written in terms of the reflection coefficients corresponding to ZL and Zth:

ΓL = Γ∗th = Γ∗Ge2jβd (conjugate match) (11.1.3)

Moving the phase exponential to the left, we note that the conjugate match condition
can be written in terms of the same quantities at the input side of the transmission line:

347
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Γd = ΓLe−2jβl = Γ∗G � Zd = Z∗G (conjugate match) (11.1.4)

Thus, the conjugate match condition can be phrased in terms of the input quantities
and the equivalent circuit of Fig. 9.9.1. More generally, there is a conjugate match at
every point along the line.

Indeed, the line can be cut at any distance l from the load and its entire left segment
including the generator can be replaced by a Thévenin-equivalent circuit. The conjugate
matching condition is obtained by propagating Eq. (11.1.3) to the left by a distance l, or
equivalently, Eq. (11.1.4) to the right by distance d− l:

Γl = ΓLe−2jβl = Γ∗Ge2jβ(d−l) (conjugate match) (11.1.5)

Conjugate matching is not the same as reflectionless matching, which refers to match-
ing the load to the line impedance, ZL = Z0, in order to prevent reflections from the
load.

In practice, we must use matching networks at one or both ends of the transmission
line to achieve the desired type of matching. Fig. 11.1.1 shows the two typical situations
that arise.

Fig. 11.1.1 Reflectionless and conjugate matching of a transmission line.

In the first, referred to as a flat line, both the generator and the load are matched
so that effectively, ZG = ZL = Z0. There are no reflected waves and the generator
(which is typically designed to operate into Z0) transmits maximum power to the load,
as compared to the case when ZG = Z0 but ZL �= Z0.

In the second case, the load is connected to the line without a matching circuit
and the generator is conjugate-matched to the input impedance of the line, that is,
Zd = Z∗G. As we mentioned above, the line remains conjugate matched everywhere
along its length, and therefore, the matching network can be inserted at any convenient
point, not necessarily at the line input.

Because the value of Zd depends on ZL and the frequency ω (through tanβd), the
conjugate match will work as designed only at a single frequency. On the other hand, if
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the load and generator are purely resistive and are matched individually to the line, the
matching will remain reflectionless over a larger frequency bandwidth.

Conjugate matching is usually accomplished using L-section reactive networks. Re-
flectionless matching is achieved by essentially the same methods as antireflection coat-
ing. In the next few sections, we discuss several methods for reflectionless and conju-
gate matching, such as (a) quarter-wavelength single- and multi-section transformers;
(b) two-section series impedance transformers; (c) single, double, and triple stub tuners;
and (d) L-section lumped-parameter reactive matching networks.

11.2 Multisection Transmission Lines

Multisection transmission lines are used primarily in the construction of broadband
matching terminations. A typical multisection line is shown in Fig. 11.2.1.

Fig. 11.2.1 Multi-section transmission line.

It consists of M segments between the main line and the load. The ith segment
is characterized by its characteristic impedance Zi, length li, and velocity factor, or
equivalently, refractive index ni. The speed in the ith segment is ci = c0/ni. The phase
thicknesses are defined by:

δi = βili = ωci li =
ω
c0
nili , i = 1,2, . . . ,M (11.2.1)

We may define the electrical lengths (playing the same role as the optical lengths of
dielectric slabs) in units of some reference free-space wavelength λ0 or corresponding
frequency f0 = c0/λ0 as follows:

(electrical lengths) Li = niliλ0
= li
λi
, i = 1,2, . . . ,M (11.2.2)

where λi = λ0/ni is the wavelength within the ith segment. Typically, the electrical
lengths are quarter-wavelengths, Li = 1/4. It follows that the phase thicknesses can be
expressed in terms of Li as δi =ωnili/c0 = 2πfnili/(f0λ0), or,

(phase thicknesses) δi = βili = 2πLi
f
f0
= 2πLi

λ0

λ
, i = 1,2, . . . ,M (11.2.3)

where f is the operating frequency and λ = c0/f the corresponding free-space wave-
length. The wave impedances, Zi, are continuous across the M + 1 interfaces and are
related by the recursions:
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Zi = Zi Zi+1 + jZi tanδi
Zi + jZi+1 tanδi

, i =M, . . . ,1 (11.2.4)

and initialized by ZM+1 = ZL. The corresponding reflection responses at the left of each
interface, Γi = (Zi − Zi−1)/(Zi + Zi−1), are obtained from the recursions:

Γi = ρi + Γi+1e−2jδi

1+ ρiΓi+1e−2jδi
, i =M, . . . ,1 (11.2.5)

and initialized at ΓM+1 = ΓL = (ZL − ZM)/(ZL + ZM), where ρi are the elementary
reflection coefficients at the interfaces:

ρi = Zi − Zi−1

Zi + Zi−1
, i = 1,2, . . . ,M + 1 (11.2.6)

where ZM+1 = ZL. The MATLAB function multiline calculates the reflection response
Γ1(f) at interface-1 as a function of frequency. Its usage is:

Gamma1 = multiline(Z,L,ZL,f); % reflection response of multisection line

where Z = [Z0, Z1, . . . , ZM] and L = [L1, L2, . . . , LM] are the main line and segment
impedances and the segment electrical lengths.

The function multiline implements Eq. (11.2.6) and is similar to multidiel, except
here the load impedance ZL is a separate input in order to allow it to be a function of
frequency. We will see examples of its usage below.

11.3 Quarter-Wavelength Impedance Transformers

Quarter-wavelength Chebyshev impedance transformers allow the matching of real-
valued load impedances ZL to real-valued line impedances Z0 and can be designed to
achieve desired attenuation and bandwidth specifications.

The design method has already been discussed in Sec. 5.8. The results of that sec-
tion translate verbatim to the present case by replacing refractive indices ni by line
admittances Yi = 1/Zi. Typical design specifications are shown in Fig. 5.8.1.

In anM-section transformer, all segments have equal electrical lengths, Li = li/λi =
nili/λ0 = 1/4 at some operating wavelength λ0. The phase thicknesses of the segments
are all equal and are given by δi = 2πLif/f0, or, because Li = 1/4:

δ = π
2

f
f0

(11.3.1)

The reflection response |Γ1(f)|2 at the left of interface-1 is expressed in terms of
the order-M Chebyshev polynomials TM(x), where x is related to the phase thickness
by x = x0 cosδ:

|Γ1(f)|2 = e2
1T

2
M(x0 cosδ)

1+ e2
1T

2
M(x0 cosδ)

(11.3.2)

where e1 = e0/TM(x0) and e0 is given in terms of the load and main line impedances:
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e2
0 =

(ZL − Z0)2

4ZLZ0
= |ΓL|2

1− |ΓL|2 , ΓL = ZL − Z0

ZL + Z0
(11.3.3)

The parameter x0 is related to the desired reflectionless bandwidth ∆f by:

x0 = 1

sin
(
π
4

∆f
f0

) (11.3.4)

and the number of sections is related to the attenuation A in the reflectionless band:

M = ceil




acosh
(√
(1+ e2

0)10A/10 − e2
0

)
acosh(x0)


 (11.3.5)

where A is in dB and is measured from dc, or equivalently, with respect to the reflec-
tion response |ΓL| of the unmatched line. The maximum equiripple level within the
reflectionless band is given by

|Γ1|max = |ΓL|10−A/20 ⇒ A = 20 log10

( |ΓL|
|Γ1|max

)
(11.3.6)

This condition can also be expressed in terms of the maximum SWR within the
desired bandwidth. Indeed, setting Smax = (1 + |Γ1|max)/(1 − |Γ1|max) and SL =
(1+ |ΓL|)/(1− |ΓL|), we may rewrite (11.3.6) as follows:

A = 20 log10

(
|ΓL| Smax + 1

Smax − 1

)
= 20 log10

(
SL − 1

SL + 1

Smax + 1

Smax − 1

)
(11.3.7)

where we must demand Smax < SL or |Γ1|max < |ΓL|. The MATLAB functions chebtr,
chebtr2, and chebtr3 implement the design steps. In the present context, they have
usage:

[Y,a,b] = chebtr(Y0,YL,A,DF); Chebyshev multisection transformer design

[Y,a,b,A] = chebtr2(Y0,YL,M,DF); specify order and bandwidth

[Y,a,b,DF] = chebtr3(Y0,YL,M,A); specify order and attenuation

The outputs are the admittances Y = [Y0, Y1, Y2, . . . , YM,YL] and the reflection and
transmission polynomials b and a. In chebtr2 and chebtr3, the orderM is given. The
designed segment impedances Zi, i = 1,2, . . . ,M satisfy the symmetry properties:

ZiZM+1−i = Z0ZL , i = 1,2, . . . ,M (11.3.8)

Fig. 11.3.1 depicts the three cases of M = 1,2,3 segments. The case M = 1 is
used widely and we discuss it in more detail. According to Eq. (11.3.8), the segment
impedance satisfies Z2

1 = Z0ZL, or,

Z1 =
√
Z0ZL (11.3.9)
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Fig. 11.3.1 One, two, and three-section quarter-wavelength transformers.

This implies that the reflection coefficients at interfaces 1 and 2 are equal:

ρ1 = Z1 − Z0

Z1 + Z0
= ZL − Z1

ZL + Z1
= ρ2 (11.3.10)

Because the Chebyshev polynomial of order-1 is T1(x)= x, the reflection response
(11.3.2) takes the form:

|Γ1(f)|2 = e2
0 cos2 δ

1+ e2
0 cos2 δ

(11.3.11)

Using Eq. (11.3.10), we can easily verify that e0 is related to ρ1 by

e2
0 =

4ρ2
1

(1− ρ2
1)2

Then, Eq. (11.3.11) can be cast in the following equivalent form, which is recognized
as the propagation of the load reflection response Γ2 = ρ2 = ρ1 by a phase thickness δ
to interface-1:

|Γ1(f)|2 =
∣∣∣∣∣ρ1(1+ z−1)

1+ ρ2
1z−1

∣∣∣∣∣
2

(11.3.12)

where z = e2jδ. The reflection response has a zero at z = −1 or δ = π/2, which occurs
at f = f0. The corresponding wave impedance at interface-1 will be:

Z1 = Z1
ZL + jZ1 tanδ
Z0 + jZL tanδ

(11.3.13)

Using Eq. (11.3.9), we obtain the matching condition at f = f0 or δ = π/2:

Z1 = Z
2
1

ZL
= Z0 (11.3.14)
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Example 11.3.1: Single-section quarter wavelength transformer. Design a single-section trans-
former that will match a 200-ohm load to a 50-ohm line at 100 MHz. Determine the band-
width over which the SWR on the line remains less than 1.5.

Solution: The quarter-wavelength section has impedance Z1 =
√
ZLZ0 =

√
200 · 50 = 100 ohm.

The reflection response |Γ1(f)| and the SWR S(f)= (1+|Γ1(f)|
)
/
(
1−|Γ1(f)|

)
are plotted

in Fig. 11.3.1 versus frequency.
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Fig. 11.3.2 Reflection response and line SWR of single-section transformer.

The reflection coefficient of the unmatched line and the maximum tolerable reflection
response over the desired bandwidth are:

ΓL = ZL − Z0

ZL + Z0)
= 200− 50

200+ 50
= 0.6 , |Γ1|max = Smax − 1

Smax + 1
= 1.5− 1

1.5+ 1
= 0.2

It follows from Eq. (11.3.6) that the attenuation in dB over the desired band will be:

A = 20 log10

( |ΓL|
|Γ1|max

)
= 20 log10

(
0.6
0.2

)
= 9.54 dB

Because the number of sections and the attenuation are fixed, we may use the MATLAB
function chebtr3. The following code segment calculates the various design parameters:

Z0 = 50; ZL = 200;
GL = z2g(ZL,Z0); Smax = 1.5;

f0 = 100; f = linspace(0,2*f0,401); plot over [0,200] MHz

A = 20*log10(GL*(Smax+1)/(Smax-1)); Eq. (11.3.7)

[Y,a,b,DF] = chebtr3(1/Z0, 1/ZL, 1, A); note,M = 1

Z = 1./Y; Df = f0*DF; L = 1/4; note, Z = [Z0, Z1, ZL]

G1 = abs(multiline(Z(1:2), L, ZL, f/f0)); reflection response |Γ1(f)|

S = swr(G1); calculate SWR versus frequency

plot(f,G1); figure; plot(f,S);
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The reflection response |Γ1(f)| is computed by multiline with frequencies normalized
to the desired operating frequency of f0 = 100 MHz. The impedance inputs to multiline

were [Z0, Z1] and ZL and the electrical length of the segment was L = 1/4. The resulting
bandwidth is ∆f = 35.1 MHz. The reflection polynomials are:

b = [b0, b1]= [ρ1, ρ1] , a = [a0, a1]= [1, ρ2
1] , ρ1 = Z1 − Z0

Z1 + Z0
= 1

3

An alternative way to compute the reflection response is by Eq. (11.3.12), which can be
implemented with MATLAB’s freqz function, that is,

delta = pi * f/f0/2;
G1 = abs(freqz(b,a,2*delta));

where 2δ = πf/f0 is the digital frequency, such that z = e2jδ. ��

Example 11.3.2: Three- and four-section quarter-wavelength Chebyshev transformers. Design
a Chebyshev transformer that will match a 200-ohm load to a 50-ohm line. The line SWR
is required to remain less than 1.25 over the frequency band [50,150] MHz.

Repeat the design if the SWR is required to remain less than 1.1 over the same bandwidth.

Solution: Here, we let the design specifications determine the number of sections and their
characteristic impedances. In both cases, the unmatched reflection coefficient is the same
as in the previous example, ΓL = 0.6. Using Smax = 1.25, the required attenuation in dB is
for the first case:

A = 20 log10

(
|ΓL| Smax + 1

Smax − 1

)
= 20 log10

(
0.6

1.25+ 1

1.25− 1

)
= 14.65 dB

The reflection coefficient corresponding to Smax is |Γ1|max = (1.25−1)/(1.25+1)= 1/9 =
0.1111. In the second case, we use Smax = 1.1 to find A = 22.0074 dB and |Γ1|max =
(1.1− 1)/(1.1+ 1)= 1/21 = 0.0476.

In both cases, the operating frequency is at the middle of the given bandwidth, that is,
f0 = 100 MHz. The normalized bandwidth is ∆F = ∆f/f0 = (150 − 50)/100 = 1. With
these values ofA,∆F, the function chebtr calculates the required number of sections and
their impedances. The typical code is as follows:

Z0 = 50; ZL = 200;
GL = z2g(ZL,Z0); Smax = 1.25;

f1 = 50; f2 = 150; given bandedge frequencies

Df = f2-f1; f0 = (f2+f1)/2; DF = Df/f0; operating frequency and bandwidth

A = 20*log10(GL*(Smax+1)/(Smax-1)); attenuation of reflectionless band

[Y,a,b] = chebtr(1/Z0, 1/ZL, A, DF); Chebyshev transformer design

Z = 1./Y; rho = n2r(Y); impedances and reflection coefficients

For the first case, the resulting number of sections isM = 3, and the corresponding output
vector of impedancesZ, reflection coefficients at the interfaces, and reflection polynomials
a,b are:
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Z = [Z0, Z1, Z2, Z3, ZL]= [50, 66.4185, 100, 150.5604, 200]

ρρρ = [ρ1, ρ2, ρ3, ρ4]= [0.1410, 0.2018, 0.2018, 0.1410]

b = [b0, b1, b2, b3]= [0.1410, 0.2115, 0.2115, 0.1410]

a = [a0, a1, a2, a3]= [1, 0.0976, 0.0577, 0.0199]

In the second case, we findM = 4 sections with design parameters:

Z = [Z0, Z1, Z2, Z3, Z4, ZL]= [50, 59.1294, 81.7978, 122.2527, 169.1206, 200]

ρρρ = [ρ1, ρ2, ρ3, ρ4, ρ5]= [0.0837, 0.1609, 0.1983, 0.1609, 0.0837]

b = [b0, b1, b2, b3, b4]= [0.0837, 0.1673, 0.2091, 0.1673, 0.0837]

a = [a0, a1, a2, a3, a4]= [1, 0.0907, 0.0601, 0.0274, 0.0070]

The reflection responses and SWRs are plotted versus frequency in Fig. 11.3.3. The upper
two graphs corresponds to the case, Smax = 1.25, and the bottom two graphs, to the case
Smax = 1.1.
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Fig. 11.3.3 Three and four section transformers.
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The reflection responses |Γ1(f)| can be computed either with the help of the function
multiline, or as the ratio of the reflection polynomials:

Γ1(z)= b0 + b1z−1 + · · · + bMz−M
a0 + a1z−1 + · · · + aMz−M , z = e2jδ, δ = π

2

f
f0

The typical MATLAB code for producing these graphs uses the outputs of chebtr:

f = linspace(0,2*f0,401); plot over [0,200] MHz

M = length(Z)-2; number of sections

L = ones(1,M)/4; quarter-wave lengths

G1 = abs(multiline(Z(1:M+1), L, ZL, f/f0)); ZL is a separate input

G1 = abs(freqz(b, a, pi*f/f0)); alternative way of computing G1

S = swr(G1); SWR on the line

plot(f,G1); figure; plot(f,S);

In both cases, the section impedances satisfy the symmetry properties (11.3.8) and the
reflection coefficients ρρρ are symmetric about their middle, as discussed in Sec. 5.8.

We note that the reflection coefficients ρi at the interfaces agree fairly closely with the
reflection polynomial b—equating the two is equivalent to the so-called small-reflection
approximation that is usually made in designing quarter-wavelength transformers [362].
The above values are exact and do not depend an any approximation. ��

11.4 Quarter-Wavelength Transformer With Series Section

One limitation of the Chebyshev quarter-wavelength transformer is that it requires the
load to be real-valued. The method can be modified to handle complex loads, but gen-
erally the wide bandwidth property is lost. The modification is to insert the quarter-
wavelength transformer not at the load, but at a distance from the load corresponding
to a voltage minimum or maximum.

For example, Fig. 11.4.1 shows the case of a single quarter-wavelength section in-
serted at a distance Lmin from the load. At that point, the wave impedance seen by the
quarter-wave transformer will be real-valued and given by Zmin = Z0/SL, where SL is the
SWR of the unmatched load. Alternatively, one can choose a point of voltage maximum
Lmax at which the wave impedance will be Zmax = Z0SL.

Fig. 11.4.1 Quarter-wavelength transformer for matching a complex load.
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As we saw in Sec. 9.13, the electrical lengths Lmin or Lmax are related to the phase
angle θL of the load reflection coefficient ΓL by Eqs. (9.13.2) and (9.13.3). The MAT-
LAB function lmin can be called to calculate these distances and corresponding wave
impedances.

The calculation of the segment length, Lmin or Lmax, depends on the desired match-
ing frequency f0. Because a complex impedance can vary rapidly with frequency, the
segment will have the wrong length at other frequencies.

Even if the segment is followed by a multisection transformer, the presence of the
segment will tend to restrict the overall operating bandwidth to essentially that of a
single quarter-wavelength section. In the case of a single section, its impedance can be
calculated simply as:

Z1 =
√
Z0Zmin = 1√

SL
Z0 and Z1 =

√
Z0Zmax =

√
SL Z0 (11.4.1)

Example 11.4.1: Quarter-wavelength matching of a complex load impedance. Design a quarter-
wavelength transformer of length M = 1,3,5 that will match the complex impedance
ZL = 200+ j100 ohm to a 50-ohm line at f0 = 100 MHz. Perform the design assuming the
maximum reflection coefficient level of |Γ1|max = 0.1.

Assuming that the inductive part ofZL arises from an inductance, replace the complex load
by ZL = 200+ j100f/f0 at other frequencies. Plot the corresponding reflection response
|Γ1(f)| versus frequency.

Solution: At f0, the load is ZL = 200+ j100 and its reflection coefficient and SWR are found to
be |ΓL| = 0.6695 and SL = 5.0521. It follows that the line segments corresponding to a
voltage minimum and maximum will have parameters:

Lmin = 0.2665, Zmin = 1

SL
Z0 = 9.897, Lmax = 0.0165, Zmax = SLZ0 = 252.603

For either of these cases, the effective load reflection coefficient seen by the transformer
will be |Γ| = (SL−1)/(SL+1)= 0.6695. It follows that the design attenuation specification
for the transformer will be:

A = 20 log10

( |Γ|
|Γ1|max

)
= 20 log10

(
0.6695

0.1

)
= 16.5155 dB

With the given number of sections M and this value of the attenuation A, the following
MATLAB code will design the transformer and calculate the reflection response of the
overall structure:

Z0 = 50; ZL0 = 200 + 100j; load impedance at f0

[Lmin, Zmin] = lmin(ZL0,Z0,’min’); calculate Lmin

Gmin = abs(z2g(Zmin,Z0)); G1max = 0.1; design based on Zmin

A = 20*log10(Gmin/G1max);

M = 3; three-section transformer

Z = 1./chebtr3(1/Z0, 1/Zmin, M, A);
Ztot = [Z(1:M+1), Z0]; concatenate all sections

Ltot = [ones(1,M)/4, Lmin]; electrical lengths of all sections
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f0 = 100; f = linspace(0,2*f0, 801);
ZL = 200 + j*100*f/f0; assume inductive load

G1 = abs(multiline(Ztot, Ltot, ZL, f/f0)); overall reflection response

where the designed impedances and quarter-wavelength segments are concatenated with
the last segment of impedance Z0 and length Lmin or Lmax. The corresponding frequency
reflection responses are shown in Fig. 11.4.2.
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Fig. 11.4.2 Matching a complex impedance.

The calculated vector outputs of the transformer impedances are in the Lmin case:

Z = [50, 50/S1/2
L , 50/SL]= [50, 22.2452, 9.897]

Z = [50, 36.5577, 22.2452, 13.5361, 9.897]

Z = [50, 40.5325, 31.0371, 22.2452, 15.9437, 12.2087, 9.897]

and in the Lmax case:

Z = [50, 50S1/2
L , 50SL]= [50, 112.3840, 252.603]

Z = [50, 68.3850, 112.3840, 184.6919, 252.603]

Z = [50, 61.6789, 80.5486, 112.3840, 156.8015, 204.7727, 252.603]

We note that there is essentially no difference in bandwidth over the desired design level
of |Γ1|max = 0.1 in the Lmin case, and very little difference in the Lmax case. ��

The MATLAB function qwt1 implements this matching method. Its inputs are the
complex load and line impedances ZL, Z0 and its outputs are the quarter-wavelength
section impedance Z1 and the electrical length Lm of the Z0-section. It has usage:

[Z1,Lm] = qwt1(ZL,Z0,type); % λ/4-transformer with series section

where type is one of the strings ’min’ or ’max’, depending on whether the first section
gives a voltage minimum or maximum.
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11.5 Quarter-Wavelength Transformer With Shunt Stub

Two other possible methods of matching a complex load are to use a shorted or opened
stub connected in parallel with the load and adjusting its length or its line impedance
so that its susceptance cancels the load susceptance, resulting in a real load that can
then be matched by the quarter-wave section.

In the first method, the stub length is chosen to be either λ/8 or 3λ/8 and its
impedance is determined in order to provide the required cancellation of susceptance.

In the second method, the stub’s characteristic impedance is chosen to have a conve-
nient value and its length is determined in order to provide the susceptance cancellation.

These methods are shown in Fig. 11.5.1. In practice, they are mostly used with
microstrip lines that have easily adjustable impedances. The methods are similar to the
stub matching methods discussed in Sec. 11.7 in which the stub is not connected at the
load but rather after the series segment.

Fig. 11.5.1 Matching with a quarter-wavelength section and a shunt stub.

Let YL = 1/ZL = GL+ jBL be the load admittance. The admittance of a shorted stub
of characteristic admittance Y2 = 1/Z2 and length d is Ystub = −jY2 cotβd and that of
an opened stub, Ystub = jY2 tanβd.

The total admittance at point a in Fig. 11.5.1 is required to be real-valued, resulting
in the susceptance cancellation condition:

Ya = YL +Ystub = GL + j(BL −Y2 cotβd)= GL ⇒ Y2 cotβd = BL (11.5.1)

For an opened stub the condition becomes Y2 tanβd = −BL. In the first method,
the stub length is d = λ/8 or 3λ/8 with phase thicknesses βd = π/4 or 3π/4. The
corresponding values of the cotangents and tangents are cotβd = tanβd = 1 or
cotβd = tanβd = −1.

Then, the susceptance cancellation condition becomes Y2 = BL for a shorted λ/8-
stub or an opened 3λ/8-stub, and Y2 = −BL for a shorted 3λ/8-stub or an opened
λ/8-stub. The case Y2 = BL must be chosen when BL > 0 and Y2 = −BL, when BL < 0.

In the second method,Z2 is chosen and the lengthd is determined from the condition
(11.5.1), cotβd = BL/Y2 = Z2BL for a shorted stub, and tanβd = −Z2BL for an opened
one. The resulting d must be reduced modulo λ/2 to a positive value.



360 Electromagnetic Waves & Antennas – S. J. Orfanidis

With the cancellation of the load susceptance, the impedance looking to the right
of point a will be real-valued, Za = 1/Ya = 1/GL. Therefore, the quarter-wavelength
section will have impedance:

Z1 =
√
Z0Za =

√
Z0

GL
(11.5.2)

The MATLAB functions qwt2 and qwt3 implement these matching methods. Their
usage is as follows:

[Z1,Z2] = qwt2(ZL,Z0); % λ/4-transformer with λ/8 shunt stub

[Z1,d] = qwt3(ZL,Z0,Z2,type) % λ/4-transformer with shunt stub of given impedance

where type takes on the string values ’s’ or ’o’ for shorted or opened stubs.

Example 11.5.1: Design quarter-wavelength matching circuits to match the load impedance
ZL = 15 + 20j Ω to a 50-ohm generator at 5 GHz using series sections and shunt stubs.
Use microstrip circuits with a Duroid substrate (εr = 2.2) of height h = 1 mm. Determine
the lengths and widths of all required microstrip sections, choosing always the shortest
possible lengths.

Solution: For the quarter-wavelength transformer with a series section, it turns out that the
shortest length corresponds to a voltage maximum. The impedance Z1 and section length
Lmax are computed with the MATLAB function qwt1:

[Z1, Lmax]= qwt1(ZL,Z0,’max’) ⇒ Z1 = 98.8809 Ω, Lmax = 0.1849

The widths and lengths of the microstrip sections are designed with the help of the func-
tions mstripr and mstripa. For the quarter-wavelength section Z1, the corresponding
width-to-height ratio u1 = w1/h is calculated from mstripr and then used in mstripa to
get the effective permittivity, from which the wavelength and length of the segment can
be calculated:

u1 = mstripr(εr, Z1)= 0.9164, w1 = u1h = 0.9164 mm

εeff = mstripa(εr, u1)= 1.7659, λ1 = λ0√
εeff

= 4.5151 cm, l1 = λ1

4
= 1.1288 cm

where the free-space wavelength is λ0 = 6 cm. Similarly, we find for the series segment
with impedance Z2 = Z0 and length L2 = Lmax:

u2 = mstripr(εr, Z2)= 3.0829, w2 = u2h = 3.0829 mm

εeff = mstripa(εr, u2)= 1.8813, λ2 = λ0√
εeff

= 4.3745 cm, l2 = L2λ2 = 0.8090 cm

For the case of the λ/8 shunt stub, we find from qwt2:

[Z1, Z2]= qwt2(ZL,Z0)= [45.6435,−31.2500] Ω

where the negative Z2 means that we should use either a shorted 3λ/8 stub or an opened
λ/8 one. Choosing the latter and setting Z2 = 31.25 Ω, we can go on to calculate the
microstrip widths and lengths:
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u1 = mstripr(εr, Z1)= 3.5241, w1 = u1h = 3.5241 mm

εeff = mstripa(εr, u1)= 1.8965, λ1 = λ0√
εeff

= 4.3569 cm, l1 = λ1

4
= 1.0892 cm

u2 = mstripr(εr, Z2)= 5.9067, w2 = u2h = 5.9067 mm

εeff = mstripa(εr, u2)= 1.9567, λ2 = λ0√
εeff

= 4.2894 cm, l2 = λ2

8
= 0.5362 cm

For the third matching method, we use a shunt stub of impedance Z2 = 30 Ω. It turns out
that the short-circuited version has the shorter length. We find with the help of qwt3:

[Z1, d]= qwt3(ZL,Z0, Z2,’s’) ⇒ Z1 = 45.6435 Ω, d = 0.3718

The microstrip width and length of the quarter-wavelength section Z1 are the same as in
the previous case, because the two cases differ only in the way the load susceptance is
canceled. The microstrip parameters of the shunt stub are:

u2 = mstripr(εr, Z2)= 6.2258, w2 = u2h = 6.2258 mm

εeff = mstripa(εr, u2)= 1.9628, λ2 = λ0√
εeff

= 4.2826 cm, l2 = dλ2 = 1.5921 cm

Had we used a 50 Ω shunt segment, its width and length would be w2 = 3.0829 mm and
l2 = 1.7983 cm. Fig. 11.5.2 depicts the microstrip matching circuits. ��

Fig. 11.5.2 Microstrip matching circuits.

11.6 Two-Section Series Impedance Transformer

One disadvantage of the quarter-wavelength transformer is that the required impedan-
ces of the line segments are not always easily realized. In certain applications, such
as microwave integrated circuits, the segments are realized by microstrip lines whose
impedances can be adjusted easily by changing the strip widths. In other applications,
however, such as matching antennas to transmitters, we typically use standard 50- and
75-ohm coaxial cables and it is not possible to re-adjust their impedances.

The two-section series impedance transformer, shown in Fig. 11.6.1, addresses this
problem [503,504]. It employs two line segments of known impedances Z1 and Z2 that
have convenient values and adjusts their (electrical) lengths L1 and L2 to match a com-
plex load ZL to a main line of impedance Z0. Fig. 11.6.1 depicts this kind of transformer.
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Fig. 11.6.1 Two-section series impedance transformer.

The design method is identical to that of designing two-layer antireflection coatings
discussed in Sec. 5.2. Here, we modify that method slightly in order to handle complex
load impedances. We assume that Z0, Z1, and Z2 are real and the load complex, ZL =
RL + jXL.

Defining the phase thicknesses of two segments by δ1 = 2πn1l1/λ0 = 2πL1 and
δ2 = 2πn2l2/λ0 = 2πL2, the reflection responses Γ1 and Γ2 at interfaces 1 and 2 are:

Γ1 = ρ1 + Γ2e−2jδ1

1+ ρ1Γ2e−2jδ1
, Γ2 = ρ2 + ρ3e−2jδ2

1+ ρ2ρ3e−2jδ2

where the elementary reflection coefficients are:

ρ1 = Z1 − Z0

Z1 + Z0
, ρ2 = Z2 − Z1

Z2 + Z1
, ρ3 = ZL − Z2

ZL + Z2

The coefficients ρ1, ρ2 are real, but ρ3 is complex, and we may represent it in polar
form ρ3 = |ρ3|ejθ3 . The reflectionless matching condition is Γ1 = 0 (at the operating
free-space wavelength λ0). This requires that ρ1 + Γ2e−2jδ1 = 0, which implies:

e2jδ1 = −Γ2

ρ1
(11.6.1)

Because the left-hand side has unit magnitude, we must have the condition |Γ2| =
|ρ1|, or, |Γ2|2 = ρ2

1, which is written as:

∣∣∣∣∣ ρ2 + |ρ3|ejθ3e−2jδ2

1+ ρ2|ρ3|ejθ3e−2jδ2

∣∣∣∣∣
2

= ρ2
2 + |ρ3|2 + 2ρ2|ρ3| cos(2δ2 − θ3)

1+ ρ2
2|ρ3|2 + 2ρ2|ρ3| cos(2δ2 − θ3)

= ρ2
1

Using the identity cos(2δ2 − θ3)= 2 cos2(δ2 − θ3/2)−1, we find:

cos2(δ2 − θ3

2

) = ρ2
1(1− ρ2|ρ3|)2−(ρ2 − |ρ3|)2

4ρ2|ρ3|(1− ρ2
1)

sin2(δ2 − θ3

2

) = (ρ2 + |ρ3|)2−ρ2
1(1+ ρ2|ρ3|)2

4ρ2|ρ3|(1− ρ2
1)

(11.6.2)

Not every combination of ρ1, ρ2, ρ3 will result into a solution for δ2 because the
left-hand sides must be positive and less than unity. If a solution for δ2 exists, then δ1
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is determined from Eq. (11.6.1). Actually, there are two solutions for δ2 corresponding
to the ± signs of the square root of Eq. (11.6.2), that is, we have:

δ2 = 1

2
θ3 + acos


±

(
ρ2

1(1− ρ2|ρ3|)2−(ρ2 − |ρ3|)2

4ρ2|ρ3|(1− ρ2
1)

)1/2

 (11.6.3)

If the resulting value of δ2 is negative, it may be shifted by π or 2π to make it
positive, and then solve for the electrical length L2 = δ2/2π. An alternative way of
writing Eqs. (11.6.2) is in terms of the segment impedances (see also Problem 5.3):

cos2(δ2 − θ3

2

) = (Z2
2 − Z3Z0)(Z3Z2

1 − Z0Z2
2)

Z0(Z2
2 − Z2

3)(Z
2
1 − Z2

2)

sin2(δ2 − θ3

2

) = Z2
2(Z0 − Z3)(Z2

1 − Z0Z3)
Z0(Z2

2 − Z2
3)(Z

2
1 − Z2

2)

(11.6.4)

where Z3 is an equivalent “resistive” termination defined in terms of the load impedance
through the relationship:

Z3 − Z2

Z3 + Z2
= |ρ3| =

∣∣∣∣ZL − Z2

ZL + Z2

∣∣∣∣ (11.6.5)

Clearly, if ZL is real and greater than Z2, then Z3 = ZL, whereas if it is less that
Z2, then, Z3 = Z2

2/ZL. Eq. (11.6.4) shows more clearly the conditions for existence
of solutions. In the special case when section-2 is a section of the main line, so that
Z2 = Z0, then (11.6.4) simplifies to:

cos2(δ2 − θ3

2

) = Z3Z2
1 − Z3

0

(Z3 + Z0)(Z2
1 − Z2

0)

sin2(δ2 − θ3

2

) = Z0(Z2
1 − Z0Z3)

(Z3 + Z0)(Z2
1 − Z2

0)

(11.6.6)

It is easily verified from these expressions that the condition for the existence of
solutions is that the equivalent load impedance Z3 lie within the intervals:

Z3
0

Z2
1
≤ Z3 ≤ Z

2
1

Z0
, if Z1 > Z0

Z2
1

Z0
≤ Z3 ≤ Z

3
0

Z2
1
, if Z1 < Z0

(11.6.7)

They may be combined into the single condition:

Z0

S2
≤ Z3 ≤ Z0S2 , S = max(Z1, Z0)

min(Z1, Z0)
= swr(Z1, Z0) (11.6.8)

Example 11.6.1: Matching range with 50- and 75-ohm lines. If Z0 = 50 and Z1 = 75 ohm, then
the following loads can be matched by this method:

503

752
≤ Z3 ≤ 752

50
⇒ 22.22 ≤ Z3 ≤ 112.50 Ω
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And, if Z0 = 75 and Z1 = 50, the following loads can be matched:

502

75
≤ Z3 ≤ 753

502
⇒ 33.33 ≤ Z3 ≤ 168.75 Ω

In general, the farther Z1 is from Z0, the wider the range of loads that can be matched.
For example, with Z0 = 75 and Z1 = 300 ohm, all loads in the range from 4.5 to 1200 ohm
can be matched. ��

The MATLAB function twosect implements the above design procedure. Its inputs
are the impedancesZ0, Z1, Z2, and the complexZL, and its outputs are the two solutions
for L1 and L2, if they exist. Its usage is as follows, where L12 is a 2×2 matrix whose
rows are the two possible sets of values of L1, L2:

L12 = twosect(Z0,Z1,Z2,ZL); % two-section series impedance transformer

The essential code in this function is as follows:

r1 = (Z1-Z0)/(Z1+Z0);
r2 = (Z2-Z1)/(Z2+Z1);
r3 = abs((ZL-Z2)/(ZL+Z2));
th3 = angle((ZL-Z2)/(ZL+Z2));

s = ((r2+r3)^2 - r1^2*(1+r2*r3)^2) / (4*r2*r3*(1-r1^2));
if (s<0)|(s>1), fprintf(’no solution exists’); return; end

de2 = th3/2 + asin(sqrt(s)) * [1;-1]; % construct two solutions

G2 = (r2 + r3*exp(j*th3-2*j*de2)) ./ (1 + r2*r3*exp(j*th3-2*j*de2));

de1 = angle(-G2/r1)/2;

L1 = de1/2/pi; L2 = de2/2/pi;

L12 = mod([L1,L2], 0.5); % reduce modulo λ/2

Example 11.6.2: Matching an antenna with coaxial cables. A 29-MHz amateur radio antenna
with input impedance of 38 ohm is to be fed by a 50-ohm RG-58/U cable. Design a two-
section series impedance transformer consisting of a length of RG-59/U 75-ohm cable
inserted into the main line at an appropriate distance from the antenna [504]. The velocity
factor of both cables is 0.79.

Solution: Here, we have Z0 = 50, Z1 = 75, Z2 = Z0, and ZL = 38 ohm. The call to the function
twosect results in the MATLAB output for the electrical lengths of the segments:

L12 =
[

0.0536 0.3462
0.4464 0.1538

]
⇒ L1 = 0.0536, L2 = 0.3462

L1 = 0.4464, L2 = 0.1538

Using the given velocity factor, the operating wavelength is λ = 0.79λ0 = 0.79c0/f0 =
8.1724 m, where f0 = 29 MHz. Therefore, the actual physical lengths for the segments are,
for the first possible solution:

l1 = 0.0536λ = 0.4379 m = 1.4367 ft , l2 = 0.3462λ = 2.8290 m = 9.2813 ft

and for the second solution:
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l1 = 0.4464λ = 3.6483 m = 11.9695 ft , l2 = 0.1538λ = 1.2573 m = 4.1248 ft

Fig. 11.6.2 depicts the corresponding reflection responses at interface-1, |Γ1(f)|, as a func-
tion of frequency. The standing wave ratio on the main line is also shown, that is, the
quantity S1(f)=

(
1+ |Γ1(f)|

)
/
(
1− |Γ1(f)|

)
.
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Fig. 11.6.2 Reflection response of two-section series transformer.

The reflection response was computed with the help of multiline. The typical MATLAB
code for this example was:

Z0 = 50; Z1 = 75; ZL = 38;
c0 = 3e8; f0 = 29e6; vf = 0.79;
la0 = c0/f0; la = la0*vf;

L12 = twosect(Z0,Z1,Z0,ZL);

f = linspace(0,2,401); % in units of f0

G1 = abs(multiline([Z0,Z1,Z0],L12(1,:),ZL,f)); % reflection response 1

G2 = abs(multiline([Z0,Z1,Z0],L12(2,:),ZL,f)); % reflection response 2

S1=(1+G1)./(1-G1); S2=(1+G2)./(1-G2); % SWRs

We note that the two solutions have unequal bandwidths. ��

Example 11.6.3: Matching a complex load. Design a 75-ohm series section to be inserted into
a 300-ohm line that feeds the load 600+ 900j ohm [504].

Solution: The MATLAB call

L12 = twosect(300, 75, 300, 600+900j);

produces the solutions: L1 = [0.3983, 0.1017] and L2 = [0.2420, 0.3318]. ��
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One-section series impedance transformer

We mention briefly also the case of the one-section series impedance transformer, shown
in Fig. 11.6.3. This is one of the earliest impedance transformers [498–502]. It has
limited use in that not all complex loads can be matched, although its applicability can
be extended somewhat [502].

Fig. 11.6.3 One-section series impedance transformer.

Both the section impedance Z1 and length L1 are treated as unknowns to be fixed
by requiring the matching condition Γ1 = 0 at the operating frequency. It is left as an
exercise (see Problem 11.7) to show that the solution is given by:

Z1 =
√
Z0RL − Z0X2

L
Z0 −RL , L1 = 1

2π
atan

[
Z1(Z0 −RL)
Z0XL

]
(11.6.9)

provided that either of the following conditions is satisfied:

Z0 < RL or Z0 > RL + X
2
L
RL

(11.6.10)

In particular, there is always a solution if ZL is real. The MATLAB function onesect
implements this method. It has usage:

[Z1,L1] = onesect(ZL,Z0); % one-section series impedance transformer

where L1 is the normalized length L1 = l1/λ1, with l1 and λ1 the physical length and
wavelength of the Z1 section. The routine outputs the smallest positive L1.

11.7 Single Stub Matching

Stub tuners are widely used to match any complex load† to a main line. They consist of
shorted or opened segments of the line, connected in parallel or in series with the line
at a appropriate distances from the load.

In coaxial cable or two-wire line applications, the stubs are obtained by cutting ap-
propriate lengths of the main line. Shorted stubs are usually preferred because opened
stubs may radiate from their opened ends. However, in microwave integrated circuits

†The resistive part of the load must be non-zero. Purely reactive loads cannot be matched to a real line
impedance by this method nor by any of the other methods discussed in this chapter. This so because the
transformation of a reactive load through the matching circuits remains reactive.
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employing microstrip lines, radiation is not as a major concern because of their smaller
size, and either opened or shorted stubs may be used.

The single stub tuner is perhaps the most widely used matching circuit and can
match any load. However, it is sometimes inconvenient to connect to the main line if
different loads are to be matched. In such cases, double stubs may be used, but they
cannot match all loads. Triple stubs can match any load. A single stub tuner is shown
in Figs. 11.7.1 and 11.7.2, connected in parallel and in series.

Fig. 11.7.1 Parallel connection of single stub tuner.

Fig. 11.7.2 Series connection of single stub tuner.

In the parallel case, the admittance Ya = 1/Za at the stub location a is the sum of
the admittances of the length-d stub and the wave admittance at distance l from the
load, that is,

Ya = Yl +Ystub = Y0
1− Γl
1+ Γl +Ystub

where Γl = ΓLe−2jβl. The admittance of a short-circuited stub is Ystub = −jY0 cotβd,
and of an open-circuited one, Ystub = jY0 tanβd. The matching condition is that Ya =
Y0. Assuming a short-circuited stub, we have:

Y0
1− Γl
1+ Γl − jY0 cotβd = Y0 ⇒ 1− Γl

1+ Γl − j cotβd = 1

which can be rearranged into the form:
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2j tanβd = 1+ 1

Γl
(11.7.1)

Inserting Γl = ΓLe−2jβl = |ΓL|ejθL−2jβl, where ΓL = |ΓL|ejθL is the polar form of the
load reflection coefficient, we may write (11.7.1) as:

2j tanβd = 1+ e
j(2βl−θL)

|ΓL| (11.7.2)

Equating real and imaginary parts, we obtain the equivalent conditions:

cos(2βl− θL)= −|ΓL| , tanβd = sin(2βl− θL)
2|ΓL| = −1

2
tan(2βl− θL) (11.7.3)

The first of (11.7.3) may be solved resulting in two solutions for l; then, the second
equation may be solved for the corresponding values of d:

βl = 1

2
θL ± 1

2
acos

(−|ΓL|) , βd = atan
(−1

2
tan(2βl− θL)

)
(11.7.4)

The resulting values of l, d must be made positive by reducing them modulo λ/2.
In the case of an open-circuited shunt stub, the first equation in (11.7.3) remains the
same, and in the second we must replace tanβd by − cotβd. In the series connection
of a shorted stub, the impedances are additive at point a, resulting in the condition:

Za = Zl + Zstub = Z0
1+ ΓL
1− Γl + jZ0 tanβd = Z0 ⇒ 1+ Γl

1− Γl − tanβd = 1

This may be solved in a similar fashion as Eq. (11.7.1). We summarize below the
solutions in the four cases of parallel or series connections with shorted or opened
stubs:

βl = 1

2

[
θL ± acos

(−|ΓL|)], βd = atan
(−1

2
tan(2βl− θL)

)
, parallel/shorted

βl = 1

2

[
θL ± acos

(−|ΓL|)], βd = acot
(1

2
tan(2βl− θL)

)
, parallel/opened

βl = 1

2

[
θL ± acos

(|ΓL|)], βd = acot
(1

2
tan(2βl− θL)

)
, series/shorted

βl = 1

2

[
θL ± acos

(|ΓL|)], βd = atan
(−1

2
tan(2βl− θL)

)
, series/opened

The MATLAB function stub1 implements these equations. Its input is the normal-
ized load impedance, zL = ZL/Z0, and the desired type of stub. Its outputs are the dual
solutions for the lengths d, l, arranged in the rows of a 2x2 matrix dl. Its usage is as
follows:

dl = stub1(zL,type); % single stub tuner

The parameter type takes on the string values ’ps’, ’po’, ’ss’, ’so’, for parallel/short,
parallel/open, series/short, series/open stubs.
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Example 11.7.1: The load impedance ZL = 10−5j ohm is to be matched to a 50-ohm line. The
normalized load is zL = ZL/Z0 = 0.2− 0.1j. The MATLAB calls, dl=stub1(zL,type), re-
sult into the following solutions for the cases of parallel/short, parallel/open, series/short,
series/open stubs:

[
0.0806 0.4499
0.4194 0.0831

]
,
[

0.3306 0.4499
0.1694 0.0831

]
,
[

0.1694 0.3331
0.3306 0.1999

]
,
[

0.4194 0.3331
0.0806 0.1999

]

Each row represents a possible solution for the electrical lengths d/λ and l/λ. We illustrate
below the solution details for the parallel/short case.

Given the load impedance zL = 0.2 − 0.1j, we calculate the reflection coefficient and put
it in polar form:

ΓL = zL − 1

zL + 1
= −0.6552− 0.1379j ⇒ |ΓL| = 0.6695 , θL = −2.9341 rad

Then, the solution of Eq. (11.7.4) is:

βl = 1

2

[
θL ± acos

(−|ΓL|)] = 1

2

[−2.9341± acos(−0.6695)
] = 1

2

[−2.9341± 2.3044)
]

which gives the two solutions:

βl = 2πl
λ
=
[
−0.3149 rad
−2.6192 rad

]
⇒ l = λ

2π

[
−0.3149
−2.6192

]
=
[
−0.0501λ
−0.4169λ

]

These may be brought into the interval [0, λ/2] by adding enough multiples of λ/2. The
built-in MATLAB function mod does just that. In this case, a single multiple of λ/2 suffices,
resulting in:

l =
[
−0.0501λ+ 0.5λ
−0.4169λ+ 0.5λ

]
=
[

0.4499λ
0.0831λ

]
⇒ βl =

[
2.8267 rad
0.5224 rad

]

With these values of βl, we calculate the stub length d:

βd = atan
(−1

2
tan(2βl− θL)

) =
[

0.5064 rad
−0.5064 rad

]
⇒ d =

[
0.0806λ
−0.0806λ

]

Shifting the second d by λ/2, we finally find:

d =
[

0.0806λ
−0.0806λ+ 0.5λ

]
=
[

0.0806λ
0.4194λ

]
, βd =

[
0.5064 rad
2.6351 rad

]

Next, we verify the matching condition. The load admittance is yL = 1/zL = 4 + 2j.
Propagating it to the left of the load by a distance l, we find for the two values of l and for
the corresponding values of d:

yl = yL + j tanβl
1+ jyL tanβl

=
[

1.0000+ 1.8028j
1.0000− 1.8028j

]
, ystub = −j cotβd =

[
−1.8028j

1.8028j

]

For both solutions, the susceptance of yl is canceled by the susceptance of the stub, re-
sulting in the matched total normalized admittance ya = yl + ystub = 1. ��
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Example 11.7.2: Match the antenna and feed line of Example 11.6.2 using a single shorted or
opened stub. Plot the corresponding matched reflection responses.

Solution: The normalized load impedance is zL = 38/50 = 0.76. The MATLAB function to
stub1 yields the following solutions for the lengths d, l, in the cases of parallel/short,
parallel/open, series/short, series/open stubs:

[
0.2072 0.3859
0.2928 0.1141

]
,
[

0.4572 0.3859
0.0428 0.1141

]
,
[

0.0428 0.3641
0.4572 0.1359

]
,
[

0.2928 0.3641
0.2072 0.1359

]
,

These numbers must be multiplied by λ0, the free-space wavelength corresponding to
the operating frequency of f0 = 29 MHz. The resulting reflection responses |Γa(f)| at
the connection point a of the stub, corresponding to all the pairs of d, l are shown in
Fig. 11.7.3. For example, in the parallel/short case, Γa is calculated by

Γa = 1− ya
1+ ya , ya = 1− ΓLe−2jβl

1+ ΓLe−2jβl − j cotβd , βl = 2π
f
f0
l
λ0
, βd = 2π

f
f0
d
λ0

We note that different solutions can have very different bandwidths. ��
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Fig. 11.7.3 Reflection response of single stub matching solutions.

11.8 Balanced Stubs

In microstrip realizations of single-stub tuners, balanced stubs are often used to reduce
the transitions between the series and shunt segments. Fig. 11.8.1 depicts two identical
balanced stubs connected at opposite sides of the main line.

Because of the parallel connection, the total admittance of the stubs will be dou-
ble that of each leg, that is, Ybal = 2Ystub. A single unbalanced stub of length d can
be converted into an equivalent balanced stub of length db by requiring that the two
configurations provide the same admittance. Depending on whether shorted or opened
stubs are used, we obtain the relationships between db and d:
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Fig. 11.8.1 Balanced stubs.

2 cotβdb = cotβd ⇒ db = λ
2π

acot(0.5 cotβd) (shorted)

2 tanβdb = tanβd ⇒ db = λ
2π

atan(0.5 tanβd) (opened)

(11.8.1)

The microstrip realization of such a balanced stub is shown in Fig. 11.8.2. The figure
also shows the use of balanced stubs for quarter-wavelength transformers with a shunt
stub as discussed in Sec. 11.5.

Fig. 11.8.2 Balanced microstrip single-stub and quarter-wavelength transformers.

If the shunt stub has length λ/8 or 3λ/8, then the impedance Z2 of each leg must
be double that of the single-stub case. On the other hand, if the impedance Z2 is fixed,
then the stub length db of each leg may be calculated by Eq. (11.8.1).

11.9 Double and Triple Stub Matching

Because the stub distance l from the load depends on the load impedance to be matched,
the single-stub tuner is inconvenient if several different load impedances are to be
matched, each requiring a different value for l.
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The double-stub tuner, shown in Fig. 11.9.1, provides an alternative matching method
in which two stubs are used, one at the load and another at a fixed distance l from the
load, where typically, l = λ/8. Only the stub lengths d1, d2 need to be adjusted to match
the load impedance.

Fig. 11.9.1 Double stub tuner.

The two stubs are connected in parallel to the main line and can be short- or open-
circuited. We discuss the matching conditions for the case of shorted stubs.

Let YL = 1/ZL = GL + jBL be the load admittance, and define its normalized ver-
sion yL = YL/Y0 = gL + jbL, where gL, bL are the normalized load conductance and
susceptance. At the connection points a,b, the total admittance is the sum of the wave
admittance of the line and the stub admittance:

ya = yl + ystub,1 = yb + j tanβl
1+ jyb tanβl

− j cotβd1

yb = yL + ystub,2 = gL + j(bL − cotβd2)

The matching condition is ya = 1, which gives rise to two equations that can be
solved for the unknown lengths d1, d2. It is left as an exercise (see Problem 11.8) to
show that the solutions are given by:

cotβd2 = bL − b , cotβd1 = 1− b tanβl− gL
gL tanβl

(11.9.1)

where

b = cotβl±
√
gL(gmax − gL) , gmax = 1+ cot2 βl = 1

sin2 βl
(11.9.2)

Evidently, the condition for the existence of a real-valued b is that the load conduc-
tance gL be less than gmax, that is, gL ≤ gmax. If this condition is not satisfied, the
load cannot be matched with any stub lengths d1, d2. Stub separations near λ/2, or
near zero, result in gmax = ∞, but are not recommended because they have very narrow
bandwidths [427].

Assuming l ≤ λ/4, the condition gL ≤ gmax can be turned around into a condition
for the maximum length l that will admit a matching solution for the given load:
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l ≤ lmax = λ
2π

asin
( 1√gL

)
(maximum stub separation) (11.9.3)

If the existence condition is satisfied, then Eq. (11.9.2) results in two solutions for b
and, hence for, d1, d2. The lengths d1, d2 must be reduced modulo λ/2 to bring them
within the minimum interval [0, λ/2].

If any of the stubs are open-circuited, the corresponding quantity cotβdi must be
replaced by − tanβdi = cot(βdi −π/2).

The MATLAB function stub2 implements the above design procedure. Its inputs are
the normalized load impedance zL = ZL/Z0, the stub separation l, and the stub types,
and its outputs are the two possible solutions for the d1, d2. Its usage is as follows:

d12 = stub2(zL,l,type); % double stub tuner

d12 = stub2(zL,l); % equivalent to type=’ss’

d12 = stub2(zL); % equivalent to l = 1/8 and type=’ss’

The parameter type takes on the strings values: ’ss’, ’so’, ’os’, ’oo’, for short/short,
short/open, open/short, open/open stubs. If the existence condition fails, the function
outputs the maximum separation lmax that will admit a solution.

A triple stub tuner, shown in Fig. 11.9.2, can match any load. The distances l1, l2
between the stubs are fixed and only the stub lengths d1, d2, d3 are adjustable.

The first two stubs (from the left) can be thought of as a double-stub tuner. The
purpose of the third stub at the load is to ensure that the wave impedance seen by the
double-stub tuner satisfies the existence condition gL ≤ gmax.

Fig. 11.9.2 Triple stub tuner.

The total admittance at the load point c, and its propagated version by distance l2
to point b are given by:

yl = yc + j tanβl2
1+ jyc tanβl2

, yc = yL + ystub,3 = gL + jbL − j cotβd3 = gL + jb (11.9.4)

where b = bL − cotβd3. The corresponding conductance is:

gl = Re(yl)= gL(1+ tan2 βl2)
(b tanβl2 − 1)2+g2

L tan2 βl2
(11.9.5)
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The first two stubs see the effective load yl. The double-stub problem will have a
solution provided gl ≤ gmax,1 = 1/ sin2 βl1. The lengthd3 of the third stub is adjusted to
ensure this condition. To parametrize the possible solutions, we introduce a “smallness”
parameter e < 1 such that gl = egmax,1. This gives the existence condition:

gl = gL(1+ tan2 βl2)
(b tanβl2 − 1)2+g2

L tan2 βl2
= egmax,1

which can be rewritten in the form:

(b− cotβl2)2= gL(gmax,2 − egmax,1gL)= g2
Lgmax,1(emax − e)

where we defined gmax,2 = 1 + cot2 βl2 = 1/ sin2 βl2 and emax = gmax,2/(gLgmax,1). If
emax < 1, we may replace e by the minimum of the chosen e and emax. But if emax > 1,
we just use the chosen e. In other words, we replace the above condition with:

(b− cotβl2)2= g2
Lgmax,1(emax − emin) , emin = min(e, emax) (11.9.6)

It corresponds to setting gl = emingmax,1. Solving Eq. (11.9.6) for cotβd3 gives the
two solutions:

cotβd3 = bL − b , b = cotβl2 ± gL
√
gmax,1(emax − emin) (11.9.7)

For each of the two values of d3, there will be a feasible solution to the double-stub
problem, which will generate two possible solutions for d1, d2. Thus, there will be a
total of four triples d1, d2, d3 that will satisfy the matching conditions. Each stub can
be shorted or opened, resulting into eight possible choices for the stub triples.

The MATLAB function stub3 implements the above design procedure. It generates
a 4×3 matrix of solutions and its usage is:

d123 = stub3(zL,l1,l2,type,e); % triple stub tuner

d123 = stub3(zL,l1,l2,type); % equivalent to e = 0.9

d123 = stub3(zL,l1,l2); % equivalent to e = 0.9, type=’sss’

d123 = stub3(zL); % equivalent to e = 0.9, type=’sss’, l1 = l2 = 1/8

where type takes on one of the eight possible string values, defining whether the first,
second, or third stubs are short- or open-circuited: ’sss’, ’sso’, ’sos’, ’soo’, ’oss’, ’oso’,
’oos’, ’ooo’.

11.10 L-Section Lumped Reactive Matching Networks

Impedance matching by stubs or series transmission line segments is appropriate at
higher frequencies, such as microwave frequencies. At lower RF frequencies, lumped-
parameter circuit elements may be used to construct a matching network. Here, we
discuss L-section, Π-section, and T-section matching networks.

The L-section matching network shown in Fig. 11.10.1 uses only reactive elements
(inductors or capacitors) to conjugately match any load impedance ZL to any generator
impedance ZG. The use of reactive elements minimizes power losses in the matching
network.
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Fig. 11.10.1 L-section reactive conjugate matching network.

L-section networks are used to match the input and output impedances of amplifier
circuits [530–538] and also to match transmitters to feed lines [45,46,505–512].

An arbitrary load impedance may be matched by a normal L-section, or if that is
not possible, by a reversed L-section. Sometimes both normal and reversed types are
possible. We derive below the conditions for the existence of a matching solution of a
particular type.

The inputs to the design procedure are the complex load and generator impedances
ZL = RL + jXL and ZG = RG + jXG. The outputs are the reactances X1, X2. For
either type, the matching network transforms the load impedance ZL into the complex
conjugate of the generator impedance, that is,

Zin = Z∗G (conjugate match) (11.10.1)

where Zin is the input impedance looking into the L-section:

Zin = Z1(Z2 + ZL)
Z1 + Z2 + ZL (normal)

Zin = Z2 + Z1ZL
Z1 + ZL (reversed)

(11.10.2)

with Z1 = jX1 and Z2 = jX2. Inserting Eqs. (11.10.2) into the condition (11.10.1) and
equating the real and imaginary parts of the two sides, we obtain a system of equations
for X1, X2 with solutions for the two types:

X1 = XG ±RGQRG
RL
− 1

X2 = −(XL ±RLQ)

Q =
√√√√RG
RL
− 1+ X2

G
RGRL

(normal) ,

X1 = XL ±RLQRL
RG
− 1

X2 = −(XG ±RGQ)

Q =
√√√RL
RG
− 1+ X2

L
RGRL

(reversed) (11.10.3)

If the load and generator impedances are both resistive, so that XL = 0 and XG = 0,
the above solutions take the particularly simple forms:
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X1 = ±RGQ
X2 = ∓RLQ

Q =
√
RG
RL
− 1

(normal) ,

X1 = ±RLQ
X2 = ∓RGQ

Q =
√
RL
RG
− 1

(reversed) (11.10.4)

We note that the reversed solution is obtained from the normal one by exchanging
ZL with ZG. Both solution types assume that RG �= RL. If RG = RL, then for either type,
we have the solution:

X1 = ∞, X2 = −(XL +XG) (11.10.5)

Thus, X1 is open-circuited and X2 is such that X2 + XL = −XG. The Q quantities
play the role of series impedance Q-factors. Indeed, the X2 equations in all cases imply
that Q is equal to the ratio of the total series impedance by the corresponding series
resistance, that is, (X2 +XL)/RL or (X2 +XG)/RG.

The conditions for real-valued solutions forX1, X2 are that theQ factors in (11.10.3)
and (11.10.4) be real-valued or that the quantities under their square roots be non-
negative. WhenRL �= RG, it is straightforward to verify that this happens in the following
four mutually exclusive cases:

existence conditions L-section types

RG > RL , |XL| ≥
√
RL(RG −RL) normal and reversed

RG > RL , |XL| <
√
RL(RG −RL) normal only

RG < RL , |XG| ≥
√
RG(RL −RG) normal and reversed

RG < RL , |XG| <
√
RG(RL −RG) reversed only

(11.10.6)

It is evident that a solution of one or the other type always exists. When RG > RL
a normal section always exists, and when RG < RL a reversed one exists. The MATLAB
function lmatch implements Eqs. (11.10.3). Its usage is as follows:

X12 = lmatch(ZG,ZL,type); % L-section matching

where type takes on the string values ’n’ or ’r’ for a normal or reversed L-section.
The two possible solutions for X1, X2 are returned in the rows of the 2×2 matrix X12.

Example 11.10.1: Design an L-section matching network for the conjugate match of the load
impedanceZL = 100+50j ohm to the generatorZG = 50+10j ohm at 500 MHz. Determine
the capacitance or inductance values for the matching network.

Solution: The given impedances satisfy the last of the four conditions of Eq. (11.10.6). Therefore,
only a reversed L-section will exist. Its two solutions are:

X12 = lmatch(50+ 10j,100+ 50j,’r’)=
[

172.4745 −71.2372
−72.4745 51.2372

]
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The first solution has a capacitiveX2 = −71.2372 and an inductiveX1 = 172.4745. Setting
X2 = 1/jωC and X1 = jωL, where ω = 2πf = 2π500 · 106 rad/sec, we determine the
corresponding values of C and L to be C = 4.47 pF and L = 54.90 nH.

The second solution has an inductive X2 = 51.2372 and a capacitive X1 = −72.4745.
Setting X2 = jωL and X1 = 1/jωC, we find in this case, L = 16.3 nH and C = 4.39 pF. Of
the two solutions, the one with the smaller values is generally preferred. ��

11.11 Pi-Section Lumped Reactive Matching Networks

Although the L-section network can match an arbitrary load to an arbitrary source,
its bandwidth and Q-factor are fixed uniquely by the values of the load and source
impedances through Eqs. (11.10.3).

TheΠ-section network, shown together with its T-section equivalent in Fig. 11.11.1,
has an extra degree of freedom that allows one to control the bandwidth of the match.
In particular, the bandwidth can be made as narrow as desired.

Fig. 11.11.1 Π- and T-section matching networks.

The Π, T networks (also called ∆, Y networks) can be transformed into each other
by the following standard impedance transformations, which are cyclic permutations of
each other:

Za = Z2Z3

U
, Zb = Z3Z1

U
, Zc = Z1Z2

U
, U = Z1 + Z2 + Z3

Z1 = V
Za
, Z2 = V

Zb
, Z3 = V

Zc
, V = ZaZb + ZbZc + ZcZa

(11.11.1)

Because Z1, Z2, Z3 are purely reactive, Z1 = jX1, Z2 = jX2, Z3 = jX3, so will be
Za,Zb,Zc, with Za = jXa, Zb = jXb, Zc = jXc. The MATLAB functions pi2t and t2pi
transform between the two parameter sets. The function pi2t takes in the array of three
values Z123 = [Z1, Z2, Z3] and outputs Zabc = [Za,Zb,Zc], and t2pi does the reverse.
Their usage is:
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Zabc = pi2t(Z123); % Π to T transformation

Z123 = t2pi(Zabc); % T to Π transformation

One of the advantages ofT networks is that often they result in more practical values
for the circuit elements; however, they tend to be more lossy [45,46].

Here we discuss only the design of the Π matching network. It can be transformed
into a T network if so desired. Fig. 11.11.2 shows the design procedure, in which the
Π network can be thought of as two L-sections arranged back to back, by splitting the
series reactance X2 into two parts, X2 = X4 +X5.

Fig. 11.11.2 Equivalent L-section networks.

An additional degree of freedom is introduced into the design by an intermediate
reference impedance, say Z = R + jX, such that looking into the right L-section the
input impedance is Z, and looking into the left L-section, it is Z∗.

Denoting the L-section impedances by Z1 = jX1, Z4 = jX4 and Z3 = jX3, Z5 = jX5,
we have the conditions:

Zleft = Z4 + Z1ZG
Z1 + ZG = Z

∗ , Zright = Z5 + Z3ZL
Z3 + ZL = Z (11.11.2)

As shown in Fig. 11.11.2, the right L-section and the load can be replaced by the
effective load impedance Zright = Z. Because Z1 and Z4 are purely reactive, their con-
jugates will be Z∗1 = −Z1 and Z∗4 = −Z4. It then follows that the first of Eqs. (11.11.2)
can be rewritten as the equivalent condition:

Zin = Z1(Z4 + Z)
Z1 + Z4 + Z = Z

∗
G (11.11.3)

This is precisely the desired conjugate matching condition that must be satisfied by
the network (as terminated by the effective load Z.)

Eq. (11.11.3) can be interpreted as the result of matching the source ZG to the load
Z with a normal L-section. An equivalent point of view is to interpreted the first of
Eqs. (11.11.2) as the result of matching the source Z to the load ZG using a reversed
L-section.
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Similarly, the second of Eqs. (11.11.2) is the result of matching the source Z∗ to the
load ZL (because the input impedance looking into the right section is then (Z∗)∗= Z.)
Thus, the reactances of the two L-sections can be obtained by the two successive calls
to lmatch:

X14 = [X1, X4]= lmatch(ZG,Z, ’n’)= lmatch(Z,ZG, ’r’)

X35 = [X3, X5]= lmatch(Z∗, ZL, ’r’)
(11.11.4)

In order for Eqs. (11.11.4) to always have a solution, the resistive part of Z must
satisfy the conditions (11.10.6). Thus, we must choose R < RG and R < RL, or equiva-
lently:

R < Rmin , Rmin = min(RG,RL) (11.11.5)

Otherwise, Z is arbitrary. For design purposes, the nominalQ factors of the left and
right sections can be taken to be the quantities:

QG =
√
RG
R
− 1 , QL =

√
RL
R
− 1 (11.11.6)

The maximum of the two is the one with the maximum value of RG or RL, that is,

Q =
√
Rmax

R
− 1 , Rmax = max(RG,RL) (11.11.7)

This Q-factor can be thought of as a parameter that controls the bandwidth. Given
a value of Q, the corresponding R is obtained by:

R = Rmax

Q2 + 1
(11.11.8)

For later reference, we may express QG,QL in terms of Q as follows:

QG =
√
RG
Rmax

(Q2 + 1)−1 , QL =
√
RL
Rmax

(Q2 + 1)−1 (11.11.9)

Clearly, one or the other of QL,QG is equal to Q. We note also that Q may not be
less than the value Qmin achievable by a single L-section match. This follows from the
equivalent conditions:

Q > Qmin � R < Rmin , Qmin =
√
Rmax

Rmin
− 1 (11.11.10)

The MATLAB function pmatch implements the design equations (11.11.4) and then
constructsX2 = X4+X5. Because there are two solutions forX4 and two forX5, we can
add them in four different ways, leading to four possible solutions for the reactances of
the Π network.

The inputs to pmatch are the impedances ZG,ZL and the reference impedance Z,
which must satisfy the condition (11.11.10). The output is a 4×3 matrix X123 whose
rows are the different solutions for X1, X2, X3:
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X123 = pmatch(ZG,ZL,Z); % Π matching network design

The analytical form of the solutions can be obtained easily by applying Eqs. (11.10.3)
to the two cases of Eq. (11.11.4). In particular, if the load and generator impedances are
real-valued, we obtain from (11.10.4) the following simple analytical expressions:

X1 = −εG RGQG , X2 = Rmax(εGQG + εLQL)
Q2 + 1

, X3 = −εL RLQL (11.11.11)

where εG, εL are ±1, QG,QL are given in terms of Q by Eq. (11.11.9), and either Q is
given or it can be computed from Eq. (11.11.7). The choice εG = εL = 1 is made often,
corresponding to capacitive X1, X3 and inductive X2 [45,510].

As emphasized by Wingfield [45,510], the definition ofQ as the maximum ofQL and
QG underestimates the total Q-factor of the network. A more appropriate definition is
the sum Qo = QL +QG.

An alternative set of design equations, whose input is Qo, is obtained as follows.
Given Qo, we solve for the reference resistance R by requiring:

Qo = QG +QL =
√
RG
R
− 1+

√
RL
R
− 1

This gives the solution for R, and hence for QG,QL:

R = (RG −RL)2

(RG +RL)Q2
o − 2Qo

√
RGRLQ2

o − (RG −RL)2

QG =
RGQo −

√
RGRLQ2

o − (RG −RL)2

RG −RL

QL =
RLQo −

√
RGRLQ2

o − (RG −RL)2

RL −RG

(11.11.12)

Then, construct the Π reactances from:

X1 = −εG RGQG , X2 = R(εGQG + εLQL) , X3 = −εL RLQL (11.11.13)

The only requirement is that Qo be greater than Qmin. Then, it can be verified that
Eqs. (11.11.12) will always result in positive values for R, QG, and QL. More simply, the
value of R may be used as an input to the function pmatch.

Example 11.11.1: We repeat Example 11.10.1 using a Π network. Because ZG = 50+ 10j and
ZL = 100+50j, we arbitrarily choose Z = 20+40j, which satisfies R < min(RG,RL). The
MATLAB function pmatch produces the solutions:

X123 = [X1, X2, X3]= pmatch(ZG,ZL,Z)=




48.8304 −71.1240 69.7822
−35.4970 71.1240 −44.7822

48.8304 20.5275 −44.7822
−35.4970 −20.5275 69.7822



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All values are in ohms and the positive ones are inductive while the negatives ones, capac-
itive. To see how these numbers arise, we consider the solutions of the two L-sections of
Fig. 11.11.2:

X14 = lmatch(ZG,Z, ’n’)=
[

48.8304 −65.2982
−35.4970 −14.7018

]

X35 = lmatch(Z∗, ZL, ’r’)=
[

69.7822 −5.8258
−44.7822 85.825

]

where X4 and X5 are the second columns. The four possible ways of adding the entries
of X4 and X5 give rise to the four values of X2. It is easily verified that each of the four
solutions satisfy Eqs. (11.11.2) and (11.11.3). ��

Example 11.11.2: It is desired to match a 200 ohm load to a 50 ohm source at 500 MHz. Design
L-section and Π-section matching networks and compare their bandwidths.

Solution: Because RG < RL and XG = 0, only a reversed L-section will exist. Its reactances are
computed from:

X12 = [X1, X2]= lmatch(50,200, ’r’)=
[

115.4701 −86.6025
−115.4701 86.6025

]

The corresponding minimum Q factor is Qmin =
√

200/50− 1 = 1.73. Next, we design a
Π section with aQ factor of 5. The required reference resistance R can be calculated from
Eq. (11.11.8):

R = 200

52 + 1
= 7.6923 ohm

The reactances of the Π matching section are then:

X123 = [X1, X2, X3]= pmatch(50,200,7.6923)=




21.3201 −56.5016 40
−21.3201 56.5016 −40

21.3201 20.4215 −40
−21.3201 −20.4215 40




The Π to T transformation gives the reactances of the T-network:

Xabc = [Xa,Xb,Xc]= pi2t(X123)=



−469.0416 176.9861 −250

469.0416 −176.9861 250
−469.0416 −489.6805 250

469.0416 489.6805 −250




If we increase, the Q to 15, the resulting reference resistance becomes R = 0.885 ohm,
resulting in the reactances:

X123 = [X1, X2, X3]= pmatch(50,200,0.885)=




6.7116 −19.8671 13.3333
−6.7116 19.8671 −13.3333

6.7116 6.6816 −13.3333
−6.7116 −6.6816 13.3333



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Fig. 11.11.3 Comparison of L-section and Π-section matching.

Fig. 11.11.3 shows the plot of the input reflection coefficient, that is, the quantity Γin =
(Zin − Z∗G)/(Zin + ZG) versus frequency.

If a reactance Xi is positive, it represents an inductance with a frequency dependence of
Zi = jXif/f0, where f0 = 500 MHz is the frequency of the match. If Xi is negative, it
represents a capacitance with a frequency dependence of Zi = jXif0/f .
The graphs display the two solutions of the L-match, but only the first two solutions of
the Π match. The narrowing of the bandwidth with increasing Q is evident. ��

The Π network achieves a narrower bandwidth over a single L-section network. In
order to achieve a wider bandwidth, one may use a double L-section network [530], as
shown in Fig. 11.11.4.

Fig. 11.11.4 Double L-section networks.

The two L-sections are either both reversed or both normal. The design is similar to
Eq. (11.11.4). In particular, if RG < R < RL, we have:

X14 = [X1, X4]= lmatch(ZG,Z, ’r’)

X35 = [X3, X5]= lmatch(Z∗, ZL, ’r’)
(11.11.14)
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and if RG > R > RL:

X14 = [X1, X4]= lmatch(ZG,Z, ’n’)

X35 = [X3, X5]= lmatch(Z∗, ZL, ’n’)
(11.11.15)

The widest bandwidth (corresponding to the smallest Q) is obtained by selecting
R = √

RGRL. For example, consider the case RG < R < RL. Then, the corresponding
left and right Q factors will be:

QG =
√
R
RG
− 1 , QL =

√
RL
R
− 1

Both satisfy QG < Qmin and QL < Qmin. Because we always choose Q to be the
maximum of QG,QL, the optimum Q will correspond to that R that results in Qopt =
min

(
max(QG,QL)

)
. It can be verified easily that Ropt =

√
RGRL and

Qopt = QL,opt = QG,opt =
√
Ropt

RG
− 1 =

√
RL
Ropt

− 1

These results follow from the inequalities:

QG ≤ Qopt ≤ QL , if RG < R ≤ Ropt

QL ≤ Qopt ≤ QG , if Ropt ≤ R < RL
Example 11.11.3: Use a double L-section to widen the bandwidth of the single L-section of

Example 11.11.2.

Solution: The Q-factor of the single section is Qmin =
√

200/500− 1 = 1.73. The optimum ref-
erence resistor is Ropt =

√
50·200 = 100 ohm and the corresponding minimized optimum

Qopt = 1.

The reactances of the single L-section were given in Example 11.11.2. The reactances of
the two sections of the double L-sections are calculated by the two calls to lmatch:

X14 = [X1, X4]= lmatch(50,100,’r’)=
[

100 −50
−100 50

]

X35 = [X3, X5]= lmatch(100,200,’r’)=
[

200 −100
−200 100

]

The corresponding input reflection coefficients are plotted in Fig. 11.11.5. As in the design
of theΠ network, the dual solutions of each L-section can be paired in four different ways.
But, for the above optimum value ofR, the four solutions have virtually identical responses.
There is some widening of the bandwidth, but not by much. ��

11.12 Problems

11.1 A transmission line with characteristic impedance Z0 = 100 Ω is terminated at a load
impedance ZL = 150 + j50 Ω. What percentage of the incident power is reflected back
into the line?
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Fig. 11.11.5 Comparison of single and double L-section networks.

In order to make the load reflectionless, a short-circuited stub of length l1 and impedance
also equal to Z0 is inserted at a distance l2 from the load. What are the smallest values of
the lengths l1 and l2 in units of the wavelength λ that make the load reflectionless?

11.2 A loss-free line of impedance Z0 is terminated at a load ZL = Z0+ jX, whose resistive part is
matched to the line. To properly match the line, a short-circuited stub is connected across
the main line at a distance of λ/4 from the load, as shown below. The stub has characteristic
impedance Z0.

Find an equation that determines the length l of the stub in order that there be no reflected
waves into the main line. What is the length l (in wavelengths λ) when X = Z0? When
X = Z0/

√
3?

11.3 A transmission line with characteristic impedance Z0 must be matched to a purely resistive
load ZL. A segment of length l1 of another line of characteristic impedance Z1 is inserted at
a distance l0 from the load, as shown in Fig. 11.6.1 (with Z2 = Z0 and l2 = l0.)

Take Z0 = 50, Z1 = 100, ZL = 80 Ω and let β0 and β1 be the wavenumbers within the
segments l0 and l1. Determine the values of the quantities cot(β1l1) and cot(β0l0) that
would guarantee matching. Show that the widest range of resistive loads ZL that can be
matched using the given values of Z0 and Z1 is: 12.5 Ω < ZL < 200 Ω.

11.4 A transmission line with resistive impedance Z0 is terminated at a load impedance ZL =
R+ jX. Derive an expression, in terms of Z0, R, X, for the proportion of the incident power
that is reflected back into the line.

In order to make the load reflectionless, a short-circuited stub of length l1 and impedance Z0

is inserted at a distance l2 from the load. Derive expressions for the smallest values of the
lengths l1 and l2 in terms of the wavelength λ and Z0, R,X, that make the load reflectionless.
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11.5 It is required to match a lossless transmission line Z0 to a load ZL. To this end, a quarter-
wavelength transformer is connected at a distance l0 from the load, as shown below. Let λ0

and λ be the operating wavelengths of the line and the transformer segment.

Assume Z0 = 50 Ω. Verify that the required length l0 that will match the complex load
ZL = 40+ 30j Ω is l0 = λ/8. What is the value of Z1 in this case?

11.6 It is required to match a lossless transmission line of impedance Z0 = 75 Ω to the complex
load ZL = 60 + 45j Ω. To this end, a quarter-wavelength transformer is connected at a
distance l0 from the load, as shown in the previous problem. Let λ0 and λ be the operating
wavelengths of the line and the transformer segment.

What is the required length l0 in units of λ0? What is the characteristic impedance Z1 of the
transformer segment?

11.7 Show that the solution of the one-section series impedance transformer shown in Fig. 11.6.3
is given by Eq. (11.6.9), provided that either of the inequalities (11.6.10) is satisfied.

11.8 Show that the solution to the double-stub tuner is given by Eq. (11.9.1) and (11.9.2).

11.9 Match load impedance ZL = 10−5j ohm of Example 11.7.1 to a 50-ohm line using a double-
stub tuner with stub separation of l = λ/16. Show that a double-stub tuner with separation
of l = λ/8 cannot match this load.

11.10 Match the antenna and feed line of Example 11.6.2 using a double stub tuner with stub
separation of l = λ/8. Plot the corresponding matched reflection responses. Repeat when l
is near λ/2, say, l = 0.495λ, and compare the resulting notch bandwidths.

11.11 Show that the load impedance of Problem 11.9 can be matched with a triple-stub tuner using
shorted stubs with separations of l1 = l2 = λ/8, shorted stubs. Use the smallness parameter
values of e = 0.9 and e = 0.1.

11.12 Match the antenna and feed line of Example 11.6.2 using a stub tuner and plot the corre-
sponding matched reflection responses. Use shorted stubs with separations l1 = l2 = λ/8,
and the two smallness parameters e = 0.9 and e = 0.7.

11.13 Design an L-section matching network that matches the complex load impedance ZL =
30 + 40j ohm to a 50-ohm transmission line. Verify that both a normal and a reversed
L-section can be used.



12
S-Parameters

12.1 Scattering Parameters

Linear two-port (and multi-port) networks are characterized by a number of equivalent
circuit parameters, such as their transfer matrix, impedance matrix, admittance matrix,
and scattering matrix. Fig. 12.1.1 shows a typical two-port network.

Fig. 12.1.1 Two-port network.

The transfer matrix, also known as the ABCD matrix, relates the voltage and current
at port 1 to those at port 2, whereas the impedance matrix relates the two voltages
V1, V2 to the two currents I1, I2:†[

V1

I1

]
=
[
A B
C D

][
V2

I2

]
(transfer matrix)

[
V1

V2

]
=
[
Z11 Z12

Z21 Z22

][
I1
−I2

]
(impedance matrix)

(12.1.1)

Thus, the transfer and impedance matrices are the 2×2 matrices:

T =
[
A B
C D

]
, Z =

[
Z11 Z12

Z21 Z22

]
(12.1.2)

The admittance matrix is simply the inverse of the impedance matrix, Y = Z−1. The
scattering matrix relates the outgoing waves b1, b2 to the incoming waves a1, a2 that
are incident on the two-port:

†In the figure, I2 flows out of port 2, and hence −I2 flows into it. In the usual convention, both currents
I1, I2 are taken to flow into their respective ports.
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[
b1

b2

]
=
[
S11 S12

S21 S22

][
a1

a2

]
, S =

[
S11 S12

S21 S22

]
(scattering matrix) (12.1.3)

The matrix elements S11, S12, S21, S22 are referred to as the scattering parameters or
the S-parameters. The parameters S11, S22 have the meaning of reflection coefficients,
and S21, S12, the meaning of transmission coefficients.

The many properties and uses of the S-parameters in applications are discussed in
[513–539]. One particularly nice overview is the HP application note AN-95-1 by Ander-
son [524] and is available on the web [740].

We have already seen several examples of transfer, impedance, and scattering matri-
ces. Eq. (9.7.6) or (9.7.7) is an example of a transfer matrix and (9.8.1) is the correspond-
ing impedance matrix. The transfer and scattering matrices of multilayer structures,
Eqs. (5.6.23) and (5.6.37), are more complicated examples.

The traveling wave variables a1, b1 at port 1 and a2, b2 at port 2 are defined in terms
of V1, I1 and V2, I2 and a real-valued positive reference impedance Z0 as follows:

a1 = V1 + Z0I1
2
√
Z0

b1 = V1 − Z0I1
2
√
Z0

a2 = V2 − Z0I2
2
√
Z0

b2 = V2 + Z0I2
2
√
Z0

(traveling waves) (12.1.4)

The definitions at port 2 appear different from those at port 1, but they are really
the same if expressed in terms of the incoming current −I2:

a2 = V2 − Z0I2
2
√
Z0

= V2 + Z0(−I2)
2
√
Z0

b2 = V2 + Z0I2
2
√
Z0

= V2 − Z0(−I2)
2
√
Z0

The term traveling waves is justified below. Eqs. (12.1.4) may be inverted to express
the voltages and currents in terms of the wave variables:

V1 =
√
Z0(a1 + b1)

I1 = 1√
Z0
(a1 − b1)

V2 =
√
Z0(a2 + b2)

I2 = 1√
Z0
(b2 − a2)

(12.1.5)

In practice, the reference impedance is chosen to be Z0 = 50 ohm. At lower fre-
quencies the transfer and impedance matrices are commonly used, but at microwave
frequencies they become difficult to measure and therefore, the scattering matrix de-
scription is preferred.

The S-parameters can be measured by embedding the two-port network (the device-
under-test, or, DUT) in a transmission line whose ends are connected to a network ana-
lyzer. Fig. 12.1.2 shows the experimental setup.

A typical network analyzer can measure S-parameters over a large frequency range,
for example, the HP 8720D vector network analyzer covers the range from 50 MHz to
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40 GHz. Frequency resolution is typically 1 Hz and the results can be displayed either
on a Smith chart or as a conventional gain versus frequency graph.

Fig. 12.1.2 Device under test connected to network analyzer.

Fig. 12.1.3 shows more details of the connection. The generator and load impedances
are configured by the network analyzer. The connections can be reversed, with the
generator connected to port 2 and the load to port 1.

Fig. 12.1.3 Two-port network under test.

The two line segments of lengths l1, l2 are assumed to have characteristic impedance
equal to the reference impedance Z0. Then, the wave variables a1, b1 and a2, b2 are
recognized as normalized versions of forward and backward traveling waves. Indeed,
according to Eq. (9.7.8), we have:

a1 = V1 + Z0I1
2
√
Z0

= 1√
Z0
V1+

b1 = V1 − Z0I1
2
√
Z0

= 1√
Z0
V1−

a2 = V2 − Z0I2
2
√
Z0

= 1√
Z0
V2−

b2 = V2 + Z0I2
2
√
Z0

= 1√
Z0
V2+

(12.1.6)

Thus, a1 is essentially the incident wave at port 1 and b1 the corresponding reflected
wave. Similarly, a2 is incident from the right onto port 2 and b2 is the reflected wave
from port 2.

The network analyzer measures the waves a′1, b′1 and a′2, b′2 at the generator and
load ends of the line segments, as shown in Fig. 12.1.3. From these, the waves at the
inputs of the two-port can be determined. Assuming lossless segments and using the
propagation matrices (9.7.7), we have:
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[
a1

b1

]
=
[
e−jδ1 0

0 ejδ1

][
a′1
b′1

]
,

[
a2

b2

]
=
[
e−jδ2 0

0 ejδ2

][
a′2
b′2

]
(12.1.7)

where δ1 = βll and δ2 = βl2 are the phase lengths of the segments. Eqs. (12.1.7) can be
rearranged into the forms:

[
b1

b2

]
= D

[
b′1
b′2

]
,
[
a′1
a′2

]
= D

[
a1

a2

]
, D =

[
ejδ1 0

0 ejδ2

]

The network analyzer measures the corresponding S-parameters of the primed vari-
ables, that is,

[
b′1
b′2

]
=
[
S′11 S′12

S′21 S′22

][
a′1
a′2

]
, S′ =

[
S′11 S′12

S′21 S′22

]
(measured S-matrix) (12.1.8)

The S-matrix of the two-port can be obtained then from:

[
b1

b2

]
= D

[
b′1
b′2

]
= DS′

[
a′1
a′2

]
= DS′D

[
a1

a2

]
⇒ S = DS′D

or, more explicitly,

[
S11 S12

S21 S22

]
=
[
ejδ1 0

0 ejδ2

][
S′11 S′12

S′21 S′22

][
ejδ1 0

0 ejδ2

]

=
[
S′11e2jδ1 S′12ej(δ1+δ2)

S′21ej(δ1+δ2) S′22e2jδ2

] (12.1.9)

Thus, changing the points along the transmission lines at which the S-parameters
are measured introduces only phase changes in the parameters.

Without loss of generality, we may replace the extended circuit of Fig. 12.1.3 with the
one shown in Fig. 12.1.4 with the understanding that either we are using the extended
two-port parameters S′, or, equivalently, the generator and segment l1 have been re-
placed by their Thévenin equivalents, and the load impedance has been replaced by its
propagated version to distance l2.

Fig. 12.1.4 Two-port network connected to generator and load.
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The actual measurements of the S-parameters are made by connecting to a matched
load, ZL = Z0. Then, there will be no reflected waves from the load, a2 = 0, and the
S-matrix equations will give:

b1 = S11a1 + S12a2 = S11a1 ⇒ S11 = b1

a1

∣∣∣∣
ZL=Z0

= reflection coefficient

b2 = S21a1 + S22a2 = S21a1 ⇒ S21 = b2

a1

∣∣∣∣
ZL=Z0

= transmission coefficient

Reversing the roles of the generator and load, one can measure in the same way the
parameters S12 and S22.

12.2 Power Flow

Power flow into and out of the two-port is expressed very simply in terms of the traveling
wave amplitudes. Using the inverse relationships (12.1.5), we find:

1

2
Re[V∗1 I1] =

1

2
|a1|2 − 1

2
|b1|2

−1

2
Re[V∗2 I2] =

1

2
|a2|2 − 1

2
|b2|2

(12.2.1)

The left-hand sides represent the power flow into ports 1 and 2. The right-hand sides
represent the difference between the power incident on a port and the power reflected
from it. The quantity Re[V∗2 I2]/2 represents the power transferred to the load.

Another way of phrasing these is to say that part of the incident power on a port
gets reflected and part enters the port:

1

2
|a1|2 = 1

2
|b1|2 + 1

2
Re[V∗1 I1]

1

2
|a2|2 = 1

2
|b2|2 + 1

2
Re[V∗2 (−I2)]

(12.2.2)

One of the reasons for normalizing the traveling wave amplitudes by
√
Z0 in the

definitions (12.1.4) was precisely this simple way of expressing the incident and reflected
powers from a port.

If the two-port is lossy, the power lost in it will be the difference between the power
entering port 1 and the power leaving port 2, that is,

Ploss = 1

2
Re[V∗1 I1]−

1

2
Re[V∗2 I2]=

1

2
|a1|2 + 1

2
|a2|2 − 1

2
|b1|2 − 1

2
|b2|2

Noting that a†a = |a1|2 + |a2|2 and b†b = |b1|2 + |b2|2, and writing b†b = a†S†Sa,
we may express this relationship in terms of the scattering matrix:

Ploss = 1

2
a†a− 1

2
b†b = 1

2
a†a− 1

2
a†S†Sa = 1

2
a†(I − S†S)a (12.2.3)
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For a lossy two-port, the power loss is positive, which implies that the matrix I−S†S
must be positive definite. If the two-port is lossless, Ploss = 0, the S-matrix will be
unitary, that is, S†S = I.

We already saw examples of such unitary scattering matrices in the cases of the equal
travel-time multilayer dielectric structures and their equivalent quarter wavelength mul-
tisection transformers.

12.3 Parameter Conversions

It is straightforward to derive the relationships that allow one to pass from one param-
eter set to another. For example, starting with the transfer matrix, we have:

V1 = AV2 + BI2
I1 = CV2 +DI2

⇒
V1 = A

( 1

C
I1 − DCI2

)+ BI2 = ACI1 −
AD− BC
C

I2

V2 = 1

C
I1 − DCI2

The coefficients of I1, I2 are the impedance matrix elements. The steps are reversible,
and we summarize the final relationships below:

Z =
[
Z11 Z12

Z21 Z22

]
= 1

C

[
A AD− BC
1 D

]

T =
[
A B
C D

]
= 1

Z21

[
Z11 Z11Z22 − Z12Z21

1 Z22

] (12.3.1)

We note the determinants det(T)= AD − BC and det(Z)= Z11Z22 − Z12Z21. The
relationship between the scattering and impedance matrices is also straightforward to
derive. We define the 2×1 vectors:

V =
[
V1

V2

]
, I =

[
I1
−I2

]
, a =

[
a1

a2

]
, b =

[
b1

b2

]
(12.3.2)

Then, the definitions (12.1.4) can be written compactly as:

a = 1

2
√
Z0
(V+ Z0I)= 1

2
√
Z0
(Z + Z0I)I

b = 1

2
√
Z0
(V− Z0I)= 1

2
√
Z0
(Z − Z0I)I

(12.3.3)

where we used the impedance matrix relationship V = ZI and defined the 2×2 unit
matrix I. It follows then,

1

2
√
Z0

I = (Z + Z0I)−1a ⇒ b = 1

2
√
Z0
(Z − Z0I)I = (Z − Z0I)(Z + Z0I)−1a

Thus, the scattering matrix S will be related to the impedance matrix Z by

S = (Z − Z0I)(Z + Z0I)−1 � Z = (I − S)−1(I + S)Z0 (12.3.4)
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Explicitly, we have:

S =
[
Z11 − Z0 Z12

Z21 Z22 − Z0

][
Z11 + Z0 Z12

Z21 Z22 + Z0

]−1

=
[
Z11 − Z0 Z12

Z21 Z22 − Z0

]
1

Dz

[
Z22 + Z0 −Z12

−Z21 Z11 + Z0

]

where Dz = det(Z + Z0I)= (Z11 + Z0)(Z22 + Z0)−Z12Z21. Multiplying the matrix
factors, we obtain:

S = 1

Dz

[
(Z11 − Z0)(Z22 + Z0)−Z12Z21 2Z12Z0

2Z21Z0 (Z11 + Z0)(Z22 − Z0)−Z12Z21

]
(12.3.5)

Similarly, the inverse relationship gives:

Z = Z0

Ds

[
(1+ S11)(1− S22)+S12S21 2S12

2S12 (1− S11)(1+ S22)+S12S21

]
(12.3.6)

where Ds = det(I− S)= (1− S11)(1− S22)−S12S21. Expressing the impedance param-
eters in terms of the transfer matrix parameters, we also find:

S = 1

Da



A+ B

Z0
−CZ0 −D 2(AD− BC)
2 −A+ B

Z0
−CZ0 +D


 (12.3.7)

where Da = A+ B
Z0
+CZ0 +D.

12.4 Input and Output Reflection Coefficients

When the two-port is connected to a generator and load as in Fig. 12.1.4, the impedance
and scattering matrix equations take the simpler forms:

V1 = ZinI1

V2 = ZLI2
�

b1 = Γina1

a2 = ΓLb2

(12.4.1)

where Zin is the input impedance at port 1, and Γin, ΓL are the reflection coefficients at
port 1 and at the load:

Γin = Zin − Z0

Zin + Z0
, ΓL = ZL − Z0

ZL + Z0
(12.4.2)

The input impedance and input reflection coefficient can be expressed in terms of
the Z- and S-parameters, as follows:

Zin = Z11 − Z12Z21

Z22 + ZL � Γin = S11 + S12S21ΓL
1− S22ΓL

(12.4.3)
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The equivalence of these two expressions can be shown by using the parameter
conversion formulas of Eqs. (12.3.5) and (12.3.6), or they can be shown indirectly, as
follows. Starting with V2 = ZLI2 and using the second impedance matrix equation, we
can solve for I2 in terms of I1:

V2 = Z21I1 − Z22I2 = ZLI2 ⇒ I2 = Z21

Z22 + ZL I1 (12.4.4)

Then, the first impedance matrix equation implies:

V1 = Z11I1 − Z12I2 =
(
Z11 − Z12Z21

Z22 + ZL
)
I1 = ZinI1

Starting again with V2 = ZLI2 we find for the traveling waves at port 2:

a2 = V2 − Z0I2
2
√
Z0

= ZL − Z0

2
√
Z0

I2

b2 = V2 + Z0I2
2
√
Z0

= ZL + Z0

2
√
Z0

I2

⇒ a2 = ZL − Z0

ZL + Z0
b2 = ΓLb2

Using V1 = ZinI1, a similar argument implies for the waves at port 1:

a1 = V1 + Z0I1
2
√
Z0

= Zin + Z0

2
√
Z0

I1

b1 = V1 − Z0I1
2
√
Z0

= Zin − Z0

2
√
Z0

I1

⇒ b1 = Zin − Z0

Zin + Z0
a1 = Γina1

It follows then from the scattering matrix equations that:

b2 = S21a1 + S22a2 = S22a1 + S22ΓLb2 ⇒ b2 = S21

1− S22ΓL
a1 (12.4.5)

which implies for b1:

b1 = S11a1 + S12a2 = S11a1 + S12ΓLb2 =
(
S11 + S12S21ΓL

1− S22ΓL

)
a1 = Γina1

Reversing the roles of generator and load, we obtain the impedance and reflection
coefficients from the output side of the two-port:

Zout = Z22 − Z12Z21

Z11 + ZG � Γout = S22 + S12S21ΓG
1− S11ΓG

(12.4.6)

where

Γout = Zout − Z0

Zout + Z0
, ΓG = ZG − Z0

ZG + Z0
(12.4.7)

The input and output impedances allow one to replace the original two-port circuit
of Fig. 12.1.4 by simpler equivalent circuits. For example, the two-port and the load can
be replaced by the input impedance Zin connected at port 1, as shown in Fig. 12.4.1.
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Fig. 12.4.1 Input and output equivalent circuits.

Similarly, the generator and the two-port can be replaced by a Thévenin equivalent
circuit connected at port 2. By determining the open-circuit voltage and short-circuit
current at port 2, we find the corresponding Thévenin parameters in terms of the impe-
dance parameters:

Vth = Z21VG
Z11 + ZG , Zth = Zout = Z22 − Z12Z21

Z11 + ZG (12.4.8)

12.5 Stability Circles

In discussing the stability conditions of a two-port in terms of S-parameters, the follow-
ing definitions of constants are often used:

∆ = det(S)= S11S22 − S12S21

K = 1− |S11|2 − |S22|2 + |∆|2
2|S12S21| (Rollett stability factor)

µ1 = 1− |S11|2
|S22 −∆S∗11| + |S12S21| (Edwards-Sinsky stability parameter)

µ2 = 1− |S22|2
|S11 −∆S∗22| + |S12S21|

B1 = 1+ |S11|2 − |S22|2 − |∆|2

B2 = 1+ |S22|2 − |S11|2 − |∆|2

C1 = S11 −∆S∗22 , D1 = |S11|2 − |∆|2

C2 = S22 −∆S∗11 , D2 = |S22|2 − |∆|2

(12.5.1)

The quantity K is the Rollett stability factor [521], and µ1, µ2, the Edwards-Sinsky
stability parameters [523]. The following identities hold among these constants:

B2
1 − 4|C1|2 = B2

2 − 4|C2|2 = 4|S12S21|2(K2 − 1)

|C1|2 = |S12S21|2 +
(
1− |S22|2

)
D1

|C2|2 = |S12S21|2 +
(
1− |S11|2

)
D2

(12.5.2)
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For example, noting that S12S21 = S11S22 − ∆, the last of Eqs. (12.5.2) is a direct
consequence of the identity:

|A− BC|2 − |B−AC∗|2 = (1− |C|2)(|A|2 − |B|2) (12.5.3)

We define also the following parameters, which will be recognized as the centers and
radii of the source and load stability circles:

cG = C
∗
1

D1
, rG = |S12S21|

|D1| (source stability circle) (12.5.4)

cL = C
∗
2

D2
, rL = |S12S21|

|D2| (load stability circle) (12.5.5)

They satisfy the following relationships, which are consequences of the last two of
Eqs. (12.5.2) and the definitions (12.5.4) and (12.5.5):

1− |S11|2 =
(|cL|2 − r2

L
)
D2

1− |S22|2 =
(|cG|2 − r2

G
)
D1

(12.5.6)

We note also that using Eqs. (12.5.6), the stability parameters µ1, µ2 can be written as:

µ1 =
(|cL| − rL)sign(D2)

µ2 =
(|cG| − rG)sign(D1)

(12.5.7)

For example, we have:

µ1 = 1− |S11|2
|C2| + |S12S21| =

D2
(|cL|2 − r2

L
)

|D2||cL| + |D2|rL =
D2
(|cL|2 − r2

L
)

|D2|
(|cL| + rL) =

D2

|D2|
(|cL| − rL)

We finally note that the input and output reflection coefficients can be written in the
alternative forms:

Γin = S11 + S12S21ΓL
1− S22ΓL

= S11 −∆ΓL
1− S22ΓL

Γout = S22 + S12S21ΓG
1− S22ΓG

= S22 −∆ΓG
1− S11ΓG

(12.5.8)

Next, we discuss the stability conditions. The two-port is unconditionally stable if
any generator and load impedances with positive resistive parts RG,RL, will always lead
to input and output impedances with positive resistive parts Rin, Rout.

Equivalently, unconditional stability requires that any load and generator with |ΓL| <
1 and |ΓG| < 1 will result into |Γin| < 1 and |Γout| < 1.

The two-port is termed potentially or conditionally unstable if there are |ΓL| < 1 and
|ΓG| < 1 resulting into |Γin| ≥ 1 and/or |Γout| ≥ 1.

The load stability region is the set of all ΓL the result into |Γin| < 1, and the source
stability region, the set of all ΓG that result into |Γout| < 1.

In the unconditionally stable case, the load and source stability regions contain the
entire unit-circles |ΓL| < 1 or |ΓG| < 1. However, in the potentially unstable case, only
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portions of the unit-circles may lie within the stability regions and such ΓG, ΓL will lead
to a stable input and output impedances.

The connection of the stability regions to the stability circles is brought about by the
following identities, which can be proved easily using Eqs. (12.5.1)–(12.5.8):

1− |Γin|2 = |ΓL − cL|
2 − r2

L
|1− S22ΓL|2 D2

1− |Γout|2 = |ΓG − cG|
2 − r2

G
|1− S11ΓG|2 D1

(12.5.9)

For example, the first can be shown starting with Eq. (12.5.8) and using the definitions
(12.5.5) and the relationship (12.5.6):

1− |Γin|2 = 1−
∣∣∣∣S11 −∆ΓL

1− S22ΓL

∣∣∣∣
2

= |S11 −∆ΓL|2 − |1− S22ΓL|2
|1− S22ΓL|2

=
(|S22|2 − |∆|2

)|ΓL|2 − (S22 −∆S∗11)ΓL − (S∗22 −∆∗S11)Γ∗L + 1− |S11|2
|1− S22ΓL|2

= D2|ΓL|2 −C2ΓL −C∗2 Γ∗L + 1− |S11|2
|1− S22ΓL|2

= D2
(|ΓL|2 − c∗LΓL − c∗LΓ∗L + |cL|2 − r2

L
)

|1− S22ΓL|2 = D2
(|ΓL − cL|2 − r2

L
)

|1− S22ΓL|2
It follows from Eq. (12.5.9) that the load stability region is defined by the conditions:

1− |Γin|2 > 0 �
(|ΓL − cL|2 − r2

L
)
D2 > 0

Depending on the sign of D2, these are equivalent to the outside or the inside of the
load stability circle of center cL and radius rL:

|ΓL − cL| > rL , if D2 > 0

|ΓL − cL| < rL , if D2 < 0
(load stability region) (12.5.10)

The boundary of the circle |ΓL−cL| = rL corresponds to |Γin| = 1. The complement
of these regions corresponds to the unstable region with |Γin| > 1. Similarly, we find
for the source stability region:

|ΓG − cG| > rG , if D1 > 0

|ΓG − cG| < rG , if D1 < 0
(source stability region) (12.5.11)

In order to have unconditional stability, the stability regions must contain the unit-
circle in its entirety. If D2 > 0, the unit-circle and load stability circle must not overlap
at all, as shown in Fig. 12.5.1. Geometrically, the distance between the pointsO andA in
the figure is (OA)= |cL|−rL. The non-overlapping of the circles requires the condition
(OA)> 1, or, |cL| − rL > 1.

If D2 < 0, the stability region is the inside of the stability circle, and therefore, the
unit-circle must lie within that circle. This requires that (OA)= rL−|cL| > 1, as shown
in Fig. 12.5.1.
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Fig. 12.5.1 Load stability regions in the unconditionally stable case.

These two conditions can be combined into sign(D2)
(|cL| − rL) > 1. But, that is

equivalent to µ1 > 1 according to Eq. (12.5.7). Geometrically, the parameter µ1 repre-
sents the distance (OA). Thus, the condition for the unconditional stability of the input
is equivalent to:

µ1 > 1 (unconditional stability condition) (12.5.12)

It has been shown by Edwards and Sinsky [523] that this single condition (or, alter-
natively, the single condition µ2 > 1) is necessary and sufficient for the unconditional
stability of both the input and output impedances of the two-port. Clearly, the source
stability regions will be similar to those of Fig. 12.5.1.

If the stability condition is not satisfied, that is, µ1 < 1, then only that portion of the
unit-circle that lies within the stability region will be stable and will lead to stable input
and output impedances. Fig. 12.5.2 illustrates such a potentially unstable case.

Fig. 12.5.2 Load stability regions in potentially unstable case.

If D2 > 0, then µ1 < 1 is equivalent to |cL| − rL < 1, and if D2 < 0, it is equivalent
to rL − |cL| < 1. In either case, the unit-circle is partially overlapping with the stability
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circle, as shown in Fig. 12.5.2. The portion of the unit-circle that does not lie within the
stability region will correspond to an unstable Zin.

There exist several other unconditional stability criteria that are equivalent to the
single criterion µ1 > 1. They all require that the Rollett stability factor K be greater
than unity, K > 1, as well as one other condition. Any one of the following criteria are
necessary and sufficient for unconditional stability [522]:

K > 1 and |∆| < 1
K > 1 and B1 > 0
K > 1 and B2 > 0
K > 1 and |S12S21| < 1− |S11|2
K > 1 and |S12S21| < 1− |S22|2

(stability conditions) (12.5.13)

Their equivalence to µ1 > 1 has been shown in [523]. In particular, it follows from
the last two conditions that unconditional stability requires |S11| < 1 and |S22| < 1.
These are necessary but not sufficient for stability.

A very common circumstance in practice is to have a potentially unstable two-port,
but with |S11| < 1 and |S22| < 1. In such cases, Eq. (12.5.6) implies D2

(|cL|2 − r2
L)> 0,

and the lack of stability requires µ1 = sign(D2)
(|cL|2 − r2

L)< 1.
Therefore, if D2 > 0, then we must have |cL|2 − r2

L > 0 and |cL| − rL < 1, which
combine into the inequality rL < |cL| < rL + 1. This is depicted in the left picture of
Fig. 12.5.2. The geometrical distance (OA)= |cL| − rL satisfies 0 < (OA)< 1, so that
stability circle partially overlaps with the unit-circle but does not enclose its center.

On the other hand, ifD2 < 0, the two conditions require |cL|2−r2
L < 0 and rL−|cL| <

1, which imply |cL| < rL < |cL| + 1. This is depicted in the right Fig. 12.5.2. The
geometrical distance (OA)= rL − |cL| again satisfies 0 < (OA)< 1, but now the center
of the unit-circle lies within the stability circle, which is also the stability region.

We have written a number of MATLAB functions that facilitate working with S-
parameters. They are described in detail later on:

smat reshape S-parameters into S-matrix

sparam calculate stability parameters

sgain calculate transducer, available, operating, and unilateral power gains

smatch calculate simultaneous conjugate match for generator and load

gin,gout calculate input and output reflection coefficients

smith draw a basic Smith chart

smithcir draw a stability or gain circle on Smith chart

sgcirc determine stability and gain circles

nfcirc determine noise figure circles

nfig calculate noise figure

The MATLAB function sparam calculates the stability parameters µ1, K, |∆|, B1, B2,
as well as the parameters C1, C2,D1,D2. It has usage:

[K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S); % stability parameters

The function sgcirc calculates the centers and radii of the source and load stability
circles. It also calculates gain circles to be discussed later on. Its usage is:
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[cL,rL] = sgcirc(S,’l’); % load or Zin stability circle

[cG,rG] = sgcirc(S,’s’); % source or Zout stability circle

The MATLAB function smith draws a basic Smith chart, and the function smithcir
draws the stability circles:

smith(n); % draw four basic types of Smith charts, n = 1,2,3,4

smith; % default Smith chart corresponding to n = 3

smithcir(c,r,max,width); % draw circle of center c and radius r

smithcir(c,r,max); % equivalent to linewidth width=1

smithcir(c,r); % draw full circle with linewidth width=1

The parameter max controls the portion of the stability circle that is visible outside
the Smith chart. For example, max = 1.1 will display only that portion of the circle that
has |Γ| < 1.1.

Example 12.5.1: The Hewlett-Packard AT-41511 NPN bipolar transistor has the following S-
parameters at 1 GHz and 2 GHz [741]:

S11 = 0.48∠−149o , S21 = 5.189∠89o , S12 = 0.073∠43o , S22 = 0.49∠−39o

S11 = 0.46∠162o , S21 = 2.774∠59o , S12 = 0.103∠45o , S22 = 0.42∠−47o

Determine the stability parameters, stability circles, and stability regions.

Solution: The transistor is potentially unstable at 1 GHz, but unconditionally stable at 2 GHz.
The source and load stability circles at 1 GHz are shown in Fig. 12.5.3.

Fig. 12.5.3 Load and source stability circles at 1 GHz.

The MATLAB code used to generate this graph was:

S = smat([0.48 -149 5.189 89 0.073 43 0.49 -39]); % form S-matrix

[K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S); % stability parameters

[cL,rL] = sgcirc(S,’l’); % stability circles

[cG,rG] = sgcirc(S,’s’);

smith; % draw basic Smith chart

smithcir(cL, rL, 1.1, 1.5); % draw stability circles

smithcir(cG, rG, 1.1, 1.5);
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The computed stability parameters at 1 GHz were:

[K,µ1, |∆|, B1, B2,D1,D2]= [0.781, 0.847, 0.250, 0.928, 0.947, 0.168, 0.178]

The transistor is potentially unstable because K < 1 even though |∆| < 1, B1 > 0, and
B2 > 0. The load and source stability circle centers and radii were:

cL = 2.978∠51.75o , rL = 2.131

cG = 3.098∠162.24o , rG = 2.254

Because bothD1 andD2 are positive, both stability regions will be the portion of the Smith
chart that lies outside the stability circles. For 2 GHz, we find:

[K,µ1, |∆|, B1, B2,D1,D2]= [1.089, 1.056, 0.103, 1.025, 0.954, 0.201, 0.166]

cL = 2.779∠50.12o , rL = 1.723

cG = 2.473∠−159.36o , rG = 1.421

The transistor is stable at 2 GHz, with both load and source stability circles being com-
pletely outside the unit-circle. ��

Problem 12.2 presents an example for which the D2 parameter is negative, so that
the stability regions will be the insides of the stability circles. At one frequency, the
unit-circle is partially overlapping with the stability circle, while at another frequency,
it lies entirely within the stability circle.

12.6 Power Gains

The amplification (or attenuation) properties of the two-port can be deduced by com-
paring the power Pin going into the two-port to the power PL coming out of the two-port
and going into the load. These were given in Eq. (12.2.1) and we rewrite them as:

Pin = 1

2
Re[V∗1 I1]=

1

2
Rin|I1|2 (power into two-port)

PL = 1

2
Re[V∗2 I2]=

1

2
RL|I2|2 (power out of two-port and into load)

(12.6.1)

where we used V1 = ZinI1, V2 = ZLI2, and defined the real parts of the input and
load impedances by Rin = Re(Zin) and RL = Re(ZL). Using the equivalent circuits of
Fig. 12.4.1, we may write I1, I2 in terms of the generator voltage VG and obtain:

Pin = 1

2

|VG|2Rin

|Zin + ZG|2

PL = 1

2

|Vth|2RL
|Zout + ZL|2 =

1

2

|VG|2RL|Z21|2∣∣(Z11 + ZG)(Zout + ZL)
∣∣2

(12.6.2)
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Using the identities of Problem 12.1, PL can also be written in the alternative forms:

PL = 1

2

|VG|2RL|Z21|2∣∣(Z22 + ZL)(Zin + ZG)
∣∣2 =

1

2

|VG|2RL|Z21|2∣∣(Z11 + ZG)(Z22 + ZL)−Z12Z21
∣∣2 (12.6.3)

The maximum power that can be delivered by the generator to a connected load
is called the available power of the generator, PavG, and is obtained when the load is
conjugate-matched to the generator, that is, PavG = Pin when Zin = Z∗G.

Similarly, the available power from the two-port network, PavN, is the maximum
power that can be delivered by the Thévenin-equivalent circuit of Fig. 12.4.1 to a con-
nected load, that is, PavN = PL when ZL = Z∗th = Z∗out. It follows then from Eq. (12.6.2)
that the available powers will be:

PavG = maxPin = |VG|
2

8RG
(available power from generator)

PavN = maxPL = |Vth|2
8Rout

(available power from network)

(12.6.4)

Using Eq. (12.4.8), PavN can also be written as:

PavN = |VG|
2

8Rout

∣∣∣∣ Z21

Z11 + ZG
∣∣∣∣2

(12.6.5)

The powers can be expressed completely in terms of the S-parameters of the two-
port and the input and output reflection coefficients. With the help of the identities of
Problem 12.1, we find the alternative expressions for Pin and PL:

Pin = |VG|
2

8Z0

(
1− |Γin|2

)|1− ΓG|2
|1− ΓinΓG|2

PL = |VG|
2

8Z0

(
1− |ΓL|2

)|1− ΓG|2|S21|2∣∣(1− ΓinΓG)(1− S22ΓL)
∣∣2

= |VG|
2

8Z0

(
1− |ΓL|2

)|1− ΓG|2|S21|2∣∣(1− ΓoutΓL)(1− S11ΓG)
∣∣2

= |VG|
2

8Z0

(
1− |ΓL|2

)|1− ΓG|2|S21|2∣∣(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL
∣∣2

(12.6.6)

Similarly, we have for PavG and PavN:

PavG = |VG|
2

8Z0

|1− ΓG|2
1− |ΓG|2

PavN = |VG|
2

8Z0

|1− ΓG|2|S21|2(
1− |Γout|2

)|1− S11ΓG|2
(12.6.7)

It is evident that PavG, PavN are obtained from Pin, PL by setting Γin = Γ∗G and ΓL =
Γ∗out, which are equivalent to the conjugate-match conditions.
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Three widely used definitions for the power gain of the two-port network are the
transducer power gain GT, the available power gain Ga, and the power gain Gp, also
called the operating gain. They are defined as follows:

GT = power out of network

maximum power in
= PL
PavG

(transducer power gain)

Ga = maximum power out

maximum power in
= PavN

PavG
(available power gain)

Gp = power out of network

power into network
= PL
Pin

(operating power gain)

(12.6.8)

Each gain is expressible either in terms of the Z-parameters of the two-port, or in
terms of its S-parameters. In terms of Z-parameters, the transducer gain is given by the
following forms, obtained from the three forms of PL in Eqs. (12.6.2) and (12.6.3):

GT = 4RGRL|Z21|2∣∣(Z22 + ZL)(Zin + ZG)
∣∣2

= 4RGRL|Z21|2∣∣(Z11 + ZG)(Zout + ZL)
∣∣2

= 4RGRL|Z21|2∣∣(Z11 + ZG)(Z22 + ZL)−Z12Z21
∣∣2

(12.6.9)

And, in terms of the S-parameters:

GT = 1− |ΓG|2
|1− ΓinΓG|2 |S21|2 1− |ΓL|2

|1− S22ΓL|2

= 1− |ΓG|2
|1− S11ΓG|2 |S21|2 1− |ΓL|2

|1− ΓoutΓL|2

= (1− |ΓG|2)|S21|2(1− |ΓL|2)∣∣(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL
∣∣2

(12.6.10)

Similarly, we have for Ga and Gp:

Ga = RG
Rout

∣∣∣∣ Z21

Z11 + ZG
∣∣∣∣2

= 1− |ΓG|2
|1− S11ΓG|2 |S21|2 1

1− |Γout|2

Gp = RLRin

∣∣∣∣ Z21

Z22 + ZL
∣∣∣∣2

= 1

1− |Γin|2 |S21|2 1− |ΓL|2
|1− S22ΓL|2

(12.6.11)

The transducer gain GT is, perhaps, the most representative measure of gain for
the two-port because it incorporates the effects of both the load and generator impe-
dances, whereas Ga depends only on the generator impedance and Gp only on the load
impedance.

If the generator and load impedances are matched to the reference impedance Z0,
so that ZG = ZL = Z0 and ΓG = ΓL = 0, and Γin = S11, Γout = S22, then the power gains
reduce to:
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GT = |S21|2 , Ga = |S21|2
1− |S22|2 , Gp = |S21|2

1− |S11|2 (12.6.12)

A unilateral two-port has by definition zero reverse transmission coefficient, that is,
S12 = 0. In this case, the input and output reflection coefficients simplify into:

Γin = S11 , Γout = S22 (unilateral two-port) (12.6.13)

The expressions of the power gains simplify somewhat in this case:

GTu = 1− |ΓG|2
|1− S11ΓG|2 |S21|2 1− |ΓL|2

|1− S22ΓL|2

Gau = 1− |ΓG|2
|1− S11ΓG|2 |S21|2 1

1− |S22|2

Gpu = 1

1− |S11|2 |S21|2 1− |ΓL|2
|1− S22ΓL|2

(unilateral gains) (12.6.14)

For both the bilateral and unilateral cases, the gains Ga,Gp are obtainable from GT
by setting ΓL = Γ∗out and Γin = Γ∗G, respectively, as was the case for PavN and PavG.

The relative power ratios Pin/PavG and PL/PavN measure the mismatching between
the generator and the two-port and between the load and the two-port. Using the defi-
nitions for the power gains, we obtain the input and output mismatch factors:

Min = Pin

PavG
= GT
Gp
= 4RinRG
|Zin + ZG|2 =

(
1− |Γin|2

)(
1− |ΓG|2

)
|1− ΓinΓG|2 (12.6.15)

Mout = PL
PavN

= GT
Ga
= 4RoutRL
|Zout + ZL|2 =

(
1− |Γout|2

)(
1− |ΓL|2

)
|1− ΓoutΓL|2 (12.6.16)

The mismatch factors are always less than or equal to unity (for positive Rin and
Rout.) Clearly, Min = 1 under the conjugate-match condition Zin = Z∗G or Γin = Γ∗G, and
Mout = 1 if ZL = Z∗out or ΓL = Γ∗out. The mismatch factors can also be written in the
following forms, which show more explicitly the mismatch properties:

Min = 1−
∣∣∣∣∣ Γin − Γ∗G

1− ΓinΓG

∣∣∣∣∣
2

, Mout = 1−
∣∣∣∣∣ Γout − Γ∗L

1− ΓoutΓL

∣∣∣∣∣
2

(12.6.17)

These follow from the identity:

|1− Γ1Γ2|2 − |Γ1 − Γ∗2 |2 =
(
1− |Γ1|2

)(
1− |Γ2|2

)
(12.6.18)

The transducer gain is maximized when the two-port is simultaneously conjugate
matched, that is, when Γin = Γ∗G and ΓL = Γ∗out. Then, MG = ML = 1 and the three
gains become equal. The common maximum gain achieved by simultaneous matching
is called the maximum available gain (MAG):

GT,max = Ga,max = Gp,max = GMAG (12.6.19)
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Simultaneous matching is discussed in Sec. 12.8. The necessary and sufficient con-
dition for simultaneous matching is K ≥ 1, where K is the Rollett stability factor. It can
be shown that the MAG can be expressed as:

GMAG = |S21|
|S12|

(
K −

√
K2 − 1

)
(maximum available gain) (12.6.20)

The maximum stable gain (MSG) is the maximum value GMAG can have, which is
achievable when K = 1:

GMSG = |S21|
|S12| (maximum stable gain) (12.6.21)

In the unilateral case, the MAG is obtained either by setting ΓG = Γ∗in = S∗11 and
ΓL = Γ∗out = S∗22 in Eq. (12.6.14), or by a careful limiting process in Eq. (12.6.20), in which
K →∞ so that both the numerator factor K−√K2 − 1 and the denominator factor |S12|
tend to zero. With either method, we find the unilateral MAG:

GMAG,u = |S21|2(
1− |S11|2

)(
1− |S22|2

) = G1|S21|2G2 (unilateral MAG) (12.6.22)

The maximum unilateral input and output gain factors are:

G1 = 1

1− |S11|2 , G2 = 1

1− |S22|2 (12.6.23)

They are the maxima of the input and output gain factors in Eq. (12.6.14) realized
with conjugate matching, that is, with ΓG = S∗11 and ΓL = S∗22. For any other values
of the reflection coefficients (such that |ΓG| < 1 and ΓL| < 1), we have the following
inequalities, which follow from the identity (12.6.18):

1− |ΓG|2
|1− S11ΓG|2 ≤

1

1− |S11|2 ,
1− |ΓL|2
|1− S22ΓL|2 ≤

1

1− |S22|2 (12.6.24)

Often two-ports, such as most microwave transistor amplifiers, are approximately
unilateral, that is, the measured S-parameters satisfy |S12| � |S21|. To decide whether
the two-port should be treated as unilateral, a figure of merit is used, which is essentially
the comparison of the maximum unilateral gain to the transducer gain of the actual
device under the same matching conditions, that is, ΓG = S∗11 and ΓL = S∗22.

For these matched values ofΓG, ΓL, the ratio of the bilateral and unilateral transducer
gains can be shown to have the form:

gu = GT
GTu

= 1

|1−U|2 , U = S12S21S∗11S
∗
22(

1− |S11|2
)(

1− |S22|2
) (12.6.25)

The quantity |U| is known as the unilateral figure of merit. If the relative gain ratio
gu is near unity (typically, within 10 percent of unity), the two-port may be treated as
unilateral.

The MATLAB function sgain computes the transducer, available, and operating
power gains, given the S-parameters and the reflection coefficients ΓG, ΓL. In addition,
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it computes the unilateral gains, the maximum available gain, and the maximum stable
gain. It also computes the unilateral figure of merit ratio (12.6.25). It has usage:

Gt = sgain(S,gG,gL); transducer power gain at given ΓG,ΓL
Ga = sgain(S,gG,’a’); available power gain at given ΓG with ΓL = Γ∗out
Gp = sgain(S,gL,’p’); operating power gain at given ΓL with ΓG = Γ∗in

Gmag = sgain(S); maximum available gain (MAG)

Gmsg = sgain(S,’msg’); maximum stable gain (MSG)

Gu = sgain(S,’u’); maximum unilateral gain, Eq. (12.6.22)

G1 = sgain(S,’ui’); maximum unilateral input gain, Eq. (12.6.23)

G2 = sgain(S,’uo’); maximum unilateral output gain, Eq. (12.6.23)

gu = sgain(S,’ufm’); unilateral figure of merit gain ratio, Eq. (12.6.25)

The MATLAB functions gin and gout compute the input and output reflection coef-
ficients from S and ΓG, ΓL. They have usage:

Gin = gin(S,gL); input reflection coefficient, Eq. (12.4.3)

Gout = gout(S,gG); output reflection coefficient, Eq. (12.4.6)

Example 12.6.1: A microwave transistor amplifier uses the Hewlett-Packard AT-41410 NPN
bipolar transistor with the following S-parameters at 2 GHz [741]:

S11 = 0.61∠165o , S21 = 3.72∠59o , S12 = 0.05∠42o , S22 = 0.45∠−48o

Calculate the input and output reflection coefficients and the various power gains, if the
amplifier is connected to a generator and load with impedances ZG = 10− 20j and ZL =
30+ 40j ohm.

Solution: The following MATLAB code will calculate all the required gains:

Z0 = 50; % normalization impedance

ZG = 10+20j; gG = z2g(ZG,Z0); % ΓG = −0.50+ 0.50j = 0.71∠135o

ZL = 30-40j; gL = z2g(ZL,Z0); % ΓL = −0.41− 0.43j = 0.59∠−133.15o

S = smat([0.61 165 3.72 59 0.05 42 0.45 -48]); % reshape S into matrix

Gin = gin(S,gL); % Γin = 0.54∠162.30o

Gout = gout(S,gG); % Γout = 0.45∠−67.46o

Gt = sgain(S,gG,gL); % GT = 4.71, or, 6.73 dB

Ga = sgain(S,gG,’a’); % Ga = 11.44, or, 10.58 dB

Gp = sgain(S,gL,’p’); % Gp = 10.51, or, 10.22 dB

Gu = sgain(S,’u’); % Gu = 27.64, or, 14.41 dB

G1 = sgain(S,’ui’); % G1 = 1.59, or, 2.02 dB

G2 = sgain(S,’uo’); % G2 = 1.25, or, 0.98 dB

gu = sgain(S,’ufm’); % gu = 1.23, or, 0.89 dB

Gmag = sgain(S); % GMAG = 41.50, or, 16.18 dB

Gmsg = sgain(S,’msg’); % GMSG = 74.40, or, 18.72 dB



406 Electromagnetic Waves & Antennas – S. J. Orfanidis

The amplifier cannot be considered to be unilateral as the unilateral figure of merit ratio
gu = 1.23 is fairly large (larger than 10 percent from unity.)

The amplifier is operating at a gain of GT = 6.73 dB, which is far from the maximum value
of GMAG = 16.18 dB. This is because it is mismatched with the given generator and load
impedances.

To realize the optimum gain GMAG the amplifier must ‘see’ certain optimum generator
and load impedances or reflection coefficients. These can be calculated by the MATLAB
function smatch and are found to be:

ΓG = 0.82∠−162.67o ⇒ ZG = g2z(ZG,Z0)= 5.12− 7.54j Ω

ΓL = 0.75∠52.57o ⇒ ZL = g2z(ZL,Z0)= 33.66+ 91.48j Ω

The design of such optimum matching terminations and the function smatch are discussed
in Sec. 12.8. The functions g2z and z2g were discussed in Sec. 9.7 . ��

12.7 Generalized S-Parameters and Power Waves

The practical usefulness of the S-parameters lies in the fact that the definitions (12.1.4)
represent forward and backward traveling waves, which can be measured remotely by
connecting a network analyzer to the two-port with transmission lines of characteristic
impedance equal to the normalization impedance Z0. This was depicted in Fig. 12.1.3.

A generalized definition of S-parameters and wave variables can be given by using
in Eq. (12.1.4) two different normalization impedances for the input and output ports.

Anticipating that the two-port will be connected to a generator and load of impedan-
ces ZG and ZL, a particularly convenient choice is to use ZG for the input normalization
impedance and ZL for the output one, leading to the definition of the power waves (as
opposed to traveling waves) [513–516]:

a′1 =
V1 + ZGI1

2
√
RG

b′1 =
V1 − Z∗GI1

2
√
RG

a′2 =
V2 − ZLI2

2
√
RL

b′2 =
V2 + Z∗L I2

2
√
RL

(power waves) (12.7.1)

We note that the b-waves involve the complex-conjugates of the impedances. The
quantities RG,RL are the resistive parts of ZG,ZL and are assumed to be positive. These
definitions reduce to the conventional traveling ones if ZG = ZL = Z0.

These “wave” variables can no longer be interpreted as incoming and outgoing waves
from the two sides of the two-port. However, as we see below, they have a nice interpre-
tation in terms of power transfer to and from the two-port and simplify the expressions
for the power gains. Inverting Eqs. (12.7.1), we have:

V1 = 1√
RG
(Z∗Ga

′
1 + ZGb′1)

I1 = 1√
RG
(a′1 − b′1)

V2 = 1√
RL
(Z∗L a

′
2 + ZLb′2)

I2 = 1√
RL
(b′2 − a′2)

(12.7.2)
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The power waves can be related directly to the traveling waves. For example, ex-
pressing Eqs. (12.7.1) and (12.1.5) in matrix form, we have for port-1:

[
a′1
b′1

]
= 1

2
√
RG

[
1 ZG
1 −Z∗G

][
V1

I1

]
,
[
V1

I1

]
= 1√

Z0

[
Z0 Z0

1 −1

][
a1

b1

]

It follows that: [
a′1
b′1

]
= 1

2
√
RGZ0

[
1 ZG
1 −Z∗G

][
Z0 Z0

1 −1

][
a1

b1

]
or,

[
a′1
b′1

]
= 1

2
√
RGZ0

[
Z0 + ZG Z0 − ZG
Z0 − Z∗G Z0 + Z∗G

][
a1

b1

]
(12.7.3)

The entries of this matrix can be expressed directly in terms of the reflection coeffi-
cient ΓG. Using the identities of Problem 12.3, we may rewrite Eq. (12.7.3) and its inverse
as follows::

[
a′1
b′1

]
= 1√

1− |ΓG|2
[

ejφG −ΓGejφG
−Γ∗Ge−jφG e−jφG

][
a1

b1

]

[
a1

b1

]
= 1√

1− |ΓG|2
[
e−jφG ΓGejφG
Γ∗Ge−jφG ejφG

][
a′1
b′1

] (12.7.4)

where, noting that the quantity |1− ΓG|/(1− ΓG) is a pure phase factor, we defined:

ΓG = ZG − Z0

ZG + Z0
, ejφG = |1− ΓG|

1− ΓG = 1− Γ∗G
|1− ΓG| (12.7.5)

Similarly, we have for the power and traveling waves at port-2:

[
a′2
b′2

]
= 1√

1− |ΓL|2
[

ejφL −ΓLejφL
−Γ∗L e−jφL e−jφL

][
a2

b2

]

[
a2

b2

]
= 1√

1− |ΓL|2
[
e−jφL ΓLejφL
Γ∗L e−jφL ejφL

][
a′2
b′2

] (12.7.6)

where

ΓL = ZL − Z0

ZL + Z0
, ejφL = |1− ΓL|

1− ΓL =
1− Γ∗L
|1− ΓL| (12.7.7)

The generalized S-parameters are the scattering parameters with respect to the
power wave variables, that is,

[
b′1
b′2

]
=
[
S′11 S′12

S′21 S′22

][
a′1
a′2

]
⇒ b′ = S′a′ (12.7.8)

To relate S′ to the conventional scattering matrix S, we define the following diagonal
matrices:
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Γ =
[
ΓG 0
0 ΓL

]
, F =




ejφG√
1− |ΓG|2

0

0
ejφL√

1− |ΓL|2


 =

[
FG 0
0 FL

]
(12.7.9)

Using these matrices, it follows from Eqs. (12.7.4) and (12.7.6):

a′1 = FG(a1 − ΓGb1)

a′2 = FL(a2 − ΓLb2)
⇒ a′ = F(a− Γb) (12.7.10)

b′1 = F∗G(b1 − Γ∗Ga1)

b′2 = F∗L (b2 − Γ∗La2)
⇒ b′ = F∗(b− Γ∗a) (12.7.11)

Using b = Sa, we find

a′ = F(a− Γb)= F(I − ΓS)a ⇒ a = (I − ΓS)−1F−1a′

b′ = F∗(S− Γ∗)a = F∗(S− Γ∗)(I − ΓS)−1F−1a′ = S′a′

where I is the 2×2 unit matrix. Thus, the generalized S-matrix is:

S′ = F∗(S− Γ∗)(I − ΓS)−1F−1 (12.7.12)

We note that S′ = S when ZG = ZL = Z0, that is, when ΓG = ΓL = 0. The explicit
expressions for the matrix elements of S′ can be derived as follows:

S′11 =
(S11 − Γ∗G)(1− S22ΓL)+S21S12ΓL

(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL
e−2jφG

S′22 =
(S22 − Γ∗L )(1− S11ΓG)+S21S12ΓG
(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL

e−2jφL

(12.7.13a)

S′21 =
√

1− |ΓG|2 S21

√
1− |ΓL|2

(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL
e−j(φG+φL)

S′12 =
√

1− |ΓL|2 S12

√
1− |ΓG|2

(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL
e−j(φL+φG)

(12.7.13b)

The S′11, S
′
22 parameters can be rewritten in terms of the input and output reflection

coefficients by using Eq. (12.13.2) and the following factorization identities:

(S11 − Γ∗G)(1− S22ΓL)+S21S12ΓL = (Γin − Γ∗G)(1− S22ΓL)
(S22 − Γ∗L )(1− S11ΓG)+S21S12ΓG = (Γout − Γ∗L )(1− S11ΓG)

It then follows from Eq. (12.7.13) that:

S′11 =
Γin − Γ∗G

1− ΓinΓG
e−2jφG , S′22 =

Γout − Γ∗L
1− ΓoutΓL

e−2jφL (12.7.14)

Therefore, the mismatch factors (12.6.17) are recognized to be:
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MG = 1− |S′11|2 , ML = 1− |S′22|2 (12.7.15)

The power flow relations (12.2.1) into and out of the two-port are also valid in terms
of the power wave variables. Using Eq. (12.7.2), it can be shown that:

Pin = 1

2
Re[V∗1 I1]=

1

2
|a′1|2 −

1

2
|b′1|2

PL = 1

2
Re[V∗2 I2]=

1

2
|b′2|2 −

1

2
|a′2|2

(12.7.16)

In the definitions (12.7.1), the impedances ZG,ZL are arbitrary normalization param-
eters. However, if the two-port is actually connected to a generator VG with impedance
ZG and a load ZL, then the power waves take particularly simple forms.

It follows from Fig. 12.1.4 thatVG = V1+ZGI1 andV2 = ZLI2. Therefore, definitions
Eq. (12.7.1) give:

a′1 =
V1 + ZGI1

2
√
RG

= VG
2
√
RG

a′2 =
V2 − ZLI2

2
√
RL

= 0

b′2 =
V2 + Z∗L I2

2
√
RL

= ZL + Z
∗
L

2
√
RL

I2 = 2RL
2
√
RL
I2 =

√
RL I2

(12.7.17)

It follows that the available power from the generator and the power delivered to
the load are given simply by:

PavG = |VG|
2

8RG
= 1

2
|a′1|2

PL = 1

2
RL|I2|2 = 1

2
|b′2|2

(12.7.18)

Because a′2 = 0, the generalized scattering matrix gives, b′1 = S′11a
′
1 and b′2 = S′21a

′
1.

The power expressions (12.7.16) then become:

Pin = 1

2
|a′1|2 −

1

2
|b′1|2 =

(
1− |S′11|2

)1

2
|a′1|2 =

(
1− |S′11|2

)
PavG

PL = 1

2
|b′2|2 −

1

2
|a′2|2 =

1

2
|b′2|2 = |S′21|2

1

2
|a′1|2 = |S′21|2PavG

(12.7.19)

It follows that the transducer and operating power gains are:

GT = PL
PavG

= |S′21|2 , Gp = PLPin
= |S′21|2

1− |S′11|2
(12.7.20)

These also follow from the explicit expressions (12.7.13) and Eqs. (12.6.10) and
(12.6.11). We can also express the available power gain in terms of the generalized
S-parameters, that is, Ga = |S′21|2/

(
1− |S′22|2

)
. Thus, we summarize:
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GT = |S′21|2 , Ga = |S′21|2
1− |S′22|2

, Gp = |S′21|2
1− |S′11|2

(12.7.21)

When the load and generator are matched to the network, that is, Γin = Γ∗G and
ΓL = Γ∗out, the generalized reflections coefficients vanish, S′11 = S′22 = 0, making all the
gains equal to each other.

12.8 Simultaneous Conjugate Matching

We saw that the transducer, available, and operating power gains become equal to the
maximum available gain GMAG when both the generator and the load are conjugately
matched to the two-port, that is, Γin = Γ∗G and ΓL = Γ∗out. Using Eq. (12.5.8), these
conditions read explicitly:

Γ∗G = S11 + S12S21ΓL
1− S22ΓL

= S11 −∆ΓL
1− S22ΓL

Γ∗L = S22 + S12S21ΓG
1− S22ΓG

= S22 −∆ΓG
1− S11ΓG

(12.8.1)

Assuming a bilateral two-port, Eqs. (12.8.1) can be solved in the two unknowns ΓG, ΓL
(eliminating one of the unknowns gives a quadratic equation for the other.) The resulting
solutions can be expressed in terms of the parameters (12.5.1):

ΓG =
B1 ∓

√
B2

1 − 4|C1|2
2C1

ΓL =
B2 ∓

√
B2

2 − 4|C2|2
2C2

(simultaneous conjugate match) (12.8.2)

where the minus signs are used when B1 > 0 and B2 > 0, and the plus signs, otherwise.
A necessary and sufficient condition for these solutions to have magnitudes |ΓG| < 1

and |ΓL| < 1 is that the Rollett stability factor be greater than unity, K > 1. This is
satisfied when the two-port is unconditionally stable, which implies that K > 1 and
B1 > 0, B2 > 0.

A conjugate match exists also when the two-port is potentially unstable, but with
K > 1. Necessarily, this means that B1 < 0, B2 < 0, and also |∆| > 1. Such cases are
rare in practice. For example, most microwave transistors have either K > 1 and are
stable, or, they are potentially unstable with K < 1 and |∆| < 1.

If the two-port is unilateral, S12 = 0, then the two equations (12.8.1) decouple, so
that the optimum conjugately matched terminations are:

ΓG = S∗11 , ΓL = S∗22 (unilateral conjugate match) (12.8.3)

The MATLAB function smatch implements Eqs. (12.8.2). It works only if K > 1. Its
usage is as follows:
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[gG,gL] = smatch(S); % conjugate matched terminations ΓG, ΓL

To realize such optimum conjugately matched terminations, matching networks
must be used at the input and output of the two-port as shown in Fig. 12.8.1.

The input matching network can be thought as being effectively connected to the
impedance Zin = Z∗G at its output terminals. It must transform Zin into the actual
impedance of the connected generator, typically, Z0 = 50 ohm.

The output matching network must transform the actual load impedance, here Z0,
into the optimum load impedance ZL = Z∗out.

Fig. 12.8.1 Input and output matching networks.

The matching networks may be realized in several possible ways, as discussed in
Chap. 11. Stub matching, quarter-wavelength matching, or lumped L-section or Π-
section networks may be used.

Example 12.8.1: A microwave transistor amplifier uses the Hewlett-Packard AT-41410 NPN
bipolar transistor having S-parameters at 2 GHz [741]:

S11 = 0.61∠165o , S21 = 3.72∠59o , S12 = 0.05∠42o , S22 = 0.45∠−48o

Determine the optimum conjugately matched source and load terminations, and design
appropriate input and output matching networks.

Solution: This is the continuation of Example 12.6.1. The transistor is stable with K = 1.1752
and |∆| = 0.1086. The function smatch gives:

[ΓG, ΓL]= smatch(S) ⇒ ΓG = 0.8179∠−162.6697o , ΓL = 0.7495∠52.5658o

The corresponding source, load, input, and output impedances are (with Z0 = 50):

ZG = Z∗in = 5.1241− 7.5417j Ω , ZL = Z∗out = 33.6758+ 91.4816j Ω

The locations of the optimum reflection coefficients on the Smith chart are shown in
Fig. 12.8.2. For comparison, the unilateral solutions of Eq. (12.8.3) are also shown.

We consider three types of matching networks: (a) microstrip single-stub matching net-
works with open shunt stubs, shown in Fig. 12.8.3, (b) microstrip quarter-wavelength
matching networks with open λ/8 or 3λ/8 stubs, shown in Fig. 12.8.4, and (c) L-section
matching networks, shown in 12.8.5.

In Fig. 12.8.3, the input stub must transform Zin to Z0. It can be designed with the help of
the function stub1, which gives the two solutions:
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Fig. 12.8.2 Optimum load and source reflection coefficients.

Fig. 12.8.3 Input and output stub matching networks.

dl = stub1(Zin/Z0,’po’)=
[

0.3038 0.4271
0.1962 0.0247

]

We choose the lower one, which has the shortest lengths. Thus, the stub length is d =
0.1962λ and the segment length l = 0.0247λ. Both segments can be realized with mi-
crostrips of characteristic impedance Z0 = 50 ohm. Similarly, the output matching net-
work can be designed by:

dl = stub1(Zout/Z0,’po’)=
[

0.3162 0.1194
0.1838 0.2346

]

Again, we choose the lower solutions, d = 0.1838λ and l = 0.2346λ. The solutions using
shorted shunt stubs are:

stub1(Zin/Z0)=
[

0.0538 0.4271
0.4462 0.0247

]
, stub1(Zout/Z0)=

[
0.0662 0.1194
0.4338 0.2346

]

Using microstrip lines with alumina substrate (εr = 9.8), we obtain the following values
for the width-to-height ratio, effective permittivity, and wavelength:

u = w
h
= mstripr(εr, Z0)= 0.9711

εeff = mstripa(εr, u)= 6.5630

λ = λ0√
εeff

= 5.8552 cm
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where λ0 = 15 cm is the free-space wavelength at 2 GHz. It follows that the actual segment
lengths are d = 1.1486 cm, l = 0.1447 cm for the input network, and d = 1.0763 cm,
l = 1.3734 cm for the output network.

In the quarter-wavelength method shown in Fig. 12.8.4, we use the function qwt2 to carry
out the design of the required impedances of the microstrip segments. We have for the
input and output networks:

[Z1, Z2]= qwt2(Zin, Z0)= [28.4817,−11.0232] Ω

[Z1, Z2]= qwt2(Zout, Z0)= [118.7832,103.8782] Ω

Fig. 12.8.4 Quarter-wavelength matching networks with λ/8-stubs.

For the input case, we find Z2 = −11.0232 Ω, which means that we should use either a
3λ/8-shorted stub or a λ/8-opened one. We choose the latter. Similarly, for the output
case, we have Z2 = 103.8782 Ω, and we choose a 3λ/8-opened stub. The parameters of
each microstrip segment are:

Z1 = 28.4817 Ω, u = 2.5832, εeff = 7.2325, λ = 5.578 cm, λ/4 = 1.394 cm
Z2 = 11.0232 Ω, u = 8.9424, εeff = 8.2974, λ = 5.207 cm, λ/8 = 0.651 cm
Z1 = 118.7832 Ω, u = 0.0656, εeff = 5.8790, λ = 6.186 cm, λ/4 = 1.547 cm
Z2 = 103.8782 Ω, u = 0.1169, εeff = 7.9503, λ = 6.149 cm, 3λ/8 = 2.306 cm

Finally, the designs using L-sections shown in Fig. 12.8.5, can be carried out with the help
of the function lmatch. We have the dual solutions for the input and output networks:

Fig. 12.8.5 Input and output matching with L-sections.

[X1, X2]= lmatch(Z0, Zin,’n’)=
[

16.8955 −22.7058
−16.8955 7.6223

]

[X1, X2]= lmatch(Zout, Z0,’n’)=
[

57.9268 −107.7472
502.4796 7.6223

]
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According to the usage of lmatch, the output network transforms Z0 into Z∗out, but that is
equal to ZL as required.

Choosing the first rows as the solutions in both cases, the shunt part X1 will be inductive
and the series part X2, capacitive. At 2 GHz, we find the element values:

L1 = X1

ω
= 1.3445 nH, C1 = − 1

ωX2
= 3.5047 pF

L2 = X1

ω
= 4.6097 nH, C2 = − 1

ωX2
= 0.7386 pF

The output network, but not the input one, also admits a reversed L-section solution:

[X1, X2]= lmatch(Zout, Z0,’r’)=
[

71.8148 68.0353
−71.8148 114.9280

]

The essential MATLAB code used to generate the above results was as follows:

Z0 = 50; f = 2; w=2*pi*f; la0 = 30/f; er = 9.8; % f in GHz

S = smat([0.61 165 3.72 59 0.05 42 0.45 -48]); % S-matrix

[gG,gL] = smatch(S); % simultaneous conjugate match

smith; % draw Fig. 12.8.2

plot(gG, ’.’); plot(conj(S(1,1)), ’o’);
plot(gL, ’.’); plot(conj(S(2,2)), ’o’);

ZG = g2z(gG,Z0); Zin = conj(ZG);
ZL = g2z(gL,Z0); Zout = conj(ZL);

dl = stub1(Zin/Z0, ’po’); % single-stub design

dl = stub1(Zout/Z0, ’po’);

u = mstripr(er,Z0); % microstrip w/h ratio

eff = mstripa(er,u); % effective permittivity

la = la0/sqrt(eff); % wavelength within microstrip

[Z1,Z2] = qwt2(Zin, Z0); % quarter-wavelength with λ/8 stub

[Z1,Z2] = qwt2(Zout, Z0);

X12 = lmatch(Z0,Zin,’n’); L1 = X12(1,1)/w; C1 = -1/(w * X12(1,2))*1e3;
X12 = lmatch(Zout,Z0,’n’); L2 = X12(1,1)/w; C2 = -1/(w * X12(1,2))*1e3;
X12 = lmatch(Zout,Z0,’r’); % L,C in units of nH and pF

One could replace the stubs with balanced stubs, as discussed in Sec. 11.8, or use Π- or
T-sections instead of L-sections. ��

12.9 Power Gain Circles

For a stable two-port, the maximum transducer gain is achieved at single pair of points
ΓG, ΓL. When the gain G is required to be less than GMAG, there will be many possible
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pairs ΓG, ΓL at which the gain G is realized. The locus of such points ΓG and ΓL on the
Γ-plane is typically a circle of the form:

|Γ− c| = r (12.9.1)

where c, r are the center and radius of the circle and depend on the desired value of the
gain G.

In practice, several types of such circles are used, such as unilateral, operating, and
available power gain circles, as well as constant noise figure circles, constant SWR circles,
and others.

The gain circles allow one to select appropriate values for ΓG, ΓL that, in addition to
providing the desired gain, also satisfy other requirements, such as striking a balance
between minimizing the noise figure and maximizing the gain.

The MATLAB function sgcirc calculates the stability circles as well as the operating,
available, and unilateral gain circles. Its complete usage is:

[c,r] = sgcirc(S,’s’); % source stability circle

[c,r] = sgcirc(S,’l’); % load stability circle

[c,r] = sgcirc(S,’p’,G); % operating power gain circle

[c,r] = sgcirc(S,’a’,G); % available power gain circle

[c,r] = sgcirc(S,’ui’,G); % unilateral input gain circle

[c,r] = sgcirc(S,’uo’,G); % unilateral output gain circle

where in the last four cases G is the desired gain in dB.

12.10 Unilateral Gain Circles

We consider only the unconditionally stable unilateral case, which has |S11| < 1 and
|S22| < 1. The dependence of the transducer power gain on ΓG and ΓL decouples and
the value of the gain may be adjusted by separately choosing ΓG and ΓL. We have from
Eq. (12.6.14):

GT = 1− |ΓG|2
|1− S11ΓG|2 |S21|2 1− |ΓL|2

|1− S22ΓL|2 = GG |S21|2GL (12.10.1)

The input and output gain factors GG,GL satisfy the inequalities (12.6.24). Concen-
trating on the output gain factor, the corresponding gain circle is obtained as the locus
of points ΓL that will lead to a fixed value, say GL = G, which necessarily must be less
than the maximum G2 given in Eq. (12.6.23), that is,

1− |ΓL|2
|1− S22ΓL|2 = G ≤ G2 = 1

1− |S22|2 (12.10.2)

Normalizing the gain G to its maximum value g = G/G2 = G
(
1 − |S22|2

)
, we may

rewrite (12.10.2) in the form:

(
1− |ΓL|2

)(
1− |S22|2

)
|1− S22ΓL|2 = g ≤ 1 (12.10.3)
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This equation can easily be rearranged into the equation of a circle |ΓL−c| = r, with
center and radius given by:

c = gS∗22

1− (1− g)|S22|2 , r =
√

1− g(1− |S22|2
)

1− (1− g)|S22|2 (12.10.4)

When g = 1 or G = G2, the gain circle collapses onto a single point, that is, the
optimum point ΓL = S∗22. Similarly, we find for the constant gain circles of the input
gain factor:

c = gS∗11

1− (1− g)|S11|2 , r =
√

1− g(1− |S11|2
)

1− (1− g)|S11|2 (12.10.5)

where here, g = G/G1 = G
(
1− |S11|2

)
and the circles are |ΓG − c| = r.

Both sets of c, r satisfy the conditions |c| < 1 and |c| + r < 1, the latter implying
that the circles lie entirely within the unit circle |Γ| < 1, that is, within the Smith chart.

Example 12.10.1: A unilateral microwave transistor has S-parameters:

S11 = 0.8∠120o, S21 = 4∠60o, S12 = 0, S22 = 0.2∠−30o

The unilateral MAG and the maximum input and output gains are obtained as follows:

GMAG,u = sgain(S,’u’)= 16.66 dB

G1 = sgain(S,’ui’)= 4.44 dB

G2 = sgain(S,’uo’)= 0.18 dB

Most of the gain is accounted for by the factor |S21|2, which is 12.04 dB. The constant input
gain circles for GG = 1,2,3 dB are shown in Fig. 12.10.1. Their centers lie along the ray to
S∗11. For example, the center and radius of the 3-dB case were computed by

[c3, r3]= sgcirc(S,’ui’,3) ⇒ c3 = 0.701∠−120o , r3 = 0.233

Fig. 12.10.1 Unilateral input gain circles.

Because the output does not provide much gain, we may choose the optimum value ΓL =
S∗22 = 0.2∠30o. Then, with any point ΓG along the 3-dB input gain circle the total trans-
ducer gain will be in dB:
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GT = GG + |S21|2 +GL = 3+ 12.04+ 0.18 = 15.22 dB

Points along the 3-dB circle are parametrized as ΓG = c3 + r3ejφ, where φ is any angle.
Choosingφ = arg(S∗11)−πwill correspond to the point on the circle that lies closest to the
origin, that is, ΓG = 0.468∠−120o, as shown in Fig. 12.10.1. The corresponding generator
and load impedances will be:

ZG = 69.21+ 14.42j Ω, ZL = 23.15− 24.02j Ω

The MATLAB code used to generate these circles was:

S = smat([0.8, 120, 4, 60, 0, 0, 0.2, -30]);

[c1,r1] = sgcirc(S,’ui’,1);
[c2,r2] = sgcirc(S,’ui’,2);
[c3,r3] = sgcirc(S,’ui’,3);

smith; smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3);

c = exp(-j*angle(S(1,1))); line([0,real(c)], [0,imag(c)]);

gG = c3 - r3*exp(j*angle(c3));

plot(conj(S(1,1)),’.’); plot(conj(S(2,2)),’.’); plot(gG,’.’);

The input and output matching networks can be designed using open shunt stubs as in
Fig. 12.8.3. The stub lengths are found to be (with Z0 = 50 Ω):

dl = stub1(Z∗G/Z0,’po’)=
[

0.3704 0.3304
0.1296 0.0029

]

dl = stub1(Z∗L /Z0,’po’)=
[

0.4383 0.0994
0.0617 0.3173

]

Choosing the shortest lengths, we have for the input network d = 0.1296λ, l = 0.0029λ,
and for the output network, d = 0.0617λ, l = 0.3173λ. Fig. 12.10.2 depicts the complete
matching circuit. ��

Fig. 12.10.2 Input and output stub matching networks.



418 Electromagnetic Waves & Antennas – S. J. Orfanidis

12.11 Operating and Available Power Gain Circles

Because the transducer power gain GT depends on two independent parameters—the
source and load reflection coefficients—it is difficult to find the simultaneous locus of
points for ΓG, ΓL that will result in a given value for the gain.

If the generator is matched, Γin = Γ∗G, then the transducer gain becomes equal to
the operating gain GT = Gp and depends only on the load reflection coefficient ΓL.
The locus of points ΓL that result in fixed values of Gp are the operating power gain
circles. Similarly, the available power gain circles are obtained by matching the load
end, ΓL = Γ∗out, and varying ΓG to achieve fixed values of the available power gain.

Using Eqs. (12.6.11) and (12.5.8), the conditions for achieving a constant value, say
G, for the operating or the available power gains are:

Gp = 1

1− |Γin|2 |S21|2 1− |ΓL|2
|1− S22ΓL|2 = G, Γ∗G = Γin = S11 −∆ΓL

1− S22ΓL

Ga = 1− |ΓG|2
|1− S11ΓG|2 |S21|2 1

1− |Γout|2 = G, Γ∗L = Γout = S22 −∆ΓG
1− S11ΓG

(12.11.1)

We consider the operating gain first. Defining the normalized gain g = G/|S21|2,
substituting Γin, and using the definitions (12.5.1), we obtain the condition:

g = 1− |ΓL|2
|1− S22ΓL|2 − |S11 −∆ΓL|2

= 1− |ΓL|2(|S22|2 − |∆|2
)|ΓL|2 − (S22 −∆S∗11)ΓL − (S∗22 −∆∗S11)Γ∗L + 1− |S11|2

= 1− |ΓL|2
D2|ΓL|2 −C2ΓL −C∗2 Γ∗L + 1− |S11|2

This can be rearranged into the form:

|ΓL|2 − gC2

1+ gD2
ΓL − gC∗2

1+ gD2
Γ∗L =

1− g(1− |S11|2
)

1+ gD2

and then into the circle form:

∣∣∣∣∣ΓL − gC∗2
1+ gD2

∣∣∣∣∣
2

= g2|C2|2
(1+ gD2)2

+ 1− g(1− |S11|2
)

1+ gD2

Using the identities (12.5.2) and 1 − |S11|2 = 2K|S12S21| +D2, which follows from
(12.5.1), the right-hand side of the above circle form can be written as:

g2|C2|2
(1+ gD2)2

+ 1− g(1− |S11|2
)

1+ gD2
= g

2|S12S21|2 − 2gK|S12S21| + 1

(1+ gD2)2
(12.11.2)

Thus, the operating power gain circle will be |ΓL − c|2 = r2 with center and radius:
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c = gC∗2
1+ gD2

, r =
√
g2|S12S21|2 − 2gK|S12S21| + 1

|1+ gD2| (12.11.3)

The points ΓL on this circle result into the value Gp = G for the operating gain.
Such points can be parametrized as ΓL = c + rejφ, where 0 ≤ φ ≤ 2π. As ΓL traces
this circle, the conjugately matched source coefficient ΓG = Γ∗in will also trace a circle
because Γin is related to ΓL by the bilinear transformation (12.5.8).

In a similar fashion, we find the available power gain circles to be |ΓG − c|2 = r2,
where g = G/|S21|2 and:

c = gC∗1
1+ gD1

, r =
√
g2|S12S21|2 − 2gK|S12S21| + 1

|1+ gD1| (12.11.4)

We recall from Sec. 12.5 that the centers of the load and source stability circles were
cL = C∗2 /D2 and cG = C∗1 /D1. It follows that the centers of the operating power gain
circles are along the same ray as cL, and the centers of the available gain circles are
along the same ray as cG.

For an unconditionally stable two-port, the gain G must be 0 ≤ G ≤ GMAG, with
GMAG given by Eq. (12.6.20). It can be shown easily that the quantities under the square
roots in the definitions of the radii r in Eqs. (12.11.3) and (12.11.4) are non-negative.
The gain circles lie inside the unit circle for all such values of G. The radii r vanish
when G = GMAG, that is, the circles collapse into single points corresponding to the
simultaneous conjugate matched solutions of Eq. (12.8.2).

The MATLAB function sgcirc calculates the center and radii c, r of the operating
and available power gain circles. It has usage, where G must be entered in dB:

[c,r] = sgcirc(S,’p’,G); operating power gain circle

[c,r] = sgcirc(S,’a’,G); available power gain circle

Example 12.11.1: A microwave transistor amplifier uses the Hewlett-Packard AT-41410 NPN
bipolar transistor with the following S-parameters at 2 GHz [741]:

S11 = 0.61∠165o , S21 = 3.72∠59o , S12 = 0.05∠42o , S22 = 0.45∠−48o

Calculate GMAG and plot the operating and available power gain circles for G = 13,14,15
dB. Then, design source and load matching circuits for the case G = 15 dB by choosing
the reflection coefficient that has the smallest magnitude.

Solution: The MAG was calculated in Example 12.6.1, GMAG = 16.18 dB. The gain circles and the
corresponding load and source stability circles are shown in Fig. 12.11.1. The operating
gain and load stability circles were computed and plotted by the MATLAB statements:

[c1,r1] = sgcirc(S,’p’,13); % c1 = 0.4443∠52.56o, r1 = 0.5212

[c2,r2] = sgcirc(S,’p’,14); % c2 = 0.5297∠52.56o, r2 = 0.4205

[c3,r3] = sgcirc(S,’p’,15); % c3 = 0.6253∠52.56o, r3 = 0.2968

[cL,rL] = sgcirc(S,’l’); % cL = 2.0600∠52.56o, rL = 0.9753

smith; smithcir(cL,rL,1.7); % display portion of circle with |ΓL| ≤ 1.7
smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3);
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Fig. 12.11.1 Operating and available power gain circles.

The gain circles lie entirely within the unit circle, for example, we have r3+|c3| = 0.9221 <
1, and their centers lie along the ray of cL. As ΓL traces the 15-dB circle, the corresponding
ΓG = Γ∗in traces its own circle, also lying within the unit circle. The following MATLAB code
computes and adds that circle to the above Smith chart plots:

phi = linspace(0,2*pi,361); % equally spaced angles at 1o intervals

gammaL = c3 + r3 * exp(j*phi); % points on 15-dB operating gain circle

gammaG = conj(gin(S,gammaL)); % circle of conjugate matched source points

plot(gammaG);

In particular, the point ΓL on the 15-dB circle that lies closest to the origin is ΓL =
c3 − r3ej arg c3 = 0.3285∠52.56o. The corresponding matched load will be ΓG = Γ∗in =
0.6805∠−163.88o. These and the corresponding source and load impedances were com-
puted by the MATLAB statements:

gL = c3 - r3*exp(j*angle(c3)); zL = g2z(gL);
gG = conj(gin(S,gL)); zG = g2z(gG);

The source and load impedances normalized to Z0 = 50 ohm are:

zG = ZGZ0
= 0.1938− 0.1363j , zL = ZLZ0

= 1.2590+ 0.7361j

The matching circuits can be designed in a variety of ways as in Example 12.8.1. Using
open shunt stubs, we can determine the stub and line segment lengths with the help of
the function stub1:

dl = stub1(z∗G,’po’)=
[

0.3286 0.4122
0.1714 0.0431

]

dl = stub1(z∗L ,’po’)=
[

0.4033 0.0786
0.0967 0.2754

]

In both cases, we may choose the lower solutions as they have shorter total length d + l.
The available power gain circles can be determined in a similar fashion with the help of
the MATLAB statements:
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[c1,r1] = sgcirc(S,’a’,13); % c1 = 0.5384∠−162.67o, r1 = 0.4373

[c2,r2] = sgcirc(S,’a’,14); % c2 = 0.6227∠−162.67o, r2 = 0.3422

[c3,r3] = sgcirc(S,’a’,15); % c3 = 0.7111∠−162.67o, r3 = 0.2337

[cG,rG] = sgcirc(S,’s’); % cG = 1.5748∠−162.67o, rG = 0.5162

smith; smithcir(cG,rG); % plot entire source stability circle

smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3);

Again, the circles lie entirely within the unit circle. As ΓG traces the 15-dB circle, the
corresponding matched load ΓL = Γ∗out traces its own circle on the Γ-plane. It can be
plotted with:

phi = linspace(0,2*pi,361); % equally spaced angles at 1o intervals

gammaG = c3 + r3 * exp(j*phi); % points on 15-dB available gain circle

gammaL = conj(gout(S,gammaG)); % circle of conjugate matched loads

plot(gammaL);

In particular, the point ΓG = c3 − r3ej arg c3 = 0.4774∠−162.67o lies closest to the origin.
The corresponding matched load will have ΓL = Γ∗out = 0.5728∠50.76o. The resulting
normalized impedances are:

zG = ZGZ0
= 0.3609− 0.1329j , zL = ZLZ0

= 1.1135+ 1.4704j

and the corresponding stub matching networks will have lengths:

stub1(z∗G,’po’)=
[

0.3684 0.3905
0.1316 0.0613

]
, stub1(z∗L ,’po’)=

[
0.3488 0.1030
0.1512 0.2560

]

The lower solutions have the shortest lengths. For both the operating and available gain
cases, the stub matching circuits will be similar to those in Fig. 12.8.3. ��

When the two-port is potentially unstable (but with |S11| < 1 and |S22| < 1,) the
stability circles intersect with the unit-circle, as shown in Fig. 12.5.2. In this case, the
operating and available power gain circles also intersect the unit-circle and at the same
points as the stability circles.

We demonstrate this in the specific case of K < 1, |S11| < 1, |S22| < 1, but with
D2 > 0, an example of which is shown in Fig. 12.11.2. The intersection of an operating
gain circle with the unit-circle is obtained by setting |ΓL| = 1 in the circle equation
|ΓL − c| = r. Writing ΓL = ejθL and c = |c|ejθc , we have:

r2 = |ΓL − c|2 = 1− 2|c| cos(θL − θc)+|c|2 ⇒ cos(θL − θc)= 1+ |c|2 − r2

2|c|
Similarly, the intersection of the load stability circle with the unit-circle leads to the

relationship:

r2
L = |ΓL − cL|2 = 1− 2|cL| cos(θL −θcL)+|cL|2 ⇒ cos(θL −θcL)=

1+ |cL|2 − r2
L

2|cL|
Because c = gC∗2 /(1 + gD2), cL = C∗2 /D2, and D2 > 0, it follows that the phase

angles of c and cL will be equal, θc = θcL . Therefore, in order for the load stability
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circle and the gain circle to intersect the unit-circle at the same ΓL = ejθL , the following
condition must be satisfied:

cos(θL − θc)= 1+ |c|2 − r2

2|c| = 1+ |cL|2 − r2
L

2|cL| (12.11.5)

Using the identities 1 − |S11|2 = B2 − D2 and 1 − |S11|2 =
(|cL|2 − r2

L
)
D2, which

follow from Eqs. (12.5.1) and (12.5.6), we obtain:

1+ |cL|2 − r2
L

2|cL| = 1+ (B2 −D2)/D2

2|C2|/|D2| = B2

2|C2|
where we used D2 > 0. Similarly, Eq. (12.11.2) can be written in the form:

r2 = |c|2 + 1− g(1− |S11|2
)

1+ gD2
⇒ |c|2 − r2 = g

(
1− |S11|2

)− 1

1+ gD2
= g(B2 −D2)−1

1+ gD2

Therefore, we have:

1+ |c|2 − r2

2|c| = 1+ (g(B2 −D2)−1
)
/(1+ gD2)

2g|C2|/|1+ gD2| = B2

2|C2|
Thus, Eq. (12.11.5) is satisfied. This condition has two solutions for θL that cor-

respond to the two points of intersection with the unit-circle. When D2 > 0, we have
arg c = argC∗2 = − argC2. Therefore, the two solutions for ΓL = ejθL will be:

ΓL = ejθL , θL = − arg(C2)± acos
(
B2

2|C2|
)

(12.11.6)

Similarly, the points of intersection of the unit-circle and the available gain circles
and source stability circle are:

ΓG = ejθG , θG = − arg(C1)± acos
(
B1

2|C1|
)

(12.11.7)

Actually, these expressions work also when D2 < 0 or D1 < 0.

Example 12.11.2: The microwave transistor Hewlett-Packard AT-41410 NPN is potentially un-
stable at 1 GHz with the following S-parameters [741]:

S11 = 0.6∠−163o , S21 = 7.12∠86o , S12 = 0.039∠35o , S22 = 0.50∠−38o

Calculate GMSG and plot the operating and available power gain circles for G = 20,21,22
dB. Then, design source and load matching circuits for the 22-dB case by choosing the
reflection coefficients that have the smallest magnitudes.

Solution: The MSG computed from Eq. (12.6.21) is GMSG = 22.61 dB. Fig. 12.11.2 depicts the
operating and available power gain circles as well as the load and source stability circles.
The stability parameters are: K = 0.7667, µ1 = 0.8643, |∆| = 0.1893,D1 = 0.3242,D2 =
0.2142. The computations and plots are done with the following MATLAB code:†

†The function db converts absolute scales to dB. The function ab converts from dB to absolute units.
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Fig. 12.11.2 Operating and available power gain circles.

S = smat([0.60, -163, 7.12, 86, 0.039, 35, 0.50, -38]); % S-parameters

[K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S); % stability parameters

Gmsg = db(sgain(S,’msg’)); % GMSG = 22.61 dB

% operating power gain circles:

[c1,r1] = sgcirc(S,’p’,20); % c1 = 0.6418∠50.80o, r1 = 0.4768

[c2,r2] = sgcirc(S,’p’,21); % c2 = 0.7502∠50.80o, r2 = 0.4221

[c3,r3] = sgcirc(S,’p’,22); % c3 = 0.8666∠50.80o, r3 = 0.3893

% load and source stability circles:

[cL,rL] = sgcirc(S,’l’); % cL = 2.1608∠50.80o, rL = 1.2965

[cG,rG] = sgcirc(S,’s’); % cG = 1.7456∠171.69o, rG = 0.8566

smith; smithcir(cL,rL,1.5); smithcir(cG,rG,1.5); % plot Smith charts

smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3); % plot gain circles

gL = c3 - r3*exp(j*angle(c3)); % ΓL of smallest magnitude

gG = conj(gin(S,gL)); % corresponding matched ΓG
plot(gL,’.’); plot(gG,’.’);

% available power gain circles:

[c1,r1] = sgcirc(S,’a’,20); % c1 = 0.6809∠171.69o, r1 = 0.4137

[c2,r2] = sgcirc(S,’a’,21); % c2 = 0.7786∠171.69o, r2 = 0.3582

[c3,r3] = sgcirc(S,’a’,22); % c3 = 0.8787∠171.69o, r3 = 0.3228

figure;
smith; smithcir(cL,rL,1.5); smithcir(cS,rS,1.5);
smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3);

gG = c3 - r3*exp(j*angle(c3)); % ΓG of smallest magnitude

gL = conj(gout(S,gG)); % corresponding matched ΓL
plot(gL,’.’); plot(gG,’.’);

Because D1 > 0 and D2 > 0, the stability regions are the portions of the unit-circle that
lie outside the source and load stability circles. We note that the operating gain circles
intersect the unit-circle at exactly the same points as the load stability circle, and the
available gain circles intersect it at the same points as the source stability circle.
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The value of ΓL on the 22-dB operating gain circle that lies closest to the origin is ΓL =
c3 − r3ej arg c3 = 0.4773∠50.80o and the corresponding matched source is ΓG = Γ∗in =
0.7632∠167.69o. We note that both ΓL and ΓG lie in their respective stability regions.

For the 22-dB available gain circle (also denoted by c3, r3), the closest ΓG to the origin will
be ΓG = c3− r3ej arg c3 = 0.5559∠171.69o with a corresponding matched load ΓL = Γ∗out =
0.7147∠45.81o. Again, both ΓL, ΓG lie in their stable regions.

Once the ΓG, ΓL have been determined, the corresponding matching input and output
networks can be designed with the methods of Example 12.8.1. ��

12.12 Noise Figure Circles

Every device is a source of internally generated noise. The noise entering the device and
the internal noise must be added to obtain the total input system noise. If the device
is an amplifier, the total system noise power will amplified at the output by the gain of
the device. If the output load is matched, this gain will be the available gain.

The internally generated noise is quantified in practice either by the effective noise
temperature Te, or by the noise figure F of the device. The internal noise power is given
by Pn = kTeB, where k is the Boltzmann constant and B the bandwidth in Hz. These
concepts are discussed further in Sec. 14.8. The relationship betweenTe and F is defined
in terms of a standard reference temperature T0 = 290o K:

F = 1+ Te
T0

(12.12.1)

The noise figure is usually quoted in dB, FdB = 10 log10 F. Because the available gain
of a two-port depends on the source impedance ZG, or the source reflection coefficient
ΓG, so will the noise figure.

The optimum source impedance ZGopt corresponds the minimum noise figure Fmin

that can be achieved by the two-port. For other values of ZG, the noise figure F is greater
than Fmin and is given by [95–97]:

F = Fmin + Rn
RG|ZGopt|2 |ZG − ZGopt|2 (12.12.2)

where RG = Re(ZG) and Rn is an equivalent noise resistance. We note that F = Fmin

when ZG = ZGopt. Defining the normalized noise resistance rn = Rn/Z0, where Z0 =
50 ohm, we may write Eq. (12.12.2) in terms of the corresponding source reflection
coefficients:

F = Fmin + 4rn
|ΓG − ΓGopt|2

|1+ ΓGopt|2
(
1− |ΓG|2

) (12.12.3)

The parameters Fmin, rn, and ΓGopt characterize the noise properties of the two-port
and are usually known.

In designing low-noise microwave amplifiers, one would want to achieve the mini-
mum noise figure and the maximum gain. Unfortunately, the optimum source reflection
coefficient ΓGopt does not necessarily correspond to the maximum available gain.
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The noise figure circles and the available gain circles are useful tools that allow one
to obtain a balance between low noise and high gain designs. The noise figure circles
are the locus of points ΓG that correspond to fixed values of F. They are obtained by
rewriting Eq. (12.12.3) as the equation of a circle |ΓG − c|2 = r2. We write Eq. (12.12.3)
in the form:

|ΓG − ΓGopt|2
1− |ΓG|2 = N , where N = (F − Fmin)|1+ ΓGopt|2

4rn
(12.12.4)

which can be rearranged into the circle equation:

∣∣∣∣ΓG − ΓGopt

N + 1

∣∣∣∣
2

= N
2 +N(1− |ΓGopt|2

)
(N + 1)2

Thus, the center and radius of the noise figure circle are:

c = ΓGopt

N + 1
, r =

√
N2 +N(1− |ΓGopt|2

)
N + 1

(12.12.5)

The MATLAB function nfcirc implements Eq. (12.12.5). Its inputs are the noise
parameters Fmin, rn, ΓGopt, and the desired value of F in dB, and its outputs are c, r:

[c,r] = nfcirc(F,Fmin,rn,gGopt); % noise figure circles

The function nfig implements Eq. (12.12.3). Its inputs are Fmin, rn, ΓGopt, and a
vector of values of ΓG, and its output is the corresponding vector of values of F:

F = nfig(Fmin, rn, gGopt, gG); % calculate noise figure F in dB

Example 12.12.1: The microwave transistor of Example 12.11.1 has the following noise param-
eters at 2 GHz [741]: Fmin = 1.6 dB, rn = 0.16, and ΓGopt = 0.26∠172o.

Determine the matched load ΓLopt corresponding to ΓGopt and calculate the available gain.
Then, plot the noise figure circles for F = 1.7,1.8,1.9,2.0 dB.

For the 1.8-dB noise figure circle, determine ΓG, ΓL that correspond to the maximum pos-
sible available gain and design appropriate input and output matching networks.

Solution: The conjugate matched load corresponding to ΓGopt is:

ΓLopt = Γ∗out =
[
S22 −∆ΓGopt

1− S11ΓGopt

]∗
= 0.4927∠52.50o

The value of the available gain at ΓGopt isGa,opt = 13.66 dB. This is to be compared with the
MAG of 16.18 dB determined in Example 12.11.1. To increase the available gain, we must
also increase the noise figure. Fig. 12.12.1 shows the locations of the optimum reflection
coefficients, as well as several noise figure circles.

The MATLAB code for generating this graph was:†

†The function p2c converts from phasor form to cartesian complex form, and the function c2p, from
cartesian to phasor form.
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Fig. 12.12.1 Noise figure circles.

S = smat([0.61, 165, 3.72, 59, 0.05, 42, 0.45, -48]);

Fmin = 1.6; rn = 0.16; gGopt = p2c(0.26, 172);

Gmag = db(sgain(S,’mag’)); % maximum available gain

Gaopt = db(sgain(S,gGopt,’a’)) % available gain at ΓGopt

gLopt = conj(gout(S,gGopt)); % matched load

[c1,r1] = nfcirc(1.7,Fmin,rn,gGopt); % noise figure circles

[c2,r2] = nfcirc(1.8,Fmin,rn,gGopt);
[c3,r3] = nfcirc(1.9,Fmin,rn,gGopt);
[c4,r4] = nfcirc(2.0,Fmin,rn,gGopt);

smith; plot([gGopt, gLopt],’.’);
smithcir(c1,r1); smithcir(c2,r2); smithcir(c3,r3); smithcir(c4,r4);

The larger the noise figure F, the larger the radius of its circle. As F increases, so does
the available gain. But as the gain increases, the radius of its circle decreases. Thus, for a
fixed value of F, there will be a maximum value of the available gain corresponding to that
gain circle that has the smallest radius and is tangent to the noise figure circle.

In the extreme case of the maximum available gain, the available gain circle collapses
to a point—the simultaneous conjugate matched point ΓG = 0.8179∠−162.67o— with a
corresponding noise figure of F = 4.28 dB. These results can be calculated by the MATLAB
statements:

gG = smatch(S);
F = nfig(Fmin, rn, gopt, gG);

Thus, we see that increasing the gain comes at the price of increasing the noise figure.
As ΓG traces the F = 1.8 dB circle, the available gain Ga varies as shown in Fig. 12.12.2.
Points around this circle can be parametrized as ΓG = c2 + r2ejφ, with 0 ≤ φ ≤ 2π.
Fig. 12.12.2 plots Ga versus the angle φ. We note that the gain varies between the limits
12.22 ≤ Ga ≤ 14.81 dB.

The maximum value, Ga = 14.81 dB, is reached when ΓG = 0.4478∠−169.73o, with a
resulting matched load ΓL = Γ∗out = 0.5574∠52.50o. The two points ΓG, ΓL, as well as the
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Fig. 12.12.2 Variation of available gain around the noise figure circle F = 1.8 dB.

Ga = 14.81 dB gain circle, which is tangential to the 1.8-dB noise figure circle, are shown
in Fig. 12.12.3.

Fig. 12.12.3 Maximum available gain for given noise figure.

The following MATLAB code performs these calculations and plots:

phi = linspace(0,2*pi,721); % angle in 1/2o increments

gG = c2 + r2*exp(j*phi); % ΓG around the c2, r2 circle

G = db(sgain(S,gG,’a’)); % available gain in dB

plot(phi*180/pi, G);

[Ga,i] = max(G); % maximum available gain

gammaG = gG(i); % ΓG for maximum gain

gammaL = conj(gout(S,gammaG)); % matched load ΓL

[ca,ra] = sgcirc(S,’a’,Ga); % available gain circle

smith; smithcir(c2,r2); smithcir(ca,ra);
plot([gammaG,gammaL],’.’);
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The maximum gain and the point of tangency with the noise figure circle are determined by
direct search, that is, evaluating the gain around the 1.8-dB noise figure circle and finding
where it reaches a maximum.

The input and output stub matching networks can be designed with the help of the function
stub1. The normalized source and load impedances are:

zG = 1+ ΓG
1− ΓG = 0.3840− 0.0767j , zL = 1+ ΓL

1− ΓL = 1.0904+ 1.3993j

The stub matching networks have lengths:

stub1(z∗G,’po’)=
[

0.3749 0.3977
0.1251 0.0738

]
, stub1(z∗L ,’po’)=

[
0.3519 0.0991
0.1481 0.2250

]

The lower solutions have shorter total lengths d+ l. The implementation of the matching
networks with microstrip lines will be similar to that in Fig. 12.8.3. ��

If the two-port is potentially unstable, one must be check that the resulting solutions
for ΓG, ΓL both lie in their respective stability regions. Problems 12.6 and 12.7 illustrate
the design of such potentially unstable low noise microwave amplifiers.

12.13 Problems

12.1 Using the relationships (12.4.3) and (12.4.6), derive the following identities:

(Z11 + ZG)(Z22 + ZL)−Z12Z21 =
(Z22 + ZL)(Zin + ZG)= (Z11 + ZG)(Zout + ZL)

(12.13.1)

(1− S11ΓG)(1− S22ΓL)−S12S21ΓGΓL =
(1− S22ΓL)(1− ΓinΓG)= (1− S11ΓG)(1− ΓoutΓL)

(12.13.2)

Using Eqs. (12.4.4) and (12.4.5), show that:

Z21

Z22 + ZL =
S21

1− S22ΓL
1− ΓL
1− Γin

,
Z21

Z11 + ZG =
S21

1− S11ΓG
1− ΓG
1− Γout

(12.13.3)

2Z0

Zin + ZG =
(1− Γin)(1− ΓG)

1− ΓinΓG
,

2Z0

Zout + ZL =
(1− Γout)(1− ΓL)

1− ΓoutΓL
(12.13.4)

Finally, for the real part RL = Re(ZL), show that:

ZL = Z0
1+ ΓL
1− ΓL ⇒ RL = Z0

1− |ΓL|2
|1− ΓL|2 (12.13.5)

12.2 Computer Experiment. The Hewlett-Packard ATF-10136 GaAs FET transistor has the follow-
ing S-parameters at 4 GHz and 8 GHz [741]:

S11 = 0.54∠−120o , S21 = 3.60∠61o , S12 = 0.137∠31o , S22 = 0.22∠−49o

S11 = 0.60∠87o , S21 = 2.09∠−32o , S12 = 0.21∠−36o , S22 = 0.32∠−48o

Determine the stability parameters, stability circles, and stability regions at the two frequen-
cies.
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12.3 Derive the following relationships, where RG = Re(ZG):

Z0 + ZG
2
√
RGZ0

= 1√
1− |ΓG|2

|1− ΓG|
1− ΓG ,

Z0 − ZG
2
√
RGZ0

= − ΓG√
1− |ΓG|2

|1− ΓG|
1− ΓG

12.4 Derive Eqs. (12.7.13) relating the generalized S-parameters of power waves to the conven-
tional S-parameters.

12.5 Derive the expression Eq. (12.6.20) for the maximum available gain GMAG, and show that it
is the maximum of all three gains, that is, transducer, available, and operating gains.

12.6 Computer Experiment. The microwave transistor of Example 12.11.2 has the following noise
parameters at a frequency of 1 GHz [741]: Fmin = 1.3 dB, rn = 0.16, and ΓGopt = 0.06∠49o.

Determine the matched load ΓLopt corresponding to ΓGopt and calculate the available gain.
Then, plot the noise figure circles for F = 1.4,1.5,1.6 dB.

For the 1.5-dB noise figure circle, determine the values of ΓG, ΓL that correspond to the
maximum possible available gain.

Design microstrip stub matching circuits for the computed values of ΓG, ΓL.

12.7 Computer Experiment. The Hewlett-Packard ATF-36163 pseudomorphic high electron mo-
bility transistor (PHEMT) has the following S- and noise parameters at 6 GHz [741]:

S11 = 0.75∠−131o , S21 = 3.95∠55o , S12 = 0.13∠−12o , S22 = 0.27∠−116o

Fmin = 0.66 dB, rn = 0.15, ΓGopt = 0.55∠88o

Plot the F = 0.7,0.8,0.9 dB noise figure circles. On the 0.7-dB circle, determine the source
reflection coefficient ΓG that corresponds to maximum available gain, and then determine
corresponding matched load coefficient ΓL.
Design microstrip stub matching circuits for the computed values of ΓG, ΓL.



13
Radiation Fields

13.1 Currents and Charges as Sources of Fields

Here we discuss how a given distribution of currents and charges can generate and
radiate electromagnetic waves. Typically, the current distribution is localized in some
region of space (for example, currents on a wire antenna.) The current source generates
electromagnetic fields, which can propagate to far distances from the source location.

It proves convenient to work with the electric and magnetic potentials rather than the
E and H fields themselves. Basically, two of Maxwell’s equations allow us to introduce
these potentials; then, the other two, written in terms of these potentials, take a simple
wave-equation form. The two Maxwell equations,

∇∇∇ · B = 0, ∇∇∇× E = −∂B

∂t
(13.1.1)

imply the existence of the magnetic and electric potentials A(r, t) andϕ(r, t), such that
the fields E and B are obtainable by

E = −∇∇∇ϕ− ∂A

∂t

B =∇∇∇× A

(13.1.2)

Indeed, the divergenceless of B implies the existence of A, such that B = ∇∇∇ × A.
Then, Faraday’s law can be written as

∇∇∇× E = −∂B

∂t
= −∇∇∇× ∂A

∂t
⇒ ∇∇∇× (E+ ∂A

∂t
) = 0

Thus, the quantity E+ ∂A/∂t is curl-less and can be represented as the gradient of
a scalar potential, that is, E+ ∂A/∂t = −∇∇∇ϕ.

The potentials A andϕ are not uniquely defined. For example, they may be changed
by adding constants to them. Even more freedom is possible, known as gauge invariance
of Maxwell’s equations. Indeed, for any scalar function f(r, t), the following gauge
transformation leaves E and B invariant:
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ϕ′ =ϕ− ∂f
∂t

A′ = A+∇∇∇f
(gauge transformation) (13.1.3)

For example, we have for the electric field:

E′ = −∇∇∇ϕ′ − ∂A′

∂t
= −∇∇∇(ϕ− ∂f

∂t
)− ∂

∂t
(
A+∇∇∇f) = −∇∇∇ϕ− ∂A

∂t
= E

This freedom in selecting the potentials allows us to impose some convenient con-
straints between them. In discussing radiation problems, it is customary to impose the
Lorenz condition:†

∇∇∇ · A+ 1

c2

∂ϕ
∂t
= 0 (Lorenz condition) (13.1.4)

We will also refer to it as Lorenz gauge or radiation gauge. Under the gauge transfor-
mation (13.1.3), we have:

∇∇∇ · A′ + 1

c2

∂ϕ′

∂t
= (∇∇∇ · A+ 1

c2

∂ϕ
∂t
)− ( 1

c2

∂2f
∂t2

−∇2f
)

Therefore, if A,ϕ did not satisfy the constraint (13.1.4), the transformed potentials
A′,ϕ′ could be made to satisfy it by an appropriate choice of the function f , that is, by
choosing f to be the solution of the inhomogeneous wave equation:

1

c2

∂2f
∂t2

−∇2f =∇∇∇ · A+ 1

c2

∂ϕ
∂t

Using Eqs. (13.1.2) and (13.1.4) into the remaining two of Maxwell’s equations,

∇∇∇ · E = 1

ε
ρ, ∇∇∇× B = µJ+ 1

c2

∂E

∂t
(13.1.5)

we find,

∇∇∇ · E =∇∇∇ · (−∇∇∇ϕ− ∂A

∂t
) = −∇2ϕ− ∂

∂t
(∇∇∇ · A)= −∇2ϕ− ∂

∂t
(− 1

c2

∂ϕ
∂t
)

= 1

c2

∂2ϕ
∂t2

−∇2ϕ

and, similarly,

∇∇∇× B− 1

c2

∂E

∂t
=∇∇∇× (∇∇∇× A)− 1

c2

∂
∂t
(−∇∇∇ϕ− ∂A

∂t
)

=∇∇∇× (∇∇∇× A)+∇∇∇( 1

c2

∂ϕ
∂t
)+ 1

c2

∂2A

∂t2

†Almost universally wrongly attributed to H. A. Lorentz instead of L. V. Lorenz. See Refs. [68–73] for the
historical roots of scalar and vector potentials and gauge transformations.
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=∇∇∇× (∇∇∇× A)−∇∇∇(∇∇∇ · A)+ 1

c2

∂2A

∂t2

= 1

c2

∂2A

∂t2
−∇2A

where we used the identity∇∇∇×(∇∇∇×A)=∇∇∇(∇∇∇·A)−∇2A. Therefore, Maxwell’s equations
(13.1.5) take the equivalent wave-equation forms for the potentials:

1

c2

∂2ϕ
∂t2

−∇2ϕ = 1

ε
ρ

1

c2

∂2A

∂t2
−∇2A = µJ

(wave equations) (13.1.7)

To summarize, the densities ρ, J may be thought of as the sources that generate the
potentials ϕ,A, from which the fields E,B may be computed via Eqs. (13.1.2).

The Lorenz condition is compatible with Eqs. (13.1.7) and implies charge conserva-
tion. Indeed, we have from (13.1.7)

( 1

c2

∂2

∂t2
−∇2)(∇∇∇ · A+ 1

c2

∂ϕ
∂t
) = µ∇∇∇ · J+ 1

εc2

∂ρ
∂t
= µ(∇∇∇ · J+ ∂ρ

∂t
)

where we used µε = 1/c2. Thus, the Lorenz condition (13.1.4) implies the charge con-
servation law:

∇∇∇ · J+ ∂ρ
∂t
= 0 (13.1.8)

13.2 Retarded Potentials

The main result that we would like to show here is that if the source densities ρ, J are
known, the causal solutions of the wave equations (13.1.7) are given by:

ϕ(r, t) =
∫
V

ρ
(
r′, t − R

c
)

4πεR
d3r′

A(r, t) =
∫
V

µJ
(
r′, t − R

c
)

4πR
d3r′

(retarded potentials) (13.2.1)

where R = |r− r′| is the distance from the field (observation) point r to the source point
r′, as shown in Fig. 13.2.1. The integrations are over the localized volume V in which
the source densities ρ, J are non-zero.

In words, the potentialϕ(r, t) at a field point r at time t is obtainable by superimpos-
ing the fields due to the infinitesimal charge ρ(r′, t′)d3r′ that resided within the volume
element d3r′ at time instant t′, which is R/c seconds earlier than t, that is, t′ = t−R/c.

Thus, in accordance with our intuitive notions of causality, a change at the source
point r′ is not felt instantaneously at the field point r, but takes R/c seconds to get
there, that is, it propagates with the speed of light. Equations (13.2.1) are referred to
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Fig. 13.2.1 Retarded potentials generated by a localized current/charge distribution.

as the retarded potentials because the sources inside the integrals are evaluated at the
retarded time t′ = t −R/c.

To prove (13.2.1), we consider first the solution to the following scalar wave equation
driven by a time-dependent point source located at the origin:

1

c2

∂2u
∂t2

−∇2u = f(t)δ(3)(r) (13.2.2)

where f(t) is an arbitrary function of time and δ(3)(r) is the 3-dimensional delta func-
tion. We show below that the causal solution of Eq. (13.2.2) is:†

u(r, t)= f(t
′)

4πr
=
f
(
t − r
c
)

4πr
= f(t − r

c
)
g(r), where g(r)= 1

4πr
(13.2.3)

with t′ = t − r/c and r = |r|. The function g(r) is recognized as the Green’s function
for the electrostatic Coulomb problem and satisfies:

∇∇∇g = −r̂
1

4πr2
= −r̂

g
r
, ∇2g = −δ(3)(r) (13.2.4)

where r̂ = r/r is the radial unit vector. We note also that because f(t − r/c) depends
on r only through its t-dependence, we have:

∂
∂r
f(t − r/c)= −1

c
∂
∂t
f(t − r/c)= −1

c
ḟ

It follows that∇∇∇f = −r̂ ḟ/c and

∇∇∇2f = −(∇∇∇ · r̂)
ḟ
c
− 1

c
r̂ ·∇∇∇ḟ = −(∇∇∇ · r̂)

ḟ
c
− 1

c
r̂ · (−r̂

f̈
c
) = −2ḟ

cr
+ 1

c2
f̈ (13.2.5)

where we used the result∇∇∇ · r̂ = 2/r.‡ Using Eqs. (13.2.3)–(13.2.5) into the identity:

∇2u = ∇2(fg) = 2∇∇∇f ·∇∇∇g+ g∇2f + f∇2g
†The anticausal, or time-advanced, solution is u(r, t)= f(t + r/c)g(r).
‡Indeed,∇∇∇ · r̂ =∇∇∇ · (r/r)= (∇∇∇ · r)/r + r · (−r̂/r2)= 3/r − 1/r = 2/r.
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we obtain,

∇2u = 2
(−r̂

ḟ
c
) · (−r̂

g
r
)− 2ḟ

cr
g+ 1

c2
f̈g− f(t − r

c
)δ(3)(r)

The first two terms cancel and the fourth term can be written as f(t)δ(3)(r) because
the delta function forces r = 0. Recognizing that the third term is

1

c2

∂2u
∂t2

= 1

c2
f̈g

we have,

∇2u = 1

c2

∂2u
∂t2

− f(t)δ(3)(r)
which shows Eq. (13.2.2). Next, we shift the point source to location r′, and find the
solution to the wave equation:

1

c2

∂2u
∂t2

−∇2u = f(r′, t)δ(3)(r− r′) ⇒ u(r, t)= f(r
′, t −R/c)
4πR

(13.2.6)

where R = |r − r′| and we have allowed the function f to also depend on r′. Note that
here r′ is fixed and the field point r is variable.

Using linearity, we may form now the linear combination of several such point
sources located at various values of r′ and get the corresponding linear combination
of solutions. For example, the sum of two sources will result in the sum of solutions:

f(r′1, t)δ(3)(r− r′1)+f(r′2, t)δ(3)(r− r′2) ⇒ f(r′1, t −R1/c)
4πR1

+ f(r
′
2, t −R2/c)

4πR2

where R1 = |r− r′1|, R2 = |r− r′2|. More generally, integrating over the whole volume V
over which f(r′, t) is nonzero, we have for the sum of sources:

f(r, t)=
∫
V
f(r′, t)δ(3)(r− r′)d3r′

and the corresponding sum of solutions:

u(r, t)=
∫
V

f(r′, t −R/c)
4πR

d3r′ (13.2.7)

where R = |r− r′|. Thus, this is the causal solution to the general wave equation:

1

c2

∂2u
∂t2

−∇2u = f(r, t) (13.2.8)

The retarded potentials (13.2.1) are special cases of Eq. (13.2.7), applied for f(r, t)=
ρ(r, t)/ε and f(r, t)= µJ(r, t).
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13.3 Harmonic Time Dependence

Since we are primarily interested in single-frequency waves, we will Fourier transform
all previous results. This is equivalent to assuming a sinusoidal time dependence ejωt

for all quantities. For example,

ϕ(r, t)=ϕ(r)ejωt , ρ(r, t)= ρ(r)ejωt , etc.

Then, the retarded solutions (13.2.1) become:

ϕ(r)ejωt =
∫
V

ρ(r′)ejω(t−
R
c )

4πεR
d3r′

Canceling a common factor ejωt from both sides, we obtain for the phasor part of the
retarded potentials, where R = |r− r′|:

ϕ(r) =
∫
V

ρ(r′)e−jkR

4πεR
d3r′

A(r) =
∫
V

µJ(r′)e−jkR

4πR
d3r′

, where k = ω
c

(13.3.1)

The quantity k represents the free-space wavenumber and is related to the wave-
length via k = 2π/λ. An alternative way to obtain Eqs. (13.3.1) is to start with the wave
equations and replace the time derivatives by ∂t → jω. Equations (13.1.7) become then
the Helmholtz equations:

∇2ϕ+ k2ϕ = −1

ε
ρ

∇2A+ k2A = −µJ

(13.3.2)

Their solutions may be written in the convolutional form:†

ϕ(r) =
∫
V

1

ε
ρ(r′)G(r− r′)d3r′

A(r) =
∫
V
µJ(r′)G(r− r′)d3r′

(13.3.3)

where G(r) is the Green’s function for the Helmholtz equation:

∇2G+ k2G = −δ(3)(r) , G(r)= e
−jkr

4πr
(13.3.4)

Replacing ∂/∂t by jω, the Lorenz condition (13.1.4) takes the form:

∇∇∇ · A+ jωµεϕ = 0 (13.3.5)

†The integrals in (13.3.1) or (13.3.3) are principal-value integrals, that is, the limits as δ → 0 of the
integrals over V − Vδ(r), where Vδ(r) is an excluded small sphere of radius δ centered about r. See
Appendix D and Refs. [27,120,132,182] and [104–108] for the properties of such principal value integrals.
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Similarly, the electric and magnetic fields (13.1.2) become:

E = −∇∇∇ϕ− jωA

H = 1

µ
∇∇∇× A

(13.3.6)

With the help of the Lorenz condition the E-field can be expressed completely in
terms of the vector potential. Solving (13.3.5) for the scalar potential,ϕ = −∇∇∇·A/jωµε,
and substituting in (13.3.6), we find

E = 1

jωµε
∇∇∇(∇∇∇ · A)−jωA = 1

jωµε
[∇∇∇(∇∇∇ · A)+k2A

]

where we usedω2µε =ω2/c2 = k2. To summarize, with A(r) computed from Eq. (13.3.1),
the E,H fields are obtained from:

E = 1

jωµε
[∇∇∇(∇∇∇ · A)+k2A

]

H = 1

µ
∇∇∇× A

(13.3.7)

An alternative way of expressing the electric field is:

E = 1

jωµε
[∇∇∇× (∇∇∇× A)−µJ

]
(13.3.8)

This is Ampère’s law solved for E. When applied to a source-free region of space,
such as in the radiation zone, (13.3.8) simplifies into:

E = 1

jωµε
∇∇∇× (∇∇∇× A) (13.3.9)

The fields E,H can also be expressed directly in terms of the sources ρ, J. Indeed,
replacing the solutions (13.3.3) into Eqs. (13.3.6) or (13.3.7), we obtain:

E =
∫
V

[−jωµJG+ 1

ε
ρ∇∇∇′G]dV′ = 1

jωε

∫
V

[
(J ·∇∇∇′)∇∇∇′G+ k2JG

]
dV′

H =
∫
V

J×∇∇∇′GdV′
(13.3.10)

Here, ρ, J stand for ρ(r′), J(r′). The gradient operator∇∇∇ acts inside the integrands
only onG and because that depends on the difference r−r′, we can replace the gradient
with∇∇∇G(r− r′)= −∇∇∇′G(r− r′). Also, we denoted d3r′ by dV′.

In obtaining (13.3.10), we had to interchange the operator∇∇∇ and the integrals over
V. When r is outside the volume V—as is the case for most of our applications—then,
such interchanges are valid. When r lies within V, then, interchanging single∇∇∇’s is still
valid, as in the first expression for E and for H. However, in interchanging double∇∇∇’s,
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additional source terms arise. For example, using Eq. (D.8) of Appendix D, we find by
interchanging the operator∇∇∇×∇∇∇× with the integral for A in Eq. (13.3.8):

E = 1

jωε
[∇∇∇×∇∇∇×

∫
V

JGdV′ − J
] = 1

jωε
[2

3
J+ PV

∫
V
∇∇∇×∇∇∇× (JG)dV′ − J

]

where “PV” stands for “principal value.” Because∇∇∇ does not act on J(r′), we have:

∇∇∇×∇∇∇× (JG)=∇∇∇× (∇∇∇G× J)= (J ·∇∇∇)∇∇∇G− J∇2G = (J ·∇∇∇′)∇∇∇′G+ k2JG

where in the last step, we replaced∇∇∇ by −∇∇∇′ and ∇2G = −k2G. It follows that:

E = 1

jωε

[
PV

∫
V

[
(J ·∇∇∇′)∇∇∇′G+ k2JG

]
dV′ − 1

3
J
]
, (r lies in V) (13.3.11)

In Sec. 16.10, we consider Eqs. (13.3.10) further in connection with Huygens’s prin-
ciple and vector diffraction theory.

Next, we present three illustrative applications of the techniques discussed in this
section: (a) Determining the fields of linear wire antennas, (b) The fields produced by
electric and magnetic dipoles, and (c) the Ewald-Oseen extinction theorem and the mi-
croscopic origin of the refractive index. Then, we go on in Sec. 13.7 to discuss the
simplification of the retarded potentials (13.3.3) for radiation problems.

13.4 Fields of a Linear Wire Antenna

Eqs. (13.3.7) simplify considerably in the special practical case of a linear wire antenna,
that is, a thin cylindrical antenna. Figure 13.4.1 shows the geometry in the case of a
z-directed antenna of finite length with a current I(z′) flowing on it.

The assumption that the radius of the wire is much smaller than its length means ef-
fectively that the current density J(r′)will be z-directed and confined to zero transverse
dimensions, that is,

J(r′)= ẑ I(z′)δ(x′)δ(y′) (current on thin wire antenna) (13.4.1)

In the more realistic case of an antenna of finite radius a, the current density will
be confined to flow on the cylindrical surface of the antenna, that is, at radial distance
ρ = a. Assuming cylindrical symmetry, the current density will be:

J(r′)= ẑ I(z′)δ(ρ′ − a) 1

2πa
(13.4.2)

This case is discussed in more detail in Chap. 20. In both cases, integrating the
current density over the transverse dimensions of the antenna gives the current:

∫
J(x′, y′, z′)dx′dy′ =

∫
J(ρ′,φ′, z′)ρ′dρ′dφ′ = ẑ I(z′)

Because of the cylindrical symmetry of the problem, the use of cylindrical coordi-
nates is appropriate, especially in determining the fields near the antenna (cylindrical
coordinates are reviewed in Sec. 13.8.) On the other hand, that the radiated fields at
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Fig. 13.4.1 Thin wire antenna.

far distances from the antenna are best described in spherical coordinates. This is so
because any finite current source appears as a point from far distances.

Inserting Eq. (13.4.1) into Eq. (13.3.1), it follows that the vector potential will be z-
directed and cylindrically symmetric. We have,

A(r) =
∫
V

µJ(r′)e−jkR

4πR
d3r′ = ẑ

µ
4π

∫
V
I(z′)δ(x′)δ(y′)

e−jkR

R
dx′dy′dz′

= ẑ
µ

4π

∫
L
I(z′)

e−jkR

R
dz′

where R = |r− r′| = √ρ2 + (z− z′)2, as shown in Fig. 13.4.1. The z′-integration is over
the finite length of the antenna. Thus, A(r)= ẑAz(ρ, z), with

Az(ρ, z)= µ
4π

∫
L
I(z′)

e−jkR

R
dz′ , R =

√
ρ2 + (z− z′)2 (13.4.3)

This is the solution of the z-component of the Helmholtz equation (13.3.2):

∇2Az + k2Az = −µI(z)δ(x)δ(y)

Because of the cylindrical symmetry, we can set ∂/∂φ = 0. Therefore, the gradient
and Laplacian operators are ∇∇∇ = ρ̂ρρ∂ρ + ẑ∂z and ∇2 = ρ−1∂ρ(ρ∂ρ)+∂2

z. Thus, the
Helmholtz equation can be written in the form:

1

ρ
∂ρ(ρ∂ρAz)+∂2

zAz + k2Az = −µI(z)δ(x)δ(y)

Away from the antenna, we obtain the homogeneous equation:

1

ρ
∂ρ(ρ∂ρAz)+∂2

zAz + k2Az = 0 (13.4.4)

Noting that∇∇∇ · A = ∂zAz, we have from the Lorenz condition:
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ϕ = − 1

jωµε
∂zAz (scalar potential of wire antenna) (13.4.5)

The z-component of the electric field is from Eq. (13.3.7):

jωµεEz = ∂z(∇∇∇ · A)+k2Az = ∂2
zAz + k2Az

and the radial component:

jωµεEρ = ∂ρ(∇∇∇ · A)= ∂ρ∂zAz
Using B =∇∇∇×A = (ρ̂ρρ∂ρ+ ẑ∂z)×(ẑAz)= (ρ̂ρρ× ẑ)∂ρAz = −φ̂φφ∂ρAz, it follows that

the magnetic field has only a φ-component given by Bφ = −∂ρAz. To summarize, the
non-zero field components are all expressible in terms of Az as follows:

jωµεEz = ∂2
zAz + k2Az

jωµεEρ = ∂ρ∂zAz
µHφ = −∂ρAz

(fields of a wire antenna) (13.4.6)

Using Eq. (13.4.4), we may re-express Ez in the form:

jωµεEz = − 1

ρ
∂ρ(ρ∂ρAz)= µ 1

ρ
∂ρ(ρHφ) (13.4.7)

This is, of course, equivalent to the z-component of Ampère’s law. In fact, an even
more convenient way to construct the fields is to use the first of Eqs. (13.4.6) to construct
Ez and then integrate Eq. (13.4.7) to get Hφ and then use the ρ-component of Ampère’s
law to get Eρ. The resulting system of equations is:

jωµεEz = ∂2
zAz + k2Az

∂ρ(ρHφ) = jωερEz
jωεEρ = −∂zHφ

(13.4.8)

In Chap. 20, we use (13.4.6) to obtain the Hallén and Pocklington integral equations
for determining the current I(z) on a linear antenna, and solve them numerically. In
Chap. 21, we use (13.4.8) under the assumption that the current I(z) is sinusoidal to
determine the near fields, and use them to compute the self and mutual impedances
between linear antennas. The sinusoidal assumption for the current allows us to find
Ez, and hence the rest of the fields, without having to find Az first!

13.5 Fields of Electric and Magnetic Dipoles

Finding the fields produced by time-varying electric dipoles has been historically impor-
tant and has served as a prototypical example for radiation problems.
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We consider a point dipole located at the origin, in vacuum, with electric dipole
moment p. Assuming harmonic time dependence ejωt, the corresponding polarization
(dipole moment per unit volume) will be: P(r)= pδ(3)(r). We saw in Eq. (1.3.15) that
the corresponding polarization current and charge densities are:

J = ∂P

∂t
= jωP , ρ = −∇∇∇ · P (13.5.1)

Therefore,
J(r)= jωpδ(3)(r) , ρ(r)= −p ·∇∇∇δ(3)(r) (13.5.2)

Because of the presence of the delta functions, the integrals in Eq. (13.3.3) can be
done trivially, resulting in the vector and scalar potentials:

A(r) = µ0

∫
jωpδ(3)(r′)G(r− r′)dV′ = jωµ0 pG(r)

ϕ(r) = − 1

ε0

∫ [
p ·∇∇∇′δ(3)(r′)]G(r− r′)dV′ = − 1

ε0
p ·∇∇∇G(r)

(13.5.3)

where the integral forϕwas done by parts. Alternatively,ϕ could have been determined
from the Lorenz-gauge condition∇∇∇ · A+ jωµ0ε0ϕ = 0.

The E,H fields are computed from Eq. (13.3.6), or from (13.3.7), or away from the
origin from (13.3.9). We find, where k2 =ω2/c2

0 =ω2µ0ε0 :

E(r) = 1

ε0
∇∇∇× [∇∇∇G(r)×p

] = 1

ε0

[
k2 p+ (p ·∇∇∇)∇∇∇]G(r)

H(r) = jω∇∇∇G(r)×p

(13.5.4)

for r �= 0. The Green’s function G(r) and its gradient are:

G(r)= e
−jkr

4πr
, ∇∇∇G(r)= −r̂

(
jk+ 1

r
)
G(r)= −r̂

(
jk+ 1

r
)e−jkr

4πr

where r = |r| and r̂ is the radial unit vector r̂ = r/r. Inserting these into Eq. (13.5.4), we
obtain the more explicit expressions:

E(r) = 1

ε0

(
jk+ 1

r
)[3r̂(r̂ · p)−p

r

]
G(r)+ k

2

ε0
r̂× (p× r̂)G(r)

H(r) = jω(jk+ 1

r
)
(p× r̂)G(r)

(13.5.5)

If the dipole is moved to location r0, so that P(r)= pδ(3)(r− r0), then the fields are
still given by Eqs. (13.5.4) and (13.5.5), with the replacement G(r)→ G(R) and r̂ → R̂,
where R = r− r0.

Eqs. (13.5.5) describe both the near fields and the radiated fields. The limitω = 0 (or
k = 0) gives rise to the usual electrostatic dipole electric field, decreasing like 1/r3. On
the other hand, as we discuss in Sec. 13.7, the radiated fields correspond to the terms
decreasing like 1/r. These are (with η0 =

√
µ0/ε0):
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E rad(r) = k
2

ε0
r̂× (p× r̂)G(r)= k

2

ε0
r̂× (p× r̂)

e−jkr

4πr

H rad(r) = jω jk(p× r̂)G(r)= k2

η0ε0
(r̂× p)

e−jkr

4πr

(13.5.6)

They are related by η0H rad = r̂ × E rad, which is a general relationship for radia-
tion fields. The same expressions can also be obtained quickly from Eq. (13.5.4) by the
substitution rule∇∇∇ → −jkr̂, discussed in Sec. 13.10.

The near-field, non-radiating, terms in (13.5.5) that drop faster than 1/r are im-
portant in the new area of near-field optics [154–174]. Nanometer-sized dielectric tips
(constructed from a tapered fiber) act as tiny dipoles that can probe the evanescent
fields from objects, resulting in a dramatic increase (by factors of ten) of the resolution
of optical microscopy beyond the Rayleigh diffraction limit and down to atomic scales.

A magnetic dipole at the origin, with magnetic dipole moment m, will be described
by the magnetization vector M = mδ(3)(r). According to Sec. 1.3, the corresponding
magnetization current will be J =∇∇∇×M =∇∇∇δ(3)(r)×m. Because∇∇∇· J = 0, there is no
magnetic charge density, and hence, no scalar potentialϕ. The vector potential will be:

A(r)= µ0

∫
∇∇∇δ(3)(r)×mG(r− r′)dV′ = µ0∇∇∇G(r)×m (13.5.7)

It then follows from Eq. (13.3.6) that:

E(r) = −jωµ0∇∇∇G(r)×m

H(r) =∇∇∇× [∇∇∇G(r)×m
] = [k2 m+ (m ·∇∇∇)∇∇∇]G(r) (13.5.8)

which become explicitly,

E(r) = jωµ0
(
jk+ 1

r
)
(r̂×m)G(r)

H(r) = (jk+ 1

r
)[3r̂(r̂ ·m)−m

r

]
G(r)+k2 r̂× (m× r̂)G(r)

(13.5.9)

The corresponding radiation fields are:

E rad(r) = jωµ0 jk(r̂×m)G(r)= η0k2(m× r̂)
e−jkr

4πr

H rad(r) = k2 r̂× (m× r̂)G(r)= k2 r̂× (m× r̂)
e−jkr

4πr

(13.5.10)

We note that the fields of the magnetic dipole are obtained from those of the electric
dipole by the duality transformations E→ H, H→ −E, ε0 → µ0, µ0 → ε0, η0 → 1/η0, and
p → µ0 m, that latter following by comparing the terms P and µ0M in the constitutive
relations (1.3.13). Duality is discussed in more detail in Sec. 16.2.

The electric and magnetic dipoles are essentially equivalent to the linear and loop
Hertzian dipole antennas, respectively, which are discussed in sections 15.2 and 15.8.
Problem 13.4 establishes the usual results p = Q d for a pair of charges ±Q separated
by a distance d, and m = ẑ IS for a current loop of area S.



442 Electromagnetic Waves & Antennas – S. J. Orfanidis

Example 13.5.1: We derive explicit expressions for the real-valued electric and magnetic fields
of an oscillating z-directed dipole p(t)= p ẑ cosωt. And also derive and plot the electric
field lines at several time instants. This problem has an important history, having been
considered first by Hertz in 1889 in a paper reprinted in [60].

Restoring the ejωt factor in Eq. (13.5.5) and taking real parts, we obtain the electric field:

EEE(r) = p[k sin(kr −ωt)+ cos(kr −ωt)
r

]3r̂(r̂ · ẑ)−ẑ

4πε0r2
+ pk

2 r̂× (ẑ× r̂)
4πε0r

cos(kr −ωt)

HHH(r) = pω[−k cos(kr −ωt)+ sin(kr −ωt)
r

][ ẑ× r̂

4πr

]

In spherical coordinates, we have ẑ = r̂ cosθ−θ̂θθ sinθ. This gives 3 r̂(r̂· ẑ)−ẑ = 2 r̂ cosθ+
θ̂θθ sinθ, r̂× (ẑ× r̂)= −θ̂θθ sinθ, and ẑ× r̂ = φ̂φφ sinθ. Therefore, the non-zero components
if EEE andHHH are Er,Eφ and Hφ :

Er(r) = p
[
k sin(kr −ωt)+ cos(kr −ωt)

r
][ 2 cosθ

4πε0r2

]

Eθ(r) = p
[
k sin(kr −ωt)+ cos(kr −ωt)

r
][ sinθ

4πε0r2

]
− pk

2 sinθ
4πε0r

cos(kr −ωt)

Hφ(r) = pω
[−k cos(kr −ωt)+ sin(kr −ωt)

r
][ sinθ

4πr

]

By definition, the electric field is tangential to its field lines. A small displacement dr along
the tangent to a line will be parallel toEEE at that point. This implies that dr×EEE = 0, which
can be used to determine the lines. Because of the azimuthal symmetry in the φ variable,
we may look at the field lines that lie on the xz-plane (that is, φ = 0). Then, we have:

dr×EEE = (r̂dr + θ̂θθr dθ)×(r̂Er + θ̂θθEθ)= φ̂φφ(drEθ − r dθEr)= 0 ⇒ dr
dθ
= rErEθ

This determines r as a function of θ, giving the polar representation of the line curve. To
solve this equation, we rewrite the electric field in terms of the dimensionless variables
u = kr and δ =ωt, defining E0 = pk3/4πε0:

Er = E0
2 cosθ
u2

[
sin(u− δ)+ cos(u− δ)

u

]

Eθ = −E0
sinθ
u

[
cos(u− δ)− cos(u− δ)

u2
− sin(u− δ)

u

]

We note that the factors within the square brackets are related by differentiation:

Q(u) = sin(u− δ)+ cos(u− δ)
u

Q′(u) = dQ(u)
du

= cos(u− δ)− cos(u− δ)
u2

− sin(u− δ)
u

Therefore, the fields are:

Er = E0
2 cosθ
u2

Q(u) , Eθ = −E0
sinθ
u
Q′(u)
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It follows that the equation for the lines in the variable u will be:

du
dθ
= uErEθ = −2 cotθ

[
Q(u)
Q′(u)

]
⇒ d

dθ
[
lnQ(u)

] = −2 cotθ = − d
dθ

[
ln sin2 θ

]

which gives:
d
dθ

ln
[
Q(u)sin2 θ

] = 0 ⇒ Q(u)sin2 θ = C

where C is a constant. Thus, the electric field lines are given implicitly by:

[
sin(u− δ)+ cos(u− δ)

u

]
sin2 θ =

[
sin(kr −ωt)+ cos(kr −ωt)

kr

]
sin2 θ = C
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Fig. 13.5.1 Electric field lines of oscillating dipole at successive time instants.

Ideally, one should solve for r in terms of θ. Because this is not possible in closed form,
we prefer to think of the lines as a contour plot at different values of the constant C. The
resulting graphs are shown in Fig. 13.5.1. They were generated at the four time instants
t = 0, T/8, T/4, and 3T/8, where T is the period of oscillation, T = 2π/ω. The x, z
distances are in units of λ and extend to 1.5λ. The dipole is depicted as a tiny z-directed
line at the origin. The following MATLAB code illustrates the generation of these plots:

rmin = 1/8; rmax = 1.6; % plot limits in wavelengths λ
Nr = 61; Nth = 61; N = 6; % meshpoints and number of contour levels

t = 1/8; d = 2*pi*t; % time instant t = T/8

[r,th] = meshgrid(linspace(rmin,rmax,Nr), linspace(0,pi,Nth));
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u = 2*pi*r; % r is in units of λ
z = r.*cos(th); x = r.*sin(th); % cartesian coordinates in units of λ

C = (cos(u-d)./u + sin(u-d)) .* sin(th).^2; % contour levels

contour([-x; x], [z; z], [C; C], N); % right and left-reflected contours with N levels

We observe how the lines form closed loops originating at the dipole. The loops eventually
escape the vicinity of the dipole and move outwards, pushing away the loops that are ahead
of them. In this fashion, the field gets radiated away from its source. The MATLAB file
dipmovie.m generates a movie of the evolving field lines lasting from t = 0 to t = 8T. ��

13.6 Ewald-Oseen Extinction Theorem

The reflected and transmitted fields of a plane wave incident on a dielectric were deter-
mined in Chapters 4 and 6 by solving the wave equations in each medium and matching
the solutions at the interface by imposing the boundary conditions.

Although this approach yields the correct solutions, it hides the physics. From the
microscopic point of view, the dielectric consists of polarizable atoms or molecules,
each of which is radiating in vacuum in response to the incident field and in response
to the fields radiated by the other atoms. The total radiated field must combine with
the incident field so as to generate the correct transmitted field. This is the essence
of the Ewald-Oseen extinction theorem [118–153]. The word “extinction” refers to the
cancellation of the incident field inside the dielectric.

Let E(r) be the incident field, E rad(r) the total radiated field, and E ′(r) the trans-
mitted field in the dielectric. Then, the theorem states that (for r inside the dielectric):

E rad(r)= E ′(r)−E(r) ⇒ E ′(r)= E(r)+E rad(r) (13.6.1)

We will follow a simplified approach to the extinction theorem as in Refs. [139–153]
and in particular [153]. We assume that the incident field is a uniform plane wave, with
TE or TM polarization, incident obliquely on a planar dielectric interface, as shown in
Fig. 13.6.1. The incident and transmitted fields will have the form:

E(r)= E0 e−j k·r , E ′(r)= E ′0 e−j k
′·r (13.6.2)

The expected relationships between the transmitted and incident waves were sum-
marized in Eqs. (6.7.1)–(6.7.5). We will derive the same results from the present ap-
proach. The incident wave vector is k = kx ẑ + kz ẑ with k = ω/c0 = ω√ε0µ0, and
satisfies k · E0 = 0. For the transmitted wave, we will find that k′ = kx ẑ+ k′z ẑ satisfies
k′ · E ′0 = 0 and k′ = ω/c = ω√εµ0 = kn, so that c = c0/n, where n is the refractive
index of the dielectric, n = √ε/ε0.

The radiated field is given by Eq. (13.3.10), where J is the current due to the polariza-
tion P, that is, J = Ṗ = jωP. Although there is no volume polarization charge density,†

there may be a surface polarization density ρs = n̂ ·P on the planar dielectric interface.
Because n̂ = −ẑ, we will have ρs = −ẑ ·P = −Pz. Such density is present only in the TM

†ρ = −∇∇∇ · P vanishes for the type of plane-wave solutions that we consider here.
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Fig. 13.6.1 Elementary dipole at r′ contributes to the local field at r.

case [153]. The corresponding volume term in Eq. (13.3.10) will collapse into a surface
integral. Thus, the field generated by the densities J, ρs will be:

E rad(r)= −jωµ0

∫
V

J(r′)G(r− r′)dV′ + 1

ε0

∫
S
ρs(r′)∇∇∇′G(r− r′)dS′

where G(r)= e−jkr/4πr is the vacuum Green’s function having k =ω/c0, and V is the
right half-space z ≥ 0, and S, the xy-plane. Replacing J, ρs in terms of the polarization
and writing∇∇∇′G = −∇∇∇G, and moving∇∇∇ outside the surface integral, we have:

E rad(r)=ω2µ0

∫
V

P(r′)G(r− r′)dV′ + 1

ε0
∇∇∇
∫
S
Pz(r′)G(r− r′)dS′ (13.6.3)

We assume that the polarization P(r′) is induced by the total field inside the di-
electric, that is, we set P(r′)= ε0χE ′(r′), where χ is the electric susceptibility. Setting
k2 =ω2µ0ε0, Eq. (13.6.3) becomes:

E rad(r)= k2 χ
∫
V

E ′(r′)G(r− r′)dV′ + χ∇∇∇
∫
S
E′z(r′)G(r− r′)dS′ (13.6.4)

Evaluated at points r on the left of the interface (z < 0), E rad(r) should generate
the reflected field. Evaluated within the dielectric (z ≥ 0), it should give Eq. (13.6.1),
resulting in the self-consistency condition:

k2 χ
∫
V

E ′(r′)G(r− r′)dV′ + χ∇∇∇
∫
S
E′z(r′)G(r− r′)dS′ = E ′(r)−E(r) (13.6.5)

Inserting Eq. (13.6.2), we obtain the condition:

k2 χE ′0
∫
V
e−j k

′·r′G(r− r′)dV′ +χE′z0∇∇∇
∫
S
e−j k

′·r′G(r− r′)dS′ = E ′0 e−j k
′·r − E0 e−j k·r

The vector k′ = k′x x̂ + k′z ẑ may be assumed to have k′x = kx, which is equivalent
to Snell’s law. This follows easily from the phase matching of the ejkxx factors in the
above equation. Then, the integrals over S and V can be done easily using Eqs. (D.14)
and (D.16) of Appendix D, with (D.14) being evaluated at z′ = 0 and z ≥ 0:∫

V
e−j k

′·r′G(r− r′)dV′ = e−j k
′·r

k′2 − k2
− e−j k·r

2kz(k′z − kz)∫
S
e−j k

′·r′G(r− r′)dS′ = e
−j k·r

2jkz
⇒ ∇∇∇

∫
S
e−j k

′·r′G(r− r′)dS′ = −ke−j k·r

2kz

(13.6.6)
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The self-consistency condition reads now:

k2 χE ′0

[
e−j k

′·r

k′2 − k2
− e−j k·r

2kz(k′z − kz)

]
− χE′z0

ke−j k·r

2kz
= E ′0 e−j k

′·r − E0 e−j k·r

Equating the coefficients of like exponentials, we obtain the two conditions:

k2 χ
k′2 − k2

E ′0 = E ′0 ⇒ k2 χ
k′2 − k2

= 1 ⇒ k′2 = k2(1+ χ)= k2n2 (13.6.7)

k2 χ
2kz(k′z − kz) E ′0 +

χk

2kz
E′z0 = E0 (13.6.8)

The first condition implies that k′ = kn, wheren = √1+ χ = √ε/ε0. Thus, the phase
velocity within the dielectric is c = c0/n. Replacing χ = (k′2 − k2)/k2 = (k′2z − k2

z)/k2,
we may rewrite Eq. (13.6.8) as:

k′2z − k2
z

2kz(k′z − kz) E ′0 +
(k′2z − k2

z)k
2kz k2

E′z0 = E0 , or,

E ′0 +
k

k2
(k′z − kz)E′z0 =

2kz
k′z + kz E0 (13.6.9)

This implies immediately the transversality condition for the transmitted field, that
is, k′ · E ′0 = 0. Indeed, using k · E0 = 0 for the incident field, we find:

k · E ′0 +
k · k

k2
(k′z − kz)E′z0 =

2kz
k′z + kz k · E0 = 0 ⇒ k · E ′0 + (k′z − kz)E′z0 = 0

or, explicitly, kxE′x0 + kzE′z0 + (k′z − kz)E′z0 = kxE′x0 + k′zE′z0 = k′ · E ′0 = 0. Replacing
(k′z − kz)E′z0 = −k · E ′0 in Eq. (13.6.9) and using the BAC-CAB rule, we obtain:

E ′0 −
k

k2
(k · E ′0)=

2kz
k′z + kz E0 ⇒ k× (E ′0 × k)

k2
= 2kz
k′z + kz E0 (13.6.10)

It can be shown that Eq. (13.6.10) is equivalent to the transmission coefficient results
summarized in Eqs. (6.7.1)–(6.7.5), for both the TE and TM cases (see also Problem 6.6
and the identities in Problem 6.5.) The transmitted magnetic field H ′(r)= H ′0 e−j k

′·r

may be found from Faraday’s law∇∇∇× E ′ = −jωµ0 H ′, which readsωµ0 H ′0 = k′ × E ′0.
Next, we look at the reflected field. For points r lying to the left of the interface

(z ≤ 0), the evaluation of the integrals (13.6.6) gives according to Eqs. (D.14) and (D.16),
where (D.14) is evaluated at z′ = 0 and z ≤ 0:∫

V
e−j k

′·r′G(r− r′)dV′ = − e−j k−·r

2kz(k′z + kz)∫
S
e−j k

′·r′G(r− r′)dS′ = e
−j k−·r

2jkz
⇒ ∇∇∇

∫
S
e−j k

′·r′G(r− r′)dS′ = −k− e−j k−·r

2kz

where k− denotes the reflected wave vector, k− = kx x̂ − kz ẑ. It follows that the total
radiated field will be:

E rad(r)= k2 χE ′0

[
− e−j k−·r

2kz(k′z + kz)

]
− k− χE′z0

2kz
e−j k−·r = E−0e−j k−·r
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where the overall coefficient E−0 can be written in the form:

E−0 = − k2 χ
2kz(k′z + kz) E ′0 −

k− χE′z0
2kz

= kz − k
′
z

2kz

[
E ′0 +

k−(k′z + kz)E′z0
k2

]

where we set χ = (k′2z −k2
z)/k2. Noting the identity k− ·E ′0+ (k′z+kz)E′z0 = k′ ·E ′0 = 0

and k− · k− = k2, we finally find:

E−0 = kz − k
′
z

2kz

[
E ′0 −

k−(k− · E ′0)
k2

]
⇒ k− × (E ′0 × k−)

k2
= 2kz
kz − k′z E−0 (13.6.11)

It can be verified that (13.6.11) is equivalent to the reflected fields as given by
Eqs. (6.7.1)–(6.7.5) for the TE and TM cases. We note also that k− · E−0 = 0.

The conventional boundary conditions are a consequence of this approach. For ex-
ample, Eqs. (13.6.10) and (13.6.11) imply the continuity of the tangential components of
the E-field. Indeed, we find by adding:

E0 + E−0 = E ′0 +
χE′z0
2kz

(k− k−)= E ′0 + χ ẑE′z0

which implies that ẑ× (E0 + E−0)= ẑ× E ′0.
In summary, the radiated fields from the polarizable atoms cause the cancellation of

the incident vacuum field throughout the dielectric and conspire to generate the correct
transmitted field that has phase velocity c = c0/n. The reflected wave does not originate
just at the interface but rather it is the field radiated backwards by the atoms within the
entire body of the dielectric.

Next, we discuss another simplified approach based on radiating dipoles [144]. It
has the additional advantage that it leads to the Lorentz-Lorenz or Clausius-Mossotti
relationship between refractive index and polarizability. General proofs of the extinction
theorem may be found in [118–138] and [182].

The dielectric is viewed as a collection of dipoles pi at locations ri. The dipole mo-
ments are assumed to be induced by a local (or effective) electric field E loc(r) through
pi = αε0E loc(ri), where α is the polarizability.† The field radiated by the jth dipole pj
is given by Eq. (13.5.4), where G(r) is the vacuum Green’s function:

Ej(r)= 1

ε0
∇∇∇×∇∇∇× [pj G(r− rj)

]

The field at the location of the ith dipole due to all the other dipoles will be:

E rad(ri)=
∑
j �=i

Ej(ri)= 1

ε0

∑
j �=i
∇∇∇i ×∇∇∇i ×

[
pj G(ri − rj)

]
(13.6.12)

where∇∇∇i is with respect to ri. Passing to a continuous description, we assumeN dipoles
per unit volume, so that the polarization density will be P(r′)= N p(r′)= Nαε0E loc(r′).
Then, Eq. (13.6.12) is replaced by the (principal-value) integral:

E rad(r)= 1

ε0

∫
V

[
∇∇∇×∇∇∇× [P(r′)G(r− r′)

]]
r′ �=r

dV′ (13.6.13)

†Normally, the polarizability is defined as the quantity α′ = αε0.
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Using Eq. (D.7) of Appendix D, we rewrite:

E rad(r)= 1

ε0
∇∇∇×∇∇∇×

∫
V

P(r′)G(r− r′)dV′ − 2

3ε0
P(r) (13.6.14)

and in terms of the local field (Nα is dimensionless):

E rad(r)= Nα∇∇∇×∇∇∇×
∫
V

E loc(r′)G(r− r′)dV′ − 2

3
NαE loc(r) (13.6.15)

According to the Ewald-Oseen extinction requirement, the radiated field must can-
cel the incident field E(r) while generating the local field E loc(r), that is, E rad(r)=
E loc(r)−E(r). This leads to the self-consistency condition:

Nα∇∇∇×∇∇∇×
∫
V

E loc(r′)G(r− r′)dV′ − 2

3
NαE loc(r)= E loc(r)−E(r) (13.6.16)

Assuming a plane-wave solution E loc(r)= E ′1 e−j k
′·r, we obtain:

Nα∇∇∇×∇∇∇× E ′1
∫
V
e−j k

′·rG(r− r′)dV′ − 2

3
NαE ′1 e−j k

′·r = E ′1 e−j k
′·r − E0 e−j k·r

For r within the dielectric, we find as before:

Nα∇∇∇×∇∇∇× E ′1

[
e−j k

′·r

k′2 − k2
− e−j k·r

2kz(k′z − kz)

]
− 2

3
NαE ′1 e−j k

′·r = E ′1 e−j k
′·r − E0 e−j k·r

Nα∇∇∇×∇∇∇× E ′1

[
e−j k

′·r

k′2 − k2
− e−j k·r

2kz(k′z − kz)

]
= (1+ 2

3
Nα

)
E ′1 e−j k

′·r − E0 e−j k·r

Performing the∇∇∇ operations, we have:

Nα
[

k′ × (E ′1 × k′)
k′2 − k2

e−j k
′·r − k× (E ′1 × k)

2kz(k′z − kz)e
−j k·r

]
= (1+ 2

3
Nα

)
E ′1 e−j k

′·r − E0 e−j k·r

Equating the coefficients of the exponentials, we obtain the two conditions:

Nα
k′ × (E ′1 × k′)
k′2 − k2

= (1+ 2

3
Nα

)
E ′1 (13.6.17)

Nα
k× (E ′1 × k)
2kz(k′z − kz) = E0 (13.6.18)

The first condition implies immediately that k′·E ′1 = 0, therefore, using the BAC-CAB
rule, the condition reads:

Nαk′2

k′2 − k2
E ′1 =

(
1+ 2

3
Nα

)
E ′1 ⇒ Nαk′2

k′2 − k2
= 1+ 2

3
Nα (13.6.19)

Setting k′ = kn, Eq. (13.6.19) implies the Lorentz-Lorenz formula:

Nαn2

n2 − 1
= 1+ 2

3
Nα ⇒ n2 − 1

n2 + 2
= 1

3
Nα (13.6.20)
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We must distinguish between the local field E loc(r) and the measured or observed
field E ′(r), the latter being a “screened” version of the former. To find their relationship,
we define the susceptibility by χ = n2 − 1 and require that the polarization P(r) be
related to the observed field by the usual relationship P = ε0χE ′. Using the Lorentz-
Lorenz formula and P = Nαε0 E loc, we find the well-known relationship [182]:

E loc = E ′ + P

3ε0
(13.6.21)

From NαE loc = P/ε0 = χE ′, we have NαE ′1 = χE ′0. Then, the second condition
(13.6.18) may be expressed in terms of E ′0:

χk× (E ′0 × k)
2kz(k′z − kz) = E0 ⇒ k× (E ′0 × k)

k2
= 2kz
k′z + kz E0 (13.6.22)

which is identical to Eq. (13.6.10). Thus, the self-consistent solution for E ′(r) is identical
to that found previously.

Finally, we obtain the reflected field by evaluating Eq. (13.6.13) at points r to the left
of the interface. In this case, there is no 2P/3ε0 term in (13.6.14) and we have:

E rad(r) = Nα∇∇∇×∇∇∇×
∫
V

E loc(r′)G(r− r′)dV′ = χ∇∇∇×∇∇∇×
∫
V

E ′(r′)G(r− r′)dV′

= χ∇∇∇×∇∇∇× E ′0
∫
V
e−j k

′·rG(r− r′)dV′ = χ∇∇∇×∇∇∇× E ′0

[
− e−j k−·r

2k(k′z + kz)

]

= −χk− × (E ′0 × k−)
2kz(k′z + kz) e−j k−·r = kz − k

′
z

2kz
k− × (E ′0 × k−)

k2
e−j k−·r = E−0 e−j k−·r

which agrees with Eq. (13.6.11).

13.7 Radiation Fields

The retarded solutions (13.3.3) for the potentials are quite general and apply to any
current and charge distribution. Here, we begin making a number of approximations
that are relevant for radiation problems. We are interested in fields that have radiated
away from their current sources and are capable of carrying power to large distances
from the sources.

The far-field approximation assumes that the field point r is very far from the current
source. Here, “far” means much farther than the typical spatial extent of the current
distribution, that is, r� r′. Because r′ varies only over the current source we can state
this condition as r � l, where l is the typical extent of the current distribution (for
example, for a linear antenna, l is its length.) Fig. 13.7.1 shows this approximation.

As shown in Fig. 13.7.1, at far distances the sides PP′ and PQ of the triangle PQP′ are
almost equal. But the side PQ is the difference OP−OQ. Thus,R � r−r̂·r′ = r−r′ cosψ,
where ψ is the angle between the vectors r and r′.

A better approximation may be obtained with the help of the small-x Taylor series
expansion

√
1+ x � 1+ x/2− x2/8. Expanding R in powers of r′/r, and keeping terms

up to second order, we obtain:
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Fig. 13.7.1 Far-field approximation.

R = |r− r′| =
√
r2 − 2rr′ cosψ+ r′2 = r

√
1− 2

r′

r
cosψ+ r

′2

r2

� r
(

1− r
′

r
cosψ+ r

′2

2r2
− 1

8

(−2
r′

r
cosψ+ r

′2

r2

)2

)

� r(1− r′
r

cosψ+ r
′2

2r2
− r

′2

2r2
cos2ψ)

)
or, combining the last two terms:

R = r − r′ cosψ+ r
′2

2r
sin2ψ, for r� r′ (13.7.2)

Thus, the first-order approximation is R = r − r′ cosψ = r − r̂ · r′. Using this
approximation in the integrands of Eqs. (13.3.1), we have:

ϕ(r)�
∫
V

ρ(r′)e−jk(r−r̂·r′)

4πε(r − r̂ · r′)
d3r′

Replacing R = r − r̂ · r′ � r in the denominator, but not in the exponent, we obtain
the far-field approximation to the solution:

ϕ(r)= e
−jkr

4πεr

∫
V
ρ(r′)ejk r̂·r′ d3r′

BecauseR is approximated differently in the denominator and the exponent, it might
be argued that we are not making a consistent approximation. Indeed, for multipole
expansions, it is not correct to ignore the r̂·r′ term from the denominator. However, the
procedure is correct for radiation problems, and generates those terms that correspond
to propagating waves.

What about the second-order approximation terms? We have dropped them from
both the exponent and the denominator. Because in the exponent they are multiplied
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by k, in order to justify dropping them, we must require in addition to r � r′ that
kr′2/r 
 1, or in terms of the wavelength: r � 2πr′2/λ. Replacing 2r′ by the typical
size l of the current source,† we have r � πl2/2λ. By convention [93], we replace this
with r� 2l2/λ. Thus, we may state the far-field conditions as:

r� l and r� 2l2

λ
(far-field conditions) (13.7.3)

These conditions define the so-called far-field or Fraunhofer radiation region. They
are easily satisfied for many practical antennas (such as the half-wave dipole) because l
is typically of the same order of magnitude as λ, in which case the second condition is
essentially equivalent to the first. This happens also when l > λ. When l
 λ, the first
condition implies the second.

The distance r = 2l2/λ is by convention [93] the dividing line between the far-field
(Fraunhofer) region, and the near-field (Fresnel) region, as shown in Fig. 13.7.2. The far-
field region is characterized by the property that the angular distribution of radiation
is independent of the distance r.

Fig. 13.7.2 Far-field and near-field radiation zones.

Can the first-order term kr̂ · r′ also be ignored from the exponent? This would
require that kr′ 
 1, or that r′ 
 λ. Thus, it can be ignored for electrically “short”
antennas, that is, l
 λ, or equivalently in the long wavelength or low-frequency limit.
The Hertzian dipole is such an antenna example.

Defining the wavenumber vector k to be in the direction of the field vector r and
having magnitude k, that is, k = kr̂, we may summarize the far-field approximation to
the retarded single-frequency potentials as follows:

ϕ(r) = e
−jkr

4πεr

∫
V
ρ(r′)ej k·r

′
d3r′

A(r) = µe
−jkr

4πr

∫
V

J(r′)ej k·r
′
d3r′

, k = kr̂ (13.7.4)

†We envision a sphere of diameter 2r′ = l enclosing the antenna structure.
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In these expressions, the radial dependence on r has been separated from the angular
(θ,φ)-dependence, which is given by the integral factors. Since these factors, play an
important role in determining the directional properties of the radiated fields, we will
denote them by the special notation:

Q(k) =
∫
V
ρ(r′)ej k·r

′
d3r′

F(k) =
∫
V

J(r′)ej k·r
′
d3r′ (radiation vector)

(13.7.5)

The first is also called the charge form-factor, and the second, the radiation vector.
They are recognized to be the 3-dimensional spatial Fourier transforms of the charge
and current densities. These quantities depend onω or k and the directional unit vector
r̂ which is completely defined by the spherical coordinate angles θ,φ. Therefore, when-
ever appropriate, we will indicate only the angular dependence in these quantities by
writing them as Q(θ,φ),F(θ,φ). In terms of this new notation, the far-field radiation
potentials are:

ϕ(r) = e
−jkr

4πεr
Q(θ,φ)

A(r) = µe
−jkr

4πr
F(θ,φ)

(radiation potentials) (13.7.6)

13.8 Radial Coordinates

The far-field solutions of Maxwell’s equations and the directional patterns of antenna
systems are best described in spherical coordinates.

The definitions of cartesian, cylindrical, and spherical coordinate systems are re-
viewed in Fig. 13.8.1 and are discussed further in Appendix E. The coordinates rep-
resenting the vector r are, respectively, (x, y, z), (ρ,φ, z), and (r,θ,φ) and define
orthogonal unit vectors in the corresponding directions, as shown in the figure.

The relationships between coordinate systems can be obtained by viewing the xy-
plane and zρ-plane, as shown in Fig. 13.8.2. The relationships between cartesian and
cylindrical coordinates are:

x = ρ cosφ

y = ρ sinφ

ρ̂ρρ = x̂ cosφ+ ŷ sinφ

φ̂φφ = −x̂ sinφ+ ŷ cosφ
(13.8.1)

Similarly, the relationships of cylindrical to spherical coordinates are:

ρ = r sinθ

z = r cosθ

r̂ = ẑ cosθ+ ρ̂ρρ sinθ

θ̂θθ = −ẑ sinθ+ ρ̂ρρ cosθ

ẑ = r̂ cosθ− θ̂θθ sinθ

ρ̂ρρ = r̂ sinθ+ θ̂θθ cosθ
(13.8.2)
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Fig. 13.8.1 Cartesian, cylindrical, and spherical coordinates.

Fig. 13.8.2 Spherical coordinates viewed from xy-plane and zρ-plane.

The relationships between cartesian and spherical coordinates are obtained from
(13.8.2) by replacing ρ and ρ̂ρρ in terms of Eq. (13.8.1), for example,

x = ρ cosφ = (r sinθ)cosφ = r sinθ cosφ

r̂ = ρ̂ρρ sinθ+ ẑ cosθ = (x̂ cosφ+ ŷ sinφ)sinθ+ ẑ cosθ

The resulting relationships are:

x = r sinθ cosφ

y = r sinθ sinφ

z = r cosθ

r̂ = x̂ cosφ sinθ+ ŷ sinφ sinθ+ ẑ cosθ

θ̂θθ = x̂ cosφ cosθ+ ŷ sinφ cosθ− ẑ sinθ

φ̂φφ = −x̂ sinφ+ ŷ cosφ

(13.8.3)

Note again that the radial unit vector r̂ is completely determined by the polar and
azimuthal angles θ,φ. Infinitesimal length increments in each of the spherical unit-
vector directions are defined by:

dlr = dr , dlθ = rdθ , dlφ = r sinθdφ (spherical lengths) (13.8.4)
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The gradient operator∇∇∇ in spherical coordinates is:

∇∇∇ = r̂
∂
∂lr
+ θ̂θθ ∂

∂lθ
+ φ̂φφ ∂

∂lφ
= r̂

∂
∂r
+ θ̂θθ1

r
∂
∂θ
+ φ̂φφ 1

r sinθ
∂
∂φ

(13.8.5)

The lengths dlθ and dlφ correspond to infinitesimal displacements in the θ̂θθ and φ̂φφ
directions on the surface of a sphere of radius r, as shown in Fig. 13.8.3. The surface
element dS = r̂dS on the sphere is defined by dS = dlθ dlφ, or,

dS = r2 sinθdθdφ (13.8.6)

The corresponding infinitesimal solid angle dΩ subtended by the dθ,dφ cone is:

dS = r2dΩ ⇒ dΩ = dS
r2
= sinθdθdφ (13.8.7)

The solid angle subtended by the whole sphere is in units of steradians:

Ωsphere =
∫ π

0
sinθdθ

∫ 2π

0
dφ = 4π

Fig. 13.8.3 Solid angle defined by angles θ,φ.

13.9 Radiation Field Approximation

In deriving the field intensities E and H from the far-field potentials (13.7.6), we must
make one final approximation and keep only the terms that depend on r like 1/r, and
ignore terms that fall off faster, e.g., like 1/r2. We will refer to fields with 1/r dependence
as radiation fields.

The justification for this approximation is shown in Fig. 13.9.1. The power radiated
into a solid angle dΩ will flow through the surface area dS and will be given by dP =
PrdS, where Pr is the radial component of the Poynting vector. Replacing dS in terms
of the solid angle and Pr in terms of the squared electric field, we have:

dP = PrdS =
(

1

2η
E2

)
(r2dΩ)
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Fig. 13.9.1 Power radiated into solid angle dΩ.

Thus, if the amount of power in the solid angle dΩ is to propagate away without
attenuation with distance r, then the electric field must be such that E2r2 ∼ const, or
that E ∼ 1/r; similarly, H ∼ 1/r. Any terms in E,H that fall off faster than 1/r will not
be capable of radiating power to large distances from their current sources.

13.10 Computing the Radiation Fields

At far distances from the localized current J, the radiation fields can be obtained from
Eqs. (13.3.9) by using the radiation vector potential A of Eq. (13.7.6). In computing the
curl of A, we may ignore any terms that fall off faster than 1/r:

∇∇∇× A =∇∇∇×
(
µe−jkr

4πr
F

)
=
(

r̂
∂
∂r
+ angular derivatives

)
×
(
µe−jkr

4πr
F

)

= −jk(r̂× F)
(
µe−jkr

4πr

)
+O

(
1

r2

)
= −j k× A+O

(
1

r2

)

The “angular derivatives” arise from the θ,φ derivatives in the gradient as per
Eq. (13.8.5). These derivatives act on F(θ,φ), but because they already have a 1/r
factor in them and the rest of A has another 1/r factor, these terms will go down like
1/r2. Similarly, when we compute the derivative ∂r[e−jkr/r] we may keep only the
derivative of the numerator because the rest goes down like 1/r2.

Thus, we arrive at the useful rule that to order 1/r, the gradient operator∇∇∇, whenever
it acts on a function of the form f(θ,φ)e−jkr/r, can be replaced by:

∇∇∇ −→ −j k = −jk r̂ (13.10.1)

Applying the rule again, we have:

∇∇∇× (∇∇∇× A)= −j k× (−j k× A)= (k× A)×k = k2(r̂× A)×r̂ =ω2µε(r̂× A)×r̂

Noting thatωµ = ckµ = k√µ/ε = kη and using Eq. (13.3.9), we finally find:

E = −jkη e
−jkr

4πr
(r̂× F)×r̂

H = −jk e
−jkr

4πr
r̂× F

(radiation fields) (13.10.2)
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Moreover, we recognize that:

E = ηH× r̂, H = 1

η
r̂× E and

|E|
|H| = η (13.10.3)

We note the similarity to uniform plane waves and emphasize the following properties:

1. {E, H, r̂} form a right-handed vector system.
2. E is always parallel to the transverse part F⊥ of the radiation vector F.
3. H is always perpendicular to the radiation vector F.
4. dc current sources (ω = k = 0) will not radiate.

Fig. 13.10.1 Electric and magnetic fields radiated by a current source.

Figure 13.10.1 illustrates some of these remarks. The radiation vector may be de-
composed in general into a radial part Fr = r̂Fr and a transverse part F⊥. In fact, this
decomposition is obtained from the identity:

F = r̂(r̂ · F)+(r̂× F)×r̂ = r̂Fr + F⊥

Resolving F along the spherical coordinate unit vectors, we have:

F = r̂Fr + θ̂θθFθ + φ̂φφFφ
r̂× F = φ̂φφFθ − θ̂θθFφ

F⊥ = (r̂× F)×r̂ = θ̂θθFθ + φ̂φφFφ
Thus, only Fθ and Fφ contribute to the fields:

E = −jkη e
−jkr

4πr
[
θ̂θθFθ + φ̂φφFφ

]

H = −jk e
−jkr

4πr
[
φ̂φφFθ − θ̂θθFφ

] (radiation fields) (13.10.4)

Recognizing that r̂× F = r̂× F⊥, we can also write compactly:

E = −jkη e
−jkr

4πr
F⊥

H = −jk e
−jkr

4πr
r̂× F⊥

(radiation fields) (13.10.5)
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In general, the radiation vector will have both Fθ and Fφ components, depending on
the nature of the current distribution J. However, in practice there are three important
cases that stand out:

1. Only Fθ is present. This includes all linear antennas and arrays. The z-axis is
oriented in the direction of the antenna, so that the radiation vector only has r
and θ components.

2. Only Fφ is present. This includes loop antennas with the xy-plane chosen as the
plane of the loop.

3. Both Fθ and Fφ are present, but they are carefully chosen to have the phase rela-
tionship Fφ = ±jFθ, so that the resulting electric field will be circularly polarized.
This includes helical antennas used in space communications.

13.11 Problems

13.1 First, prove the differential identity:

∇∇∇′ · [J(r′)ej k·r′] = j k · J(r′)ej k·r
′ − jωρ(r′)ej k·r′

Then, prove the integral identity:

k ·
∫
V

J(r′)ej k·r
′
d3r′ =ω

∫
V
ρ(r′)ej k·r

′
d3r′

Assume that the charge and current densities are localized within the finite volume V. Fi-
nally, show that the charge form-factor Q and radiation vector F are related by:

r̂ · F = cQ
13.2 Using similar techniques as in the previous problem, prove the following general property,

valid for any scalar function g(r), where V is the volume over which J, ρ are non-zero:∫
V

J(r′)·∇∇∇′g(r′)d3r′ = jω
∫
V
g(r′)ρ(r′)d3r′

13.3 It is possible to obtain the fields generated by the source densities ρ, J by working directly
with Maxwell’s equations without introducing the scalar and vector potentials φ,A. Start
with the monochromatic Maxwell’s equations

∇∇∇× E = −jωµH , ∇∇∇×H = J+ jωεE , ∇∇∇ · E = 1

ε
ρ , ∇∇∇ ·H = 0

Show that E,H satisfy the following Helmholtz equations:

(∇2 + k2
)
E = jωµJ+ 1

ε
∇∇∇ρ , (∇2 + k2

)
H = −∇∇∇× J

Show that their solutions are obtained with the help of the Green’s function (13.3.4):

E =
∫
V

[−jωµJG− 1

ε
(∇∇∇′ρ)G]dV′

H =
∫
V

[∇∇∇′ × J
]
GdV′

Although these expressions and Eqs. (13.3.10) look slightly different, they are equivalent.
Explain in what sense this is true.
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13.4 The electric and magnetic dipole moments of charge and current volume distributions ρ, J
are defined by:

p =
∫
V

rρ(r)dV , m = 1

2

∫
V

r× J(r)dV

Using these definitions and the integral property of Eq. (C.36) of Appendix C, show that for
two charges ±Q separated by distance d, and for a current I flowing on a closed planar loop
of arbitrary shape and area S lying on the xy-plane, the quantities p,m are given by:

p = Q d

m = ẑ I S

13.5 By performing an inverse Fourier time transform on Eq. (13.5.5), show that the fields pro-
duced by an arbitrary time-varying dipole at the origin, P(r, t)= p(t)δ(3)(r), are given by:

E(r, t) = 1

ε0

( 1

c0

∂
∂t
+ 1

r
)[3r̂

(
r̂ · p(tr)

)− p(tr)
r

]
1

4πr
− 1

ε0c2
0

r̂× (p̈(tr)× r̂)
1

4πr

H(r, t) = ∂
∂t
( 1

c0

∂
∂t
+ 1

r
)(

p(tr)× r̂
) 1

4πr

where tr = t − r/c0 is the retarded time and the time-derivatives act only on p(tr). Show
also that the radiated fields are (with η0 =

√
µ0/ε0):

E rad(r, t) = µ0 r̂× (r̂× p̈(tr))
1

4πr
= η0 H rad(r, t)× r̂

H rad(r, t) = µ0

η0

(
p̈(tr)× r̂

) 1

4πr

13.6 Assume that the dipole of the previous problem is along the z-direction, p(t)= ẑp(t). In-
tegrating the Poynting vectorPPP = E rad ×H rad over a sphere of radius r, show that the total
radiated power from the dipole is given by:

Prad(r, t)= η0

6πc2
0
p̈2(tr)

13.7 Define a 3×3 matrix J(a) such that the operation J(a)b represents the cross-product a×b.
Show that:

J(a)=



0 −az ay
az 0 −ax
−ay ax 0




Show that J(a) is a rank-2 matrix with eigenvalues λ = 0 and λ = ±j|a|, where a is assumed
to be real-valued. Show that the eigenvectors corresponding to the non-zero eigenvalues are
given by e = f̂∓j ĝ, where f̂, ĝ are real-valued unit vectors such that {̂f, ĝ, â} is a right-handed
vector system (like {x̂, ŷ, ẑ}), here, â = a/|a|. Show that e · e = 0 and e∗ · e = 2.

A radiator consists of electric and magnetic dipoles p,m placed at the origin. Assuming
harmonic time dependence and adding the radiation fields of Eqs. (13.5.6) and (13.5.10),
show that the total radiated fields can be expressed in terms of the 6×6 matrix operation:

[
E(r)
η0H(r)

]
= −η0 k2 e−jkr

4πr

[
J2(r̂) J(r̂)
−J(r̂) J2(r̂)

][
c0 p
m

]
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Show that J(r̂) satisfies the matrix equation J3(r̂)+J(r̂)= 0. Moreover, show that its eigen-
values are λ = 0 and λ = ±j and that the eigenvectors belonging to the two nonzero eigen-
values are given in terms of the polar unit vectors by e = θ̂θθ∓ j φ̂φφ.

Because the matrix J(r̂) is rank-defective, so is the above 6×6 matrix, reflecting the fact
that the radiation fields can only have two polarization states. However, it has been shown
recently [549] that in a multiple-scattering environment, such as wireless propagation in
cities, the corresponding 6×6 matrix becomes a full-rank matrix (rank 6) allowing the tripling
of the channel capacity over the standard dual-polarization transmission.



14
Transmitting and Receiving Antennas

14.1 Energy Flux and Radiation Intensity

The flux of electromagnetic energy radiated from a current source at far distances is
given by the time-averaged Poynting vector, calculated in terms of the radiation fields
(13.10.4):

PPP = 1

2
Re(E×H∗)= 1

2

(
−jkη e

−jkr

4πr

)(
jk
ejkr

4πr

)
Re
[
(θ̂θθFθ + φ̂φφFφ)×(φ̂φφF∗θ − θ̂θθF∗φ)

]

Noting that θ̂θθ× φ̂φφ = r̂, we have:

(θ̂θθFθ + φ̂φφFφ)×(φ̂φφF∗θ − θ̂θθF∗φ)= r̂
(|Fθ|2 + |Fφ|2) = r̂

∣∣F⊥(θ,φ)
∣∣2

Therefore, the energy flux vector will be:

PPP = r̂Pr = r̂
ηk2

32π2r2

∣∣F⊥(θ,φ)
∣∣2

(14.1.1)

Thus, the radiated energy flows radially away from the current source and attenu-
ates with the square of the distance. The angular distribution of the radiated energy is
described by the radiation pattern factor:

∣∣F⊥(θ,φ)
∣∣2 = ∣∣Fθ(θ,φ)∣∣2 + ∣∣Fφ(θ,φ)∣∣2

(14.1.2)

With reference to Fig. 13.9.1, the power dP intercepting the area element dS = r2dΩ
defines the power per unit area, or the power density of the radiation:

dP
dS
= dP
r2dΩ

= Pr = ηk2

32π2r2

∣∣F⊥(θ,φ)
∣∣2

(power density) (14.1.3)

The radiation intensity U(θ,φ) is defined to be the power radiated per unit solid
angle, that is, the quantity dP/dΩ = r2dP/dS = r2Pr :

U(θ,φ)= dP
dΩ

= r2Pr = ηk2

32π2

∣∣F⊥(θ,φ)
∣∣2

(radiation intensity) (14.1.4)

460
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The total radiated power is obtained by integrating Eq. (14.1.4) over all solid angles
dΩ = sinθdθdφ, that is, over 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π :

Prad =
∫ π

0

∫ 2π

0
U(θ,φ)dΩ (total radiated power) (14.1.5)

A useful concept is that of an isotropic radiator—a radiator whose intensity is the
same in all directions. In this case, the total radiated power Prad will be equally dis-
tributed over all solid angles, that is, over the total solid angle of a sphere Ωsphere = 4π
steradians, and therefore, the isotropic radiation intensity will be:

UI =
(
dP
dΩ

)
I
= Prad

Ωsphere
= Prad

4π
= 1

4π

∫ π
0

∫ 2π

0
U(θ,φ)dΩ (14.1.6)

Thus, UI is the average of the radiation intensity over all solid angles. The corre-
sponding power density of such an isotropic radiator will be:

(
dP
dS

)
I
= UI
r2
= Prad

4πr2
(isotropic power density) (14.1.7)

14.2 Directivity, Gain, and Beamwidth

The directive gain of an antenna system towards a given direction (θ,φ) is the radiation
intensity normalized by the corresponding isotropic intensity, that is,

D(θ,φ)= U(θ,φ)
UI

= U(θ,φ)
Prad/4π

= 4π
Prad

dP
dΩ

(directive gain) (14.2.1)

It measures the ability of the antenna to direct its power towards a given direction.
The maximum value of the directive gain, Dmax, is called the directivity of the antenna
and will be realized towards some particular direction, say (θ0,φ0). The radiation
intensity will be maximum towards that direction, Umax = U(θ0,φ0), so that

Dmax = Umax

UI
(directivity) (14.2.2)

The directivity is often expressed in dB,† that is,DdB = 10 log10Dmax. Re-expressing
the radiation intensity in terms of the directive gain, we have:

dP
dΩ

= U(θ,φ)= D(θ,φ)UI = PradD(θ,φ)
4π

(14.2.3)

and for the power density in the direction of (θ,φ):

dP
dS
= dP
r2dΩ

= PradD(θ,φ)
4πr2

(power density) (14.2.4)

†The term “dBi” is often used as a reminder that the directivity is with respect to the isotropic case.
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Comparing with Eq. (14.1.7), we note that if the amount of power PradD(θ,φ) were
emitted isotropically, then Eq. (14.2.4) would be the corresponding isotropic power den-
sity. Therefore, we will refer to PradD(θ,φ) as the effective isotropic power, or the
effective radiated power (ERP) towards the (θ,φ)-direction.

In the direction of maximum gain, the quantity PradDmax will be referred to as the
effective isotropic radiated power (EIRP). It defines the maximum power density achieved
by the antenna:

(
dP
dS

)
max
= PEIRP

4πr2
, where PEIRP = PradDmax (14.2.5)

Usually, communicating antennas—especially highly directive ones such as dish
antennas—are oriented to point towards the maximum directive gain of each other.

A related concept is that of the power gain, or simply the gain of an antenna. It is
defined as in Eq. (14.2.1), but instead of being normalized by the total radiated power, it
is normalized to the total power PT accepted by the antenna terminals from a connected
transmitter, as shown in Fig. 14.2.1:

G(θ,φ)= U(θ,φ)
PT/4π

= 4π
PT

dP
dΩ

(power gain) (14.2.6)

We will see in Sec. 14.4 that the power PT delivered to the antenna terminals is at
most half the power produced by the generator—the other half being dissipated as heat
in the generator’s internal resistance.

Moreover, the power PT may differ from the power radiated, Prad, because of several
loss mechanisms, such as ohmic losses of the currents flowing on the antenna wires or
losses in the dielectric surrounding the antenna.

Fig. 14.2.1 Power delivered to an antenna versus power radiated.

The definition of power gain does not include any reflection losses arising from
improper matching of the transmission line to the antenna input impedance [93]. The
efficiency factor of the antenna is defined by:

e = Prad

PT
⇒ Prad = ePT (14.2.7)

In general, 0 ≤ e ≤ 1. For a lossless antenna the efficiency factor will be unity and
Prad = PT. In such an ideal case, there is no distinction between directive and power
gain. Using Eq. (14.2.7) in (14.2.1), we find G = 4πU/PT = e4πU/Prad, or,
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G(θ,φ)= eD(θ,φ) (14.2.8)

The maximum gain is related to the directivity by Gmax = eDmax. It follows that
the effective radiated power can be written as PradD(θ,φ)= PTG(θ,φ), and the EIRP,
PEIRP = PradDmax = PTGmax.

The angular distribution functions we defined thus far, that is, G(θ,φ), D(θ,φ),
U(θ,φ) are all proportional to each other. Each brings out a different aspect of the
radiating system. In describing the angular distribution of radiation, it proves conve-
nient to consider it relative to its maximal value. Thus, we define the normalized power
pattern, or normalized gain by:

g(θ,φ)= G(θ,φ)
Gmax

(normalized gain) (14.2.9)

Because of the proportionality of the various angular functions, we have:

g(θ,φ)= G(θ,φ)
Gmax

= D(θ,φ)
Dmax

= U(θ,φ)
Umax

=
∣∣F⊥(θ,φ)

∣∣2

|F⊥|2max
(14.2.10)

Writing PTG(θ,φ)= PTGmax g(θ,φ), we have for the power density:

dP
dS
= PTGmax

4πr2
g(θ,φ)= PEIRP

4πr2
g(θ,φ) (14.2.11)

This form is useful for describing communicating antennas and radar. The normal-
ized gain is usually displayed in a polar plot with polar coordinates (ρ,θ) such that
ρ = g(θ), as shown in Fig. 14.2.2. (This figure depicts the gain of a half-wave dipole
antenna given by g(θ)= cos2(0.5π cosθ)/ sin2 θ.) The 3-dB, or half-power, beamwidth
is defined as the difference ∆θB = θ2 − θ1 of the 3-dB angles at which the normalized
gain is equal to 1/2, or, −3 dB.

Fig. 14.2.2 Polar and regular plots of normalized gain versus angle.

The MATLAB functions dbp, abp, dbz, abz given in Appendix G allow the plotting of
the gain in dB or in absolute units versus the polar angle θ or the azimuthal angle φ.
Their typical usage is as follows:

dbp(theta, g, rays, Rm, width); % polar gain plot in dB

abp(theta, g, rays, width); % polar gain plot in absolute units

dbz(phi, g, rays, Rm, width); % azimuthal gain plot in dB

abz(phi, g, rays, width); % azimuthal gain plot in absolute units
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Example 14.2.1: A TV station is transmitting 10 kW of power with a gain of 15 dB towards a
particular direction. Determine the peak and rms value of the electric field E at a distance
of 5 km from the station.

Solution: The gain in absolute units will be G = 10GdB/10 = 1015/10 = 31.62. It follows that the
radiated EIRP will be PEIRP = PTG = 10× 31.62 = 316.2 kW. The electric field at distance
r = 5 km is obtained from Eq. (14.2.5):

dP
dS
= PEIRP

4πr2
= 1

2η
E2 ⇒ E = 1

r

√
ηPEIRP

2π

This gives E = 0.87 V/m. The rms value is Erms = E/
√

2 = 0.62 V/m. ��

Another useful concept is that of the beam solid angle of an antenna. The definition
is motivated by the case of a highly directive antenna, which concentrates all of its
radiated power Prad into a small solid angle ∆Ω, as illustrated in Fig. 14.2.3.

Fig. 14.2.3 Beam solid angle and beamwidth of a highly directive antenna.

The radiation intensity in the direction of the solid angle will be:

U = ∆P
∆Ω

= Prad

∆Ω
(14.2.12)

where ∆P = Prad by assumption. It follows that: Dmax = 4πU/Prad = 4π/∆Ω, or,

Dmax = 4π
∆Ω

(14.2.13)

Thus, the more concentrated the beam, the higher the directivity. Although (14.2.13)
was derived under the assumption of a highly directive antenna, it may be used as the
definition of the beam solid angle for any antenna, that is,

∆Ω = 4π
Dmax

(beam solid angle) (14.2.14)

Using Dmax = Umax/UI and Eq. (14.1.6), we have

∆Ω = 4πUI
Umax

= 1

Umax

∫ π
0

∫ 2π

0
U(θ,φ)dΩ , or,

∆Ω =
∫ π

0

∫ 2π

0
g(θ,φ)dΩ (beam solid angle) (14.2.15)
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where g(θ,φ) is the normalized gain of Eq. (14.2.10). Writing Prad = 4πUI, we have:

∆Ω = Prad

Umax
⇒ Umax = Prad

∆Ω
(14.2.16)

This is the general case of Eq. (14.2.12). We can also write:

Prad = Umax∆Ω (14.2.17)

This is convenient for the numerical evaluation of Prad. To get a measure of the
beamwidth of a highly directive antenna, we assume that the directive gain is equal to
its maximum uniformly over the entire solid angle ∆Ω in Fig. 14.2.3, that is, D(θ,φ)=
Dmax, for 0 ≤ θ ≤ ∆θB/2. This implies that the normalized gain will be:

g(θ,φ)=
{

1, if 0 ≤ θ ≤ ∆θB/2
0, if ∆θB/2 < θ ≤ π

Then, it follows from the definition (14.2.15) that:

∆Ω =
∫ ∆θB/2

0

∫ 2π

0
dΩ =

∫ ∆θB/2
0

∫ 2π

0
sinθdθdφ = 2π

(
1− cos

∆θB
2

)
(14.2.18)

Using the approximation cosx � 1− x2/2, we obtain for small beamwidths:

∆Ω = π
4
(∆θB)2 (14.2.19)

and therefore the directivity can be expressed in terms of the beamwidth:

Dmax = 16

∆θ2
B

(14.2.20)

Example 14.2.2: Find the beamwidth in degrees of a lossless dish antenna with gain of 15
dB. The directivity and gain are equal in this case, therefore, Eq. (14.2.20) can be used
to calculate the beamwidth: ∆θB =

√
16/D, where D = G = 1015/10 = 31.62. We find

∆θB = 0.71 rads, or ∆θB = 40.76o.

For an antenna with 40 dB gain/directivity, we would have D = 104 and find ∆θB =
0.04 rads = 2.29o. ��

Example 14.2.3: A satellite in a geosynchronous orbit of 36,000 km is required to have com-
plete earth coverage. What is its antenna gain in dB and its beamwidth? Repeat if the
satellite is required to have coverage of an area equal the size of continental US.

Solution: The radius of the earth is R = 6400 km. Looking down from the satellite the earth
appears as a flat disk of area ∆S = πR2. It follows that the subtended solid angle and the
corresponding directivity/gain will be:

∆Ω = ∆S
r2
= πR

2

r2
⇒ D = 4π

∆Ω
= 4r2

R2

With r = 36,000 km and R = 6400 km, we find D = 126.56 and in dB, DdB = 10 log10D
= 21.02 dB. The corresponding beamwidth will be ∆θB =

√
16/D = 0.36 rad = 20.37o.
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For the continental US, the coast-to-coast distance of 3000 mi, or 4800 km, translates to an
area of radius R = 2400 km, which leads to D = 900 and DdB = 29.54 dB. The beamwidth
is in this case ∆θB = 7.64o.

Viewing the earth as a flat disk overestimates the required angle ∆θB for earth coverage.
Looking down from a satellite at a height r, the angle between the vertical and the tangent
to the earth’s surface is given by sinθ = R/(r + R), which gives for r = 36,000 km,
θ = 8.68o. The subtended angle will be then ∆θB = 2θ = 0.303 rad = 17.36o. It follows
that the required antenna gain should be G = 16/∆θ2

B = 174.22 = 22.41 dB. The flat-disk
approximation is more accurate for smaller areas on the earth’s surface that lie directly
under the satellite. ��

Example 14.2.4: The radial distance of a geosynchronous orbit can be calculated by equating
centripetal and gravitational accelerations, and requiring that the angular velocity of the
satellite corresponds to the period of 1 day, that is,ω = 2π/T, where T = 24 hr = 86 400
sec. Letm be the mass of the satellite andM⊕ the mass of the earth (see Appendix A):

GmM⊕
r2

=mω2r =m
(

2π
T

)2

r ⇒ r =m
(
GM⊕T2

4π2

)1/3

The distance r is measured from the Earth’s center. The corresponding height from the
surface of the Earth is h = r−R. For the more precise value ofR = 6378 km, the calculated
values are:

r = 42 237 km = 26 399 mi
h = 35 860 km = 22 414 mi

14.3 Effective Area

When an antenna is operating as a receiving antenna, it extracts a certain amount of
power from an incident electromagnetic wave. As shown in Fig. 14.3.1, an incident wave
coming from a far distance may be thought of as a uniform plane wave being intercepted
by the antenna.

Fig. 14.3.1 Effective area of an antenna.

The incident electric field sets up currents on the antenna. Such currents may be
represented by a Thévenin-equivalent generator, which delivers power to any connected
receiving load impedance.
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The induced currents also re-radiate an electric field (referred to as the scattered
field), which interferes with the incident field causing a shadow region behind the an-
tenna, as shown in Fig. 14.3.1. We will see in Sec. 14.4 that at most half of the incident
power is delivered to the load and half is re-radiated away.

The total electric field outside the antenna will be the sum of the incident and re-
radiated fields. For a perfectly conducting antenna, the boundary conditions are that the
tangential part of the total electric field vanish on the antenna surface. In Chap. 20, we
apply these boundary conditions to obtain and solve Hallén’s and Pocklington’s integral
equations satisfied by the induced current.

The power density of the incident wave at the location of the receiving antenna can
be expressed in terms of the electric field of the wave, Pinc = E2/2η.

The effective area or effective aperture A of the antenna is defined to be that area
which when intercepted by the incident power densityPinc gives the amount of received
power PR available at the antenna output terminals [93]:

PR = APinc (14.3.1)

For a lossy antenna, the available power at the terminals will be somewhat less than
the extracted radiated power Prad, by the efficiency factor PR = ePrad. Thus, we may
also define the maximum effective aperture Am as the area which extracts the power
Prad from the incident wave, that is, Prad = AmPinc. It follows that:

A = eAm (14.3.2)

The effective area depends on the direction of arrival (θ,φ) of the incident wave.
For all antennas, it can be shown that the effective area A(θ,φ) is related to the power
gain G(θ,φ) and the wavelength λ = c/f as follows:

G(θ,φ)= 4πA(θ,φ)
λ2

(14.3.3)

Similarly, because G(θ,φ)= eD(θ,φ), the maximum effective aperture will be re-
lated to the directive gain by:

D(θ,φ)= 4πAm(θ,φ)
λ2

(14.3.4)

In practice, the quoted effective area A of an antenna is the value corresponding to
the direction of maximal gain Gmax. We write in this case:

Gmax = 4πA
λ2

(14.3.5)

Similarly, we have for the directivity Dmax = 4πAm/λ2. Because Dmax is related to
the beam solid angle by Dmax = 4π/∆Ω, it follows that

Dmax = 4π
∆Ω

= 4πAm
λ2

⇒ Am∆Ω = λ2 (14.3.6)
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Writing λ = c/f , we may express Eq. (14.3.5) in terms of frequency:

Gmax = 4πf2A
c2

(14.3.7)

The effective area is not equal to the physical area of an antenna. For example, linear
antennas do not even have any characteristic physical area. For dish or horn antennas,
on the other hand, the effective area is typically a fraction of the physical area (about
55–65 percent for dishes and 60–80 percent for horns.) For example, if the dish has a
diameter of d meters, then we have:

A = ea 1

4
πd2 (effective area of dish antenna) (14.3.8)

where ea is the aperture efficiency factor, typically ea = 0.55–0.65. Combining Eqs.
(14.3.5) and (14.3.8), we obtain:

Gmax = ea
(
πd
λ

)2

(14.3.9)

Antennas fall into two classes: fixed-area antennas, such as dish antennas, for
which A is independent of frequency, and fixed-gain antennas, such as linear antennas,
for which G is independent of frequency. For fixed-area antennas, the gain increases
quadratically with f . For fixed-gain antennas, A decreases quadratically with f .

Example 14.3.1: Linear antennas are fixed-gain antennas. For example, we will see in Sec. 15.1
that the gains of a (lossless) Hertzian dipole, a halfwave dipole, and a monopole antenna
are the constants:

Ghertz = 1.5, Gdipole = 1.64, Gmonopole = 3.28

Eq. (14.3.5) gives the effective areas A = Gλ2/4π:

Ahertz = 0.1194λ2, Adipole = 0.1305λ2, Amonopole = 0.2610λ2

In all cases the effective area is proportional to λ2 and decreases with f2. In the case of the
commonly used monopole antenna, the effective area is approximately equal to a rectangle
of sides λ and λ/4, the latter being the physical length of the monopole. ��

Example 14.3.2: Determine the gain in dB of a dish antenna of diameter of 0.5 m operating at
a satellite downlink frequency of 4 GHz and having 60% aperture efficiency. Repeat if the
downlink frequency is 11 GHz. Repeat if the diameter is doubled to 1 m.

Solution: The effective area and gain of a dish antenna with diameter d is:

A = ea 1

4
πd2 ⇒ G = 4πA

λ
= ea

(
πd
λ

)2

= ea
(
πfd
c

)2

The calculated gains G in absolute and dB units are in the four cases:
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d = 0.5 m d = 1 m

f = 4 GHz 263 = 24 dB 1052 = 30 dB

f = 11 GHz 1990 = 33 dB 7960 = 39 dB

Doubling the diameter (or the frequency) increases the gain by 6 dB, or a factor of 4.
Conversely, if a dish antenna is to have a desired gain G (for example, to achieve a desired
beamwidth), the above equation can be solved for the required diameter d in terms of G
and f . ��

The beamwidth of a dish antenna can be estimated by combining the approximate ex-
pression (14.2.20) with (14.3.5) and (14.3.8). Assuming a lossless antenna with diameter
d and 100% aperture efficiency, and taking Eq. (14.2.20) literally, we have:

Gmax = 4πA
λ2

=
(
πd
λ

)2

= Dmax = 16

∆θ2
B

Solving for ∆θB, we obtain the expression in radians and in degrees:

∆θB = 4

π
λ
d
= 1.27

λ
d
, ∆θB = 73o λ

d
(14.3.10)

Thus, the beamwidth depends inversely on the antenna diameter. In practice, quick
estimates of the 3-dB beamwidth in degrees are obtained by replacing Eq. (14.3.10) by
the formula [654]:

∆θB = 1.22
λ
d
= 70o λ

d
(3-dB beamwidth of dish antenna) (14.3.11)

The constant 70o represents only a rough approximation (other choices are in the
range 65–75o.) Solving for the ratio d/λ = 1.22/∆θB (here, ∆θB is in radians), we may
express the maximal gain inversely with ∆θ2

B as follows:

Gmax = ea
(
πd
λ

)2

= eaπ
2(1.22)2

∆θ2
B

For a typical aperture efficiency of 60%, this expression can be written in the following
approximate form, with ∆θB given in degrees:

Gmax = 30 000

∆θ2
B

(14.3.12)

Equations (14.3.11) and (14.3.12) must be viewed as approximate design guidelines,
or rules of thumb [654], for the beamwidth and gain of a dish antenna.

Example 14.3.3: For the 0.5-m antenna of the previous example, estimate its beamwidth for
the two downlink frequencies of 4 GHz and 11 GHz.

The operating wavelengths are in the two cases: λ = 7.5 cm and λ = 2.73 cm. Using
Eq. (14.3.11), we find ∆θB = 10.5o and ∆θB = 3.8o. ��
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Example 14.3.4: A geostationary satellite at height of 36,000 km is required to have earth cov-
erage. Using the approximate design equations, determine the gain in dB and the diameter
of the satellite antenna for a downlink frequency of 4 GHz. Repeat for 11 GHz.

Solution: This problem was considered in Example 14.2.3. The beamwidth angle for earth cov-
erage was found to be ∆θB = 17.36o. From Eq. (14.3.11), we find:

d = λ 70o

∆θB
= 7.5

70o

17.36o
= 30 cm

From Eq. (14.3.12), we find:

G = 30 000

∆θ2
B
= 30 000

17.362
= 100 = 20 dB

For 11 GHz, we find d = 11 cm, and G remains the same. ��

In Eqs. (14.2.20) and (14.3.12), we implicitly assumed that the radiation pattern was
independent of the azimuthal angle φ. When the pattern is not azimuthally symmetric,
we may define two orthogonal polar directions parametrized, say, by angles θ1 and θ2,
as shown in Fig. 14.3.2.

Fig. 14.3.2 Half-power beamwidths in two principal polar directions.

In this case dΩ = dθ1 dθ2 and we may approximate the beam solid angle by the
product of the corresponding 3-dB beamwidths in these two directions, ∆Ω = ∆θ1∆θ2.
Then, the directivity takes the form (with the angles in radians and in degrees):

Dmax = 4π
∆Ω

= 4π
∆θ1∆θ2

= 41 253

∆θo
1∆θ

o
2

(14.3.13)

Equations (14.3.12) and (14.3.13) are examples of a more general expression that
relates directivity or gain to the 3-dB beamwidths for aperture antennas [563,575]:

Gmax = p
∆θ1∆θ2

(14.3.14)

where p is a gain-beamwidth constant whose value depends on the particular aperture
antenna. We will see several examples of this relationship in Chapters 16 and 17. Prac-
tical values of p fall in the range 25 000–35 000 (with the beamwidth angles in degrees.)

14.4 Antenna Equivalent Circuits

To a generator feeding a transmitting antenna as in Fig. 14.2.1, the antenna appears as
a load. Similarly, a receiver connected to a receiving antenna’s output terminals will ap-
pear to the antenna as a load impedance. Such simple equivalent circuit representations



14.4. Antenna Equivalent Circuits 471

of transmitting and receiving antennas are shown in Fig. 14.4.1, where in both cases V
is the equivalent open-circuit Thévenin voltage.

In the transmitting antenna case, the antenna is represented by a load impedance
ZA, which in general will have both a resistive and a reactive part, ZA = RA + jXA.
The reactive part represents energy stored in the fields near the antenna, whereas the
resistive part represents the power losses which arise because (a) power is radiated away
from the antenna and (b) power is lost into heat in the antenna circuits.

Fig. 14.4.1 Circuit equivalents of transmitting and receiving antennas.

The generator has its own internal impedance ZG = RG + jXG. The current at the
antenna input terminals will be Iin = V/(ZG+ZA), which allows us to determine (a) the
total power Ptot produced by the generator, (b) the power PT delivered to the antenna
terminals, and (c) the power PG lost in the generator’s internal resistance RG. These are:

Ptot = 1

2
Re(VI∗in)=

1

2

|V|2(RG +RA)
|ZG + ZA|2

PT = 1

2
|Iin|2RA = 1

2

|V|2RA
|ZG + ZA|2 , PG = 1

2
|Iin|2RG = 1

2

|V|2RG
|ZG + ZA|2

(14.4.1)

It is evident that Ptot = PT+PG. A portion of the power PT delivered to the antenna
is radiated away, say an amount Prad, and the rest is dissipated as ohmic losses, say
Pohm. Thus, PT = Prad + Pohm. These two parts can be represented conveniently by
equivalent resistances by writing RA = Rrad + Rohm, where Rrad is referred to as the
radiation resistance. Thus, we have,

PT = 1

2
|Iin|2RA = 1

2
|Iin|2Rrad + 1

2
|Iin|2Rohm = Prad + Pohm (14.4.2)

The efficiency factor of Eq. (14.2.7) is evidently:

e = Prad

PT
= Rrad

RA
= Rrad

Rrad +Rohm

To maximize the amount of power PT delivered to the antenna (and thus minimize
the power lost in the generator’s internal resistance), the load impedance must satisfy
the usual conjugate matching condition:

ZA = Z∗G � RA = RG, XA = −XG
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In this case, |ZG + ZA|2 = (RG + RA)2+(XG +XA)2= 4R2
A, and it follows that the

maximum power transferred to the load will be one-half the total—the other half being
lost in RG, that is,

PT,max = PG,min = 1

2
Ptot = 1

8

|V|2
RA

(14.4.3)

The case of a receiving antenna is similar. The induced currents on the antenna can
be represented by a Thévenin-equivalent generator (the open-circuit voltage at the an-
tenna output terminals) and an internal impedanceZA. A consequence of the reciprocity
principle is that ZA is the same whether the antenna is transmitting or receiving.

The current into the load is IL = V/(ZA + ZL), where the load impedance is ZL =
RL+jXL. As before, we can determine (a) the total power Ptot produced by the generator
(i.e., intercepted by the antenna), (b) the power PR delivered to the receiving load, and
(c) the power PA lost in the internal resistance RA of the antenna:

Ptot = 1

2
Re(VI∗L )=

1

2

|V|2(RL +RA)
|ZL + ZA|2

PR = 1

2
|IL|2RL = 1

2

|V|2RL
|ZL + ZA|2 , PA = 1

2
|IL|2RA = 1

2

|V|2RA
|ZL + ZA|2

(14.4.4)

And again, Ptot = PR + PA. Under conjugate matching, we have ZL = Z∗A. Half of
the total power will be delivered to the load and the other half will be “dissipated” in
RA = Rrad +Rohm, that is, partly re-radiated because of Rrad and partly lost into heat in
Rohm. Thus:

PR,max = PA,min = 1

2
Ptot = 1

8

|V|2
RA

(14.4.5)

To summarize, in a receiving antenna under conjugate matching conditions, only half
of the incident power is delivered to the load and the other half is mostly re-radiated
away with a small part lost into heat. In a transmitting antenna, only half of the power
produced by the generator is delivered to the antenna terminals and most of that is
radiated away with a small part lost into ohmic losses.

The interpretation of the power dissipated in RA as representing scattered power is
not without criticism, see for example, Refs. [547,548].

14.5 Effective Length

The polarization properties of the electric field radiated by an antenna depend on the
transverse component of the radiation vector F⊥ according to Eq. (13.10.5):

E = −jkη e
−jkr

4πr
F⊥ = −jkη e

−jkr

4πr
(Fθ θ̂θθ+ Fφ φ̂φφ)

The vector effective length, or effective height of a transmitting antenna is defined
in terms of F⊥ and the input current to the antenna terminals Iin as follows [540]:†

h = −F⊥
Iin

(effective length) (14.5.1)

†Often, it is defined with a positive sign h = F⊥/Iin.
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In general, h is a function of θ,φ. The electric field is, then, written as:

E = jkη e
−jkr

4πr
Iin h (14.5.2)

The definition of h is motivated by the case of a z-directed Hertzian dipole antenna,
which can be shown to have h = l sinθθ̂θθ. More generally, for a z-directed linear antenna
with current I(z), it follows from Eq. (15.1.5) that:

h(θ)= h(θ)θ̂θθ , h(θ)= sinθ
1

Iin

∫ l/2
−l/2

I(z′)ejkz
′ cosθdz′ (14.5.3)

As a consequence of the reciprocity principle, it can be shown [540] that the open-
circuit voltage V at the terminals of a receiving antenna is given in terms of the effective
length and the incident field E i by:

V = E i · h (14.5.4)

The normal definition of the effective area of an antenna and the resultG = 4πA/λ2

depend on the assumptions that the receiving antenna is conjugate-matched to its load
and that the polarization of the incident wave matches that of the antenna.

The effective length helps to characterize the degree of polarization mismatch that
may exist between the incident field and the antenna. To see how the gain-area relation-
ship must be modified, we start with the definition (14.3.1) and use (14.4.4):

A(θ,φ)= PR
Pinc

=
1

2
RL|IL|2
1

2η
|Ei|2

= ηRL|V|2
|ZL + ZA|2|Ei|2 =

ηRL|Ei · h|2
|ZL + ZA|2|Ei|2

Next, we define the polarization and load mismatch factors by:

epol = |E i · h|2
|E i|2 |h|2

eload = 4RLRA
|ZL + ZA|2 = 1− |ΓL|2 , where ΓL = ZL − Z

∗
A

ZL + ZA

(14.5.5)

The effective area can be written then in the form:

A(θ,φ)= η|h|
2

4RA
eload epol (14.5.6)

On the other hand, using (14.1.4) and (14.4.1), the power gain may be written as:

G(θ,φ)= 4πU(θ,φ)
PT

=
4π
ηk2|F⊥|2

32π2

1

2
RA|Iin|2

= πη|h|
2

λ2RA
⇒ η|h|2

4RA
= λ

2

4π
G(θ,φ)

Inserting this in Eq. (14.5.6), we obtain the modified area-gain relationship [541]:

A(θ,φ)= eload epol
λ2

4π
G(θ,φ) (14.5.7)
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Assuming that the incident field originates at some antenna with its own effective
length hi, then E i will be proportional to hi and we may write the polarization mismatch
factor in the following form:

epol = |hi · h|2
|hi|2 |h|2 = |ĥi · ĥ|2 , where ĥi = hi

|hi| , ĥ = h

|h|
When the load is conjugate-matched, we have eload = 1, and when the incident field

has matching polarization with the antenna, that is, ĥi = ĥ
∗

, then, epol = 1.

14.6 Communicating Antennas

The communication between a transmitting and a receiving antenna can be analyzed
with the help of the concept of gain and effective area. Consider two antennas oriented
towards the maximal gain of each other and separated by a distance r, as shown in
Fig. 14.6.1.

Fig. 14.6.1 Transmitting and receiving antennas.

Let {PT,GT,AT} be the power, gain, and effective area of the transmitting antenna,
and {PR,GR,AR} be the same quantities for the receiving antenna. In the direction of
the receiving antenna, the transmitting antenna has PEIRP = PTGT and establishes a
power density at distance r:

PT = dPTdS =
PEIRP

4πr2
= PTGT

4πr2
(14.6.1)

From the incident power density PT, the receiving antenna extracts power PR given
in terms of the effective area AR as follows:

PR = ARPT = PTGTAR
4πr2

(Friis formula) (14.6.2)

This is known as the Friis formula for communicating antennas and can be written in
several different equivalent forms. Replacing GT in terms of the transmitting antenna’s
effective area AT, that is, GT = 4πAT/λ2, Eq. (14.6.2) becomes:

PR = PTATARλ2r2
(14.6.3)
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A better way of rewriting Eq. (14.6.2) is as a product of gain factors. Replacing
AR = λ2GR/4π, we obtain:

PR = PTGTGRλ
2

(4πr)2
(14.6.4)

The effect of the propagation path, which causes PR to attenuate with the square of
the distance r, can be quantified by defining the free-space loss and gain by

Lf =
(

4πr
λ

)2

, Gf = 1

Lf
=
(
λ

4πr

)2

(free-space loss and gain) (14.6.5)

Then, Eq. (14.6.4) can be written as the product of the transmit and receive gains
and the propagation loss factor:

PR = PTGT
(
λ

4πr

)2

GR = PTGT 1

Lf
GR = PTGTGfGR (14.6.6)

Such a gain model for communicating antennas is illustrated in Fig. 14.6.1. An ad-
ditional loss factor, Gother = 1/Lother, may be introduced, if necessary, representing
other losses, such as atmospheric absorption and scattering. It is customary to express
Eq. (14.6.6) additively in dB, where (PR)dB= 10 log10 PR, (GT)dB= 10 log10GT, etc.:

(PR)dB= (PT)dB+(GT)dB−(Lf)dB+(GR)dB (14.6.7)

Example 14.6.1: A geosynchronous satellite is transmitting a TV signal to an earth-based sta-
tion at a distance of 40,000 km. Assume that the dish antennas of the satellite and the
earth station have diameters of 0.5 m and 5 m, and aperture efficiencies of 60%. If the satel-
lite’s transmitter power is 6 W and the downlink frequency 4 GHz, calculate the antenna
gains in dB and the amount of received power.

Solution: The wavelength at 4 GHz is λ = 7.5 cm. The antenna gains are calculated by:

G = ea
(
πd
λ

)2

⇒ Gsat = 263.2 = 24 dB, Gearth = 26320 = 44 dB

Because the ratio of the earth and satellite antenna diameters is 10, the corresponding
gains will differ by a ratio of 100, or 20 dB. The satellite’s transmitter power is in dB,
PT = 10 log10(6)= 8 dBW, and the free-space loss and gain:

Lf =
(

4πr
λ

)2

= 4× 1019 ⇒ Lf = 196 dB, Gf = −196 dB

It follows that the received power will be in dB:

PR = PT +GT − Lf +GR = 8+ 24− 196+ 44 = −120 dBW ⇒ PR = 10−12 W

or, PR = 1 pW (pico-watt). Thus, the received power is extremely small. ��
When the two antennas are mismatched in their polarization with a mismatch factor

epol = |ĥR · ĥT|2, and the receiving antenna is mismatched to its load with eload =
1−|ΓL|2, then the Friis formula (14.6.2) is still valid, but replacingAR using Eq. (14.5.7),
leads to a modified form of Eq. (14.6.4):

PR = PTGTGRλ
2

(4πr)2
|ĥR · ĥT|2

(
1− |ΓL|2

)
(14.6.8)
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14.7 Antenna Noise Temperature

We saw in the above example that the received signal from a geosynchronous satellite
is extremely weak, of the order of picowatts, because of the large free-space loss which
is typically of the order of 200 dB.

To be able to detect such a weak signal, the receiving system must maintain a noise
level that is lower than the received signal. Noise is introduced into the receiving system
by several sources.

In addition to the desired signal, the receiving antenna picks up noisy signals from
the sky, the ground, the weather, and other natural or man-made noise sources. These
noise signals, coming from different directions, are weighted according to the antenna
gain and result into a weighted average noise power at the output terminals of the
antenna. For example, if the antenna is pointing straight up into the sky, it will still
pick up through its sidelobes some reflected signals as well as thermal noise from the
ground. Ohmic losses in the antenna itself will be another source of noise.

The antenna output is sent over a feed line (such as a waveguide or transmission
line) to the receiver circuits. The lossy feed line will attenuate the signal further and
also introduce its own thermal noise.

The output of the feed line is then sent into a low-noise-amplifier (LNA), which pre-
amplifies the signal and introduces only a small amount of thermal noise. The low-noise
nature of the LNA is a critical property of the receiving system.

The output of the LNA is then passed on to the rest of the receiving system, consisting
of downconverters, IF amplifiers, and so on. These subsystems will also introduce their
own gain factors and thermal noise.

Such a cascade of receiver components is depicted in Fig. 14.7.1. The sum total of
all the noises introduced by these components must be maintained at acceptably low
levels (relative to the amplified desired signal.)

Fig. 14.7.1 Typical receiving antenna system.

The average power N (in Watts) of a noise source within a certain bandwidth of B
Hz can be quantified by means of an equivalent temperature T defined through:

N = kTB (noise power within bandwidth B) (14.7.1)

where k is Boltzmann’s constant k = 1.3803×10−23 W/Hz K and T is in degrees Kelvin.
The temperature T is not necessarily the physical temperature of the source, it only
provides a convenient way to express the noise power. (For a thermal source, T is
indeed the physical temperature.) Eq. (14.7.1) is commonly expressed in dB as:

NdB = TdB + BdB + kdB (14.7.2)



14.7. Antenna Noise Temperature 477

where TdB = 10 log10T, BdB = 10 log10 B, and kdB = 10 log10 k is Boltzmann’s constant
in dB: kdB = −228.6 dB. Somewhat incorrectly, but very suggestively, the following units
are used in practice for the various terms in Eq. (14.7.2):

dB W = dB K+ dB Hz+ dB W/Hz K

The bandwidth B depends on the application. For example, satellite transmissions
of TV signals require a bandwidth of about 30 MHz. Terrestrial microwave links may
have B of 60 MHz. Cellular systems may have B of the order of 30 kHz for AMPS or 200
kHz for GSM.

Example 14.7.1: Assuming a 30-MHz bandwidth, we give below some examples of noise powers
and temperatures and compute the corresponding signal-to-noise ratio S/N, relative to a
1 pW reference signal (S = 1 pW).

T TdB N = kTB NdB S/N

50 K 17.0 dBK 0.0207 pW −136.8 dBW 16.8 dB

100 K 20.0 dBK 0.0414 pW −133.8 dBW 13.8 dB

200 K 23.0 dBK 0.0828 pW −130.8 dBW 10.8 dB

290 K 24.6 dBK 0.1201 pW −129.2 dBW 9.2 dB

500 K 27.0 dBK 0.2070 pW −126.8 dBW 6.8 dB

1000 K 30.0 dBK 0.4141 pW −123.8 dBW 3.8 dB

2400 K 33.8 dBK 1.0000 pW −120.0 dBW 0.0 dB

The last example shows that 2400 K corresponds to 1 pW noise. ��

The average noise powerNant at the antenna terminals is characterized by an equiv-
alent antenna noise temperature Tant, such that Nant = kTantB.

The temperatureTant represents the weighted contributions of all the radiating noise
sources picked up by the antenna through its mainlobe and sidelobes. The value of Tant

depends primarily on the orientation and elevation angle of the antenna, and what the
antenna is looking at.

Example 14.7.2: An earth antenna looking at the sky “sees” a noise temperature Tant of the
order of 30–60 K. Of that, about 10 K arises from the mainlobe and sidelobes pointing
towards the sky and 20–40 K from sidelobes pointing backwards towards the earth [5,551–
555]. In rainy weather, Tant might increase by 60 K or more.

The sky noise temperature depends on the elevation angle of the antenna. For example,
at an elevations of 5o, 10o, and 30o, the sky temperature is about 20 K, 10 K, and 4 K at 4
GHz, and 25 K, 12 K, and 5 K at 6 GHz [551]. ��

Example 14.7.3: The noise temperature of the earth viewed from space, such as from a satellite,
is about 254 K. This is obtained by equating the sun’s energy that is absorbed by the earth
to the thermal radiation from the earth [551]. ��

Example 14.7.4: For a base station cellular antenna looking horizontally, atmospheric noise
temperature contributes about 70–100 K at the cellular frequency of 1 GHz, and man-made
noise contributes another 10–120 K depending on the area (rural or urban). The total value
of Tant for cellular systems is in the range of 100–200 K [557,558]. ��
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In general, a noise source in some direction (θ,φ) will be characterized by an ef-
fective noise temperature T(θ,φ), known as the brightness temperature, such that the
radiated noise power in that direction will be N(θ,φ)= kT(θ,φ)B. The antenna tem-
peratureTant will be given by the average over all such sources weighted by the receiving
gain of the antenna:

Tant = 1

∆Ω

∫ π
0

∫ 2π

0
T(θ,φ)g(θ,φ)dΩ (14.7.3)

where ∆Ω is the beam solid angle of the antenna. It follows from Eq. (14.2.15) that ∆Ω
serves as a normalization factor for this average:

∆Ω =
∫ π

0

∫ 2π

0
g(θ,φ)dΩ (14.7.4)

Eq. (14.7.3) can also be written in the following equivalent forms, in terms of the
directive gain or the effective area of the antenna:

Tant = 1

4π

∫ π
0

∫ 2π

0
T(θ,φ)D(θ,φ)dΩ = 1

λ2

∫ π
0

∫ 2π

0
T(θ,φ)A(θ,φ)dΩ

As an example of Eq. (14.7.3), we consider the case of a point source, such as the
sun, the moon, a planet, or a radio star. Then, Eq. (14.7.3) gives:

Tant = Tpoint
gpoint∆Ωpoint

∆Ω

where gpoint and∆Ωpoint are the antenna gain in the direction of the source and the small
solid angle subtended by the source. If the antenna’s mainlobe is pointing towards that
source then, gpoint = 1.

As another example, consider the case of a spatially extended noise source, such as
the sky, which is assumed to have a constant temperature Text over its angular width.
Then, Eq. (14.7.3) becomes:

Tant = Text
∆Ωext

∆Ω
, where ∆Ωext =

∫
ext
g(θ,φ)dΩ

The quantity ∆Ωext is the portion of the antenna’s beam solid angle occupied by the
extended source.

As a third example, consider the case of an antenna pointing towards the sky and
picking up the atmospheric sky noise through its mainlobe and partly through its side-
lobes, and also picking up noise from the ground through the rest of its sidelobes. As-
suming the sky and ground noise temperatures are uniform over their spatial extents,
Eq. (14.7.3) will give approximately:

Tant = Tsky
∆Ωsky

∆Ω
+Tground

∆Ωground

∆Ω

where ∆Ωsky and ∆Ωground are the portions of the beam solid angle occupied by the sky
and ground:

∆Ωsky =
∫

sky
g(θ,φ)dΩ , ∆Ωground =

∫
ground

g(θ,φ)dΩ
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Assuming that the sky and ground beam solid angles account for the total beam
solid angle, we have

∆Ω = ∆Ωsky +∆Ωground

The sky and ground beam efficiency ratios may be defined by:

esky = ∆Ωsky

∆Ω
, eground = ∆Ωground

∆Ω
, esky + eground = 1

Then, the antenna noise temperature can be written in the form:

Tant = eskyTsky + egroundTground (14.7.5)

Example 14.7.5: At 4 GHz and elevation angle of 30o, the sky noise temperature is about 4 K.
Assuming a ground temperature of 290 K and that 90% of the beam solid angle of an earth-
based antenna is pointing towards the sky and 10% towards the ground, we calculate the
effective antenna temperature:

Tant = eskyTsky + egroundTground = 0.9× 4+ 0.1× 290 = 32.6 K

If the beam efficiency towards the sky changes to 85%, then esky = 0.85, eground = 0.15 and
we find Tant = 46.9 K. ��

The mainlobe and sidelobe beam efficiencies of an antenna represent the proportions
of the beam solid angle occupied by the mainlobe and sidelobe of the antenna. The
corresponding beam solid angles are defined by:

∆Ω =
∫

tot
g(θ,φ)dΩ =

∫
main

g(θ,φ)dΩ+
∫

side
g(θ,φ)dΩ = ∆Ωmain +∆Ωside

Thus, the beam efficiencies will be:

emain = ∆Ωmain

∆Ω
, eside = ∆Ωside

∆Ω
, emain + eside = 1

Assuming that the entire mainlobe and a fraction, say α, of the sidelobes point
towards the sky, and therefore, a fraction (1 − α) of the sidelobes will point towards
the ground, we may express the sky and ground beam solid angles as follows:

∆Ωsky = ∆Ωmain +α∆Ωside

∆Ωground = (1−α)∆Ωside

or, in terms of the efficiency factors:

esky = emain +αeside = emain +α(1− emain)

eground = (1−α)eside = (1−α)(1− emain)

Example 14.7.6: Assuming an 80% mainlobe beam efficiency and that half of the sidelobes
point towards the sky and the other half towards the ground, we have emain = 0.8 and
α = 0.5, which lead to the sky beam efficiency esky = 0.9. ��
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14.8 System Noise Temperature

In a receiving antenna system, the signal-to-noise ratio at the receiver must take into
account not only the noise picked up by the antenna, and quantified by Tant, but also all
the internal noises introduced by the various components of the receiver.

Every device, passive or active, is a source of noise generated internally. Such noise
may be modeled as an internal noise source acting at the input of the device, as shown
in Fig. 14.8.1. (Alternatively, the noise source can be added at the output, but the input
convention is more common.)

Fig. 14.8.1 Noise model of a device.

The amount of added noise power is expressed in terms of the effective noise tem-
perature Te of the device:

Ne = kTeB (effective internal noise) (14.8.1)

The sum of Ne and the noise power of the input signal Nin will be the total noise
power, or the system noise power at the input to the device. If the input noise is expressed
in terms of its own noise temperature, Nin = kTinB, we will have:

Nsys = Nin +Ne = k(Tin +Te)B = kTsysB (total input noise) (14.8.2)

where we introduced the system noise temperature at the device input:

Tsys = Tin +Te (system noise temperature) (14.8.3)

If the device has power gain G, then the noise power at the output of the device and
its equivalent temperature, Nout = kToutB, can be expressed as follows:

Nout = G(Nin +Ne)= GNsys

Tout = G(Tin +Te)= GTsys

(14.8.4)

One interpretation of the system noise powerNsys = kTsysB is that it represents the
required input power to an equivalent noiseless system (with the same gain) that will
produce the same output power as the actual noisy system.

If a desired signal with noise power Sin is also input to the device, then the signal
power at the output will be Sout = GSin. The system signal-to-noise ratio is defined to be
the ratio of the input signal power to total system noise power:

SNRsys = Sin

Nsys
= Sin

kTsysB
= Sin

k(Tin +Te)B (system SNR) (14.8.5)
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The SNR is the same whether it is measured at the input or the output of the device;
indeed, multiplying numerator and denominator by G and using (14.8.4), we have:

SNRsys = Sin

Nsys
= Sout

Nout
(14.8.6)

A related concept is that of the noise figure of the device, which also characterizes
the internally generated noise. It is related to the effective noise temperature Te by:

F = 1+ Te
T0

� Te = (F − 1)T0 (14.8.7)

where T0 is the standardized constant temperature T0 = 290 K.
The device of Fig. 14.8.1 can be passive or active. The case of a passive attenuator,

such as a lossy transmission line or waveguide connecting the antenna to the receiver,
deserves special treatment.

In this case, the gain G will be less than unity G < 1, representing a power loss.
For a line of length l and attenuation constant α (nepers per meter), we will have G =
e−2αl. The corresponding loss factor will be L = G−1 = e2αl. If αl � 1, we can write
approximately G = 1− 2αl and L = 1+ 2αl.

If the physical temperature of the line is Tphys then, from either the input or output
end, the line will appear as a thermal noise source of power kTphysB. Therefore, the
condition Nout = Nin = kTphysB requires that

Tphys = G(Tphys +Te) ⇒ Te = 1

G
(1−G)Tphys (attenuator) (14.8.8)

The system noise temperature of the attenuator will be Tsys = Tphys/G = LTphys.
If the physical temperature is Tphys = T0 = 290 K, then, by comparing to Eq. (14.8.7) it
follows that the noise figure of the attenuator will be equal to its loss:

Te = 1

G
(1−G)T0 = ( 1

G
− 1)T0 = (F − 1)T0 ⇒ F = 1

G
= L

When two or more devices are cascaded, each will contribute its own internal noise.
Fig. 14.8.2 shows two such devices with gains G1 and G2 and effective noise tempera-
tures T1 and T2. The cascade combination can be replaced by an equivalent device with
gain G1G2 and effective noise temperature T12.

The equivalent temperature T12 can be determined by superposition. The internal
noise power added by the first device, N1 = kT1B, will go through the gains G1 and
G2 and will contribute an amount G1G2N1 to the output. The noise generated by the
second device, N2 = kT2B, will contribute an amount G2N2. The sum of these two
powers will be equivalent to the amount contributed to the output by the combined
system, G1G2N12 = G1G2kT12B. Thus,

G1G2kT12B = G1G2kT1B+G2kT2B ⇒ G1G2T12 = G1G2T1 +G2T2

It follows that:

T12 = T1 + 1

G1
T2 (equivalent noise temperature) (14.8.9)
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Fig. 14.8.2 Equivalent noise model of two cascaded devices.

If G1 is a large gain, G1 � 1, then the contribution of the second device is reduced
drastically. On the other hand, if the first device is an attenuator, such as a transmission
line, then the contribution of T2 will be amplified because G1 < 1.

According to Eqs. (14.8.3) and (14.8.4), the system noise temperatures at the overall
input, at the output of G1, and at the overall output will be:

Tsys = Tsa = Tin +T12 = Tin +T1 + 1

G1
T2

Tsb = G1Tsa = G1(Tin +T1)+T2

Tout = G2Tsb = G1G2Tsys = G1G2(Tin +T1)+G2T2

(14.8.10)

The system SNR will be:

SNRsys = Sin

kTsysB
= Sin

k(Tin +T12)B

The signal powers at points a, b, and at the output will be Sa = Sin, Sb = G1Sa,
and Sout = G2Sb = G1G2Sa. It follows from Eq. (14.8.10) that the system SNR will be
the same, regardless of whether it is referred to the point a, the point b, or the overall
output:

SNRsys = SNRa = SNRb = SNRout

For three cascaded devices, shown in Fig. 14.8.3, any pair of two consecutive ones can
be replaced by its equivalent, according to Eq. (14.8.9). For example, the first two can be
replaced by T12 and then combined with T3 to give the overall equivalent temperature:

T12 = T1 + 1

G1
T2 , T123 = T12 + 1

G1G2
T3

Alternatively, we can replace the last two with an equivalent temperature T23 and
then combine with the first to get:

T23 = T2 + 1

G2
T3 , T123 = T1 + 1

G1
T23
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Fig. 14.8.3 Equivalent noise temperatures of three cascaded devices.

From either point of view, we obtain the equivalent temperature:

T123 = T1 + 1

G1
T2 + 1

G1G2
T3 (14.8.11)

The system SNR will be:

SNRsys = Sin

kTsysB
= Sin

k(Tin +T123)B

It is invariant with respect to its reference point:

SNRsys = SNRa = SNRb = SNRc = SNRout

We apply now these results to the antenna receiver shown in Fig. 14.7.1, identifying
the three cascaded components as the feed line, the LNA amplifier, and the rest of the
receiver circuits. The corresponding noise temperatures are Tfeed, TLNA, and Trec. The
effective noise temperature Teff of the combined system will be:

Teff = Tfeed + 1

Gfeed
TLNA + 1

GfeedGLNA
Trec (14.8.12)

Using Eq. (14.8.8), we may replace Tfeed in terms of the physical temperature:

Teff = 1

Gfeed
(1−Gfeed)Tphys + 1

Gfeed
TLNA + 1

GfeedGLNA
Trec (14.8.13)

The input noise temperatureTin to this combined system is the antenna temperature
Tant. It follows that system noise temperature, referred to either the antenna output
terminals (point a), or to the LNA input (point b), will be:

Tsys = Tsa = Tant +Teff = Tant +
(

1

Gfeed
− 1

)
Tphys + 1

Gfeed
TLNA + 1

GfeedGLNA
Trec

Tsb = GfeedTsa = GfeedTant + (1−Gfeed)Tphys +TLNA + 1

GLNA
Trec
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The importance of a high-gain low-noise amplifier is evident from Eq. (14.8.13). The
high value of GLNA will minimize the effect of the remaining components of the receiver
system, while the small value of TLNA will add only a small amount of noise. Typical
values of TLNA can range from 20 K for cooled amplifiers to 100 K at room temperatures.

The feed line can have a major impact. If the line is too lossy or too long, the quantity
Gfeed = e−2αl will be small, or 1/Gfeed large, contributing a significant amount to the
system noise temperature. Often, the LNA is mounted before the feed line, near the focal
point of the receiving antenna, so that the effect of the feed line will be suppressed by
the factor GLNA.

Similar benefits arise in base station antennas for wireless communications, where
high-gain amplifiers can be placed on top of the antenna towers, instead of at the base
station, which can be fairly far from the towers [558]. Cable losses in such applications
can be in the range 2–4 dB (with gain factors Gf = 0.63–0.40.)

The signal to system-noise ratio of the receiving system (referred to point a of
Fig. 14.7.1) will be the ratio of the received power PR to the system noiseNsys = kTsysB.
Using the Friis formula, we have:

SNR = PR
Nsys

= PR
kTsysB

= (PTGT) 1

Lf

(
GR
Tsys

)
1

kB
(14.8.14)

This ratio is also called the carrier-to-system-noise ratio and is denoted byC/N. For a
given transmitting EIRP, PTGT, the receiver performance depends critically on the ratio
GR/Tsys, referred to as the G/T ratio of the receiving antenna, or the figure of merit. It
is usually measured in dB/K. In dB, Eq. (14.8.14) reads as:

(SNR)dB= (PTGT)dB−(Lf)dB+
(
GR
Tsys

)
dB

− kdB − BdB (14.8.15)

The receiver SNR can be also be referred to LNA input (point b). The G/T ratio will
not change in value, but it will be the ratio of the signal gain after the feed line divided
by the system temperature Tsb, that is,

SNR = (PTGT) 1

Lf

(
GR
Tsys

)
1

kB
= (PTGT) 1

Lf

(
GRGfeed

Tsb

)
1

kB
(14.8.16)

Example 14.8.1: Typical earth-based antennas for satellite communications have G/T ratios
of the order of 40 dB/K, whereas satellite receiving antennas can have G/T = −7 dB/K or
less. The negative sign arises from the smaller satellite antenna gain and the much higher
temperature, since the satellite is looking down at a warm earth. ��

Example 14.8.2: Consider a receiving antenna system as shown in Fig. 14.7.1, with antenna
temperature of 40 K, feed line loss of 0.1 dB, feed line physical temperature of 290 K, LNA
gain and effective noise temperature of 50 dB and 80 K. The rest of the receiver circuits
have effective noise temperature of 2000 K.

Assuming the receiving antenna has a gain of 45 dB, calculate the system noise temperature
and the G/T ratio at point a and point b of Fig. 14.7.1. Repeat if the feed line loss is 1 dB.
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Solution: The feed line has gain Gfeed = 10−0.1/10 = 10−0.01 = 0.9772, and the LNA has, GLNA

= 1050/10 = 105. Thus, the system noise temperature at point a will be:

Tsys = Tant +
(

1

Gfeed
− 1

)
Tphys + 1

Gfeed
TLNA + 1

GfeedGLNA
Trec

= 40+
(

1

10−0.01
− 1

)
290+ 80

10−0.01
+ 2000

10−0.01 · 105

= 40+ 6.77+ 81.87+ 0.02 = 128.62 K = 21.09 dBK

At point b, we have Tsb = GfeedTsys = 0.9772 × 128.62 = 125.69 K = 20.99 dBK. The
G/T ratio will be at point a, GR/Tsys = 45 − 21.09 = 23.91 dB/K. At point b the gain is
GRGfeed = 45− 0.1 = 44.9 dB, and therefore, G/T = GRGfeed/Tsb = 44.9− 20.99 = 23.91
dB/K, which is the same as at point a.

For a feed line loss of 1 dB, we find Tsys = 215.80 K = 23.34 dB. The corresponding G/T
ratio will be 45− 23.34 = 21.66 dB. ��

Example 14.8.3: Suppose the LNA were to be placed in front of the feed line of the above
example. Calculate the system noise temperature in this case when the feed line loss is
0.1 dB and 1 dB.

Solution: Interchanging the roles of the feed line and the LNA in Eq. (14.8.12), we have for the
system noise temperature:

Tsys = Tant +TLNA + 1

GLNA
Tfeed + 1

GfeedGLNA
Trec

WithGfeed = 10−0.1/10 = 0.9772, we findTfeed = 6.75 K, and withGfeed = 10−1/10 = 0.7943,
Tfeed = 75.1 K. Because of the large LNA gain, the value of Tsys will be essentially equal to
Tant +TLNA; indeed, we find in the two cases:

Tsys = 120.0205 K and Tsys = 120.0259 K

The G/T will be 45− 10 log10(120)= 20.8 dB/K. ��

14.9 Data Rate Limits

The system SNR limits the data rate between the two antennas. According to Shannon’s
theorem, the maximum data rate (in bits/sec) that can be achieved is:

C = B log2(1+ SNR) (Shannon’s channel capacity) (14.9.1)

where SNR is in absolute units. For data rates R ≤ C, Shannon’s theorem states that
there is an ideal coding scheme that would guarantee error-free transmission.

In a practical digital communication system, the bit-error probability or bit-error rate
(BER), Pe, is small but not zero. The key performance parameter from which Pe can be
calculated is the ratio Eb/N0, where Eb is the energy per bit and N0 is the system noise
spectral density N0 = kTsys.
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The functional relationship between Pe and Eb/N0 depends on the particular digital
modulation scheme used. For example, in binary and quadrature phase-shift keying
(BPSK and QPSK), Pe and its inverse are given by [554]:

Pe = 1

2
erfc

(√
Eb
N0

)
�

Eb
N0
= [erfinv(1− 2Pe)

]2
(14.9.2)

where erfc(x) is the complementary error function, and erf(x) and erfinv(x) are the
error function and its inverse as defined in MATLAB:

erfc(x)= 1− erf(x)= 2√
π

∫∞
x
e−t

2
dt , y = erf(x) � x = erfinv(y) (14.9.3)

The relationships (14.9.2) are plotted in Fig. 14.9.1. The left graph also shows the
ideal Shannon limit Eb/N0 = ln 2 = 0.6931 ≡ −1.5917 dB, which is obtained by taking
the limit of Eq. (14.9.1) for infinite bandwidth.
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Fig. 14.9.1 Pe versus Eb/N0, and its inverse, for a BPSK system.

If Tb is the time it takes to transmit one bit, then the data rate will be R = 1/Tb, and
the required power, P = Eb/Tb = EbR. It follows that the SNR will be:

SNR = P
Nsys

= P
kTsysB

= Eb
N0

R
B

Using the small-x expansion, log2(1+x)� x/ ln 2, Shannon’s condition for error-free
transmission becomes in the limit B→∞:

R ≤ C = B log2

(
1+ Eb

N0

R
B

)
→ B EbR

N0B ln 2
= R

ln 2

Eb
N0

⇒ Eb
N0
≥ ln 2 = −1.5917 dB

For a pair of communicating antennas, the received power will be related to the
energy per bit by PR = Eb/Tb = EbR. Using Friis’s formula, we find:

R
Eb
N0
= PR
N0
= PEIRPGf GR

kTsys
= (PTGT) GRkTsys

(
λ

4πr

)2

(14.9.4)
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which may be solved for the maximum achievable data rate (in bits/sec):

R = 1

Eb/N0

PEIRPGf GR
kTsys

= 1

Eb/N0
(PTGT)

GR
kTsys

(
λ

4πr

)2

(14.9.5)

An overall gain factor, Gother = 1/Lother, may be introduced representing other
losses, such as atmospheric losses.

Example 14.9.1: The Voyager spacecrafts have antenna diameter and aperture efficiency of
d = 3.66 m (12 ft) and ea = 0.6. The operating frequency is f = 8.415 GHz and the
transmitter powerPT = 18 W. Assuming the same efficiency for the 70-m receiving antenna
at NASA’s deep-space network at Goldstone, CA, we calculate the antenna gains using the
formula G = ea(πd/λ)2, with λ = c/f = 0.0357 m:

GT = 47.95 dB, GR = 73.58 dB, PT = 13.62 dBW

Assuming a system noise temperature of Tsys = 25 K = 13.98 dBK for the receiving
antenna, we find for the noise spectral density N0 = kTs = −214.62 dBW/Hz, where we
used k = −228.6 dB. Assuming a bit-error rate of Pe = 5×10−3, we find from Eq. (14.9.2)
the required ratio Eb/N0 = 3.317 = 5.208 dB.

Voyager 1 was at Jupiter in 1977, at Saturn in 1980, and at Neptune in 1989. In 2002 it was
at a distance of about r = 12×109 km. It is expected to be at r = 22×109 km in the year
2020. We calculate the corresponding free-space gain Gf = (λ/4πr)2 and the expected
data rates R from Eq. (14.9.5), where r is in units of 109 km:

location r Gf (dB) R (dB) R (bits/sec)

Jupiter 0.78 −288.78 50.78 119,757
Saturn 1.43 −294.05 45.52 35,630

Neptune 4.50 −304.01 35.56 3,598
2002 12.00 −312.53 27.04 506
2020 22.00 −317.79 21.78 150

where we assumed an overall loss factor of Gother = −5 dB. More information on the
Voyager mission and NASA’s deep-space network antennas can be obtained from the web
sites [748] and [749]. ��

14.10 Satellite Links

Consider an earth-satellite-earth system, as shown in Fig. 14.10.1. We wish to establish
the total link budget and signal to system-noise ratio between the two earth antennas
communicating via the satellite.

In a geosynchronous satellite system, the uplink/downlink frequencies fu, fd are
typically 6/4 GHz or 14/11 GHz. The distances ru, rd are of the order of 40000 km. Let
λu = c/fu and λd = c/fd be the uplink/downlink wavelengths. The free-space gain/loss
factors will be from Eq. (14.6.5):

Gfu = 1

Lfu
=
(
λu

4πru

)2

, Gfd = 1

Lfd
=
(
λd

4πrd

)2

(14.10.1)
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Fig. 14.10.1 Uplink and downlink in satellite communications.

The satellite has an on-board amplifier with gain G, which could be as high as 100–
120 dB. Using Friis formula in its gain form, Eq. (14.6.6), the link equations for the uplink,
the satellite amplification, and the downlink stages can be written as follows:

PEIRP = PTE GTE (EIRP of transmitting earth antenna)
PRS = PTE GTE Gfu GRS (received power by satellite antenna)
PTS = GPRS (transmitted power by satellite antenna)
PRE = PTS GTS Gfd GRE (received power by earth antenna)

Expressing PRE in terms of PTE, we have:

PRE = PRS GGTS Gfd GRE = PTE GTE Gfu GRS GGTS Gfd GRE (14.10.2)

or, showing the free-space loss factors explicitly:

PRE = PTE GTE GRS GGTSGRE
(
λu

4πru

)2 ( λd
4πrd

)2

(14.10.3)

Because there are two receiving antennas, there will be two different system noise
temperatures, say TRS and TRE, for the satellite and earth receiving antennas. They
incorporate the antenna noise temperatures as well as the receiver components. The
corresponding figures of merit will be the quantities GRS/TRS and GRE/TRE. We may
define the uplink and downlink SNR’s as the signal-to-system-noise ratios for the indi-
vidual antennas:

SNRu = PRS
kTRSB

, SNRd = PRE
kTREB

(14.10.4)

The system noise TRS generated by the receiving satellite antenna will get amplified
by G and then transmitted down to the earth antenna, where it will contribute to the
system noise temperature. By the time it reaches the earth antenna it will have picked
up the gain factors GGTS Gfd GRE. Thus, the net system noise temperature measured
at the receiving earth antenna will be:

Tsys = TRE +GGTS Gfd GRETRS (14.10.5)

The SNR of the total link will be therefore,

SNRtot = PRE
kTsysB

(14.10.6)
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SNR−1
tot =

k(TRE +GGTS Gfd GRETRS)B
PRE

= kTREB
PRE

+ kGGTS Gfd GRE TRSB
PRE

= kTREB
PRE

+ kGGTS Gfd GRETRSB
GGTS Gfd GREPRS

= kTREB
PRE

+ kTRSB
PRS

= SNR−1
d + SNR−1

u

where we used Eq. (14.10.2). It follows that:

SNRtot = 1

SNR−1
u + SNR−1

d
(14.10.7)

This is also written in the form:(
C
N

)
tot
= 1(

C
N

)−1

u
+
(
C
N

)−1

d

Example 14.10.1: As an example of a link budget calculation, assume the following data: The
uplink/downlink distances are 36000 km. The uplink/downlink frequencies are 6/4 GHz.
The diameters of the earth and satellite antennas are 15 m and 0.5 m with 60% aperture
efficiencies. The earth antenna transmits power of 1 kW and the satellite transponder
gain is 90 dB. The satellite receiving antenna is looking down at an earth temperature of
300 K and has a noisy receiver of effective noise temperature of 2700 K, whereas the earth
receiving antenna is looking up at a sky temperature of 50 K and uses a high-gain LNA
amplifier of 80 K (feedline losses may be ignored.) The bandwidth is 30 MHz.

The uplink and downlink wavelengths are λu = 0.05 m and λd = 0.075 m, corresponding
to 6 and 4 GHz. The up and down free-space gains and losses are:

Gfu = −Lfu = −199.13 dB, Gfd = −Lfd = −195.61 dB

The antenna gains are calculated to be:

GTE = 57.27 dB, GRS = 27.72 dB, GTS = 24.20 dB, GRE = 53.75 dB

With PTE = 1 kW = 30 dBW, the EIRP of the transmitting earth antenna will be: PEIRP

= 30+ 57.27 = 87.27 dBW. The power received by the satellite antenna will be:

PRS = 87.27− 199.13+ 27.72 = −84.14 dBW

After boosting this up by the transponder gain of 90 dB, the power transmitted down to
the receiving earth antenna will be:

PTS = 90− 84.14 = 5.86 dBW

The EIRP of the transmitting satellite antenna will be (PTSGTS)dB= 5.86+ 24.20 = 30.06
dBW. The downlink power received by the earth antenna will be:

PRE = 30.06− 195.61+ 53.75 = −111.80 dBW
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The system noise temperatures are: TRS = 300 + 2700 = 3000 K and TRE = 50 + 80 =
130 K, and in dBK: TRS = 34.77 and TRE = 21.14. The 30 MHz bandwidth is in dB: BdB =
10 log10(30×106)= 74.77 dB Hz. Using the Boltzmann constant k in dB, kdB = −228.6, we
calculate the receiver system noise powers in dB, using N = kdB +TdB + BdB:

NRS = −228.6+ 34.77+ 74.77 = −119.06 dBW
NRS = −228.6+ 21.14+ 74.77 = −132.69 dBW

It follows that the G/T ratios and system SNR’s for the receiving antennas will be:

(G/T)u= GRS −TRS = 27.72− 34.77 = −7.05 dB/K

(G/T)d= GRE −TRE = 53.75− 21.14 = 32.61 dB/K

SNRu = PRS −NRS = −84.14+ 119.06 = 34.92 dB = 3103.44

SNRd = PRE −NRE = −111.80+ 132.69 = 20.89 dB = 122.72

The overall system SNR is calculated from Eq. (14.10.7) using absolute units:

SNRtot = 1

SNR−1
u + SNR−1

d
= 1

(3103.44)−1+(122.72)−1
= 118.05 = 20.72 dB

The overall SNR is essentially equal to the downlink SNR. ��

14.11 Radar Equation

Another example of the application of the concepts of gain and effective area and the
use of Friis formulas is radar. Fig. 14.11.1 shows a radar antenna, which illuminates a
target at distance r in the direction of its maximal gain. The incident wave on the target
will be reflected and a portion of it will be intercepted back at the antenna.

Fig. 14.11.1 Radar antenna and target.

The concept of radar cross section σ provides a measure of the effective area of the
target and the re-radiated power. If the radar antenna transmits power PT with gainGT,
the power density of the transmitted field at the location of the target will be:

PT = PTGT
4πr2

(14.11.1)

From the definition of σ, the power intercepted by the target and re-radiated is:

Ptarget = σPT = PTGTσ
4πr2

(14.11.2)
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By definition of the radar cross section, the power Ptarget will be re-radiated isotropically
and establish a power density back at the location of the radar antenna:

Ptarget = Ptarget

4πr2
= PTGTσ
(4πr2)2

(14.11.3)

The amount of power received by the radar antenna will be given in terms of its
effective area AR as follows:

PR = ARPtarget = PTGTARσ(4π)2r4
(radar equation) (14.11.4)

This is also known as Friis’ formula. Using AR = AT and GT = 4πAT/λ2, we may
express Eq. (14.11.4) in the alternative forms:

PR = PTA
2
Tσ

4πλ2r4
= PTG

2
Tλ2σ

(4π)3r4
= PTG2

T

(
λ

4πr

)4 (4πσ
λ2

)
(14.11.5)

Introducing the equivalent target gain corresponding to the radar cross section, that
is, Gσ = 4πσ/λ2, we may also write Eq. (14.11.5) as the product of gains:

PR = PTG2
TG

2
fGσ (14.11.6)

Fig. 14.11.2 shows this gain model. There are two free-space paths and two antenna
gains, acting as transmit and receive gains.

Fig. 14.11.2 Gain model of radar equation.

The minimum detectable received power, PR,min, defines the maximum distance rmax

at which the target can be detected:

PR,min = PTGTARσ(4π)2r4
max

Solving for rmax, we obtain:

rmax =
[
PTGTATσ
(4π)2PR,min

]1/4

(radar range) (14.11.7)

If the target is not in the direction of maximal gain GT of the antenna, but in some
other direction, say (θ,φ), then the maximal gain GT in Eq. (14.11.5) must be replaced
with GTg(θ,φ), where g(θ,φ) is the antenna’s normalized gain. The received power
can be expressed then as:
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PR = PTG
2
Tg2(θ,φ)λ2σ
(4π)3r4

(14.11.8)

In ground-based air search radars trying to detect approaching aircraft flying at a
fixed height h, the power received by the radar can be made to be independent of the
distance r, within a certain distance range, by choosing the gain g(θ,φ) appropriately.
As shown in Fig. 14.11.3, the height h is related to r by h = r cosθ.

Fig. 14.11.3 Secant antenna gain.

If the gain is designed to have the secant-squared shape g(θ,φ)= K/ cos2 θ, where
K is a constant, then the power will become independent of r. Indeed,

PR = PTG
2
Tg2(θ,φ)λ2σ
(4π)3r4

= PTG2
TK2λ2σ

(4π)3r4 cos4 θ
= PTG

2
TK2λ2σ

(4π)3h4

The secant behavior is not valid over all polar angles θ, but only over a certain range,
such as 0 ≤ θ ≤ θmax, where θmax corresponds to the maximum range of the radar
rmax = h/ cosθmax. The desired secant shape can be achieved by appropriate feeds of
the radar dish antenna, or by an antenna array with properly designed array factor. In
Sec. 19.5, we present such a design for an array.

14.12 Problems



15
Linear and Loop Antennas

15.1 Linear Antennas

The radiation angular pattern of antennas is completely determined by the transverse
component F⊥ = θ̂θθFθ + φ̂φφFφ of the radiation vector F, which in turn is determined by
the current density J. Here, we consider some examples of current densities describing
various antenna types, such as linear antennas, loop antennas, and linear arrays.

For linear antennas, we may choose the z-axis to be along the direction of the an-
tenna. Assuming an infinitely thin antenna, the current density will have the form:

J(r)= ẑ I(z)δ(x)δ(y) (thin linear antenna) (15.1.1)

where I(z) is the current distribution along the antenna element. It is shown in Sec. 20.4
that I(z) satisfies approximately the Helmholtz equation along the antenna:

d2I(z)
dz2

+ k2I(z)= 0 (15.1.2)

Some examples of current distributions I(z) are as follows:

I(z)= Ilδ(z) Hertzian dipole
I(z)= I Uniform line element
I(z)= I(1− 2|z|/l) Small linear dipole
I(z)= I sin

(
k(l/2− |z|)) Standing-wave antenna

I(z)= I cos(kz) Half-wave antenna (l = λ/2)
I(z)= Ie−jkz Traveling-wave antenna

where l is the length of the antenna element and the expressions are assumed to be valid
for −l/2 ≤ z ≤ l/2, so that the antenna element straddles the xy-plane.

493
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The Hertzian dipole, uniform line element, and small linear dipole examples do not
satisfy Eq. (15.1.2), except when the antenna length is electrically short, that is, l� λ.

For loop antennas, we may take the loop to lie on the xy-plane and be centered at the
origin. Again, we may assume a thin wire. For a circular loop of radius a, the current
flows azimuthally. The corresponding current density can be expressed in cylindrical
coordinates r = (ρ,φ, z) as:

J(r)= φ̂φφIδ(ρ− a)δ(z) (circular loop) (15.1.3)

The delta functions confine the current on the ρ = a circle on the xy-plane. We will
discuss loop antennas in Sec. 15.8.

Antenna arrays may be formed by considering a group of antenna elements, such as
Hertzian or half-wave dipoles, arranged in particular geometrical configurations, such
as along a particular direction. Some examples of antenna arrays that are made up from
identical antenna elements are as follows:

J(r) = ẑ
∑
n
anI(z)δ(x− xn)δ(y) array along x-direction

J(r) = ẑ
∑
n
anI(z)δ(y − yn)δ(x) array along y-direction

J(r) = ẑ
∑
n
anI(z− zn)δ(x)δ(y) array along z-direction

J(r) = ẑ
∑
mn
amnI(z)δ(x− xm)δ(y − yn) 2D planar array

The weights an, amn are chosen appropriately to achieve desired directivity proper-
ties for the array. We discuss arrays in Sec. 18.1.

It is evident now from Eq. (15.1.1) that the radiation vector F will have only a z-
component. Indeed, we have from the definition Eq. (13.7.5):

F =
∫
V

J(r′)ej k·r
′
d3r′ = ẑ

∫
I(z′)δ(x′)δ(y′)ej(kxx

′+kyy′+kzz′)dx′dy′dz′

The x′ and y′ integrations are done trivially, whereas the z′ integration extends over
the length l of the antenna. Thus,

F = ẑFz = ẑ

∫ l/2
−l/2

I(z′)ejkzz
′
dz′

Using Eq. (13.8.3), the wave vector k can be resolved in cartesian components as:

k = k r̂ = x̂k cosφ sinθ+ ŷk sinφ sinθ+ ẑk cosθ = x̂kx + ŷky + ẑkz

Thus,
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kx = k cosφ sinθ

ky = k sinφ sinθ

kz = k cosθ

(15.1.4)

It follows that the radiation vector Fz will only depend on the polar angle θ:

Fz(θ)=
∫ l/2
−l/2

I(z′)ejkzz
′
dz′ =

∫ l/2
−l/2

I(z′)ejkz
′ cosθdz′ (15.1.5)

Using Eq. (13.8.2) we may resolve ẑ into its spherical coordinates and identify the
radial and transverse components of the radiation vector:

F = ẑFz = (r̂ cosθ− θ̂θθ sinθ)Fz(θ)= r̂Fz(θ)cosθ− θ̂θθFz(θ)sinθ

Thus, the transverse component of F will be have only a θ-component:

F⊥(θ)= θ̂θθFθ(θ)= −θ̂θθFz(θ)sinθ

It follows that the electric and magnetic radiation fields (13.10.5) generated by a
linear antenna will have the form:

E = θ̂θθEθ = θ̂θθ jkη e
−jkr

4πr
Fz(θ)sinθ

H = φ̂φφHφ = φ̂φφjk e
−jkr

4πr
Fz(θ)sinθ

(15.1.6)

The fields are omnidirectional, that is, independent of the azimuthal angle φ. The
factor sinθ arises from the cartesian to spherical coordinate transformation, whereas
the factor Fz(θ) incorporates the dependence on the assumed current distribution I(z).
The radiation intensity U(θ,φ) has θ-dependence only and is given by Eq. (14.1.4):

U(θ)= ηk2

32π2
|Fz(θ)|2 sin2 θ (radiation intensity of linear antenna) (15.1.7)

To summarize, the radiated fields, the total radiated power, and the angular distri-
bution of radiation from a linear antenna are completely determined by the quantity
Fz(θ) defined in Eq. (15.1.5).

15.2 Hertzian Dipole

The simplest linear antenna example is the Hertzian dipole that has a current distri-
bution I(z)= Ilδ(z) corresponding to an infinitesimally small antenna located at the
origin. Eq. (15.1.5) yields:

Fz(θ)=
∫ l/2
−l/2

I(z′)ejkzz
′
dz′ =

∫ l/2
−l/2

Ilδ(z′)ejkz
′ cosθdz′ = Il
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Thus, Fz is a constant independent of θ. The radiation intensity is obtained from
Eq. (15.1.7):

U(θ)= ηk2

32π2
|Il|2 sin2 θ

Its maximum occurs at θ = π/2, that is, broadside to the antenna:

Umax = ηk2

32π2
|Il|2

It follows that the normalized power gain will be:

g(θ)= U(θ)
Umax

= sin2 θ (Hertzian dipole gain) (15.2.1)

The gain g(θ) is plotted in absolute and dB units in Fig. 15.2.1. Note that the 3-dB
or half-power circle intersects the gain curve at 45o angles. Therefore, the half-power
beam width (HPBW) will be 90o—not a very narrow beam. We note also that there is no
radiated power along the direction of the antenna element, that is, the z-direction, or
θ = 0.

 0o

 180o

 90o90o

θθ

45o

135o

45o

135o

0.5 1

Hertzian dipole gain
 0o

 180o

 90o90o

θθ

45o

135o

45o

135o

−3−6−9
dB

Gain in dB

Fig. 15.2.1 Gain of Hertzian dipole in absolute and dB units.

In these plots, the gain was computed by the function dipole and plotted with abp
and dbp. For example the left figure was generated by:

[g, th, c] = dipole(0, 200);
abp(th, g, 45);

Next, we calculate the beam solid angle from:

∆Ω =
∫ π

0

∫ 2π

0
g(θ) sinθdθdφ = 2π

∫ π
0
g(θ) sinθdθ = 2π

∫ π
0

sin3 θdθ , or,

∆Ω = 8π
3

It follows that the directivity will be:
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Dmax = 4π
∆Ω

= 4π
8π/3

= 1.5 ≡ 1.76 dB

The total radiated power is then found from Eq. (14.2.17):

Prad = Umax∆Ω = ηk2

32π2
|Il|2 8π

3
= ηk

2|Il|2
12π

(15.2.2)

Because of the proportionality to |I|2, we are led to define the radiation resistance
of the antenna, Rrad, as the resistance that would dissipate the same amount of power
as the power radiated, that is, we define it through:

Prad = 1

2
Rrad|I|2 (15.2.3)

Comparing the two expressions for Prad, we find:

Rrad = ηk
2l2

6π
= 2πη

3

(
l
λ

)2

(15.2.4)

where we replaced k = 2π/λ. Because we assumed an infinitesimally small antenna,
l� λ, the radiation resistance will be very small.

A related antenna example is the finite Hertzian, or uniform line element, which has
a constant current I flowing along its entire length l, that is, I(z)= I, for−l/2 ≤ z ≤ l/2.
We can write I(z)more formally with the help of the unit-step function u(z) as follows:

I(z)= I [u(z+ l/2)−u(z− l/2)]
The Hertzian dipole may be thought of as the limiting case of this example in the limit
l → 0. Indeed, multiplying and dividing by l, and using the property that the derivative
of the unit-step is u′(z)= δ(z), we have

I(z)= Il u(z+ l/2)−u(z− l/2)
l

→ Ildu(z)
dz

= Ilδ(z)

and we must assume, of course, that the product Il remains finite in that limit.

15.3 Standing-Wave Antennas

A very practical antenna is the center-fed standing-wave antenna, and in particular, the
half-wave dipole whose length is l = λ/2. The current distribution along the antenna
length is assumed to be a standing wave, much like the case of an open-ended parallel
wire transmission line. Indeed, as suggested by the figure below, the center-fed dipole
may be thought of as an open-ended transmission line whose ends have been bent up
and down. The current distribution is:

I(z)= I sin
(
k(l/2− |z|)) (standing-wave antenna) (15.3.1)
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The radiation vector z-component Fz(θ) is:

Fz(θ)=
∫ l/2
−l/2

I sin
(
k(l/2− |z′|))ejkz′ cosθdz′ = 2I

k

cos
(kl

2
cosθ

)− cos
(kl

2

)
sin2 θ

A more convenient way to write this expression is by defining L = l/λ, which is the
antenna length in units of λ, and recognizing that kl/2 = πl/λ = πL. Inserting Fz(θ)
into Eq. (15.1.7), and canceling some common factors, we obtain:

U(θ)= η|I|
2

8π2

∣∣∣∣cos(πL cosθ)− cos(πL)
sinθ

∣∣∣∣
2

(15.3.2)

It follows that the normalized power gain g(θ) will have a similar form:

g(θ)= cn
∣∣∣∣cos(πL cosθ)− cos(πL)

sinθ

∣∣∣∣
2

(normalized gain) (15.3.3)

where cn is a normalization constant chosen to make the maximum of g(θ) equal to
unity. Depending on the value of l, this maximum may not occur at θ = π/2.

In the limit L → 0, we obtain the gain of the Hertzian dipole, g(θ)= sin2 θ. For
small values of L, we obtain the linear-current case. Indeed, using the approximation
sinx � x, the current (15.3.1) becomes:

I(z)= Ik
(
l
2
− |z|

)
, − l

2
≤ z ≤ l

2

For a general dipole of length l, the current at the input terminals of the antenna is
not necessarily equal to the peak amplitude I. Indeed, setting z = 0 in (15.3.1) we have:

Iin = I(0)= I sin(kl/2) (15.3.4)

The radiation resistance may be defined either in terms of the peak current or in
terms of the input current through the definitions:

Prad = 1

2
Rpeak|I|2 = 1

2
Rin|Iin|2

When l is a half-multiple of λ, the input and peak currents are equal and the two defi-
nitions of the radiation resistance are the same. But when l is a multiple of λ, Eq. (15.3.4)
gives zero for the input current, which would imply an infinite input resistance Rin. In
practice, the current distribution is only approximately sinusoidal and the input current
is not exactly zero.

The input impedance of an antenna has in general both a resistive part Rin and a
reactive part Xin, so that Zin = Rin + jXin. The relevant theory is discussed in Sec. 21.2.
Assuming a sinusoidal current, Zin can be computed by Eq. (21.2.10), implemented by
the MATLAB function imped:

Zin = imped(l,a); % input impedance of standing-wave antenna
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Fig. 15.3.1 Input impedance of standing-wave dipole antenna.

where l, a are the length and radius of the antenna in units ofλ. For example, a half-wave
dipole (l = λ/2) with zero radius has Zin = imped(0.5,0)= 73.1+ j 42.5 Ω.

For l � a, the input resistance remains largely independent of the radius a. The
reactance has a stronger dependence on a. Fig. 15.3.1 shows a plot of Rin andXin versus
the antenna length l plotted over the interval 0.3λ ≤ l ≤ 0.7λ, for the three choices of
the radius: a = 0, a = 0.0005λ, and a = 0.005λ.

We observe that the reactance Xin vanishes for lengths that are a little shorter than
l = λ/2. Such antennas are called resonant antennas in analogy with a resonant RLC
circuit whose input impedance Z = R+ j(ωL− 1/ωC) has a vanishing reactance at its
resonant frequencyω = 1/

√
LC.

For the three choices of the radius a, we find the following resonant lengths and
corresponding input resistances:

a = 0, l = 0.4857λ, Rin = 67.2 Ω
a = 0.0005λ, l = 0.4801λ, Rin = 65.0 Ω
a = 0.005λ, l = 0.4681λ, Rin = 60.5 Ω

15.4 Half-Wave Dipole

The half-wave dipole corresponding to l = λ/2 or L = 0.5 is one of the most popular
antennas. In this case, the current distribution along the antenna takes the form:

I(z)= I cos(kz) (half-wave dipole) (15.4.1)

with −λ/4 ≤ z ≤ λ/4. The normalized gain is:

g(θ)= cos2(0.5π cosθ)
sin2 θ

(half-wave dipole gain) (15.4.2)
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Note that the maximum does occur at θ = π/2 and the normalization constant is
cn = 1. Fig. 15.4.1 shows the gain in absolute and dB units. The 3-dB or half-power
circle intersects the gain at an angle of θ3dB = 50.96o, which leads to a half-power beam
width of HPBW = 180o − 2θ3dB = 78.08o, that is, somewhat narrower than the Hertzian
dipole. The beam solid angle can be evaluated numerically using MATLAB, and we find:
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Fig. 15.4.1 Gain of half-wave dipole in absolute and dB units.

∆Ω =
∫ π

0

∫ 2π

0
g(θ)dΩ = 7.6581

The directivity is:

Dmax = 4π
∆Ω

= 1.64 ≡ 2.15 dB

Noting that the radiation intensity maximum occurs at θ = π/2, we have Umax =
η|I|2/8π2, and we find for the radiated power:

Prad = Umax∆Ω = η|I|
2

8π2
7.6581 = 1

2
Rrad|I|2

and for the radiation resistance:

Rrad = 7.6581η
4π2

= 73.1 Ω (15.4.3)

In practice, this value can be matched easily to the characteristic impedance of the
feed line. The MATLAB code used to calculate the gain function g(θ), as well as the
constant cn and the beam solid angle, is as follows:

N = 200; % divide [0,pi] in N angle bins

dth = pi / N; % bin width

th = (1:N-1) * dth; % excludes th=0

g = ((cos(pi*L*cos(th)) - cos(pi*L)) ./ sin(th)).^2;
th = [0, th]; % N equally-spaced angles in [0,pi)

g = [0, g]; % avoids division by 0

cn = 1 / max(g);
g = cn * g; % normalized to unity maximum

Om = 2 * pi * sum(g .* sin(th)) * dth; % beam solid angle
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where the beam solid angle is computed by the approximation to the integral:

∆Ω = 2π
∫ π

0
g(θ)sinθdθ � 2π

N−1∑
i=0

g(θi)sinθi ∆θ

where ∆θ = π/N and θi = i∆θ, i = 0,1, . . . ,N−1. These operations are carried out by
the functions dipole and dmax. For example, the right graph in Fig. 15.4.1 andDmaxand
∆Ω were generated by the MATLAB code:

[g, th, c] = dipole(0.5, 200);
dbp(th, g, 45, 12);
[D, Omega] = dmax(th, g);

Fig. 15.4.2 shows the gains of a variety of dipoles of different lengths. The corresponding
directivities are indicated on each plot.

15.5 Monopole Antennas

A monopole antenna is half of a dipole antenna placed on top of a ground plane, as
shown in Fig. 15.5.1. Assuming the plane is infinite and perfectly conducting, the
monopole antenna will be equivalent to a dipole whose lower half is the image of the
upper half.

Thus, the radiation pattern (in the upper hemisphere) will be identical to that of a
dipole. Because the fields are radiated only in the upper hemisphere, the total radiated
power will be half that of a dipole, and hence the corresponding radiation resistance
will also be halved:

Pmonopole = 1

2
Pdipole , Rmonopole = 1

2
Rdipole

Similarly, the directivity doubles because the isotropic radiation intensity in the de-
nominator of Eq. (14.2.2) becomes half its dipole value:

Dmonopole = 2Ddipole

The quarter-wave monopole antenna whose length is λ/4 is perhaps the most pop-
ular antenna. For AM transmitting antennas operating in the 300 m or 1 MHz band, the
antenna height will be large, λ/4 = 75 m, requiring special supporting cables.

In mobile applications in the 30 cm or 1 GHz band, the antenna length will be fairly
small, λ/4 = 7.5 cm. The roof of a car plays the role of the conducting plane in this
case.

We note also in Fig. 15.4.2 that the l = 1.25λ = 10λ/8 dipole has the largest gain. It
can be used as a monopole in mobile applications requiring higher gains. Such antennas
are called 5/8-wave monopoles because their length is l/2 = 5λ/8.
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Fig. 15.4.2 Standing-wave dipole antenna patterns and directivities.

15.6 Traveling-Wave Antennas

The standing-wave antenna current may be thought of as the linear superposition of a
forward and a backward moving current. For example, the half-wave dipole current can
be written in the form:

I(z)= I cos(kz)= I
2

(
e−jkz + ejkz)

The backward-moving component may be eliminated by terminating the linear an-
tenna at an appropriate matched load resistance, as shown in Fig. 15.6.1. The resulting
antenna is called a traveling-wave antenna or a Beverage antenna. The current along its
length has the form:
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Fig. 15.5.1 Quarter-wave monopole above ground plane and the equivalent half-wave dipole.

I(z)= Ie−jkz , 0 ≤ z ≤ l (15.6.1)

The corresponding radiation vector becomes:

F = ẑ

∫ l
0
Ie−jkz

′
ejk cosθz′dz′ = ẑ

I
jk

1− e−jkl(1−cosθ)

1− cosθ
(15.6.2)

The transverse θ-component is:

Fθ(θ)= −Fz(θ)sinθ = − I
jk

sinθ
1− e−2πjL(1−cosθ)

1− cosθ
≡ − I

jk
F(θ) (15.6.3)

where as before, L = l/λ and kl = 2πl/λ = 2πL. The radiation intensity, given by
Eq. (14.1.4) or (15.1.7), becomes now:

U(θ)= η|I|
2

32π2
|F(θ)|2 = η|I|

2

8π2

∣∣∣∣∣sinθ sin
(
πL(1− cosθ)

)
1− cosθ

∣∣∣∣∣
2

(15.6.4)

Therefore, the normalized power gain will be:

g(θ)= cn
∣∣∣∣∣sinθ sin

(
πL(1− cosθ)

)
1− cosθ

∣∣∣∣∣
2

(15.6.5)

where cn is a normalization constant. Fig. 15.6.2 shows the power gains and directivities
for the cases l = 5λ and l = 10λ, or L = 5 and L = 10.

The MATLAB function travel calculates the gain (15.6.5). For example, the left
graph in Fig. 15.6.2 was generated by the MATLAB code:

[g, th, c, th0] = travel(5, 400);
dbp(th, g, 45, 12);
addray(90-th0,’-’); addray(90+th0,’-’);

Fig. 15.6.1 Traveling-wave antenna with matched termination.
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Fig. 15.6.2 Traveling-wave antenna gain examples.

The longer the length l, the more the main lobes tilt towards the traveling direction
of the antenna. The main lobes occur approximately at the polar angle [5–7] (in radians):

θ0 = arccos
(

1− 0.371λ
l

)
= arccos

(
1− 0.371

L

)
(15.6.6)

For the two examples of Fig. 15.6.2, this expression gives for L = 5 and L = 10,
θ0 = 22.2o and θ0 = 15.7o. As L increases, the angle θ0 tends to zero.

There are other antenna structures that act as traveling-wave antennas, as shown
in Fig. 15.6.3. For example, a waveguide with a long slit along its length will radiate
continuously along the slit. Another example is a corrugated conducting surface along
which a surface wave travels and gets radiated when it reaches the discontinuity at the
end of the structure.

Fig. 15.6.3 Surface-wave and leaky-wave antennas.

In all of these examples, the radiation pattern has an angular dependence similar to
that of a linear antenna with a traveling-wave current of the form:

I(z)= Ie−jβz = Ie−jpkz , 0 ≤ z ≤ l (15.6.7)

where β is the wavenumber along the guiding structure and p = β/k = vphase/c is the
ratio of the phase velocity along the guide to the speed of light. The corresponding
radiation power pattern will now have the form:
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g(θ)= cn
∣∣∣∣∣sinθ sin

(
πL(p− cosθ)

)
p− cosθ

∣∣∣∣∣
2

(15.6.8)

For long lengths L, it peaks along the direction θ0 = arccos(p). Note that p can take
the values: (a) p < 1 (slow waves), as in the case of the corrugated plane structure or
the case of a Beverage antenna wrapped in a dielectric, (b) p > 1 (fast waves), as in the

case of the leaky waveguide, where p = 1/
√

1−ω2
c/ω2 , and (c) p = 1, for the Beverage

antenna.

15.7 Vee and Rhombic Antennas

A vee antenna consists of two traveling-wave antennas forming an angle 2α with each
other, as shown in Fig. 15.7.1. It may be constructed by opening up the matched ends
of a transmission line at an angle of 2α (each of the terminating resistances is RL/2 for
a total of RL.)

Fig. 15.7.1 Traveling-wave vee antenna with l = 5λ, θ0 = 22.2o, and α = 0.85θ0 = 18.9o.

By choosing the angle α to be approximately equal to the main lobe angle θ0 of
Eq. (15.6.6), the two inner main lobes align with each other along the middle direction
and produce a stronger main lobe, thus increasing the directivity of the antenna. The
outer main lobes will also be present, but smaller.

The optimum angle α of the arms of the vee depends on the length l and is related
to main lobe angle θ0 via α = aθ0, where the factor a typically falls in the range
a = 0.80–1.00. Figure 15.7.2 shows the optimum angle factor a that corresponds to
maximum directivity (in the plane of the vee) as a function of the length l.

Figure 15.7.3 shows the actual power patterns for the cases l = 5λ and l = 10λ. The
main lobe angles were θ0 = 22.2o and θ0 = 15.7o. The optimum vee angles were found
to be approximately (see Fig. 15.7.2), α = 0.85θ0 = 18.9o and α = 0.95θ0 = 14.9o, in
the two cases.

The combined radiation pattern can be obtained with the help of Fig. 15.7.4. Let
ẑ1 and ẑ2 be the two unit vectors along the two arms of the vee, and let θ1, θ2 be the
two polar angles of the observation point P with respect to the directions ẑ1, ẑ2. The
assumed currents along the two arms have opposite amplitudes and are:

I1(z1)= Ie−jkz1 , I2(z2)= −Ie−jkz2 , for 0 ≤ z1, z2 ≤ l
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Fig. 15.7.2 Optimum angle factor as a function of antenna length.
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Fig. 15.7.3 Traveling-wave vee antenna gains in dB.

Fig. 15.7.4 Radiation vectors of traveling-wave vee antenna.

Applying the result of Eq. (15.6.2), the radiation vectors of the two arms will be:

F1 = ẑ1

∫ l
0
Ie−jkz

′
1ejk cosθ1z′1dz′1 = ẑ1

I
jk

1− e−jkl(1−cosθ1)

1− cosθ1

F2 = −ẑ2

∫ l
0
Ie−jkz

′
2ejk cosθ2z′2dz′2 = −ẑ2

I
jk

1− e−jkl(1−cosθ2)

1− cosθ2
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Therefore, the θ-components will be as in Eq. (15.6.3):

F1θ = − Ijk F(θ1) , F2θ = I
jk
F(θ2)

where the function F(θ) was defined in Eq. (15.6.3). From Fig. 15.7.4, we may express
θ1, θ2 in terms of the polar angle θ with respect to the z-axis as:

θ1 = θ−α, θ2 = θ+α
Adding the θ-components, we obtain the resultant:

Fθ = F1θ + F2θ = I
jk
[
F(θ2)−F(θ1)

] = I
jk
[
F(θ+α)−F(θ−α)]

Thus, the radiation intensity will be:

U(θ)= ηk2

32π2
|Fθ(θ)|2 = η|I|

2

32π2

∣∣F(θ+α)−F(θ−α)∣∣2

and the normalized power pattern:

g(θ)= cn
∣∣F(θ+α)−F(θ−α)∣∣2

(15.7.1)

This is the gain plotted in Fig. 15.7.3 and can be computed by the MATLAB function
vee. Finally, we consider briefly a rhombic antenna made up of two concatenated vee
antennas, as shown in Fig. 15.7.5. Now the two inner main lobes of the first vee (lobes
a,b) and the two outer lobes of the second vee (lobes c, d) align with each other, thus
increasing the directivity of the antenna system.

Fig. 15.7.5 Traveling-wave rhombic antenna.

The radiation vectors F3 and F4 of arms 3 and 4 may be obtained by noting that
these arms are the translations of arms 1 and 2, and therefore, the radiation vectors are
changed by the appropriate translational phase shift factors, as discussed in Sec. 18.2.

Arm-3 is the translation of arm-1 by the vector d2 = l ẑ2 and arm-4 is the translation
of arm-2 by the vector d1 = l ẑ1. Thus, the corresponding radiation vectors will be:

F3 = −ejk·d2F1 , F4 = −ejk·d1F2 (15.7.2)

where the negative signs arise because the currents in those arms have opposite signs
with their parallel counterparts. The phase shift factors are:

ejk·d2 = ejkl̂r·ẑ2 = ejkl cosθ2 , ejk·d1 = ejkl̂r·ẑ1 = ejkl cosθ1



508 Electromagnetic Waves & Antennas – S. J. Orfanidis

It follows that the θ-components of F3 and F4 are:

F3θ = −ejkl cosθ2F1θ = I
jk
ejkl cosθ2F(θ1)

F4θ = −ejkl cosθ1F2θ = − Ijke
jkl cosθ1F(θ2)

Thus, the resultant θ-component will be:

Fθ = F1θ + F2θ + F3θ + F4θ = I
jk
[
F(θ2)−F(θ1)+ejkl cosθ2F(θ1)−ejkl cosθ1F(θ2)

]

The corresponding normalized power pattern will be:

g(θ)= cn
∣∣F(θ+α)−F(θ−α)+ejkl cos(θ+α)F(θ−α)−ejkl cos(θ−α)F(θ+α)∣∣2

Figure 15.7.6 shows the power gain g(θ) for the cases L = 5 and L = 10. The
optimum vee angle in both cases was found to be α = θ0, that is, α = 22.2o and
α = 15.7o. The function rhombic may be used to evaluate this expression.
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Fig. 15.7.6 Rhombic antenna gains in dB.

15.8 Loop Antennas

Figure 15.8.1 shows a circular and a square loop antenna. The feed points are not
shown. The main oversimplifying assumption here is that the current is constant around
the loop. We will mainly consider the case when the dimension of the loop (e.g., its
circumference) is small relative to the wavelength.

For such small loops, the radiation pattern turns out to be independent of the shape
of the loop and the radiation vector takes the simple form:

F = jm× k (15.8.1)

where m is the loop’s magnetic moment defined with respect to Fig. 15.8.1 as follows:
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m = ẑ IS , (magnetic moment) (15.8.2)

where S is the area of the loop. Writing k = k r̂ and noting that ẑ× r̂ = φ̂φφ sinθ, we have:

F = jm× k = jmk sinθφ̂φφ ≡ Fφ(θ)φ̂φφ (15.8.3)

Fig. 15.8.1 Circular and square loop antennas.

Thus, F is fully transverse to r̂, so that F⊥ = F. It follows from Eq. (13.10.4) that the
produced radiation fields will be:

E = φ̂φφEφ = −jkη e
−jkr

4πr
Fφ φ̂φφ = ηmk2 sinθ

e−jkr

4πr
φ̂φφ

H = θ̂θθHθ = jk e
−jkr

4πr
Fφ θ̂θθ = −mk2 sinθ

e−jkr

4πr
θ̂θθ

(15.8.4)

The radiation intensity of Eq. (14.1.4) is in this case:

U(θ,φ)= ηk2

32π2
|Fφ|2 = ηk

4|m|2
32π2

sin2 θ (loop intensity) (15.8.5)

Thus, it has the same sin2 θ angular dependence, normalized power gain, and direc-
tivity as the Hertzian dipole. We may call such small loop antennas “Hertzian loops”,
referring to their infinitesimal size. The total radiated power can be computed as in
Sec. 15.2. We have:

Prad = Umax∆Ω = ηk
4|m|2

32π2

8π
3
= ηk

4|m|2
12π

Replacingm by IS, we may obtain the loop’s radiation resistance from the definition:

Prad = 1

2
Rrad|I|2 = ηk

4|IS|2
12π

⇒ Rrad = ηk
4S2

6π
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Comparing Eq. (15.8.4) to the Hertzian dipole, the loop’s electric field is in the φ-
direction, whereas the Hertzian dipole’s is in the θ-direction. The relative amplitudes
of the electric fields are:

Edipole
θ

Eloop
φ

= j Il
mk

If we choose Il = mk, then the electric fields are off by a 90o-degree phase. If
such a Hertzian dipole and loop are placed at the origin, the produced net electric field
will be circularly polarized. We note finally that the loop may have several turns, thus
increasing its radiation resistance and radiated power. For a loop with n turns, we must
make the replacementm→ nm.

15.9 Circular Loops

Next, we consider the circular loop in more detail, and derive Eq. (15.8.3). Assuming an
infinitely thin wire loop of radius a, the assumed current density can be expressed in
cylindrical coordinates as in Eq. (15.1.3):

J(r′)= I φ̂φφ′δ(ρ′ − a)δ(z′)

The radiation vector will be:

F =
∫
V

J(r′)ejk·r
′
d3r′ =

∫
I φ̂φφ

′
ejk·r

′
δ(ρ′ − a)δ(z′)ρ′dρ′dφ′dz′ (15.9.1)

Using Eq. (13.8.2), we have:

k · r′ = k(ẑ cosθ+ ρ̂ρρ sinθ)·(z′ẑ′ + ρ′ρ̂ρρ′)
= kz′ cosθ+ kρ′ sinθ(ρ̂ρρ′ · ρ̂ρρ)
= kz′ cosθ+ kρ′ sinθ cos(φ′ −φ)

where we set ρ̂ρρ′ · ρ̂ρρ = cos(φ′ −φ), as seen in Fig. 15.8.1. The integration in Eq. (15.9.1)
confines r′ to the xy-plane and sets ρ′ = a and z′ = 0. Thus, we have in the integrand:

k · r′ = ka sinθ cos(φ′ −φ)

Then, the radiation vector (15.9.1) becomes:

F = Ia
∫ 2π

0
φ̂φφ
′
ejka sinθ cos(φ′−φ)dφ′ (15.9.2)

We note in Fig. 15.8.1 that the unit vector φ̂φφ
′
varies in direction withφ′. Therefore, it

proves convenient to express it in terms of the unit vectors φ̂φφ,ρ̂ρρ of the fixed observation

point P. Resolving φ̂φφ
′

into the directions φ̂φφ,ρ̂ρρ, we have:

φ̂φφ
′ = φ̂φφ cos(φ′ −φ)−ρ̂ρρ sin(φ′ −φ)

Changing integration variables from φ′ to ψ = φ′ −φ, we write Eq. (15.9.2) as:
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F = Ia
∫ 2π

0
(φ̂φφ cosψ− ρ̂ρρ sinψ)ejka sinθ cosψdψ

The second term is odd in ψ and vanishes. Thus,

F = Iaφ̂φφ
∫ 2π

0
cosψejka sinθ cosψdψ (15.9.3)

Using the integral representation of the Bessel function J1(x),

J1(x)= 1

2πj

∫ 2π

0
cosψejx cosψdψ

we may replace the ψ-integral by 2πjJ1(ka sinθ) and write Eq. (15.9.3) as:

F = Fφφ̂φφ = 2πj IaJ1(ka sinθ)φ̂φφ (15.9.4)

This gives the radiation vector for any loop radius. If the loop is electrically small,
that is, ka� 1, we may use the first-order approximation J1(x)� x/2, to get

F = Fφφ̂φφ = 2πj Ia
1

2
ka sinθφ̂φφ = jIπa2k sinθφ̂φφ (15.9.5)

which agrees with Eq. (15.8.3), withm = IS = Iπa2.

15.10 Square Loops

The square loop of Fig. 15.8.1 may be thought of as four separate linear antennas repre-
senting the four sides. Assuming that each side is a Hertzian dipole and that the sides
are at distances ±l/2 from the origin, we can write the current densities of the sides
1,2,3,4 as follows:

J1(r) = ŷ Il δ(x− l/2)δ(y)δ(z)
J2(r) = −x̂ Il δ(x)δ(y − l/2)δ(z)
J3(r) = −ŷ Il δ(x+ l/2)δ(y)δ(z)
J4(r) = x̂ Il δ(x)δ(y + l/2)δ(z)

The currents on the parallel sides 1 and 3 combine to give:

J1(r)+J3(r)= −Il2 ŷ
[
δ(x+ l/2)−δ(x− l/2)

l

]
δ(y)δ(z)

where we multiplied and divided by a factor of l. In the limit of small l, we may replace
the quantity in the bracket by the derivative δ′(x) of the delta function δ(x):

J1(r)+J3(r)= −Il2 ŷδ′(x)δ(y)δ(z)

Similarly, we find for sides 2 and 4:
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J2(r)+J4(r)= Il2 x̂δ(x)δ′(y)δ(z)

Thus, the net current density of all sides is:

J(r)= Il2[x̂δ(x)δ′(y)−ŷδ′(x)δ(y)
]
δ(z) (15.10.1)

The corresponding radiation vector will be:

F = Il2
∫ [

x̂δ(x′)δ′(y′)−ŷδ′(x′)δ(y′)
]
δ(z′)ej(kxx

′+kyy′+kzz′)dx′dy′dz′

The delta-function integrations can be done easily yielding:

F = Il2(−jkyx̂+ jkxŷ)
Using Eq. (15.1.4), we obtain

F = jIl2k sinθ(−x̂ sinφ+ ŷ cosφ)= jIl2k sinθφ̂φφ (15.10.2)

which agrees with Eq. (15.8.3), withm = IS = Il2.

15.11 Dipole and Quadrupole Radiation

The radiation vector F of a current/charge distribution can be evaluated approximately
by expanding the exponential ejk·r’ to successive powers of k :

F =
∫
V

J(r′)ejk·r
′
d3r′ =

∫
V

[
1+ jk · r′ + 1

2!
(jk · r′)2+· · · ]J(r′)d3r′

=
∫
V

J(r′)d3r′︸ ︷︷ ︸
elec. dipole

+
∫
V
j(k · r′)J(r′)d3r′︸ ︷︷ ︸

magn. dipole & elec. quadrupole

+· · · (15.11.1)

The first term is the electric dipole radiation term and corresponds to the Hertzian
dipole antenna. The second term incorporates both the magnetic dipole (corresponding
to a Hertzian loop antenna) and the electric quadrupole terms.

Higher multipoles arise from the higher-order terms in the above expansion. A sys-
tematic discussion of all multipole radiation terms requires the use of spherical har-
monics.

Keeping only a few terms in the above expansion is a good approximation to F pro-
vided kr′ � 1, or l � λ, where l is the typical dimension of the current source. In
general, any radiating system will emit radiation of various multipole types.

The electric dipole and electric quadrupole moments of a charge distribution are de-
fined in terms of the following first- and second-order moments of the charge density:

p =
∫
V

r′ρ(r′)d3r′ (electric dipole moment) (15.11.2)

Dij =
∫
V
r′i r

′
jρ(r

′)d3r′ (electric quadrupole moment) (15.11.3)
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The identity of Problem 13.2 is useful here in manipulating the successive expansion
terms of F. Applying the identity with the two choices: g(r′)= r′i and g(r′)= r′i r′j , we
obtain the relationships:∫

V
Ji d3r′ = jω

∫
V
r′i ρ(r

′)d3r′ = jωpi
∫
V
(r′i Jj + r′jJi) d3r′ = jω

∫
V
r′i r

′
jρ(r

′)d3r′ = jωDij
(15.11.4)

Thus, the lowest-order term in Eq. (15.11.1) is the electric dipole:∫
V

J(r′)d3r′ = jωp = Fel

In the second term of Eq. (15.11.1), we may apply the vectorial identity:

(k · r′)J = 1

2
(r′ × J)×k+ 1

2

[
(k · r′)J+ (k · J)r′]

and in integrated form:∫
V
(k · r′)Jd3r′ = 1

2

∫
V
(r′ × J)×kd3r′ + 1

2

∫
V

[
(k · r′)J+ (k · J)r′]d3r′ (15.11.5)

The magnetic moment of a current distribution is defined in general by

m = 1

2

∫
V

r′ × J(r′)d3r′ (magnetic moment) (15.11.6)

Therefore, the first term in Eq. (15.11.5) may be written as m× k. With the help of the
second identity of Eq. (15.11.4), the last term of (15.11.5) may be written in terms of the
quadrupole matrix D acting on the vector k. We have then for the second term in the
expansion (15.11.1):∫

V
j(k · r′)Jd3r′ = jm× k− 1

2
ωDk = Fmag + Fquad (15.11.7)

Finally, we have for the lowest-order terms of F :

F = Fel + Fmag + Fquad = jωp+ jm× k− 1

2
ωDk (15.11.8)

Next, we briefly discuss each term. For a Hertzian dipole antenna with J(r′)=
ẑ Il δ3(r′), only the first term of (15.11.8) is non-zero and is the same as that of Sec. 15.2:

Fel =
∫
V

J(r′)d3r′ = ẑ Il = jωp

The relationship Il = jωp may be understood by thinking of the Hertzian dipole as
two opposite time-varying charges ±q separated by a distance l (along the z-direction),
so that p = ql. It follows that jωp = ṗ = q̇l = Il.

The result p = qlmay also be applied to the case of an accelerated charge. Now q is
constant but l varies with time. We have ṗ = ql̇ = qv and p̈ = qv̇ = qa, where a is the
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acceleration a = v̇. For harmonic time dependence, we have (jω)2p = qa. The total
radiated power from a dipole was obtained in Eq. (15.2.2). Setting k2|Il|2 = k2|qv|2 =
q2ω2|v|2/c2 = q2|a|2/c2, we can rewrite Eq. (15.2.2) in the form:

P = ηq
2|a|2

12πc2
= ηq

2a2

6πc2

where a = |a|/√2 is the rms value of the acceleration. This is Larmor’s classical expres-
sion for the radiated power from a nonrelativistic accelerated charge.

For a Hertzian loop, only the magnetic moment term is present in F. We may verify
the result that m = ẑ IS using the definition (15.11.6). Indeed, for a circular loop:

m = 1

2

∫
r′ × [I φ̂φφ′δ(ρ′ − a)δ(z′)]ρ′dρ′dφ′dz′

The integrations over z′ and ρ′ force z′ = 0 and ρ′ = a, and therefore, r′ = aρ̂ρρ′.
Noting that ρ̂ρρ′×φ̂φφ′ = ẑ and that theφ′-integration contributes a factor of 2π, we obtain:

m = 1

2
aρ̂ρρ′ × φ̂φφ′ Ia2π = ẑ I(πa2)

Similarly, inserting Eq. (15.10.1) into (15.11.6), we find for the square loop:

m = 1

2

∫
(x x̂+ y ŷ+ z ẑ)×[Il2(x̂δ(x)δ′(y)−ŷδ′(x)δ(y)

)
δ(z)

]
dxdydz = ẑ Il2

For the electric quadrupole term, the matrixD is sometimes replaced by its traceless
version defined by

Qij = 3Dij − δijtr(D)=
∫
V

(
3r′i r

′
j − δij r′ · r′

)
ρ(r′)d3r′ ⇒ Q = 3D− I tr(D)

so that tr(Q)= 0. In this case, the vector Dk may be expressed as

Dk = 1

3
Qk+ 1

3
tr(D)k

The second term may be ignored because it does not contribute to the radiation
fields, which depend only on the part of F transverse to k. Thus, without loss of gener-
ality we may also write:

F = jωp+ jm× k− 1

6
ωQk

The electric and magnetic dipoles have angular gain patterns that are identical to
the Hertzian dipole and Hertzian loop antennas, that is, sin2 θ. The quadrupole term,
on the other hand, can have a complicated angular pattern as can be seen by expressing
the vector Qk = kQr̂ explicitly in terms of the angles θ,φ:

Qr̂ =


Qxx Qxy Qxz
Qyx Qyy Qyz
Qzx Qzy Qzz






sinθ cosφ
sinθ sinφ

cosθ




15.12 Problems



16
Radiation from Apertures

16.1 Field Equivalence Principle

The radiation fields from aperture antennas, such as slots, open-ended waveguides,
horns, reflector and lens antennas, are determined from the knowledge of the fields
over the aperture of the antenna.

The aperture fields become the sources of the radiated fields at large distances. This
is a variation of the Huygens-Fresnel principle, which states that the points on each
wavefront become the sources of secondary spherical waves propagating outwards and
whose superposition generates the next wavefront.

Let Ea,Ha be the tangential fields over an aperture A, as shown in Fig. 16.1.1. These
fields are assumed to be known and are produced by the sources to the left of the screen.
The problem is to determine the radiated fields E(r),H(r) at some far observation point.

The radiated fields can be computed with the help of the field equivalence principle
[601–607,647], which states that the aperture fields may be replaced by equivalent elec-
tric and magnetic surface currents, whose radiated fields can then be calculated using
the techniques of Sec. 13.10. The equivalent surface currents are:

J s = n̂×Ha

Jms = −n̂× Ea

(electric surface current)

(magnetic surface current)
(16.1.1)

where n̂ is a unit vector normal to the surface and on the side of the radiated fields.
Thus, it becomes necessary to consider Maxwell’s equations in the presence of mag-

netic currents and derive the radiation fields from such currents.
The screen in Fig. 16.1.1 is an arbitrary infinite surface over which the tangential

fields are assumed to be zero. This assumption is not necessarily consistent with the
radiated field solutions, that is, Eqs. (16.4.9). A consistent calculation of the fields to
the right of the aperture plane requires knowledge of the fields over the entire aperture
plane (screen plus aperture.)

However, for large apertures (with typical dimension much greater than a wave-
length), the approximation of using the fields Ea,Ha only over the aperture to calculate
the radiation patterns is fairly adequate, especially in predicting the main-lobe behavior
of the patterns.

515
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Fig. 16.1.1 Radiated fields from an aperture.

The screen can also be a perfectly conducting surface, such as a ground plane, on
which the aperture opening has been cut. In reflector antennas, the aperture itself is
not an opening, but rather a reflecting surface. Fig. 16.1.2 depicts some examples of
screens and apertures: (a) an open-ended waveguide over an infinite ground plane, (b)
an open-ended waveguide radiating into free space, and (c) a reflector antenna.

Fig. 16.1.2 Examples of aperture planes.

There are two alternative forms of the field equivalence principle, which may be used
when only one of the aperture fields Ea or Ha is available. They are:

J s = 0

Jms = −2(n̂× Ea)
(perfect electric conductor) (16.1.2)

J s = 2(n̂×Ha)

Jms = 0
(perfect magnetic conductor) (16.1.3)

They are appropriate when the screen is a perfect electric conductor (PEC) on which
Ea = 0, or when it is a perfect magnetic conductor (PMC) on which Ha = 0.
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Using image theory, the perfect electric (magnetic) conducting screen can be elimi-
nated and replaced by an image magnetic (electric) surface current, doubling its value
over the aperture. The image field causes the total tangential electric (magnetic) field to
vanish over the screen.

If the tangential fields Ea,Ha were known over the entire aperture plane (screen plus
aperture), the three versions of the equivalence principle would generate the same radi-
ated fields. But because we consider Ea,Ha only over the aperture, the three versions
give slightly different results.

In the case of a perfectly conducting screen, the calculated radiation fields (16.4.10)
using the equivalent currents (16.1.2) are consistent with the boundary conditions on
the screen.

16.2 Magnetic Currents and Duality

Next, we consider the solution of Maxwell’s equations driven by the ordinary electric
charge and current densities ρ, J, and in addition, by the magnetic charge and current
densities ρm, Jm.

Although ρm, Jm are fictitious, the solution of this problem will allow us to identify
the equivalent magnetic currents to be used in aperture problems, and thus, establish
the field equivalence principle. The generalized form of Maxwell’s equations is:

∇∇∇×H = J+ jωεE

∇∇∇ · E = 1

ε
ρ

∇∇∇× E = −Jm − jωµH

∇∇∇ ·H = 1

µ
ρm

(16.2.1)

There is now complete symmetry, or duality, between the electric and the magnetic
quantities. In fact, it can be verified easily that the following duality transformation
leaves the set of four equations invariant :

E −→ H
H −→ −E
ε −→ µ
µ −→ ε

J −→ Jm
ρ −→ ρm

Jm −→ −J
ρm −→ −ρ

A −→ Am
ϕ −→ ϕm

Am −→ −A
ϕm −→ −ϕ

(duality) (16.2.2)

where ϕ,A and ϕm,Am are the corresponding scalar and vector potentials introduced
below. These transformations can be recognized as a special case (for α = π/2) of the
following duality rotations, which also leave Maxwell’s equations invariant:[

E ′ ηJ ′ ηρ′

ηH ′ J ′m ρ′m

]
=
[

cosα sinα
− sinα cosα

][
E ηJ ηρ
ηH Jm ρm

]
(16.2.3)

Under the duality transformations (16.2.2), the first two of Eqs. (16.2.1) transform
into the last two, and conversely, the last two transform into the first two.
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A useful consequence of duality is that if one has obtained expressions for the elec-
tric field E, then by applying a duality transformation one can generate expressions for
the magnetic field H. We will see examples of this property shortly.

The solution of Eq. (16.2.1) is obtained in terms of the usual scalar and vector po-
tentials ϕ,A, as well as two new potentials ϕm,Am of the magnetic type:

E = −∇∇∇ϕ− jωA− 1

ε
∇∇∇× Am

H = −∇∇∇ϕm − jωAm + 1

µ
∇∇∇× A

(16.2.4)

The expression for H can be derived from that of E by a duality transformation of
the form (16.2.2). The scalar and vector potentials satisfy the Lorenz conditions and
Helmholtz wave equations:

∇∇∇ · A+ jωεµϕ = 0

∇2ϕ+ k2ϕ = −ρ
ε

∇2A+ k2A = −µ J

and

∇∇∇ · Am + jωεµϕm = 0

∇2ϕm + k2ϕm = −ρmµ
∇2Am + k2Am = −ε Jm

(16.2.5)

The solutions of the Helmholtz equations are given in terms of G(r− r′)= e−jk|r−r′|

4π|r− r′| :

ϕ(r) =
∫
V

1

ε
ρ(r′)G(r− r′)dV′,

A(r) =
∫
V
µ J(r′)G(r− r′)dV′,

ϕm(r) =
∫
V

1

µ
ρm(r′)G(r− r′)dV′

Am(r) =
∫
V
ε Jm(r′)G(r− r′)dV′

(16.2.6)

where V is the volume over which the charge and current densities are nonzero. The
observation point r is taken to be outside this volume. Using the Lorenz conditions, the
scalar potentials may be eliminated in favor of the vector potentials, resulting in the
alternative expressions for Eq. (16.2.4):

E = 1

jωµε
[∇∇∇(∇∇∇ · A)+k2A

]− 1

ε
∇∇∇× Am

H = 1

jωµε
[∇∇∇(∇∇∇ · Am)+k2Am

]+ 1

µ
∇∇∇× A

(16.2.7)

These may also be written in the form of Eq. (13.3.9):

E = 1

jωµε
[∇∇∇× (∇∇∇× A)−µ J]−1

ε
∇∇∇× Am

H = 1

jωµε
[∇∇∇× (∇∇∇× Am)−ε Jm]+ 1

µ
∇∇∇× A

(16.2.8)
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Replacing A,Am in terms of Eq. (16.2.6), we may express the solutions (16.2.7) di-
rectly in terms of the current densities:

E = 1

jωε

∫
V

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′

H = 1

jωµ

∫
V

[
k2JmG+ (Jm ·∇∇∇′)∇∇∇′G+ jωµ J×∇∇∇′G]dV′

(16.2.9)

Alternatively, if we also use the charge densities, we obtain from (16.2.4):

E =
∫
V

[−jωµ JG+ ρ
ε
∇∇∇′G− Jm ×∇∇∇′G

]
dV′

H =
∫
V

[−jωε JmG+ ρmµ ∇∇∇
′G+ J×∇∇∇′G]dV′

(16.2.10)

16.3 Radiation Fields from Magnetic Currents

The radiation fields of the solutions (16.2.7) can be obtained by making the far-field
approximation, which consists of the replacements:

e−jk|r−r′|

4π|r− r′| �
e−jkr

4πr
ejk·r

′
and ∇∇∇ � −jk (16.3.1)

where k = kr̂. Then, the vector potentials of Eq. (16.2.6) take the simplified form:

A(r)= µ e
−jkr

4πr
F(θ,φ) , Am(r)= ε e

−jkr

4πr
Fm(θ,φ) (16.3.2)

where the radiation vectors are the Fourier transforms of the current densities:

F(θ,φ) =
∫
V

J(r′)ejk·r
′
dV′

Fm(θ,φ) =
∫
V

Jm(r′)ejk·r
′
dV′

(radiation vectors) (16.3.3)

Setting J = Jm = 0 in Eq. (16.2.8) because we are evaluating the fields far from the
current sources, and using the approximation ∇∇∇ = −jk = −jkr̂, and the relationship
k/ε =ωη, we find the radiated E and H fields:

E = −jω[r̂× (A× r̂)−η r̂× Am
] = −jk e−jkr

4πr
r̂× [ηF× r̂− Fm

]

H = − jω
η
[
η r̂× (Am × r̂)+r̂× A

] = − jk
η
e−jkr

4πr
r̂× [ηF+ Fm × r̂

] (16.3.4)

These generalize Eq. (13.10.2) to magnetic currents. As in Eq. (13.10.3), we have:

H = 1

η
r̂× E (16.3.5)
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Noting that r̂× (F× r̂)= θ̂θθFθ + φ̂φφFφ and r̂× F = φ̂φφFθ − θ̂θθFφ, and similarly for Fm,
we find for the polar components of Eq. (16.3.4):

E = −jk e
−jkr

4πr
[
θ̂θθ(ηFθ + Fmφ)+φ̂φφ(ηFφ − Fmθ)

]

H = − jk
η
e−jkr

4πr
[−θ̂θθ(ηFφ − Fmθ)+φ̂φφ(ηFθ + Fmφ)]

(16.3.6)

The Poynting vector is given by the generalization of Eq. (14.1.1):

PPP = 1

2
Re(E×H∗)= r̂

k2

32π2ηr2

[|ηFθ + Fmφ|2 + |ηFφ − Fmθ|2] = r̂Pr (16.3.7)

and the radiation intensity:

U(θ,φ)= dP
dΩ

= r2Pr = k2

32π2η
[|ηFθ + Fmφ|2 + |ηFφ − Fmθ|2] (16.3.8)

16.4 Radiation Fields from Apertures

For an aperture antenna with effective surface currents given by Eq. (16.1.1), the volume
integrations in Eq. (16.2.9) reduce to surface integrations over the aperture A:

E = 1

jωε

∫
A

[
(J s ·∇∇∇′)∇∇∇′G+ k2J s G− jωε Jms ×∇∇∇′G

]
dS′

H = 1

jωµ

∫
A

[
(Jms ·∇∇∇′)∇∇∇′G+ k2Jms G+ jωµ J s ×∇∇∇′G

]
dS′

(16.4.1)

and, explicitly in terms of the aperture fields shown in Fig. 16.1.1:

E = 1

jωε

∫
A

[
(n̂×Ha)·∇∇∇′(∇∇∇′G)+k2(n̂×Ha)G+ jωε(n̂× Ea)×∇∇∇′G

]
dS′

H = 1

jωµ

∫
A

[−(n̂× Ea)·∇∇∇′(∇∇∇′G)−k2(n̂× Ea)G+ jωµ(n̂×Ha)×∇∇∇′G
]
dS′

(16.4.2)
These are known as Kottler’s formulas [605–616]. We derive them in Sec. 16.12.

The equation for H can also be obtained from that of E by the application of a duality
transformation, that is, Ea → Ha, Ha → −Ea and ε→ µ, µ→ ε.

In the far-field limit, the radiation fields are still given by Eq. (16.3.6), but now the
radiation vectors are given by the two-dimensional Fourier transform-like integrals over
the aperture:

F(θ,φ) =
∫
A

J s(r′)ejk·r
′
dS′ =

∫
A

n̂×Ha(r′)ejk·r
′
dS′

Fm(θ,φ) =
∫
A

Jms(r′)ejk·r
′
dS′ = −

∫
A

n̂× Ea(r′)ejk·r
′
dS′

(16.4.3)
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Fig. 16.4.1 Radiation fields from an aperture.

Fig. 16.4.1 shows the polar angle conventions, where we took the origin to be some-
where in the middle of the aperture A.

The aperture surface A and the screen in Fig. 16.1.1 can be arbitrarily curved. How-
ever, a common case is to assume that they are both flat. Then, Eqs. (16.4.3) become
ordinary 2-d Fourier transform integrals. Taking the aperture plane to be the xy-plane
as in Fig. 16.1.1, the aperture normal becomes n̂ = ẑ, and thus, it can be taken out of
the integrands. Setting dS′ = dx′dy′, we rewrite Eq. (16.4.3) in the form:

F(θ,φ) =
∫
A

J s(r′)ejk·r
′
dx′dy′ = ẑ×

∫
A

Ha(r′)ejk·r
′
dx′dy′

Fm(θ,φ) =
∫
A

Jms(r′)ejk·r
′
dx′dy′ = −ẑ×

∫
A

Ea(r′)ejk·r
′
dx′dy′

(16.4.4)

where ejk·r′ = ejkxx′+jkyy′ and kx = k cosφ sinθ, ky = k sinφ sinθ. It proves conve-
nient then to introduce the two-dimensional Fourier transforms of the aperture fields:

f(θ,φ)=
∫
A

Ea(r′)ejk·r
′
dx′dy′ =

∫
A

Ea(x′, y′)ejkxx
′+jkyy′ dx′dy′

g(θ,φ)=
∫
A

Ha(r′)ejk·r
′
dx′dy′ =

∫
A

Ha(x′, y′)ejkxx
′+jkyy′ dx′dy′

(16.4.5)

Then, the radiation vectors become:

F(θ,φ) = ẑ× g(θ,φ)

Fm(θ,φ) = −ẑ× f(θ,φ)
(16.4.6)

Because Ea,Ha are tangential to the aperture plane, they can be resolved into their
cartesian components, for example, Ea = x̂Eax + ŷEay. Then, the quantities f,g can be
resolved in the same way, for example, f = x̂ fx + ŷ fy. Thus, we have:
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F = ẑ× g = ẑ× (x̂gx + ŷgy)= ŷgx − x̂gy

Fm = −ẑ× f = −ẑ× (x̂ fx + ŷ fy)= x̂ fy − ŷ fx
(16.4.7)

The polar components of the radiation vectors are determined as follows:

Fθ = θ̂θθ · F = θ̂θθ · (ŷgx − x̂gy)= gx sinφ cosθ− gy cosφ cosθ

where we read off the dot products (θ̂θθ · x̂) and (θ̂θθ · ŷ) from Eq. (13.8.3). The remaining
polar components are found similarly, and we summarize them below:

Fθ = − cosθ(gy cosφ− gx sinφ)

Fφ = gx cosφ+ gy sinφ

Fmθ = cosθ(fy cosφ− fx sinφ)

Fmφ = −(fx cosφ+ fy sinφ)

(16.4.8)

It follows from Eq. (16.3.6) that the radiated E-field will be:

Eθ = jk e
−jkr

4πr
[
(fx cosφ+ fy sinφ)+η cosθ(gy cosφ− gx sinφ)

]

Eφ = jk e
−jkr

4πr
[
cosθ(fy cosφ− fx sinφ)−η(gx cosφ+ gy sinφ)

] (16.4.9)

The radiation fields resulting from the alternative forms of the field equivalence
principle, Eqs. (16.1.2) and (16.1.3), are obtained from Eq. (16.4.9) by removing the g- or
the f -terms and doubling the remaining term. We have for the PEC case:

Eθ = 2jk
e−jkr

4πr
[
fx cosφ+ fy sinφ

]

Eφ = 2jk
e−jkr

4πr
[
cosθ(fy cosφ− fx sinφ)

] (16.4.10)

and for the PMC case:

Eθ = 2jk
e−jkr

4πr
[
η cosθ(gy cosφ− gx sinφ)

]

Eφ = 2jk
e−jkr

4πr
[−η(gx cosφ+ gy sinφ)

] (16.4.11)

In all three cases, the radiated magnetic fields are obtained from:

Hθ = − 1

η
Eφ , Hφ = 1

η
Eθ (16.4.12)
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We note that Eq. (16.4.9) is the average of Eqs. (16.4.10) and (16.4.11). Also, Eq. (16.4.11)
is the dual of Eq. (16.4.10). Indeed, using Eq. (16.4.12), we obtain the following H-
components for Eq. (16.4.11), which can be derived from Eq. (16.4.10) by the duality
transformation Ea → Ha or f→ g :

Hθ = 2jk
e−jkr

4πr
[
gx cosφ+ gy sinφ

]

Hφ = 2jk
e−jkr

4πr
[
cosθ(gy cosφ− gx sinφ)

] (16.4.13)

At θ = 90o, the components Eφ, Hφ become tangential to the aperture screen. We
note that because of the cosθ factors, Eφ (resp. Hφ) will vanish in the PEC (resp. PMC)
case, in accordance with the boundary conditions.

16.5 Huygens Source

The aperture fields Ea,Ha are referred to as Huygens source if at all points on the
aperture they are related by the uniform plane-wave relationship:

Ha = 1

η
n̂× Ea (Huygens source) (16.5.1)

where η is the characteristic impedance of vacuum.
For example, this is the case if a uniform plane wave is incident normally on the

aperture plane from the left, as shown in Fig. 16.5.1. The aperture fields are assumed to
be equal to the incident fields, Ea = Einc and Ha = Hinc, and the incident fields satisfy
Hinc = ẑ× Einc/η.

Fig. 16.5.1 Uniform plane wave incident on an aperture.

The Huygens source condition is not always satisfied. For example, if the uniform
plane wave is incident obliquely on the aperture, then η must be replaced by the trans-
verse impedance ηT, which depends on the angle of incidence and the polarization of
the incident wave as discussed in Sec. 6.2.
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Similarly, if the aperture is the open end of a waveguide, then ηmust be replaced by
the waveguide’s transverse impedance, such as ηTE or ηTM, depending on the assumed
waveguide mode. On the other hand, if the waveguide ends are flared out into a horn
with a large aperture, then Eq. (16.5.1) is approximately valid.

The Huygens source condition implies the same relationship for the Fourier trans-
forms of the aperture fields, that is, (with n̂ = ẑ)

g = 1

η
n̂× f ⇒ gx = − 1

η
fy , gy = 1

η
fx (16.5.2)

Inserting these into Eq. (16.4.9) we may express the radiated electric field in terms
of f only. We find:

Eθ = jk e
−jkr

2πr
1+ cosθ

2

[
fx cosφ+ fy sinφ

]

Eφ = jk e
−jkr

2πr
1+ cosθ

2

[
fy cosφ− fx sinφ

] (16.5.3)

The factor (1+cosθ)/2 is known as an obliquity factor. The PEC case of Eq. (16.4.10)
remains unchanged for a Huygens source, but the PMC case becomes:

Eθ = jk e
−jkr

2πr
cosθ

[
fx cosφ+ fy sinφ

]

Eφ = jk e
−jkr

2πr
[
fy cosφ− fx sinφ

] (16.5.4)

We may summarize all three cases by the single formula:

Eθ = jk e
−jkr

2πr
cθ
[
fx cosφ+ fy sinφ

]

Eφ = jk e
−jkr

2πr
cφ
[
fy cosφ− fx sinφ

] (fields from Huygens source) (16.5.5)

where the obliquity factors are defined in the three cases:[
cθ
cφ

]
= 1

2

[
1+ cosθ
1+ cosθ

]
,
[

1
cosθ

]
,
[

cosθ
1

]
(obliquity factors) (16.5.6)

We note that the first is the average of the last two. The obliquity factors are equal to
unity in the forward direction θ = 0o and vary little for near-forward angles. Therefore,
the radiation patterns predicted by the three methods are very similar in their mainlobe
behavior.

In the case of a modified Huygens source that replaces η by ηT, Eqs. (16.5.5) retain
their form. The aperture fields and their Fourier transforms are now assumed to be
related by:

Ha = 1

ηT
ẑ× Ea ⇒ g = 1

ηT
ẑ× f (16.5.7)

Inserting these into Eq. (16.4.9), we obtain the modified obliquity factors :

cθ = 1

2
[1+K cosθ] , cφ = 1

2
[K + cosθ] , K = η

ηT
(16.5.8)
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16.6 Directivity and Effective Area of Apertures

For any aperture, given the radiation fields Eθ, Eφ of Eqs. (16.4.9)–(16.4.11), the corre-
sponding radiation intensity is:

U(θ,φ)= dP
dΩ

= r2Pr = r2 1

2η
[|Eθ|2 + |Eφ|2] = r2 1

2η
|E(θ,φ)|2 (16.6.1)

Because the aperture radiates only into the right half-space 0 ≤ θ ≤ π/2, the total
radiated power and the effective isotropic radiation intensity will be:

Prad =
∫ π/2

0

∫ 2π

0
U(θ,φ)dΩ , UI = Prad

4π
(16.6.2)

The directive gain is computed by D(θ,φ)= U(θ,φ)/UI, and the normalized gain
by g(θ,φ)= U(θ,φ)/Umax. For a typical aperture, the maximum intensity Umax is
towards the forward direction θ = 0o. In the case of a Huygens source, we have:

U(θ,φ)= k2

8π2η
[
c2
θ|fx cosφ+ fy sinφ|2 + c2

φ|fy cosφ− fx sinφ|2] (16.6.3)

Assuming that the maximum is towards θ = 0o, then cθ = cφ = 1, and we find for
the maximum intensity:

Umax = k2

8π2η
[|fx cosφ+ fy sinφ|2 + |fy cosφ− fx sinφ|2]θ=0

= k2

8π2η
[|fx|2 + |fy|2]θ=0 =

k2

8π2η
|f |2max

where |f|2max =
[|fx|2 + |fy|2]θ=0. Setting k = 2π/λ, we have:

Umax = 1

2λ2η
|f |2max (16.6.4)

It follows that the normalized gain will be:

g(θ,φ)= c
2
θ|fx cosφ+ fy sinφ|2 + c2

φ|fy cosφ− fx sinφ|2
|f |2max

(16.6.5)

In the case of Eq. (16.4.9) with cθ = cφ = (1+ cosθ)/2, this simplifies further into:

g(θ,φ)= c2
θ
|fx|2 + |fy|2
|f |2max

=
(

1+ cosθ
2

)2 |f(θ,φ)|2
|f |2max

(16.6.6)

The square root of the gain is the (normalized) field strength:

|E(θ,φ)|
|E |max

=
√
g(θ,φ) =

(
1+ cosθ

2

) |f(θ,φ)|
|f |max

(16.6.7)

The power computed by Eq. (16.6.2) is the total power that is radiated outwards from
a half-sphere of large radius r. An alternative way to compute Prad is to invoke energy
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conservation and compute the total power that flows into the right half-space through
the aperture. Assuming a Huygens source, we have:

Prad =
∫
A
Pz dS′ = 1

2

∫
A

ẑ · Re
[
Ea ×H∗a

]
dS′ = 1

2η

∫
A
|Ea(r′)|2dS′ (16.6.8)

Because θ = 0 corresponds to kx = ky = 0, it follows from the Fourier transform
definition (16.4.5) that:

|f|2max =
∣∣∣∣
∫
A

Ea(r′)ejk·r
′
dS′

∣∣∣∣2

kx=ky=0
=
∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

Therefore, the maximum intensity is given by:

Umax = 1

2λ2η
|f |2max =

1

2λ2η

∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

(16.6.9)

Dividing (16.6.9) by (16.6.8), we find the directivity:

Dmax = 4π
Umax

Prad
= 4π
λ2

∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

∫
A
|Ea(r′)|2dS′

= 4πAeff

λ2
(directivity) (16.6.10)

It follows that the maximum effective area of the aperture is:

Aeff =

∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

∫
A
|Ea(r′)|2dS′

≤ A (effective area) (16.6.11)

and the aperture efficiency :

ea = Aeff

A
=

∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

A
∫
A
|Ea(r′)|2dS′

≤ 1 (aperture efficiency) (16.6.12)

The inequalities in Eqs. (16.6.11) and (16.6.12) can be thought of as special cases of
the Schwarz inequality. It follows that equality is reached whenever Ea(r′) is uniform
over the aperture, that is, independent of r′.

Thus, uniform apertures achieve the highest directivity and have effective areas equal
to their geometrical areas.

Because the integrand in the numerator of ea depends both on the magnitude and the
phase of Ea, it proves convenient to separate out these effects by defining the aperture
taper efficiency or loss, eatl, and the phase error efficiency or loss, epel, as follows:

eatl =

∣∣∣∣
∫
A
|Ea(r′)|dS′

∣∣∣∣2

A
∫
A
|Ea(r′)|2dS′

, epel =

∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

∣∣∣∣
∫
A
|Ea(r′)|dS′

∣∣∣∣2 (16.6.13)

so that ea becomes the product:

ea = eatl epel (16.6.14)
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16.7 Uniform Apertures

In uniform apertures, the fields Ea,Ha are assumed to be constant over the aperture
area. Fig. 16.7.1 shows the examples of a rectangular and a circular aperture. For con-
venience, we will assume a Huygens source.

Fig. 16.7.1 Uniform rectangular and circular apertures.

The field Ea can have an arbitrary direction, with constant x- and y-components,
Ea = x̂E0x + ŷE0y. Because Ea is constant, its Fourier transform f(θ,φ) becomes:

f(θ,φ)=
∫
A

Ea(r′)ejk·r
′
dS′ = Ea

∫
A
ejk·r

′
dS′ ≡ Af(θ,φ)Ea (16.7.1)

where we introduced the normalized scalar quantity:

f(θ,φ)= 1

A

∫
A
ejk·r

′
dS′ (uniform-aperture pattern) (16.7.2)

The quantity f(θ,φ) depends on the assumed geometry of the aperture and it, alone,
determines the radiation pattern. Noting that the quantity |Ea| cancels out from the
ratio in the gain (16.6.7) and that f(0,φ)= (1/A)∫A dS′ = 1, we find for the normalized
gain and field strengths:

|E(θ,φ)|
|E |max

=
√
g(θ,φ) =

(
1+ cosθ

2

)
|f(θ,φ)| (16.7.3)

16.8 Rectangular Apertures

For a rectangular aperture of sides a,b, the area integral (16.7.2) is separable in the x-
and y-directions:

f(θ,φ)= 1

ab

∫ a/2
−a/2

∫ b/2
−b/2

ejkxx
′+jkyy′ dx′dy′ = 1

a

∫ a/2
−a/2

ejkxx
′
dx′ · 1

b

∫ b/2
−b/2

ejkyy
′
dy′

where we placed the origin of the r′ integration in the middle of the aperture. The above
integrals result in the sinc-function patterns:



528 Electromagnetic Waves & Antennas – S. J. Orfanidis

f(θ,φ)= sin(kxa/2)
kxa/2

sin(kyb/2)
kyb/2

= sin(πvx)
πvx

sin(πvy)
πvy

(16.8.1)

where we defined the quantities vx, vy :

vx = 1

2π
kxa = 1

2π
ka sinθ cosφ = a

λ
sinθ cosφ

vy = 1

2π
kyb = 1

2π
kb sinθ sinφ = b

λ
sinθ sinφ

(16.8.2)

The pattern simplifies along the two principal planes, the xz- and yz-planes, corre-
sponding to φ = 0o and φ = 90o. We have:

f(θ,0o) = sin(πvx)
πvx

= sin
(
(πa/λ)sinθ

)
(πa/λ)sinθ

f(θ,90o) = sin(πvy)
πvy

= sin
(
(πb/λ)sinθ

)
(πb/λ)sinθ

(16.8.3)

Fig. 16.8.1 shows the three-dimensional pattern of Eq. (16.7.3) as a function of the
independent variables vx, vy, for aperture dimensions a = 8λ and b = 4λ. The x, y
separability of the pattern is evident. The essential MATLAB code for generating this
figure was (note MATLAB’s definition of sinc(x)= sin(πx)/(πx)):

−8
−4

0
4

8

−8
−4

0
4

8
0

0.5

1

xv yv 

htg
nerts dleif 

Fig. 16.8.1 Radiation pattern of rectangular aperture (a = 8λ, b = 4λ).

a = 8; b = 4;
[theta,phi] = meshgrid(0:1:90, 0:9:360);
theta = theta*pi/180; phi = phi*pi/180;

vx = a*sin(theta).*cos(phi);
vy = b*sin(theta).*sin(phi);

E = abs((1 + cos(theta))/2 .* sinc(vx) .* sinc(vy));
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surfl(vx,vy,E);
shading interp; colormap(gray(16));

As the polar angles vary over 0 ≤ θ ≤ 90o and 0 ≤ φ ≤ 360o, the quantities vx and
vy vary over the limits −a/λ ≤ vx ≤ a/λ and −b/λ ≤ vy ≤ b/λ. In fact, the physically
realizable values of vx, vy are those that lie in the ellipse in the vxvy-plane:

v2
x
a2
+ v

2
y

b2
≤ 1

λ2
(visible region) (16.8.4)

The realizable values of vx, vy are referred to as the visible region. The graph in
Fig. 16.8.1 restricts the values of vx, vy within that region.

The radiation pattern consists of a narrow mainlobe directed towards the forward
direction θ = 0o and several sidelobes.

We note the three characteristic properties of the sinc-function patterns: (a) the 3-
dB width in v-space is ∆vx = 0.886 (the 3-dB wavenumber is vx = 0.443); (b) the first
sidelobe is down by about 13.26 dB from the mainlobe and occurs at vx = 1.4303; and
(c) the first null occurs at vx = 1. See Sec. 18.7 for the proof of these results.

The 3-dB width in angle space can be obtained by linearizing the relationship vx =
(a/λ)sinθ about θ = 0o, that is, ∆vx = (a/λ)∆θ cosθ

∣∣
θ=0 = a∆θ/λ. Thus, ∆θ =

λ∆vx/a. This ignores also the effect of the obliquity factor. It follows that the 3-dB
widths in the two principal planes are (in radians and in degrees):

∆θx = 0.886
λ
a
= 50.76o λ

a
, ∆θy = 0.886

λ
b
= 50.76o λ

b
(16.8.5)

The 3-dB angles are θx = ∆θx/2 = 25.4o λ/a and θy = ∆θy/2 = 25.4o λ/b.
Fig. 16.8.2 shows the two principal radiation patterns of Eq. (16.7.3) as functions of
θ, for the case a = 8λ, b = 4λ. The obliquity factor was included, but it makes essen-
tially no difference near the mainlobe and first sidelobe region, ultimately suppressing
the response at θ = 90o by a factor of 0.5.

The 3-dB widths are shown on the graphs. The first sidelobes occur at the angles
θa = asin(1.4303λ/a)= 10.30o and θb = asin(1.4303λ/b)= 20.95o.

For aperture antennas, the gain is aproximately equal to the directivity because the
losses tend to be very small. The gain of the uniform rectangular aperture is, therefore,
G � D = 4π(ab)/λ2. Multiplying G by Eqs. (16.8.5), we obtain the gain-beamwidth
product p = G∆θx ∆θy = 4π(0.886)2= 9.8646 rad2 = 32 383 deg2. Thus, we have an
example of the general formula (14.3.14) (with the angles in radians and in degrees):

G = 9.8646

∆θx ∆θy
= 32 383

∆θo
x ∆θo

y
(16.8.6)

16.9 Circular Apertures

For a circular aperture of radius a, the pattern integral (16.7.2) can be done conveniently
using cylindrical coordinates. The cylindrical symmetry implies that f(θ,φ) will be
independent of φ.
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Fig. 16.8.2 Radiation patterns along the two principal planes (a = 8λ, b = 4λ).

Therefore, for the purpose of computing the integral (16.7.2), we may setφ = 0. We
have then k · r′ = kxx′ = kρ′ sinθ cosφ′. Writing dS′ = ρ′dρ′dφ′, we have:

f(θ)= 1

πa2

∫ a
0

∫ 2π

0
ejkρ

′ sinθ cosφ′ρ′ dρ′dφ′ (16.9.1)

Theφ′- and ρ′-integrations can be done using the following integral representations
for the Bessel functions J0(x) and J1(x) [98]:

J0(x)= 1

2π

∫ 2π

0
ejx cosφ′ dφ′ and

∫ 1

0
J0(xr)r dr = J1(x)

x
(16.9.2)

Then Eq. (16.9.1) gives:

f(θ)= 2
J1(ka sinθ)
ka sinθ

= 2
J1(2πu)

2πu
, u = 1

2π
ka sinθ = a

λ
sinθ (16.9.3)

This is the well-known Airy pattern [182] for a circular aperture. The function f(θ)
is normalized to unity at θ = 0o, because J1(x) behaves like J1(x)� x/2 for small x.

Fig. 16.9.1 shows the three-dimensional field pattern (16.7.3) as a function of the in-
dependent variables vx = (a/λ)sinθ cosφ and vy = (a/λ)sinθ sinφ, for an aperture
radius of a = 3λ. The obliquity factor was not included as it makes little difference
near the main lobe. The MATLAB code for this graph was implemented with the built-in
function besselj:

a = 3;
[theta,phi] = meshgrid(0:1:90, 0:9:360);
theta = theta*pi/180; phi = phi*pi/180;

vx = a*sin(theta).*cos(phi);
vy = a*sin(theta).*sin(phi);
u = a*sin(theta);

E = ones(size(u));
i = find(u);
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Fig. 16.9.1 Radiation pattern of circular aperture (a = 3λ).

E(i) = abs(2*besselj(1,2*pi*u(i))./(2*pi*u(i)));

surfl(vx,vy,E);
shading interp; colormap(gray(16));

The visible region is the circle on the vxvy-plane:

v2
x + v2

y ≤
a2

λ2
(16.9.4)

The mainlobe/sidelobe characteristics of f(θ) are as follows. The 3-dB wavenumber
is u = 0.2572 and the 3-dB width in u-space is ∆u = 2×0.2572 = 0.5144. The first null
occurs at u = 0.6098 so that the first-null width is ∆u = 2×0.6098 = 1.22. The first
sidelobe occurs at u = 0.8174 and its height is |f(u)| = 0.1323 or 17.56 dB below the
mainlobe. The beamwidths in angle space can be obtained from ∆u = a(∆θ)/λ, which
gives for the 3-dB and first-null widths in radians and degrees:

∆θ3dB = 0.5144
λ
a
= 29.47o λ

a
, ∆θnull = 1.22

λ
a
= 70o λ

a
(16.9.5)

The 3-dB angle is θ3dB = ∆θ3dB/2 = 0.2572λ/a = 14.74o λ/a and the first-null
angle θnull = 0.6098λ/a. Fig. 16.9.2 shows the radiation pattern of Eq. (16.7.3) as a
function of θ, for the case a = 3λ. The obliquity factor was included.

The graph shows the 3-dB width and the first sidelobe, which occurs at the angleθa =
asin(0.817λ/a)= 15.8o. The first null occurs at θnull = asin(0.6098λ/a)= 11.73o,
whereas the approximation θnull = 0.6098λ/a gives 11.65o.

The gain-beamwidth product is p = G(∆θ3dB)2= [
4π(πa2)/λ2

]
(0.514λ/a)2=

4π2(0.5144)2= 10.4463 rad2 = 34 293 deg2. Thus, in radians and degrees:

G = 10.4463

(∆θ3dB)2
= 34 293

(∆θo
3dB)2

(16.9.6)
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Fig. 16.9.2 Radiation pattern of circular aperture (a = 3λ).

The first-null angle θnull = 0.6098λ/a is the so-called Rayleigh diffraction limit for
the nominal angular resolution of optical instruments, such as microscopes and tele-
scopes. It is usually stated in terms of the diameter D = 2a of the optical aperture:

∆θ = 1.22
λ
D
= 70o λ

D
(Rayleigh limit) (16.9.7)

16.10 Vector Diffraction Theory

In this section, we provide a justification of the field equivalence principle (16.1.1) and
Kottler’s formulas (16.4.2) from the point of view of vector diffraction theory. We also
discuss the Stratton-Chu and Franz formulas. A historical overview of this subject is
given in [615,616].

In Sec. 16.2, we worked with the vector potentials and derived the fields due to
electric and magnetic currents radiating in an unbounded region. Here, we consider the
problem of finding the fields in a volumeV bounded by a closed surface S and an infinite
spherical surface S∞, as shown in Fig. 16.10.1.

The solution of this problem requires that we know the current sources within V
and the electric and magnetic fields tangential to the surface S. The fields E1,H1 and
current sources inside the volume V1 enclosed by S have an effect on the outside only
through the tangential fields on the surface.

We start with Maxwell’s equations (16.2.1), which include both electric and magnetic
currents. This will help us identify the effective surface currents and derive the field
equivalence principle.

Taking the curls of both sides of Ampère’s and Faraday’s laws and using the vector
identity∇∇∇×(∇∇∇×E)=∇∇∇(∇∇∇·E)−∇2E, we obtain the following inhomogeneous Helmholtz
equations (which are duals of each other):
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Fig. 16.10.1 Fields outside a closed surface S.

∇2E+ k2E = jωµ J+ 1

ε
∇∇∇ρ+∇∇∇× Jm

∇2H+ k2H = jωε Jm + 1

µ
∇∇∇ρm −∇∇∇× J

(16.10.1)

We recall that the Green’s function for the Helmholtz equation is:

∇′2G+ k2G = −δ(3)(r− r′) , G(r− r′)= e−jk|r−r′|

4π|r− r′| (16.10.2)

where ∇∇∇′ is the gradient with respect to r′. Applying Green’s second identity given by
Eq. (C.22) of Appendix C, we obtain:∫

V

[
G∇′2E− E∇′2G]dV′ = −

∮
S+S∞

[
G
∂E

∂n′
− E

∂G
∂n′

]
dS′ ,

∂
∂n′

= n̂ ·∇∇∇′

where G and E stand for G(r− r′) and E(r′) and the integration is over r′. The quantity
∂/∂n′ is the directional derivative along n̂. The negative sign in the right-hand side
arises from using a unit vector n̂ that is pointing into the volume V.

The integral over the infinite surface is taken to be zero. This may be justified more
rigorously [607] by assuming that E and H behave like radiation fields with asymptotic
form E → const.e−jkr/r and H → r̂ × E/η.† Thus, dropping the S∞ term, and adding
and subtracting k2GE in the left-hand side, we obtain:∫

V

[
G(∇′2E+ k2E)−E (∇′2G+ k2G)

]
dV′ = −

∮
S

[
G
∂E

∂n′
− E

∂G
∂n′

]
dS′ (16.10.3)

Using Eq. (16.10.2), the second term on the left may be integrated to give E(r):

−
∫
V

E(r′) (∇′2G+ k2G)dV′ =
∫
V

E(r′)δ(3)(r− r′)dV′ = E(r)

where we assumed that r lies in V. This integral is zero if r lies in V1 because then r′

can never be equal to r. For arbitrary r, we may write:

†The precise conditions are: r|E| → const. and r|E− ηH× r̂| → 0 as r →∞.
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∫
V

E(r′)δ(3)(r− r′)dV′ = uV(r)E(r)=

E(r), if r ∈ V

0, if r �∈ V (16.10.4)

where uV(r) is the characteristic function of the volume region V:†

uV(r)=

1, if r ∈ V

0, if r �∈ V (16.10.5)

We may now solve Eq. (16.10.3) for E(r). In a similar fashion, or, performing a duality
transformation on the expression for E(r), we also obtain the corresponding magnetic
field H(r). Using (16.10.1), we have:

E(r) =
∫
V

[
−jωµG J− 1

ε
G∇∇∇′ρ−G∇∇∇′ × Jm

]
dV′ +

∮
S

[
E
∂G
∂n′

−G ∂E

∂n′

]
dS′

H(r) =
∫
V

[
−jωεG Jm − 1

µ
G∇∇∇′ρm +G∇∇∇′ × J

]
dV′ +

∮
S

[
H
∂G
∂n′

−G ∂H

∂n′

]
dS′

(16.10.6)
Because of the presence of the particular surface term, we will refer to these as

the Kirchhoff diffraction formulas. Eqs. (16.10.6) can be transformed into the so-called
Stratton-Chu formulas [605–616]:‡

E(r)=
∫
V

[
−jωµG J+ ρ

ε
∇∇∇′G− Jm ×∇∇∇′G

]
dV′

+
∮
S

[−jωµG(n̂×H)+(n̂ · E)∇∇∇′G+ (n̂× E)×∇∇∇′G]dS′

H(r)=
∫
V

[
−jωεG Jm + ρmµ ∇∇∇

′G+ J×∇∇∇′G
]
dV′

+
∮
S

[
jωεG(n̂× E)+(n̂ ·H)∇∇∇′G+ (n̂×H)×∇∇∇′G]dS′

(16.10.7)

The proof of the equivalence of (16.10.6) and (16.10.7) is rather involved. Problem
16.4 breaks down the proof into its essential steps.

Term by term comparison of the volume and surface integrals in (16.10.7) yields the
effective surface currents of the field equivalence principle:∗

J s = n̂×H , Jms = −n̂× E (16.10.8)

Similarly, the effective surface charge densities are:

ρs = ε n̂ · E , ρms = µ n̂ ·H (16.10.9)

†Technically [614], one must set uV(r)= 1/2, if r lies on the boundary of V, that is, on S.
‡See [602,608,615,616] for earlier work by Larmor, Tedone, Ignatowski, and others.
∗Initially derived by Larmor and Love [615,616], and later developed fully by Schelkunoff [601,603].
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Eqs. (16.10.7) may be transformed into the Kottler formulas [605–616], which elimi-
nate the charge densities ρ,ρm in favor of the currents J, Jm :

E(r)= 1

jωε

∫
V

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′

+ 1

jωε

∮
S

[
k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωε(n̂× E)×∇∇∇′G]dS′

H(r)= 1

jωµ

∫
V

[
k2JmG+ (Jm ·∇∇∇′)∇∇∇′G+ jωµ J×∇∇∇′G

]
dV′

+ 1

jωµ

∮
S

[−k2G(n̂× E)−((n̂× E)·∇∇∇′)∇∇∇′G+ jωµ(n̂×H)×∇∇∇′G]dS′
(16.10.10)

The steps of the proof are outlined in Problem 16.5.
A related problem is to consider a volume V bounded by the surface S, as shown in

Fig. 16.10.2. The fields inside V are still given by (16.10.7), with n̂ pointing again into
the volume V. If the surface S recedes to infinity, then (16.10.10) reduce to (16.2.9).

Fig. 16.10.2 Fields inside a closed surface S.

Finally, the Kottler formulas may be transformed into the Franz formulas [610–614],
which are essentially equivalent to Eq. (16.2.8) amended by the vector potentials due to
the equivalent surface currents:

E(r) = 1

jωµε
[∇∇∇× (∇∇∇× (A+ A s)

)− µ J
]− 1

ε
∇∇∇× (Am + Ams)

H(r) = 1

jωµε
[∇∇∇× (∇∇∇× (Am + Ams)

)− ε Jm
]+ 1

µ
∇∇∇× (A+ A s)

(16.10.11)

where A and Am were defined in Eq. (16.2.6). The new potentials are defined by:

A s(r) =
∮
S
µ J s(r′)G(r− r′)dS′ =

∮
S
µ
[
n̂×H(r′)

]
G(r− r′)dS′

Ams(r) =
∮
S
ε Jms(r′)G(r− r′)dS′ = −

∮
S
ε
[
n̂× E(r′)

]
G(r− r′)dS′

(16.10.12)

Next, we specialize the above formulas to the case where the volume V contains
no current sources (J = Jm = 0), so that the E,H fields are given only in terms of the
surface integral terms.
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This happens if we choose S in Fig. 16.10.1 such that all the current sources are
inside it, or, if in Fig. 16.10.2 we choose S such that all the current sources are outside
it, then, the Kirchhoff, Stratton-Chu, Kottler, and Franz formulas simplify into:

E(r) =
∮
S

[
E
∂G
∂n′

−G ∂E

∂n′

]
dS′

=
∮
S

[−jωµG(n̂×H )+(n̂ · E )∇∇∇′G+ (n̂× E )×∇∇∇′G]dS′

= 1

jωε

∮
S

[
k2G(n̂×H )+((n̂×H )·∇∇∇′)∇∇∇′G+ jωε(n̂× E )×∇∇∇′G]dS′

= 1

jωε
∇∇∇× (∇∇∇×

∮
S
G(n̂×H )dS′

)+∇∇∇×
∮
S
G(n̂× E )dS′

(16.10.13)

H(r) =
∮
S

[
H
∂G
∂n′

−G ∂H

∂n′

]
dS′

=
∮
S

[
jωεG(n̂× E )+(n̂ ·H )∇∇∇′G+ (n̂×H )×∇∇∇′G]dS′

= 1

jωµ

∮
S

[−k2G(n̂× E )−((n̂× E )·∇∇∇′)∇∇∇′G+ jωµ(n̂×H )×∇∇∇′G]dS′

= − 1

jωµ
∇∇∇× (∇∇∇×

∮
S
G(n̂× E )dS′

)+∇∇∇×
∮
S
G(n̂×H )dS′

(16.10.14)
where the last equations are the Franz formulas with A = Am = 0.

Fig. 16.10.3 illustrates the geometry of the two cases. Eqs. (16.10.13) and (16.10.14)
represent the vectorial formulation of the Huygens-Fresnel principle, according to which
the tangential fields on the surface can be considered to be the sources of the fields away
from the surface.

Fig. 16.10.3 Current sources are outside the field region.

16.11 Extinction Theorem

In all of the equivalent formulas for E(r),H(r), we assumed that r lies within the volume
V. The origin of the left-hand sides in these formulas can be traced to Eq. (16.10.4), and
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therefore, if r is not in V but is within the complementary volume V1, then the left-hand
sides of all the formulas are zero. This does not mean that the fields inside V1 are
zero—it only means that the sum of the terms on the right-hand sides are zero.

To clarify these remarks, we consider an imaginary closed surface S dividing all
space in two volumes V1 and V, as shown in Fig. 16.11.1. We assume that there are
current sources in both regions V and V1. The surface S1 is the same as S but its unit
vector n̂1 points intoV1, so that n̂1 = −n̂. Applying (16.10.10) to the volumeV, we have:

Fig. 16.11.1 Current sources may exist in both V and V1.

1

jωε

∮
S

[
k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωε(n̂× E)×∇∇∇′G]dS′

+ 1

jωε

∫
V

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′ =


E(r), if r ∈ V

0, if r ∈ V1

The vanishing of the right-hand side when r is in V1 is referred to as an extinction
theorem.† Applying (16.10.10) to V1, and denoting by E1,H1 the fields in V1, we have:

1

jωε

∮
S1

[
k2G(n̂1 ×H1)+

(
(n̂1 ×H1)·∇∇∇′

)∇∇∇′G+ jωε(n̂1 × E1)×∇∇∇′G
]
dS′

+ 1

jωε

∫
V1

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′ =


0, if r ∈ V

E1(r), if r ∈ V1

Because n̂1 = −n̂, and on the surface E1 = E and H1 = H, we may rewrite:

− 1

jωε

∮
S

[
k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωε(n̂× E)×∇∇∇′G]dS′

+ 1

jωε

∫
V1

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′ =


0, if r ∈ V

E1(r), if r ∈ V1

Adding up the two cases and combining the volume integrals into a single one, we obtain:

1

jωε

∫
V+V1

[
(J ·∇∇∇′)∇∇∇′G+ k2GJ− jωε Jm ×∇∇∇′G

]
dV′ =


E(r), if r ∈ V

E1(r), if r ∈ V1

This is equivalent to Eq. (16.2.9) in which the currents are radiating into unbounded
space. We also see how the sources within V1 make themselves felt on the outside only
through the tangential fields at the surface S, that is, for r ∈ V :

†In fact, it can be used to prove the Ewald-Oseen extinction theorem that we considered in Sec. 13.6.
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1

jωε

∫
V1

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′

= 1

jωε

∮
S

[
k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωε(n̂× E)×∇∇∇′G]dS′

16.12 Vector Diffraction for Apertures

The Kirchhoff diffraction integral, Stratton-Chu, Kottler, and Franz formulas are equiv-
alent only for a closed surface S.

If the surface is open, as in the case of an aperture, the four expressions in (16.10.13)
and in (16.10.14) are no longer equivalent. In this case, the Kottler and Franz formulas
remain equal to each other and give the correct expressions for the fields, in the sense
that the resulting E(r) and H(r) satisfy Maxwell’s equations [602,611,615,616].

For an open surface S bounded by a contour C, shown in Fig. 16.12.1, the Kottler
and Franz formulas are related to the Stratton-Chu and the Kirchhoff diffraction integral
formulas by the addition of some line-integral correction terms [608]:

E(r)= 1

jωε

∫
S

[
k2G(n̂×H )+((n̂×H )·∇∇∇′)∇∇∇′G+ jωε(n̂× E )×∇∇∇′G]dS′

= 1

jωε
∇∇∇× (∇∇∇×

∫
S
G(n̂×H )dS′

)+∇∇∇×
∫
S
G(n̂× E )dS′

=
∫
S

[−jωµG(n̂×H )+(n̂ · E )∇∇∇′G+ (n̂× E )×∇∇∇′G]dS′ − 1

jωε

∮
C
(∇∇∇′G)H · dl

=
∫
S

[
E
∂G
∂n′

−G ∂E

∂n′

]
dS′ −

∮
C
GE× dl− 1

jωε

∮
C
(∇∇∇′G)H · dl

(16.12.1)

H(r)= 1

jωµ

∫
S

[−k2G(n̂× E )−((n̂× E )·∇∇∇′)∇∇∇′G+ jωµ(n̂×H )×∇∇∇′G]dS′

= − 1

jωµ
∇∇∇× (∇∇∇×

∫
S
G(n̂× E )dS′

)+∇∇∇×
∫
S
G(n̂×H )dS′

=
∫
S

[
jωεG(n̂× E )+(n̂ ·H )∇∇∇′G+ (n̂×H )×∇∇∇′G]dS′ + 1

jωµ

∮
C
(∇∇∇′G)E · dl

= −
∫
S

[
H
∂G
∂n′

−G ∂H

∂n′

]
dS′ −

∮
C
GH× dl+ 1

jωµ

∮
C
(∇∇∇′G)E · dl

(16.12.2)
The proof of the equivalence of these expressions is outlined in Problems 16.7 and

16.8. The Kottler-Franz formulas (16.12.1) and (16.12.2) are valid for points off the
aperture surface S. The formulas are not consistent for points on the aperture. However,
they have been used very successfully in practice to predict the radiation patterns of
aperture antennas.

The line-integral correction terms have a minor effect on the mainlobe and near
sidelobes of the radiation pattern. Therefore, they can be ignored and the diffracted
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Fig. 16.12.1 Aperture surface S bounded by contour C.

field can be calculated by any of the four alternative formulas, Kottler, Franz, Stratton-
Chu, or Kirchhoff integral—all applied to the open surface S.

16.13 Fresnel Diffraction

In Sec. 16.4, we looked at the radiation fields arising from the Kottler-Franz formulas,
where we applied the Fraunhofer approximation in which only linear phase variations
over the aperture were kept in the propagation phase factor e−jkR. Here, we consider
the intermediate case of Fresnel approximation in which both linear and quadratic phase
variations are retained.

We discuss the classical problem of diffraction of a spherical wave by a rectangular
aperture, a slit, and a straight-edge using the Kirchhoff integral formula. The case of a
plane wave incident on a conducting edge is discussed in Problem 16.11 using the field-
equivalence principle and Kottler’s formula and more accurately, in Sec. 16.15, using
Sommerfeld’s exact solution of the geometrical theory of diffraction. These examples
are meant to be an introduction to the vast subject of diffraction.

In Fig. 16.13.1, we consider a rectangular aperture illuminated from the left by a point
source radiating a spherical wave. We take the origin to be somewhere on the aperture
plane, but eventually we will take it to be the point of intersection of the aperture plane
and the line between the source and observation points P1 and P2.

The diffracted field at point P2 may be calculated from the Kirchhoff formula applied
to any of the cartesian components of the field:

E =
∫
S

[
E1
∂G
∂n′

−G ∂E1

∂n′

]
dS′ (16.13.1)

where E1 is the spherical wave from the source point P1 evaluated at the aperture point
P′, and G is the Green’s function from P′ to P2:

E1 = A1
e−jkR1

R1
, G = e

−jkR2

4πR2
(16.13.2)

whereA1 is a constant. If r1 and r2 are the vectors pointing from the origin to the source
and observation points, then we have for the distance vectors R1 and R2:
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Fig. 16.13.1 Fresnel diffraction through rectangular aperture.

R1 = r1 − r′ , R1 = |r1 − r′| =
√
r2

1 − 2r1 · r′ + r′ · r′

R2 = r2 − r′ , R2 = |r2 − r′| =
√
r2

2 − 2r2 · r′ + r′ · r′
(16.13.3)

Therefore, the gradient operator∇∇∇′ can be written as follows when it acts on a function
of R1 = |r1 − r′| or a function of R2 = |r2 − r′|:

∇∇∇′ = −R̂1
∂
∂R1

, ∇∇∇′ = −R̂2
∂
∂R2

where R̂1 and R̂2 are the unit vectors in the directions of R1 and R2. Thus, we have:

∂E1

∂n′
= n̂ ·∇∇∇′E1 = −n̂ · R̂1

∂E1

∂R1
= (n̂ · R̂1)

(
jk+ 1

R1

)
A1
e−jkR1

R1

∂G
∂n′

= n̂ ·∇∇∇′G = −n̂ · R̂2
∂G
∂R2

= (n̂ · R̂2)
(
jk+ 1

R2

)
e−jkR2

4πR2

(16.13.4)

Dropping the 1/R2 terms, we find for the integrand of Eq. (16.13.1):

E1
∂G
∂n′

−G ∂E1

∂n′
= jkA1

4πR1R2

[
(n̂ · R̂2)−(n̂ · R̂1)

]
e−jk(R1+R2)

Except in the phase factor e−jk(R1+R2), we may replace R1 � r1 and R2 � r2, that is,

E1
∂G
∂n′

−G ∂E1

∂n′
= jkA1

4πr1r2

[
(n̂ · r̂2)−(n̂ · r̂1)

]
e−jk(R1+R2) (16.13.5)

Thus, we have for the diffracted field at point P2:

E = jkA1

4πr1r2

[
(n̂ · r̂2)−(n̂ · r̂1)

]∫
S
e−jk(R1+R2) dS′ (16.13.6)
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The quantity
[
(n̂ · r̂2)−(n̂ · r̂1)

]
is an obliquity factor. Next, we set r = r1 + r2 and

define the ”free-space” field at the point P2:

E0 = A1
e−jk(r1+r2)

r1 + r2
= A1

e−jkr

r
(16.13.7)

If the origin were the point of intersection between the aperture plane and the line
P1P2, then E0 would represent the field received at point P2 in the unobstructed case
when the aperture and screen are absent.

The ratio D = E/E0 may be called the diffraction coefficient and depends on the
aperture and the relative geometry of the points P1, P2:

D = E
E0
= jk

4πF
[
(n̂ · r̂2)−(n̂ · r̂1)

]∫
S
e−jk(R1+R2−r1−r2) dS′ (16.13.8)

where we defined the “focal length” between r1 and r2:

1

F
= 1

r1
+ 1

r2
⇒ F = r1r2

r1 + r2
(16.13.9)

The Fresnel approximation is obtained by expanding R1 and R2 in powers of r′ and
keeping only terms up to second order. We rewrite Eq. (16.13.3) in the form:

R1 = r1

√
1− 2r̂1 · r′

r1
+ r′ · r′

r2
1
, R2 = r2

√
1− 2r̂2 · r′

r2
+ r′ · r′

r2
2

Next, we apply the Taylor series expansion up to second order:

√
1+ x = 1+ 1

2
x− 1

8
x2

This gives the approximations of R1, R2, and R1 +R2 − r1 − r2:

R1 = r1 − r̂1 · r′ + 1

2r1

[
r′ · r′ − (r̂1 · r′)2]

R2 = r2 − r̂2 · r′ + 1

2r2

[
r′ · r′ − (r̂2 · r′)2]

R1 +R2 − r1 − r2 = −(r̂1 + r̂2)·r′ + 1

2

[(
1

r1
+ 1

r2

)
r′ · r′ − (r̂1 · r′)2

r1
− (r̂2 · r′)2

r2

]

To simplify this expression, we now assume that the origin is the point of intersection
of the line of sight P1P2 and the aperture plane. Then, the vectors r1 and r2 are anti-
parallel and so are their unit vectors r̂1 = −r̂2. The linear terms cancel and the quadratic
ones combine to give:

R1+R2−r1−r2 = 1

2F
[
r′ ·r′−(r̂2 ·r′)2] = 1

2F
∣∣r′− r̂2(r̂′ · r̂2)

∣∣2 = 1

2F
b′ ·b′ (16.13.10)

where we defined b′ = r′ − r̂2(r̂′ · r̂2), which is the perpendicular vector from the point
P′ to the line-of-sight P1P2, as shown in Fig. 16.13.1.
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It follows that the Fresnel approximation of the diffraction coefficient for an arbitrary
aperture will be given by:

D = E
E0
= jk(n̂ · r̂2)

2πF

∫
S
e−jk(b

′·b′)/(2F) dS′ (16.13.11)

A further simplification is obtained by assuming that the aperture plane is the xy-
plane and that the line P1P2 lies on the yz plane at an angle θ with the z-axis, as shown
in Fig. 16.13.2.

Fig. 16.13.2 Fresnel diffraction by rectangular aperture.

Then, we have r′ = x′x̂ + y′ŷ, n̂ = ẑ, and r̂2 = ẑ cosθ + ŷ sinθ. It follows that
n̂ · r̂2 = cosθ, and the perpendicular distance b′ · b′ becomes:

b′ · b′ = r′ · r′ − (r̂′ · r̂2)2= x′2 + y′2 − (y′ sinθ)2= x′2 + y′2 cos2 θ

Then, the diffraction coefficient (16.13.11) becomes:

D = jk cosθ
2πF

∫ x2

−x1

∫ y2

−y1
e−jk(x

′2+y′2 cos2 θ)/2F dx′dy′ (16.13.12)

where we assumed that the aperture limits are (with respect to the new origin):

−x1 ≤ x′ ≤ x2 , −y1 ≤ y′ ≤ y2

The end-points y1, y2 are shown in Fig. 16.13.2. The integrals may be expressed
in terms of the Fresnel functions C(x), S(x), and F(x)= C(x)−jS(x) discussed in
Appendix F. There, the complex function F(x) is defined by:

F(x)= C(x)−jS(x)=
∫ x

0
e−j(π/2)u

2
du (16.13.13)
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We change integration variables to the normalized Fresnel variables:

u =
√
k
πF

x′ , v =
√
k
πF

y′ cosθ (16.13.14)

where b′ = y′ cosθ is the perpendicular distance from P′ to the line P1P2, as shown in
Fig. 16.13.2. The corresponding end-points are:

ui =
√
k
πF

xi , vi =
√
k
πF

yi cosθ =
√
k
πF

bi , i = 1,2 (16.13.15)

Note that the quantities b1 = y1 cosθ and b2 = y2 cosθ are the perpendicular
distances from the edges to the line P1P2. Since dudv = (k cosθ/πF)dx′dy′, we
obtain for the diffraction coefficient:

D = j
2

∫ u2

−u1

e−jπu
2/2 du

∫ v2

−v1

e−jπv
2/2 dv = j

2

[
F(u2)−F(−u1)

][
F(v2)−F(−v1)

]

Noting that F(x) is an odd function and that j/2 = 1/(1− j)2, we obtain:

D = E
E0
= F(u1)+F(u2)

1− j
F(v1)+F(v2)

1− j (rectangular aperture) (16.13.16)

The normalization factors (1−j) correspond to the infinite aperture limit u1, u2, v1,
v2 →∞, that is, no aperture at all. Indeed, since the asymptotic value of F(x) is F(∞)=
(1− j)/2, we have:

F(u1)+F(u2)
1− j

F(v1)+F(v2)
1− j −→ F(∞)+F(∞)

1− j
F(∞)+F(∞)

1− j = 1

In the case of a long slit along the x-direction, we only take the limit u1, u2 →∞:

D = E
E0
= F(v1)+F(v2)

1− j (diffraction by long slit) (16.13.17)

16.14 Knife-Edge Diffraction

The case of straight-edge or knife-edge diffraction is obtained by taking the limit y2 →
∞, or v2 → ∞, which corresponds to keeping the lower edge of the slit. In this limit
F(v2)→ F(∞)= (1− j)/2. Denoting v1 by v, we have:

D(v)= 1

1− j
(
F(v)+1− j

2

)
, v =

√
k
πF

b1 (16.14.1)

Positive values of v correspond to positive values of the clearance distance b1, plac-
ing the point P2 in the illuminated region, as shown in Fig. 16.14.1. Negative values of
v correspond to b1 < 0, placing P2 in the geometrical shadow region behind the edge.

The magnitude-square |D|2 represents the intensity of the diffracted field relative
to the intensity of the unobstructed field. Since |1− j|2 = 2, we find:
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Fig. 16.14.1 Illuminated and shadow regions in straight-edge diffraction.

|D(v)|2 = |E|2
|E0|2 =

1

2

∣∣∣∣F(v)+1− j
2

∣∣∣∣2

(16.14.2)

or, in terms of the real and imaginary parts of F(v):

|D(v)|2 = 1

2

[(
C(v)+1

2

)2

+
(
S(v)+1

2

)2
]

(16.14.3)

The quantity |D(v)|2 is plotted versus v in Fig. 16.14.2. At v = 0, corresponding to
the line P1P2 grazing the top of the edge, we have F(0)= 0, D(0)= 1/2, and |D(0)|2 =
1/4 or a 6 dB loss. The first maximum in the illuminated region occurs at v = 1.2172
and has the value |D(v)|2 = 1.3704, or a gain of 1.37 dB.
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Fig. 16.14.2 Diffraction coefficient in absolute and dB units.

The asymptotic behavior of D(v) for v → ±∞ is obtained from Eq. (F.4). We have
for large positive x:

F(±x)→ ±
(

1− j
2
+ j
πx
e−jπx

2/2
)
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This implies that:

D(v)=




1− 1− j
2πv

e−jπv
2/2, for v → +∞

−1− j
2πv

e−jπv
2/2, for v → −∞

(16.14.4)

We may combine the two expressions into one with the help of the unit-step function
u(v) by writing D(v) in the following form, which defines the asymptotic diffraction
coefficient d(v):

D(v)= u(v)+d(v)e−jπv2/2 (16.14.5)

where u(v)= 1 for v ≥ 0 and u(v)= 0 for v < 0.
With u(0)= 1, this definition requires d(0)= D(0)−v(0)= 0.5 − 1 = −0.5. But if

we define u(0)= 0.5, as is sometimes done, then, d(0)= 0. The asymptotic behavior of
D(v) can now be expressed in terms of the asymptotic behavior of d(v):

d(v)= −1− j
2πv

, for v → ±∞ (16.14.6)

In the illuminated region D(v) tends to unity, whereas in the shadow region it de-
creases to zero with asymptotic dB attenuation or loss:

L = −10 log10

∣∣d(v)∣∣2 = 10 log10

(
2π2v2) , as v → −∞ (16.14.7)

The MATLAB function diffr calculates the diffraction coefficient (16.14.1) at any
vector of values of v. It has usage:

D = diffr(v); % knife-edge diffraction coefficient D(v)

For values v ≤ 0.7, the diffraction loss can be approximated very well by the follow-
ing function [627]:

L = −10 log10

∣∣D(v)∣∣2 = 6.9+ 20 log10

(√
(v+ 0.1)2+1− v− 0.1

)
(16.14.8)

Example 16.14.1: Diffraction Loss over Obstacles. The propagation path loss over obstacles and
irregular terrain is usually determined using knife-edge diffraction. Fig. 16.14.3 illustrates
the case of two antennas communicating over an obstacle. For small angles θ, the focal
length F is often approximated in several forms:

F = r1r2

r1 + r2
� d1d2

d1 + d2
� l1l2
l1 + l2

These approximations are valid typically when d1, d2 are much greater than λ and the
height h of the obstacle, typically, at least ten times greater. The clearance distance can
be expressed in terms of the heights:

b1 = y1 cosθ =
(
h1d2 + h2d1

d1 + d2
− h

)
cosθ
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Fig. 16.14.3 Communicating antennas over an obstacle.

The distance b1 can also be expressed approximately in terms of the subtended anglesα1,
α2, and α, shown in Fig. 16.14.3:

b1 � l1α1 � l2α2 ⇒ b1 =
√
l1l2α1α2 (16.14.9)

and in terms of α, we have:

α1 = αl2
l1 + l2 , α2 = αl1

l1 + l2 ⇒ b1 = αF ⇒ v = α
√

2F
λ

(16.14.10)

The case of multiple obstacles has been studied using appropriate modifications of the
knife-edge diffraction problem and the geometrical theory of diffraction [628–641]. ��

The Fresnel approximation is not invariant under shifting the origin. Our choice of
origin above is not convenient because it depends on the observation point P2. If we
choose a fixed origin, such as the point O in Fig. 16.14.4, then, we must determine the
corresponding Fresnel coefficient.

Fig. 16.14.4 Fresnel diffraction by straight edge.
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We assume that the points P1, P2 lie on the yz plane and take P2 to lie in the shadow
region. The angles θ1, θ2 may be chosen to be positive or negative to obtain all possible
locations of P1, P2 relative to the screen.

The diffraction coefficient is still given by Eq. (16.13.8) but with r1, r2 replaced by
the distances l1, l2. The unit vectors towards P1 and P2 are:

l̂1 = −ẑ cosθ1 − ŷ sinθ1 , l̂2 = ẑ cosθ2 − ŷ sinθ2 (16.14.11)

Since r′ = x′x̂+ y′ŷ and n̂ = ẑ, we find:

l̂1 · r′ = −y′ sinθ1 , l̂2 · r′ = −y′ sinθ2 , n̂ · l̂1 = − cosθ1 , n̂ · l̂2 = cosθ2

The quadratic approximation for the lengths R1, R2 gives, then:

R1 +R2 − l1 − l2 = −(̂l1 + l̂2)·r′ + 1

2

[(
1

l1
+ 1

l2

)
(r′ · r′)− (̂l1 · r′)2

l1
− (̂l2 · r′)2

l2

]

= y′(sinθ1 + sinθ2)+
(

1

l1
+ 1

l2

)
x′2

2
+
(

cos2 θ1

l1
+ cos2 θ2

l2

)
y′2

2

= 1

2F
x′2 + 1

2F′
[
y′2 + 2F′y′(sinθ1 + sinθ2)

]

= 1

2F
x′2 + 1

2F′
(y′ + y0)2− 1

2F′
y2

0

where we defined the focal lengths F,F′ and the shift y0:

1

F
= 1

l1
+ 1

l2
,

1

F′
= cos2 θ1

l1
+ cos2 θ2

l2
, y0 = F′(sinθ1 + sinθ2) (16.14.12)

Using these approximations in Eq. (16.13.6) and replacing r1, r2 by l1, l2, we find:

E = jkA1e−jk(l1+l2)

4πl1l2

[
(n̂ · l̂2)−(n̂ · l̂1)

]∫
S
e−jk(R1+R2−l1−l2) dS′

= jkA1e−k(l1+l2)

4πl1l2
(cosθ1 + cosθ2)ejky

2
0/2F′

∫
e−jkx

′2/2F−jk(y′+y0)2/2F′ dx′dy′

The x′-integral is over the range −∞ < x′ < ∞ and can be converted to a Fresnel
integral with the change of variables u = x′√k/(πF):

∫∞
−∞
e−jkx

′2/2F dx′ =
√
πF
k

∫∞
−∞
e−jπu

2/2 du =
√
πF
k
(1− j)

The y′-integral is over the upper-half of the xy-plane, that is, 0 ≤ y′ < ∞. Defining
the Fresnel variables u = (y′ + y0)

√
k/(πF′) and v = y0

√
k/(πF′), we find:

∫∞
0
e−jk(y

′+y0)2/2F′ dy′ =
√
πF′

k

∫∞
v
e−jπu

2/2 du =
√
πF′

k
(1− j)D(−v)

where the function D(v) was defined in Eq. (16.14.1). Putting all the factors together,
we may write the diffracted field at the point P2 in the form:
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E = Eedge
e−jkl2√
l2
Dedge (straight-edge diffraction) (16.14.13)

where we set ky2
0/2F′ = πv2/2 and defined the incident field Eedge at the edge and the

overall edge-diffraction coefficient Dedge by:

Eedge = A1
e−jkl1
l1

, Dedge =
√
FF′

l2

(
cosθ1 + cosθ2

2

)
ejπv

2/2D(−v) (16.14.14)

The second factor (e−jkl2/
√
l2) in (16.14.13) may be interpreted as a cylindrical wave

emanating from the edge as a result of the incident field Eedge. The third factor Dedge is
the angular gain of the cylindrical wave. The quantity v may be written as:

v =
√
k
πF′

y0 =
√
kF′

π
(sinθ1 + sinθ2) (16.14.15)

Depending on the sign and relative sizes of the angles θ1 and θ2, it follows that
v > 0 when P2 lies in the shadow region, and v < 0 when it lies in the illuminated
region. For large positive v, we may use Eq. (16.14.4) to obtain the asymptotic form of
the edge-diffraction coefficient Dedge:

Dedge =
√
FF′

l2
cosθ1 + cosθ2

2
ejπv

2/2 1− j
2πv

e−jπv
2/2 =

√
FF′

l2
cosθ1 + cosθ2

2

1− j
2πv

Writing
√
F/l2 =

√
l1/(l1 + l2) and replacing v from Eq. (16.14.15), the

√
F′ factor

cancels and we obtain:

Dedge =
√

l1
l1 + l2

(1− j)(cosθ1 + cosθ2)
4
√
πk(sinθ1 + sinθ2)

(16.14.16)

This expression may be simplified further by defining the overall diffraction angle
θ = θ1 + θ2, as shown in Fig. 16.14.4 and using the trigonometric identity:

cosθ1 + cosθ2

sinθ1 + sinθ2
= cot

(
θ1 + θ2

2

)

Then, Eq. (16.14.16) may be written in the form:

Dedge =
√

l1
l1 + l2

(1− j)
4
√
πk

cot
θ
2

(16.14.17)

The asymptotic diffraction coefficient is obtained from Eqs. (16.14.16) or (16.14.17)
by taking the limit l1 →∞, which gives

√
l1/(l1 + l2)→ 1. Thus,

Dedge = (1− j)(cosθ1 + cosθ2)
4
√
πk(sinθ1 + sinθ2)

= (1− j)
4
√
πk

cot
θ
2

(16.14.18)

Eqs. (16.14.17) and (16.14.18) are equivalent to those given in [615].
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The two choices for the origin lead to two different expressions for the diffracted
fields. However, the expressions agree near the forward direction, θ � 0. It is easily
verified that both Eq. (16.14.1) and (16.14.17) lead to the same approximation for the
diffracted field:

E = Eedge
e−jkl2√
l2

√
l1

l1 + l2
1− j

2
√
πkθ

(16.14.19)

16.15 Geometrical Theory of Diffraction

Geometrical theory of diffraction is an extension of geometrical optics [628–634]. It
views diffraction as a local edge effect. In addition to the ordinary rays of geometrical
optics, it postulates the existence of “diffracted rays” from edges. The diffracted rays
can reach into shadow regions, where geometrical optics fails.

An incident ray at an edge generates an infinity of diffracted rays emanating from the
edge having different angular gains given by a diffraction coefficient Dedge. An example
of such a diffracted ray is given by Eq. (16.14.13).

The edge-diffraction coefficient Dedge depends on (a) the type of the incident wave,
such as plane wave, or spherical, (b) the type and local geometry of the edge, such as a
knife-edge or a wedge, and (c) the directions of the incident and diffracted rays.

The diffracted field and coefficient are usually taken to be in their asymptotic forms,
like those of Eq. (16.15.26). The asymptotic forms are derived from certain exactly
solvable canonical problems, such as a conducting edge, a wedge, and so on.

The first and most influential of all such problems was Sommerfeld’s solution of a
plane wave incident on a conducting half-plane [611], and we discuss it below.

Fig. 16.15.1 shows a plane wave incident at an angle α on the conducting plane
occupying half of the xz-plane for x ≥ 0. The plane of incidence is taken to be the xy-
plane. Because of the cylindrical symmetry of the problem, we may assume that there
is no z-dependence and that the fields depend only on the cylindrical coordinates ρ,φ.

Fig. 16.15.1 Plane wave incident on conducting half-plane.

Two polarizations may be considered: TE, in which the electric field is E = ẑEz, and
TM, which has H = ẑHz. Using cylindrical coordinates defined in Eq. (E.2) of Appendix
13.8, and setting ∂/∂z = 0, Maxwell’s equations reduce in the two cases into:
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(TE) ∇2Ez + k2Ez = 0, Hρ = − 1

jωµ
1

ρ
∂Ez
∂φ

, Hφ = 1

jωµ
∂Ez
∂ρ

(TM) ∇2Hz + k2Hz = 0, Eρ = 1

jωε
1

ρ
∂Hz
∂φ

, Eφ = − 1

jωε
∂Hz
∂ρ

(16.15.1)

where k2 =ω2µε, and the two-dimensional∇∇∇2 is in cylindrical coordinates:

∇2 = 1

ρ
∂
∂ρ

(
ρ
∂
∂ρ

)
+ 1

ρ2

∂2

∂φ2
(16.15.2)

The boundary conditions require that the tangential electric field be zero on both
sides of the conducting plane, that is, for φ = 0 and φ = 2π. In the TE case, the
tangential electric field is Ez, and in the TM case, Ex = Eρ cosφ − Eφ sinφ = Eρ =
(1/jωερ)(∂Hz/∂φ), for φ = 0,2π. Thus, the boundary conditions are:

(TE) Ez = 0, for φ = 0 and φ = 2π

(TM)
∂Hz
∂φ

= 0, for φ = 0 and φ = 2π
(16.15.3)

In Fig. 16.15.1, we assume that 0 ≤ α ≤ 90o and distinguish three wedge regions
defined by the half-plane and the directions along the reflected and transmitted rays:

reflection region (AOB): 0 ≤ φ ≤ π−α
transmission region (BOC): π−α ≤ φ ≤ π+α
shadow region (COA): π+α ≤ φ ≤ 2π

(16.15.4)

The case when 90o ≤ α ≤ 180o is shown in Fig. 16.15.2, in which α has been
redefined to still be in the range 0 ≤ α ≤ 90o. The three wedge regions are now:

reflection region (AOB): 0 ≤ φ ≤ α
transmission region (BOC): α ≤ φ ≤ 2π−α
shadow region (COA): 2π−α ≤ φ ≤ 2π

(16.15.5)

We construct the Sommerfeld solution in stages. We start by looking for solutions
of the Helmholtz equation∇2U+k2U = 0 that have the factored form: U = ED, where
E is also a solution, but a simple one, such as that of the incident plane wave. Using the
differential identities of Appendix C, we have:

∇2U + k2U = D(∇2E + k2E
)+ E∇2D+ 2∇∇∇E ·∇∇∇D

Thus, the conditions ∇2U + k2U = 0 and ∇2E + k2E = 0 require:

E∇2D+ 2∇∇∇E ·∇∇∇D = 0 ⇒ ∇2D+ 2(∇∇∇ lnE)·∇∇∇D = 0 (16.15.6)

If we assume that E is of the form E = ejf , where f is a real-valued function, then,
equating to zero the real and imaginary parts of ∇2E + k2E = 0, we find for f :

∇2E + k2E = E(k2 −∇∇∇f ·∇∇∇f + j∇2f
) = 0 ⇒ ∇2f = 0 , ∇∇∇f ·∇∇∇f = k2 (16.15.7)
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Fig. 16.15.2 Plane wave incident on conducting half-plane.

Next, we assume that D is of the form:

D = D0

∫ v
−∞
e−jg(u)du (16.15.8)

where D0 is a constant, v is a function of ρ,φ, and g(u) is a real-valued function to be
determined. Noting that ∇∇∇D = D0e−jg∇∇∇v and ∇∇∇g = g′(v)∇∇∇v, we find:

∇∇∇D = D0e−jg∇∇∇v , ∇2D = D0e−jg
(∇2v− jg′(v)∇∇∇v ·∇∇∇v)

Then, it follows from Eq. (16.15.6) that ∇2D+ 2(∇∇∇ lnE)·∇∇∇D = ∇2D+ j∇∇∇f ·∇∇∇D and:

∇2D+ j∇∇∇f ·∇∇∇D = D0e−jg
[∇2v+ j(2∇∇∇f ·∇∇∇v− g′∇∇∇v ·∇∇∇v)]= 0

Equating the real and imaginary parts to zero, we obtain the two conditions:

∇2v = 0 ,
2∇∇∇f ·∇∇∇v
∇∇∇v ·∇∇∇v = g

′(v) (16.15.9)

Sommerfeld’s solution involves the Fresnel diffraction coefficient of Eq. (16.14.1),
which can be written as follows:

D(v)= 1

1− j
[

1− j
2
+ F(v)

]
= 1

1− j
∫ v
−∞
e−jπu

2/2du (16.15.10)

Therefore, we are led to choose g(u)= πu2/2 and D0 = 1/(1− j). To summarize,
we may construct a solution of the Helmholtz equation in the form:

∇2U + k2U = 0 , U = ED = ejfD(v) (16.15.11)

where f and v must be chosen to satisfy the four conditions:

∇2f = 0, ∇∇∇f ·∇∇∇f = k2

∇2v = 0,
2∇∇∇f ·∇∇∇v
∇∇∇v ·∇∇∇v = g

′(v)= πv
(16.15.12)
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It can be verified easily that the functions u = ρa cosaφ and u = ρa sinaφ are solu-
tions of the two-dimensional Laplace equation∇2u = 0, for any value of the parameter
a. Taking f to be of the form f = Aρa cosaφ, we have the condition:

∇∇∇f = Aaρa−1[ρ̂ρρ cosaφ− φ̂φφ sinaφ
] ⇒ ∇∇∇f ·∇∇∇f = A2a2ρ2(a−1) = k2

This immediately implies that a = 1 and A2 = k2, so that A = ±k. Thus, f =
Aρ cosφ = ±kρ cosφ. Next, we choose v = Bρa cosaφ. Then:

∇∇∇f = A(ρ̂ρρ cosφ− φ̂φφ sinφ)

∇∇∇v = Baρa−1[ρ̂ρρ cosaφ− φ̂φφ sinaφ
]

∇∇∇f ·∇∇∇v = ABaρa−1[cosφ cosaφ+ sinφ sinaφ
] = ABaρa−1 cos(φ− aφ)

∇∇∇v ·∇∇∇v = B2a2ρ2(a−1)

Then, the last of the conditions (16.15.12) requires that:

1

πv
2∇∇∇f ·∇∇∇v
∇∇∇v ·∇∇∇v =

2Aρ1−2a cos(φ− aφ)
πaB2 cosaφ

= 1

which implies that a = 1/2 and B2 = 2A/πa = 4A/π. But since A = ±k, only the
case A = k is compatible with a real coefficient B. Thus, we have B2 = 4k/π, or,
B = ±2

√
k/π.

In a similar fashion, we find that if we take v = Bρa sinaφ, then a = 1/2, but now
B2 = −4A/π, requiring that A = −k, and B = ±2

√
k/π. In summary, we have the

following solutions of the conditions (16.15.12):

f = +kρ cosφ, v = ±2

√
k
π
ρ1/2 cos

φ
2

f = −kρ cosφ, v = ±2

√
k
π
ρ1/2 sin

φ
2

(16.15.13)

The corresponding solutions (16.15.11) of the Helmholtz equation are:

U(ρ,φ)= ejkρ cosφD(v) , v = ±2

√
k
π
ρ1/2 cos

φ
2

U(ρ,φ)= e−jkρ cosφD(v) , v = ±2

√
k
π
ρ1/2 sin

φ
2

(16.15.14)

The function D(v) may be replaced by the equivalent form of Eq. (16.14.5) in order
to bring out its asymptotic behavior for large v:

U(ρ,φ)= ejkρ cosφ[u(v)+d(v)e−jπv2/2], v = ±2

√
k
π
ρ1/2 cos

φ
2

U(ρ,φ)= e−jkρ cosφ[u(v)+d(v)e−jπv2/2], v = ±2

√
k
π
ρ1/2 sin

φ
2
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Using the trigonometric identities cosφ = 2 cos2(φ/2)−1 = 1 − 2 sin2(φ/2), we
find for the two choices of v:

kρ cosφ− 1

2
πv2 = kρ

[
cosφ− 2 cos2 φ

2

]
= −kρ

−kρ cosφ− 1

2
πv2 = −kρ

[
cosφ+ 2 sin2 φ

2

]
= −kρ

Thus, an alternative form of Eq. (16.15.14) is:

U(ρ,φ)= ejkρ cosφ u(v)+e−jkρ d(v) , v = ±2

√
k
π
ρ1/2 cos

φ
2

U(ρ,φ)= e−jkρ cosφ u(v)+e−jkρ d(v) , v = ±2

√
k
π
ρ1/2 sin

φ
2

(16.15.15)

Shifting the origin of the angle φ still leads to a solution. Indeed, defining φ′ =
φ±α, we note the property ∂/∂φ′ = ∂/∂φ, which implies the invariance of the Laplace
operator under this change. The functions U(ρ,φ ± α) are the elementary solutions
from which the Sommerfeld solution is built.

Considering the TE case first, the incident plane wave in Fig. 16.15.1 is E = ẑEi,
where Ei = E0e−jk·r, with r = x̂ρ cosφ + ŷρ sinφ and k = −k(x̂ cosα + ŷ sinα). It
follows that:

k · r = −kρ(cosφ cosα+ sinφ sinα)= −kρ cos(φ−α)
Ei = E0e−jk·r = E0ejkρ cos(φ−α) (16.15.16)

The image of this electric field with respect to the perfect conducting plane will
be the reflected field Er = −E0e−jkr·r, where kr = k(−x̂ cosα + ŷ sinα), resulting in
Er = −E0ejkρ cos(φ+α). The sum Ei + Er does vanish for φ = 0 and φ = 2π, but it also
vanishes for φ = π. Therefore, it is an appropriate solution for a full conducting plane
(the entire xz-plane), not for the half-plane.

Sommerfeld’s solution, which satisfies the correct boundary conditions, is obtained
by forming the linear combinations of the solutions of the type of Eq. (16.15.14):

Ez = E0
[
ejkρ cosφi D(vi)−ejkρ cosφr D(vr)

]
(TE) (16.15.17)

where

φi = φ−α, vi = 2

√
k
π
ρ1/2 cos

φi
2

φr = φ+α, vr = 2

√
k
π
ρ1/2 cos

φr
2

(16.15.18)

For the TM case, we form the sum instead of the difference:

Hz = H0
[
ejkρ cosφi D(vi)+ejkρ cosφr D(vr)

]
(TM) (16.15.19)

The boundary conditions (16.15.3) are satisfied by both the TE and TM solutions.
As we see below, the choice of the positive sign in the definitions of vi and vr was
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required in order to produce the proper diffracted field in the shadow region. Using the
alternative forms (16.15.15), we separate the terms of the solution as follows:

Ez = E0ejkρ cosφi u(vi)−E0ejkρ cosφr u(vr)+E0e−jkρ
[
d(vi)−d(vr)

]
(16.15.20)

The first two terms correspond to the incident and reflected fields. The third term is
the diffracted field. The algebraic signs of vi and vr are as follows within the reflection,
transmission, and shadow regions of Eq. (16.15.4):

reflection region: 0 ≤ φ < π−α, vi > 0, vr > 0
transmission region: π−α < φ < π+α, vi > 0, vr < 0
shadow region: π+α < φ ≤ 2π, vi < 0, vr < 0

(16.15.21)

The unit-step functions will be accordingly present or absent resulting in the follow-
ing fields in these three regions:

reflection region: Ez = Ei + Er + Ed
transmission region: Ez = Ei + Ed
shadow region: Ez = Ed

(16.15.22)

where we defined the incident, reflected, and diffracted fields:

Ei = E0ejkρ cosφi

Er = −E0ejkρ cosφr

Ed = E0e−jkρ
[
d(vi)−d(vr)

]
(16.15.23)

The diffracted field is present in all three regions, and in particular it is the only one
in the shadow region. For large vi and vr (positive or negative), we may replace d(v) by
its asymptotic form d(v)= −(1− j)/(2πv) of Eq. (16.14.6), resulting in the asymptotic
diffracted field:

Ed = −E0e−jkρ
1− j
2π

(
1

vi
− 1

vr

)

= −E0e−jkρ
1− j

2π2
√
k/πρ1/2

(
1

cos(φi/2)
− 1

cos(φr/2)

)

which can be written in the form:

Ed = E0
e−jkρ

ρ1/2 Dedge (16.15.24)

with an edge-diffraction coefficient:

Dedge = − 1− j
4
√
πk


 1

cos
φi
2

− 1

cos
φr
2


 (16.15.25)
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Using a trigonometric identity, we may write Dedge as follows:

Dedge = − 1− j
4
√
πk


 1

cos
φ−α

2

− 1

cos
φ+α

2


 = −1− j√

πk

sin
φ
2

sin
α
2

cosφ+ cosα
(16.15.26)

Eqs. (16.15.22) and (16.15.24) capture the essence of the geometrical theory of diffrac-
tion: In addition to the ordinary incident and reflected geometric optics rays, one also
has diffracted rays in all directions corresponding to a cylindrical wave emanating from
the edge with a directional gain of Dedge.

For the case of Fig. 16.15.2, the incident and reflected plane waves have propagation
vectors k = k(ẑ cosα − ŷ sinα) and kr = k(ẑ cosα + ŷ sinα). These correspond to
the incident and reflected fields:

Ei = E0e−jk·r = E0e−jkρ cos(φ+α) , Er = −E0e−jkr·r = −E0e−jkρ cos(φ−α)

In this case, the Sommerfeld TE and TM solutions take the form:

Ez = E0
[
e−jkρ cosφi D(vi)−e−jkρ cosφr D(vr)

]
Hz = H0

[
e−jkρ cosφi D(vi)+e−jkρ cosφr D(vr)

] (16.15.27)

where, now:

φi = φ+α, vi = 2

√
k
π
ρ1/2 sin

φi
2

φr = φ−α, vr = −2

√
k
π
ρ1/2 sin

φr
2

(16.15.28)

The choice of signs in vi and vr are such that they are both negative within the
shadow region defined by Eq. (16.15.5). The same solution can also be obtained from
Fig. 16.15.1 and Eq. (16.15.17) by replacing α by π−α.

16.16 Problems

16.1 Show that Eq. (16.4.9) can be written in the compact vectorial form:

E = −jk e
−jkr

4πr
r̂× [ẑ× f− η r̂× (ẑ× g)

]
, H = − jk

η
e−jkr

4πr
r̂× [r̂× (ẑ× f)+η ẑ× g

]

Similarly, show that Eqs. (16.4.10) and (16.4.11) can be written as:

E = −2jk
e−jkr

4πr
r̂× [ẑ× f

]
, H = −2jk

η
e−jkr

4πr
r̂× [r̂× (ẑ× f)

]

E = 2jkη
e−jkr

4πr
r̂× [r̂× (ẑ× g)

]
, H = −2jk

e−jkr

4πr
r̂× [ẑ× g

]

16.2 Prove the first pair of equations for E,H of the previous problem by working exclusively
with the Kottler formulas (16.4.2) and taking their far-field limits.
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16.3 Explain in detail how the inequality (16.6.12) for the aperture efficiency ea may be thought
of as an example of the Schwarz inequality. Then, using standard properties of Schwarz
inequalities, prove that the maximum of ea is unity and is achieved for uniform apertures.
As a reminder, the Schwarz inequality for single-variable complex-valued functions is:∣∣∣∣∣

∫ b
a
f∗(x)g(x)dx

∣∣∣∣∣
2

≤
∫ b
a
|f(x)|2 dx ·

∫ b
a
|g(x)|2 dx

16.4 To prove the equivalence of the Kirchhoff diffraction and Stratton-Chu formulas, (16.10.6)
and (16.10.7), use the identities (C.24) and (C.27) of Appendix C, to obtain:∫

V

[
jωµG J+ 1

ε
G∇∇∇′ρ+G∇∇∇′ × Jm

]
dV′ =

∫
V

[
jωµG J− ρ

ε
∇∇∇′G+ Jm ×∇∇∇′G

]
dV′

−
∮
S

[
n̂
ρ
ε
G+ n̂× JmG

]
dS′

Then, using the identity (C.28), show that Eq. (16.10.6) can be rewritten in the form:

E(r)= −
∫
V

[
jωµG J− ρ

ε
∇∇∇′G+ Jm ×∇∇∇′G

]
dV′

+
∮
S

[
n̂
ρ
ε
G+ n̂× JmG

]
dS′

−
∮
S

[
n̂G∇∇∇′ · E− (n̂× E)×∇∇∇′G−G n̂× (∇∇∇′ × E)−(n̂ · E)∇∇∇′G]dS′

Finally, use ρ/ε =∇∇∇′ · E and ∇∇∇′ × E+ Jm = −jωµH to obtain (16.10.7).

16.5 Prove the equivalence of the Stratton-Chu and Kottler formulas, (16.10.7) and (16.10.10), by
first proving and then using the following dual relationships:∫

V

[
jωρ∇∇∇′G− (J ·∇∇∇′)∇∇∇′G]dV′ =

∮
S

[(
(n̂×H)·∇∇∇′)∇∇∇′G− jωε(n̂ · E)∇∇∇′G]

∫
V

[
jωρm∇∇∇′G− (Jm ·∇∇∇′)∇∇∇′G

]
dV′ = −

∮
S

[(
(n̂× E)·∇∇∇′)∇∇∇′G+ jωµ(n̂ ·H)∇∇∇′G]

To prove these, work component-wise, use Maxwell’s equations (16.2.1), and apply the di-
vergence theorem on the volume V of Fig. 16.10.1.

16.6 Prove the equivalence of the Kottler and Franz formulas, (16.10.10) and (16.10.11), by using
the identity ∇∇∇ × (∇∇∇ × A)= ∇∇∇(∇∇∇ · A)−∇2A, and by replacing the quantity k2G(r − r′) by
−δ(3)(r−r′)−∇′2G. Argue that the term δ(3)(r−r′)makes a difference only for the volume
integrals, but not for the surface integrals.

16.7 Prove the equivalence of the modified Stratton-Chu and Kirchhoff diffraction integral for-
mulas of Eq. (16.12.1) and (16.12.2) by using the identity (C.37) of Appendix C and replacing
∇∇∇′ · E = 0 and∇∇∇′ × E = −jωµH in the source-less region under consideration.

16.8 Prove the equivalence of the Kottler and modified Stratton-Chu formulas of Eq. (16.12.1) and
(16.12.2) by subtracting the two expressions, replacing jωεE =∇∇∇′×H , and using the Stokes
identity (C.33) of Appendix C.

16.9 Consider a reflector antenna fed by a horn, as shown
on the right. A closed surface S = Sr + Sa is such
that the portion Sr caps the reflector and the portion
Sa is an aperture in front of the reflector. The feed
lies outside the closed surface, so that the volume V
enclosed by S is free of current sources.
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Applying the Kottler version of the extinction theorem of Sec. 16.10 on the volume V, show
that for points r outsideV, the field radiated by the induced surface currents on the reflector
Sr is equal to the field radiated by the aperture fields on Sa, that is,

E rad(r) = 1

jωε

∫
Sr

[
k2G J s +

(
J s ·∇∇∇′

)∇∇∇′G]dS′

= 1

jωε

∫
Sa

[
k2G(n̂×H )+((n̂×H )·∇∇∇′)∇∇∇′G+ jωε(n̂× E )×∇∇∇′G]dS′

where the induced surface currents on the reflector are J s = n̂r ×H and Jms = −n̂r ×E, and
on the perfectly conducting reflector surface, we must have Jms = 0.

This result establishes the equivalence of the so-called aperture-field and current-distribution
methods for reflector antennas [648].

16.10 Consider an x-polarized uniform plane wave incident obliquely on the straight-edge aperture
of Fig. 16.14.4, with a wave vector direction k̂1 = ẑ cosθ1 + ŷ sinθ1. First show that the
tangential fields at an aperture point r′ = x′ x̂+y′ ŷ on the aperture above the straight-edge
are given by:

Ea = x̂E0e−jky
′ sinθ1 , Ha = ŷ

E0

η0
cosθ1e−jky

′ sinθ1

Then, using Kottler’s formula (16.12.1), and applying the usual Fresnel approximations in
the integrand, as was done for the point source in Fig. 16.14.4, show that the diffracted
wave below the edge is given by Eqs. (16.14.13)–(16.14.15), except that the field at the edge
is Eedge = E0, and the focal lengths are in this case F = l2 and F′ = l2/ cos2 θ2

Finally, show that the asymptotic diffracted field (when l2 → ∞), is given near the forward
direction θ � 0 by:

E = Eedge
e−jkl2√
l2

1− j
2
√
πkθ

16.11 Assume that the edge in the previous problem is a perfectly conducting screen. Using the
field-equivalence principle with effective current densities on the aperture above the edge
J s = 0 and Jms = −2n̂× Ea, and applying the usual Fresnel approximations, show that the
diffracted field calculated by Eq. (16.4.1) is is still given by Eqs. (16.14.13)–(16.14.15), except
that the factor cosθ1+ cosθ2 is replaced now by 2 cosθ2, and that the asymptotic field and
edge-diffraction coefficient are:

E = E0
e−jkl2√
l2
Dedge , Dedge = (1− j)2 cosθ2

4
√
πk(sinθ1 + sinθ2)

Show that this expression agrees with the exact Sommerfeld solution (16.15.26) at normal
incidence and near the forward diffracted direction.



17
Aperture Antennas

17.1 Open-Ended Waveguides

The aperture fields over an open-ended waveguide are not uniform over the aperture.
The standard assumption is that they are equal to the fields that would exist if the guide
were to be continued [1].

Fig. 17.1.1 shows a waveguide aperture of dimensions a > b. Putting the origin in
the middle of the aperture, we assume that the tangential aperture fields Ea, Ha are
equal to those of the TE10 mode. We have from Eq. (8.4.3):

Fig. 17.1.1 Electric field over a waveguide aperture.

Ey(x′)= E0 cos
(
πx′

a

)
, Hx(x′)= − 1

ηTE
E0 cos

(
πx′

a

)
(17.1.1)

where ηTE = η/K with K =
√

1−ω2
c/ω2 =

√
1− (λ/2a)2. Note that the boundary

conditions are satisfied at the left and right walls, x′ = ±a/2.
For larger apertures, such as a > 2λ, we may set K � 1. For smaller apertures, such

as 0.5λ ≤ a ≤ 2λ, we will work with the generalized Huygens source condition (16.5.7).
The radiated fields are given by Eq. (16.5.5), with fx = 0:

Eθ = jk e
−jkr

2πr
cθ fy(θ,φ)sinφ

Eφ = jk e
−jkr

2πr
cφ fy(θ,φ)cosφ

(17.1.2)

558



17.1. Open-Ended Waveguides 559

where fy(θ,φ) is the aperture Fourier transform of Ey(x′), that is,

fy(θ,φ) =
∫ a/2
−a/2

∫ b/2
−b/2

Ey(x′)ejkxx
′+jkyy′dx′dy′

= E0

∫ a/2
−a/2

cos
(
πx′

a

)
ejkxx

′
dx′ ·

∫ b/2
−b/2

ejkyy
′
dy′

The y′-integration is the same as that for a uniform line aperture. For the x′-integration,
we use the definite integral:

∫ a/2
−a/2

cos
(
πx′

a

)
ejkxx

′
dx′ = 2a

π
cos(kxa/2)

1− (kxa/π)2

It follows that:

fy(θ,φ)= E0
2ab
π

cos(πvx)
1− 4v2

x

sin(πvy)
πvy

(17.1.3)

where vx = kxa/2π and vy = kyb/2π, or,

vx = aλ sinθ cosφ, vy = bλ sinθ sinφ (17.1.4)

The obliquity factors can be chosen to be one of the three cases: (a) the PEC case, if
the aperture is terminated in a ground plane, (b) the ordinary Huygens source case, if it
is radiating into free space, or (c) the modified Huygens source case. Thus,

[
cθ
cφ

]
=
[

1
cosθ

]
,

1

2

[
1+ cosθ
1+ cosθ

]
,

1

2

[
1+K cosθ
K + cosθ

]
(17.1.5)

By normalizing all three cases to unity at θ = 0o, we may combine them into:

cE(θ)= 1+K cosθ
1+K , cH(θ)= K + cosθ

1+K (17.1.6)

where K is one of the three possible values:

K = 0 , K = 1 , K = η
ηTE

=
√

1−
(
λ
2a

)2

(17.1.7)

The normalized gains along the two principal planes are given as follows. For the xz- or
the H-plane, we set φ = 0o, which gives Eθ = 0:

gH(θ)= |Eφ(θ)|
2

|Eφ|2max
= ∣∣cH(θ)∣∣2

∣∣∣∣cos(πvx)
1− 4v2

x

∣∣∣∣
2

, vx = aλ sinθ (17.1.8)

And, for the yz- or E-plane, we set φ = 90o, which gives Eφ = 0:

gE(θ)= |Eθ(θ)|
2

|Eθ|2max
= ∣∣cE(θ)∣∣2

∣∣∣∣∣sin(πvy)
πvy

∣∣∣∣∣
2

, vy = bλ sinθ (17.1.9)
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The function cos(πvx)/(1−4v2
x) determines the essential properties of the H-plane

pattern. It is essentially a double-sinc function, as can be seen from the identity:

cos(πvx)
1− 4v2

x
= π

4




sin
(
π
(
vx + 1

2

))

π
(
vx + 1

2

) +
sin

(
π
(
vx − 1

2

))

π
(
vx − 1

2

)

 (17.1.10)

It can be evaluated with the help of the MATLAB function dsinc, with usage:

y = dsinc(x); % the double-sinc function
cos(π x)
1 − 4x2 = π

4

[
sinc(x+ 0.5) + sinc(x− 0.5)

]

The 3-dB width of the E-plane pattern is the same as for the uniform rectangular
aperture, ∆θy = 0.886λ/b. The dsinc function has the valueπ/4 at vx = 1/2. Its 3-dB
point is at vx = 0.5945, its first null at vx = 1.5, and its first sidelobe at vx = 1.8894 and
has height 0.0708 or 23 dB down from the main lobe. It follows from vx = a sinθ/λ
that the 3-dB width in angle space will be ∆θx = 2×0.5945λ/a = 1.189λ/a. Thus, the
3-dB widths are in radians and in degrees:

∆θx = 1.189
λ
a
= 68.12o λ

a
, ∆θy = 0.886

λ
b
= 50.76o λ

b
(17.1.11)

Example 17.1.1: Fig. 17.1.2 shows the H- and E-plane patterns for a WR90 waveguide operating
at 10 GHz, so that λ = 3 cm. The guide dimensions are a = 2.282 cm, b = 1.016 cm. The
typical MATLAB code for generating these graphs was:

a = 2.282; b = 1.016; la = 3;

th = (0:0.5:90) * pi/180;

vx = a/la * sin(th);
vy = b/la * sin(th);

K = sqrt(1 - (la/(2*a))^2); % alternatively, K = 0, or, K = 1

cE = (1 + K*cos(th))/(K+1); % normalized obliquity factors

cH = (K + cos(th))/(K+1);

gH = abs(cH .* dsinc(vx).^2); % uses dsinc

gE = abs(cE .* sinc(vy)).^2; % uses sinc from SP toolbox

figure; dbp(th,gH,45,12); dB gain polar plot

figure; dbp(th,gE,45,12);

The three choices of obliquity factors have been plotted for comparison. We note that the
Huygens source cases, K = 1 and K = η/ηTE, differ very slightly. The H-plane pattern
vanishes at θ = 90o in the PEC case (K = 0), but not in the Huygens source cases.

The gain computed from Eq. (17.1.13) isG = 2.62 or 4.19 dB, and computed from Eq. (17.1.14),
G = 2.67 or 4.28 dB, where K = η/ηTE = 0.75 and (K + 1)2/4K = 1.02.

This waveguide is not a high-gain antenna. Increasing the dimensions a,b is impractical
and also would allow the propagation of higher modes, making it very difficult to restrict
operation to the TE10 mode. ��
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Fig. 17.1.2 Solid line has K = η/ηTE, dashed, K = 1, and dash-dotted, K = 0.

Next, we derive an expression for the directivity and gain of the waveguide aperture.
The maximum intensity is obtained at θ = 0o. Because cθ(0)= cφ(0), we have:

Umax = 1

2η
|E(0,φ)|2 = 1

2λ2η
c2
θ(0)|fy(0,φ)|2 =

1

2λ2η
c2
θ(0)|E0|2 4(ab)2

π2

The total power transmitted through the aperture and radiated away is the power
propagated down the waveguide given by Eq. (8.7.4), that is,

Prad = 1

4ηTE
|E0|2ab (17.1.12)

It follows that the gain/directivity of the aperture will be:

G = 4π
Umax

Prad
= 4π
λ2

8

π2
(ab)

ηTE

η
c2
θ(0)

For the PEC and ordinary Huygens cases, cθ(0)= 1. Assuming ηTE � η, we have:

G = 4π
λ2

8

π2
(ab)= 0.81

4π
λ2
(ab) (17.1.13)

Thus, the effective area of the waveguide aperture is Aeff = 0.81(ab) and the aper-
ture efficiency e = 0.81. For the modified Huygens case, we have for the obliquity factor
cθ(0)= (K + 1)/2 with K = η/ηTE. It follows that [642]:

G = 4π
λ2

8

π2
(ab)

(K + 1)2

4K
(17.1.14)

For waveguides larger than about a wavelength, the directivity factor (K + 1)2/4K
is practically equal to unity, and the directivity is accurately given by Eq. (17.1.13). The
table below shows some typical values of K and the directivity factor (operation in the
TE10 mode requires 0.5λ < a < λ):
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a/λ K (K + 1)2/(4K)
0.6 0.5528 1.0905
0.8 0.7806 1.0154
1.0 0.8660 1.0052
1.5 0.9428 1.0009
2.0 0.9682 1.0003

The gain-beamwidth product is from Eqs. (17.1.11) and (17.1.13), p = G∆θx ∆θy =
4π(0.81)(0.886)(1.189)=10.723 rad2=35 202 deg2. Thus, another instance of the
general formula (14.3.14) is (with the angles given in radians and in degrees):

G = 10.723

∆θx ∆θy
= 35 202

∆θo
x ∆θo

y
(17.1.15)

17.2 Horn Antennas

The only practical way to increase the directivity of a waveguide is to flare out its ends
into a horn. Fig. 17.2.1 shows three types of horns: The H-plane sectoral horn in which
the long side of the waveguide (the a-side) is flared, the E-plane sectoral horn in which
the short side is flared, and the pyramidal horn in which both sides are flared.

Fig. 17.2.1 H-plane, E-plane, and pyramidal horns.

The pyramidal horn is the most widely used antenna for feeding large microwave
dish antennas and for calibrating them. The sectoral horns may be considered as special
limits of the pyramidal horn. We will discuss only the pyramidal case.

Fig. 17.2.2 shows the geometry in more detail. The two lower figures are the cross-
sectional views along the xz- and yz-planes. It follows from the geometry that the
various lengths and flare angles are given by:

Ra = A
A− a RA ,

L2
a = R2

a +
A2

4
,

tanα = A
2Ra

,

∆a = A2

8Ra
,

Rb = B
B− b RB

L2
b = R2

b +
B2

4

tanβ = B
2Rb

∆b = B2

8Rb

(17.2.1)
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The quantities RA and RB represent the perpendicular distances from the plane of
the waveguide opening to the plane of the horn. Therefore, they must be equal,RA = RB.
Given the horn sides A,B and the common length RA, Eqs. (17.2.1) allow the calculation
of all the relevant geometrical quantities required for the construction of the horn.

The lengths∆a and∆b represent the maximum deviation of the radial distance from
the plane of the horn. The expressions given in Eq. (17.2.1) are approximations obtained
when Ra� A and Rb� B. Indeed, using the small-x expansion,

√
1± x � 1± x

2

we have two possible ways to approximate ∆a:

∆a = La −Ra =
√
R2
a + A

2

4
−Ra = Ra

√
1+ A2

4R2
a
−Ra � A2

8Ra

= La −
√
L2
a − A

2

4
= La − La

√
1− A2

4L2
a
� A2

8La

(17.2.2)

Fig. 17.2.2 The geometry of the pyramidal horn requires RA = RB.

The two expressions are equal to within the assumed approximation order. The
length ∆a is the maximum deviation of the radial distance at the edge of the horn plane,
that is, at x = ±A/2. For any other distance x along theA-side of the horn, and distance
y along the B-side, the deviations will be:

∆a(x)= x2

2Ra
, ∆b(y)= y2

2Rb
(17.2.3)
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The quantities k∆a(x) and k∆b(y) are the relative phase differences at the point
(x, y) on the aperture of the horn relative to the center of the aperture. To account for
these phase differences, the aperture electric field is assumed to have the form:

Ey(x, y)= E0 cos
(
πx
A

)
e−jk∆a(x) e−jk∆b(y) , or, (17.2.4)

Ey(x, y)= E0 cos
(
πx
A

)
e−jk x

2/2Ra e−jky
2/2Rb (17.2.5)

We note that at the connecting end of the waveguide the electric field is Ey(x, y)=
E0 cos(πx/a) and changes gradually into the form of Eq. (17.2.5) at the horn end.

Because the aperture sides A,B are assumed to be large compared to λ, the Huy-
gens source assumption is fairly accurate for the tangential aperture magnetic field,
Hx(x, y)= −Ey(x, y)/η, so that:

Hx(x, y)= − 1

η
E0 cos

(
πx
A

)
e−jk x

2/2Ra e−jky
2/2Rb (17.2.6)

The quantities k∆a, k∆b are the maximum phase deviations in radians. Therefore,
∆a/λ and ∆b/λ will be the maximum deviations in cycles. We define:

Sa = ∆aλ = A2

8λRa
, Sb = ∆bλ = B2

8λRb
(17.2.7)

It turns out that the optimum values of these parameters that result into the highest
directivity are approximately: Sa = 3/8 and Sb = 1/4. We will use these values later in
the design of optimum horns. For the purpose of deriving convenient expressions for
the radiation patterns of the horn, we define the related quantities:

σ2
a = 4Sa = A2

2λRa
, σ2

b = 4Sb = B2

2λRb
(17.2.8)

The near-optimum values of these constants are σa =
√

4Sa =
√

4(3/8) = 1.2247
and σb =

√
4Sb =

√
4(1/4) = 1. These are used very widely, but they are not quite the

true optimum values, which are σa = 1.2593 and σb = 1.0246.
Replacing k = 2π/λ and 2λRa = A2/σ2

a and 2λRb = B2/σ2
b in Eq. (17.2.5), we may

rewrite the aperture fields in the form: For −A/2 ≤ x ≤ A/2 and −B/2 ≤ y ≤ B/2,

Ey(x, y) = E0 cos
(
πx
A

)
e−j(π/2)σ

2
a(2x/A)2

e−j(π/2)σ
2
b(2y/B)

2

Hx(x, y) = − 1

η
E0 cos

(
πx
A

)
e−j(π/2)σ

2
a(2x/A)2

e−j(π/2)σ
2
b(2y/B)

2

(17.2.9)

17.3 Horn Radiation Fields

As in the case of the open-ended waveguide, the aperture Fourier transform of the elec-
tric field has only a y-component given by:
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fy(θ,φ)=
∫ A/2
−A/2

∫ B/2
−B/2

Ey(x, y)ejkxx+jkyy dxdy

= E0

∫ A/2
−A/2

cos
(
πx
A

)
ejkxxe−j(π/2)σ

2
a(2x/A)2

dx ·
∫ B/2
−B/2

ejkyye−j(π/2)σ
2
b(2y/B)

2
dy

The above integrals can be expressed in terms of the following diffraction-like inte-
grals, whose properties are discussed in Appendix F:

F0(v,σ) =
∫ 1

−1
ejπvξ e−j(π/2)σ

2 ξ2
dξ

F1(v,σ) =
∫ 1

−1
cos

(
πξ
2

)
ejπvξ e−j(π/2)σ

2 ξ2
dξ

(17.3.1)

The function F0(v,σ) can be expressed as:

F0(v,σ)= 1

σ
ej(π/2)(v

2/σ2)
[
F
(
v
σ
+σ

)
− F

(
v
σ
−σ

)]
(17.3.2)

where F(x)= C(x)−jS(x) is the standard Fresnel integral, discussed in Appendix F.
Then, the function F1(v,σ) can be expressed in terms of F0(v,σ):

F1(v,σ)= 1

2

[
F0(v+ 0.5, σ)+F0(v− 0.5, σ)

]
(17.3.3)

The functions F0(v,σ) and F1(v, s) can be evaluated numerically for any vector
of values v and any positive scalar σ (including σ = 0) using the MATLAB function
diffint, which is further discussed in Appendix F and has usage:

F0 = diffint(v,sigma,0); % evaluates the function F0(v,σ)

F1 = diffint(v,sigma,1); % evaluates the function F1(v,σ)

In addition to diffint, the following MATLAB functions, to be discussed later, fa-
cilitate working with horn antennas:

hband % calculate 3-dB bandedges

heff % calculate aperture efficiency

hgain % calculate H- and E-plane gains

hopt % optimum horn design

hsigma % calculate optimum values of σa,σb

Next, we express the radiation patterns in terms of the functions (17.3.1). Defining
the normalized wavenumbers vx = kxA/2π and vy = kyB/2π, we have:

vx = Aλ sinθ cosφ, vy = Bλ sinθ sinφ (17.3.4)

Changing variables to ξ = 2y/B, the y-integral can written in terms of F0(v,σ):
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∫ B/2
−B/2

ejkyye−j(π/2)σ
2
b(2y/B)

2
dy = B

2

∫ 1

−1
ejπvyξ e−j(π/2)σ

2
b ξ

2
dξ = B

2
F0(vy,σb)

Similarly, changing variables to ξ = 2x/A, we find for the x-integral:

∫ A/2
−A/2

cos
(
πx
A

)
ejkxxe−j(π/2)σ

2
a(2x/A)2

dx

= A
2

∫ 1

−1
cos

(
πξ
2

)
ejπvξ e−j(π/2)σ

2
a ξ2
dξ = A

2
F1(vx,σa)

It follows that the Fourier transform fy(θ,φ) will be:

fy(θ,φ)= E0
AB
4
F1(vx,σa)F0(vy,σb) (17.3.5)

The open-ended waveguide and the sectoral horns can be thought of as limiting cases
of Eq. (17.3.5), as follows:

1. open-ended waveguide: σa = 0, A = a, σb = 0, B = b.
2. H-plane sectoral horn: σa > 0, A > a, σb = 0, B = b.
3. E-plane sectoral horn: σa = 0, A = a, σb > 0, B > b.

In these cases, the F-factors with σ = 0 can be replaced by the following simplified
forms, which follow from equations (F.12) and (F.17) of Appendix F:

F0(vy,0)= 2
sin(πvy)
πvy

, F1(vx,0)= 4

π
cos(πvx)
1− 4v2

x
(17.3.6)

The radiation fields are obtained from Eq. (16.5.5), with obliquity factors cθ(θ)=
cφ(θ)= (1+ cosθ)/2. Replacing k = 2π/λ, we have:

Eθ = j e
−jkr

λr
cθ(θ) fy(θ,φ)sinφ

Eφ = j e
−jkr

λr
cφ(θ) fy(θ,φ)cosφ

(17.3.7)

or, explicitly,

Eθ = j e
−jkr

λr
E0
AB
4

(
1+ cosθ

2

)
sinφF1(vx,σa)F0(vy,σb)

Eφ = j e
−jkr

λr
E0
AB
4

(
1+ cosθ

2

)
cosφF1(vx,σa)F0(vy,σb)

(17.3.8)

Horn Radiation Patterns

The radiation intensity is U(θ,φ)= r2
(|Eθ|2 + |Eφ|2)/2η, so that:

U(θ,φ)= 1

32ηλ2
|E0|2(AB)2 c2

θ(θ)
∣∣F1(vx,σa)F0(vy,σb)

∣∣2
(17.3.9)
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Assuming that the maximum intensity is towards the forward direction, that is, at
vx = vy = 0, we have:

Umax = 1

32ηλ2
|E0|2(AB)2

∣∣F1(0, σa)F0(0, σb)
∣∣2

(17.3.10)

The direction of maximum gain is not necessarily in the forward direction, but it
may be nearby. This happens typically when σb > 1.54. Most designs use the optimum
value σb = 1, which does have a maximum in the forward direction. With these caveats
in mind, we define the normalized gain:

g(θ,φ)= U(θ,φ)
Umax

=
∣∣∣∣1+ cosθ

2

∣∣∣∣
2 ∣∣∣∣F1(vx,σa)F0(vy,σb)

F1(0, σa)F0(0, σb)

∣∣∣∣
2

(17.3.11)

Similarly, the H- and E-plane gains corresponding to φ = 0o and φ = 90o are:

gH(θ)=
∣∣∣∣1+ cosθ

2

∣∣∣∣
2 ∣∣∣∣F1(vx,σa)
F1(0, σa)

∣∣∣∣
2

= g(θ,0o) , vx = Aλ sinθ

gE(θ)=
∣∣∣∣1+ cosθ

2

∣∣∣∣
2 ∣∣∣∣F0(vy,σb)
F0(0, σb)

∣∣∣∣
2

= g(θ,90o) , vy = Bλ sinθ

(17.3.12)

The normalizing values F1(0, σa) and F0(0, σb) are obtained from Eqs. (F.11) and
(F.15) of Appendix F. They are given in terms of the Fresnel function F(x)= C(x)−jS(x)
as follows:

|F1(0, σa)|2 = 1

σ2
a

∣∣∣∣F
(

1

2σa
+σa

)
− F

(
1

2σa
−σa

)∣∣∣∣2

|F0(0, σb)|2 = 4

∣∣∣∣F(σb)σb

∣∣∣∣
2

(17.3.13)

These have the limiting values for σa = 0 and σb = 0:

|F1(0,0)|2 = 16

π2
, |F0(0,0)|2 = 4 (17.3.14)

The mainlobe/sidelobe characteristics of the gain functions gH(θ) and gE(θ) de-
pend essentially on the two functions:

f1(vx,σa)=
∣∣∣∣F1(vx,σa)
F1(0, σa)

∣∣∣∣ , f0(vy,σa)=
∣∣∣∣F0(vy,σb)
F0(0, σb)

∣∣∣∣ (17.3.15)

Fig. 17.3.1 shows these functions for the following values of theσ-parameters: σa =
[0, 1.2593, 1.37, 1.4749, 1.54] and σb = [0, 0.7375, 1.0246, 1.37, 1.54].

The values σa = 1.2593 and σb = 1.0246 are the optimum values that maximize
the horn directivity (they are close to the commonly used values of σa =

√
1.5 = 1.2247

and σb = 1.)
The values σa = 1.4749 and σb = σa/2 = 0.7375 are the optimum values that

achieve the highest directivity for a waveguide and horn that have the same aspect ratio
of b/a = B/A = 1/2.
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Fig. 17.3.1 Gain functions for different σ-parameters.

For σa = σb = 0, the functions reduce to the sinc and double-sinc functions of
Eq. (17.3.6). The value σb = 1.37 was chosen because the function f0(vy,σb) develops
a plateau at the 3-dB level, making the definition of the 3-dB width ambiguous.

The value σb = 1.54 was chosen because f0(vy,σb) exhibits a secondary maximum
away from vy = 0. This maximum becomes stronger as σb is increased further.

The functions f1(v,σ) and f0(v,σ) can be evaluated for any vector of v-values and
any σ with the help of the function diffint. For example, the following code computes
them over the interval 0 ≤ v ≤ 4 for the optimum values σa = 1.2593 and σb = 1.0246,
and also determines the 3-dB bandedges with the help of the function hband:

sa = 1.2593; sb = 1.0249;
v = 0:0.01:4;

f1 = abs(diffint(v,sa,1) / diffint(0,sa,1));
f0 = abs(diffint(v,sb,0) / diffint(0,sb,0));

va = hband(sa,1); % 3-dB bandedge for H-plane pattern

vb = hband(sb,0); % 3-dB bandedge for E-plane pattern

The mainlobes become wider as σa and σb increase. The 3-dB bandedges corre-
sponding to the optimum σs are found from hband to be va = 0.6928 and vb = 0.4737,
and are shown on the graphs.

The 3-dB width in angle θ can be determined from vx = (A/λ)sinθ, which gives
approximately ∆θa = (2va)(λ/A)—the approximation being good for A > 2λ. Thus,
in radians and in degrees, we obtain the H-plane and E-plane optimum 3-dB widths:

∆θa = 1.3856
λ
A
= 79.39o λ

A
, ∆θb = 0.9474

λ
B
= 54.28o λ

B
(17.3.16)

The indicated angles must be replaced by 77.90o and 53.88o if the near-optimum σs
are used instead, that is, σa = 1.2247 and σb = 1.

Because of the 3-dB plateau of f0(vy,σb) at or near σb = 1.37, the function hband
defines the bandedge to be in the middle of the plateau. At σb = 1.37, the computed
bandedge is vb = 0.9860, and is shown in Fig. 17.3.1.
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The 3-dB bandedges for the parameters σa = 1.4749 and σb = 0.7375 correspond-
ing to aspect ratio of 1/2 are va = 0.8402 (shown on the left graph) and vb = 0.4499.

The MATLAB function hgain computes the gains gH(θ) and gE(θ) atN+1 equally
spaced angles over the interval [0,π/2], given the horn dimensions A,B and the pa-
rameters σa,σb. It has usage:

[gh,ge,th] = hgain(N,A,B,sa,sb); % note: th = linspace(0, pi/2, N+1)

[gh,ge,th] = hgain(N,A,B); % uses optimum values σa = 1.2593, σb = 1.0246

Example 17.3.1: Fig. 17.3.2 shows the H- and E-plane gains of a horn with sides A = 4λ and
B = 3λ and for the optimum values of the σ-parameters. The 3-dB angle widths were
computed from Eq. (17.3.16) to be: ∆θa = 19.85o and ∆θb = 18.09o.

The graphs show also a 3-dB gain circle as it intersects the gain curves at the 3-dB angles,
which are ∆θa/2 and ∆θb/2.
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Fig. 17.3.2 H- and E-plane gains for A = 4λ, B = 3λ, and σa = 1.2593, σb = 1.0246.

The essential MATLAB code for generating the left graph was:

A = 4; B = 3; N = 200;

[gh,ge,th] = hgain(N,A,B); % calculate gains

Dtha = 79.39/A; % calculate width ∆θa

dbp(th,gh); % make polar plot in dB

addbwp(Dtha); % add the 3-dB widths

addcirc(3); % add a 3-dB gain circle

We will see later that the gain of this horn isG = 18.68 dB and that it can fit on a waveguide
with sides a = λ and b = 0.35λ, with an axial length of RA = RB = 3.78λ. ��

17.4 Horn Directivity

The radiated power Prad is obtained by integrating the Poynting vector of the aperture
fields over the horn area. The quadratic phase factors in Eq. (17.2.9) have no effect on
this calculation, the result being the same as in the case of a waveguide. Thus,



570 Electromagnetic Waves & Antennas – S. J. Orfanidis

Prad = 1

4η
|E0|2(AB) (17.4.1)

It follows that the horn directivity will be:

G = 4π
Umax

Prad
= 4π
λ2
(AB)

1

8

∣∣F1(0, σa)F0(0, σb)
∣∣2 = e 4π

λ2
AB (17.4.2)

where we defined the aperture efficiency e by:

e(σa,σb)= 1

8

∣∣F1(0, σa)F0(0, σb)
∣∣2

(17.4.3)

Using the MATLAB function diffint, we may compute e for any values of σa,σb.
In particular, we find for the optimum values σa = 1.2593 and σb = 1.0246:

σa = 1.2593 ⇒ |F1(0, σa)
∣∣2 =∣∣diffint(0, σa,1)∣∣2 = 1.2520

σb = 1.0246 ⇒ |F0(0, σb)
∣∣2 =∣∣diffint(0, σb,0)∣∣2 = 3.1282

(17.4.4)

This leads to the aperture efficiency:

e = 1

8
(1.2520)(3.1282)� 0.49 (17.4.5)

and to the optimum horn directivity:

G = 0.49
4π
λ2
AB (optimum horn directivity) (17.4.6)

If we use the near-optimum values ofσa =
√

1.5 andσb = 1, the calculated efficiency
becomes e = 0.51. It may seem strange that the efficiency is larger for the non-optimum
σa,σb. We will see in the next section that “optimum” does not mean maximizing the
efficiency, but rather maximizing the gain given the geometrical constraints of the horn.

The gain-beamwidth product is from Eqs. (17.3.16) and (17.4.6), p = G∆θa ∆θb =
4π(0.49)(1.3856)(0.9474)=8.083 rad2=26 535 deg2. Thus, in radians and in de-
grees, we have another instance of (14.3.14):

G = 8.083

∆θa ∆θb
= 26 535

∆θo
a ∆θo

b
(17.4.7)

The gain of the H-plane sectoral horn is obtained by setting σb = 0, which gives
F0(0,0)= 2. Similarly, the E-plane horn is obtained by setting σa = 0, with F1(0,0)=
4/π. Thus, we have:

GH = 4π
λ2
(AB)

1

8

∣∣F1(0, σa)
∣∣2

4 = 2π
λ2
(AB)

∣∣F1(0, σa)
∣∣2

GE = 4π
λ2
(AB)

1

8

16

π2

∣∣F0(0, σb)
∣∣2 = 8

πλ2
(AB)

∣∣F0(0, σb)
∣∣2

(17.4.8)

The corresponding aperture efficiencies follow by dividing Eqs. (17.4.8) by 4πAB/λ2:
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eH(σa)= e(σa,0)= 1

2

∣∣F1(0, σa)
∣∣2 , eE(σb)= e(0, σb)= 2

π2

∣∣F0(0, σb)
∣∣2

In the limit σa = σb = 0, we find e = 0.81, which agrees with Eq. (17.1.13) of the
open waveguide case. The MATLAB function heff calculates the aperture efficiency
e(σa,σb) for any values of σa, σb. It has usage:

e = heff(sa,sb); % horn antenna efficiency

Next, we discuss the conditions for optimum directivity. In constructing a horn an-
tenna, we have the constraints of (a) keeping the dimensions a,b of the feeding waveg-
uide small enough so that only the TE10 mode is excited, and (b) maintaining the equal-
ity of the axial lengths RA = RB between the waveguide and horn planes, as shown in
Fig. 17.2.2. Using Eqs. (17.2.1) and (17.2.8), we have:

RA = A− aA Ra = A(A− a)
2λσ2

a
, RB = B− bB Rb = B(B− b)

2λσ2
b

(17.4.9)

Then, the geometrical constraint RA = RB implies;

A(A− a)
2λσ2

a
= B(B− b)

2λσ2
b

⇒ σ2
b

σ2
a
= B(B− b)
A(A− a) (17.4.10)

We wish to maximize the gain while respecting the geometry of the horn. For a fixed
axial distance RA = RB, we wish to determine the optimum dimensions A,B that will
maximize the gain.

The lengthsRA,RB are related to the radial lengthsRa,Rb by Eq. (17.4.9). ForA� a,
the lengths Ra and RA are practically equal, and similarly for Rb and RB. Therefore, an
almost equivalent (but more convenient) problem is to find A,B that maximize the gain
for fixed values of the radial distances Ra,Rb.

Because of the relationships A = σa
√

2λRa and B = σb
√

2λRb, this problem is
equivalent to finding the optimum values of σa and σb that will maximize the gain.
Replacing A,B in Eq. (17.4.2), we rewrite G in the form:

G = 4π
λ2

(
σa
√

2λRa
)(
σb
√

2λRb
)

1

8

∣∣F1(0, σa)F0(0, σb)
∣∣2 , or,

G = π
√
RaRb
λ

fa(σa)fb(σb) (17.4.11)

where we defined the directivity functions:

fa(σa)= σa
∣∣F1(0, σa)

∣∣2 , fb(σb)= σb
∣∣F0(0, σb)

∣∣2
(17.4.12)

These functions are plotted on the left graph of Fig. 17.4.1. Their maxima occur at
σa = 1.2593 and σb = 1.0246. As we mentioned before, these values are sometimes
approximated by σa =

√
1.5 = 1.2244 and σb = 1.

An alternative class of directivity functions can be derived by constructing a horn
whose aperture has the same aspect ratio as the waveguide, that is,
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Fig. 17.4.1 Directivity functions.

B
A
= b
a
= r (17.4.13)

The aspect ratio of a typical waveguide is of the order of r = 0.5, which ensures the
largest operating bandwidth in the TE10 mode and the largest power transmitted.

It follows from Eq. (17.4.13) that (17.4.10) will be satisfied provided σ2
b/σ2

a = r2, or
σb = rσa. The directivity (17.4.11) becomes:

G = π
√
RaRb
λ

fr(σa) (17.4.14)

where we defined the function:

fr(σa)= fa(σa)fb(rσa)= r σ2
a
∣∣F1(0, σa)F0(0, rσa)

∣∣2
(17.4.15)

This function has a maximum, which depends on the aspect ratio r. The right graph
of Fig. 17.4.1 shows fr(σ) and its maxima for various values of r. The aspect ratio
r = 1/2 is used in many standard guides, r = 4/9 is used in the WR-90 waveguide, and
r = 2/5 in the WR-42.

The MATLAB function hsigma computes the optimum σa and σb = rσa for a given
aspect ratio r. It has usage:

[sa,sb] = hsigma(r); % optimum σ-parameters

With input r = 0, it outputs the separate optimal values σa = 1.2593 and σb =
1.0246. For r = 0.5, it gives σa = 1.4749 and σb = σa/2 = 0.7375, with corresponding
aperture efficiency e = 0.4743.

17.5 Horn Design

The design problem for a horn antenna is to determine the sides A,B that will achieve a
given gainG and will also fit geometrically with a given waveguide of sidesa,b, satisfying
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the condition RA = RB. The two design equations for A,B are then Eqs. (17.4.2) and
(17.4.10):

G = e 4π
λ2
AB ,

σ2
b

σ2
a
= B(B− b)
A(A− a) (17.5.1)

The design of the constant aspect ratio case is straightforward. Because σb = rσa,
the second condition is already satisfied. Then, the first condition can be solved for A,
from which one obtains B = rA and RA = A(A− a)/(2λσ2

a):

G = e 4π
λ2
A(rA) ⇒ A = λ

√
G

4πer
(17.5.2)

In Eq. (17.5.2), the aperture efficiency emust be calculated from Eq. (17.4.3) with the
help of the MATLAB function heff.

For unequal aspect ratios and arbitrary σa,σb, one must solve the system of equa-
tions (17.5.1) for the two unknowns A,B. To avoid negative solutions for B, the second
equation in (17.5.1) can be solved for B in terms of A,a, b, thus replacing the above
system with:

f1(A,B) ≡ B−

b

2
+
√√√√b2

4
+ σ

2
b

σ2
a
A(A− a)


 = 0

f2(A,B) ≡ AB− λ
2G

4πe
= 0

(17.5.3)

This system can be solved iteratively using Newton’s method, which amounts to
starting with some initial valuesA,B and keep replacing them with the corrected values
A+∆A and B+∆B, where the corrections are computed from:[

∆A
∆B

]
= −M−1

[
f1
f2

]
, where M=

[
∂Af1 ∂Bf1
∂Af2 ∂Bf2

]

The matrixM is given by:

M=

−σ

2
b

σ2
a

2A− a
(2B− b− 2f1)

1

B A


 �


−σ

2
b

σ2
a

2A− a
2B− b 1

B A




where we replaced the 2f1 term by zero (this is approximately correct near convergence.)
Good initial values are obtained by assuming thatA,B will be much larger than a,b and
therefore, we write Eq. (17.5.1) approximately in the form:

G = e 4π
λ2
AB ,

σ2
b

σ2
a
= B

2

A2
(17.5.4)

This system can be solved easily, giving the initial values:

A0 = λ
√
G

4πe
σa
σb
, B0 = λ

√
G

4πe
σb
σa

(17.5.5)

Note that these are the same solutions as in the constant-r case. The algorithm
converges extremely fast, requiring about 3-5 iterations. It has been implemented by
the MATLAB function hopt with usage:
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[A,B,R,err] = hopt(G,a,b,sa,sb); % optimum horn antenna design

[A,B,R,err] = hopt(G,a,b,sa,sb,N); % N is the maximum number of iterations

[A,B,R,err] = hopt(G,a,b,sa,sb,0); % outputs initial values only

where G is the desired gain in dB, a,b are the waveguide dimensions. The output R
is the common axial length R = RA = RB. All lengths are given in units of λ. If the
parameters σa, σb are omitted, their optimum values are used. The quantity err is the
approximation error, and N, the maximum number of iterations (default is 10.)

Example 17.5.1: Design a horn antenna with gain 18.68 dB and waveguide sides of a = λ and
b = 0.35λ. The following call to hopt,

[A,B,R,err] = hopt(18.68, 1, 0.35);

yields the values (in units of λ): A = 4, B = 2.9987, R = 3.7834, and err = 3.7 × 10−11.
These are the same as in Example 17.3.1. ��

Example 17.5.2: Design a horn antenna operating at 10 GHz and fed by a WR-90 waveguide
with sides a = 2.286 cm and b = 1.016 cm. The required gain is 23 dB (G = 200).

Solution: The wavelength isλ = 3 cm. We carry out two designs, the first one using the optimum
values σa = 1.2593, σb = 1.0246, and the second using the aspect ratio of the WR-90
waveguide, which is r = b/a = 4/9, and corresponds to σa = 1.4982 and σb = 0.6659.
The following MATLAB code calculates the horn sides for the two designs and plots the
E-plane patterns:

la = 3; a = 2.286; b = 1.016; % lengths in cm

G = 200; Gdb = 10*log10(G); % GdB = 23.0103 dB

[sa1,sb1] = hsigma(0); % optimum σ-parameters

[A1,B1,R1] = hopt(Gdb, a/la, b/la, sa1, sb1); % A1, B1, R1 in units of λ

[sa2,sb2] = hsigma(b/a); % optimum σ’s for r = b/a
[A2,B2,R2] = hopt(Gdb, a/la, b/la, sa2, sb2,0); % output initial values

N = 200; % 201 angles in 0 ≤ θ ≤ π/2

[gh1,ge1,th] = hgain(N,A1,B1,sa1,sb1); % calculate gains

[gh2,ge2,th] = hgain(N,A2,B2,sa2,sb2);

figure; dbp(th,gh1); figure; dbp(th,ge1); % polar plots in dB

figure; dbp(th,gh2); figure; dbp(th,ge2);

A1 = A1*la; B1 = B1*la; R1 = R1*la; % lengths in cm

A2 = A2*la; B2 = B2*la; R2 = R2*la;

The designed sides and axial lengths are in the two cases:

A1 = 19.2383 cm, B1 = 15.2093 cm, R1 = 34.2740 cm
A2 = 26.1457 cm, B2 = 11.6203 cm, R2 = 46.3215 cm

The H- and E-plane patterns are plotted in Fig. 17.5.1. The first design (top graphs) has
slightly wider 3-dB width in the H-plane because its A-side is shorter than that of the
second design. But, its E-plane 3-dB width is narrower because its B-side is longer.
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The initial values given in Eq. (17.5.5) can be used to give an alternative, albeit approximate,
solution obtained purely algebraically: Compute A0, B0, then revise the value of B0 by
recomputing it from the first of Eq. (17.5.3), so that the geometric constraint RA = RB is
met, and then recompute the gain, which will be slightly different than the required one.

For example, using the optimum values σa = 1.2593 and σb = 1.0246, we find from
(17.5.5): A0 = 18.9644, B0 = 15.4289 cm, and RA = 33.2401 cm. Then, we recalculate B0

to be B0 = 13.9453 cm, and obtain the new gain G = 180.77, or, 22.57 dB. ��
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Fig. 17.5.1 H- and E-plane patterns.

17.6 Microstrip Antennas

A microstrip antenna is a metallic patch on top of a dielectric substrate that sits on
top of a ground plane. Fig. 17.6.1 depicts a rectangular microstrip antenna fed by a
microstrip line. It can also be fed by a coaxial line, with its inner and outer conductors
connected to the patch and ground plane, respectively.

In this section, we consider only rectangular patches and discuss simple aperture
models for calculating the radiation patterns of the antenna. Further details and appli-
cations of microstrip antennas may be found in [662–669].
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Fig. 17.6.1 Microstrip antenna and E-field pattern in substrate.

The height h of the substrate is typically of a fraction of a wavelength, such as
h = 0.05λ, and the length L is of the order of 0.5λ. The structure radiates from the
fringing fields that are exposed above the substrate at the edges of the patch.

In the so-called cavity model, the patch acts as resonant cavity with an electric field
perpendicular to the patch, that is, along the z-direction. The magnetic field has van-
ishing tangential components at the four edges of the patch. The fields of the lowest
resonant mode (assuming L ≥W) are given by:

Ez(x) = −E0 sin
(
πx
L

)

Hy(x) = −H0 cos
(
πx
L

) for

−L
2
≤ x ≤ L

2

−W
2
≤ y ≤ W

2

(17.6.1)

where H0 = −jE0/η. We have placed the origin at the middle of the patch (note that
Ez(x) is equivalent to E0 cos(πx/L) for 0 ≤ x ≤ L.)

It can be verified that Eqs. (17.6.1) satisfy Maxwell’s equations and the boundary
conditions, that is, Hy(x)= 0 at x = ±L/2, provided the resonant frequency is:

ω = πc
L

⇒ f = 0.5
c
L
= 0.5

c0

L
√
εr

(17.6.2)

where c = c0/
√
εr , η = η0/

√
εr , and εr is the relative permittivity of the dielectric

substrate. It follows that the resonant microstrip length will be half-wavelength:

L = 0.5
λ√
εr

(17.6.3)

Fig. 17.6.2 shows two simple models for calculating the radiation patterns of the
microstrip antenna. The model on the left assumes that the fringing fields extend over
a small distance a around the patch sides and can be replaced with the fields Ea that
are tangential to the substrate surface [664]. The four extended edge areas around the
patch serve as the effective radiating apertures.
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Fig. 17.6.2 Aperture models for microstrip antenna.

The model on the right assumes that the substrate is truncated beyond the extent of
the patch [663]. The four dielectric substrate walls serve now as the radiating apertures.
The only tangential aperture field on these walls is Ea = ẑEz, because the tangential
magnetic fields vanish by the boundary conditions.

For both models, the ground plane can be eliminated using image theory, resulting in
doubling the aperture magnetic currents, that is, Jms = −2n̂×Ea. The radiation patterns
are then determined from Jms.

For the first model, the effective tangential fields can be expressed in terms of the
field Ez by the relationship: aEa = hEz. This follows by requiring the vanishing of the
line integrals of E around the loops labeled ABCD in the lower left of Fig. 17.6.2. Because
Ez = ±E0 at x = ±L/2, we obtain from the left and right such contours:∮

ABCD
E · dl = −E0h+ Eaa = 0 ,

∮
ABCD

E · dl = E0h− Eaa = 0 ⇒ Ea = hE0

a

In obtaining these, we assumed that the electric field is nonzero only along the sides
AD and AB. A similar argument for the sides 2 & 4 shows that Ea = ±hEz(x)/a. The
directions of Ea at the four sides are as shown in the figure. Thus, we have:

for sides 1 & 3 : Ea = x̂
hE0

a

for sides 2 & 4 : Ea = ±ŷ
hEz(x)
a

= ∓ŷ
hE0

a
sin

(
πx
L

) (17.6.4)

The outward normal to the aperture plane is n̂ = ẑ for all four sides. Therefore, the
surface magnetic currents Jms = −2n̂× Ea become:

for sides 1 & 3 : Jms = ŷ
2hE0

a

for sides 2 & 4 : Jms = ±x̂
2hE0

a
sin

(
πx
L

) (17.6.5)

The radiated electric field is obtained from Eq. (16.3.4) by setting F = 0 and calculat-
ing Fm as the sum of the magnetic radiation vectors over the four effective apertures:
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E = jk e
−jkr

4πr
r̂× Fm = jk e

−jkr

4πr
r̂× [Fm1 + Fm2 + Fm3 + Fm4

]
(17.6.6)

The vectors Fm are the two-dimensional Fourier transforms over the apertures:

Fm(θ,φ)=
∫
A

Jms(x, y)ejkxx+jkyy dS

The integration surfaces dS = dxdy are approximately, dS = ady for 1 & 3, and
dS = adx for 2 & 4. Similarly, in the phase factor ejkxx+jkyy, we must set x = ∓L/2
for sides 1 & 3, and y = ∓W/2 for sides 2 & 4. Inserting Eq. (17.6.5) into the Fourier
integrals and combining the terms for apertures 1 & 3 and 2 & 4, we obtain:

Fm,13 = ŷ
2hE0

a

∫W/2
−W/2

(
e−jkxL/2 + ejkxL/2)ejkyyady

Fm,24 = x̂
2hE0

a

∫ L/2
−L/2

(
e−jkyW/2 − ejkyW/2) sin

(
πx
L

)
ejkxxadx

Note that the a factors cancel. Using Euler’s formulas and the integrals:

∫W/2
−W/2

ejkyydy =W sin(kyW/2)
kyW/2

,
∫ L/2
−L/2

sin
(
πx
L

)
ejkxxdx = 2jkxL2

π2

cos(kxL/2)

1−
(
kxL
π

)2 ,

we find the radiation vectors:

Fm,12 = ŷ 4E0hW cos(πvx)
sin(πvy)
πvy

Fm,24 = x̂ 4E0hL
4vx cos(πvx)
π(1− 4v2

x)
sin(πvy)

(17.6.7)

where we defined the normalized wavenumbers as usual:

vx = kxL
2π

= L
λ

sinθ cosφ

vy = kyW
2π

= W
λ

sinθ sinφ
(17.6.8)

From Eq. (E.8) of Appendix E, we have:

r̂× ŷ = r̂× (r̂ sinθ sinφ+ θ̂θθ cosθ sinφ+ φ̂φφ cosφ)= φ̂φφ cosθ sinφ− θ̂θθ cosφ

r̂× x̂ = r̂× (r̂ sinθ cosφ+ θ̂θθ cosθ cosφ− φ̂φφ sinφ)= φ̂φφ cosθ cosφ+ θ̂θθ sinφ

It follows from Eq. (17.6.6) that the radiated fields from sides 1 & 3 will be:

E(θ,φ)= jk e
−jkr

4πr
4E0hW

[
φ̂φφ cosθ sinφ− θ̂θθ cosφ

]
F(θ,φ) (17.6.9)

where we defined the function:
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F(θ,φ)= cos(πvx)
sin(πvy)
πvy

(17.6.10)

Similarly, we have for sides 2 & 4:

E(θ,φ) = jk e
−jkr

4πr
4E0hL

[
φ̂φφ cosθ cosφ+ θ̂θθ sinφ

]
f(θ,φ)

f(θ,φ) = 4vx cos(πvx)
π(1− 4v2

x)
sin(πvy)

(17.6.11)

The normalized gain is found from Eq. (17.6.9) to be:

g(θ,φ)= |E(θ,φ)|
2

|E|2max
= (cos2 θ sin2φ+ cos2φ

)∣∣F(θ,φ)∣∣2
(17.6.12)

The corresponding expression for sides 2 & 4, although not normalized, provides a
measure for the gain in that case:

g(θ,φ)= (cos2 θ cos2φ+ sin2φ
)∣∣f(θ,φ)∣∣2

(17.6.13)

The E- and H-plane gains are obtained by setting φ = 0o and φ = 90o in Eq. (17.6.12):

gE(θ)= |Eθ|2
|Eθ|2max

= ∣∣cos(πvx)
∣∣2 , vx = Lλ sinθ

gH(θ)= |Eφ|2
|Eφ|2max

=
∣∣∣∣∣cosθ

sin(πvy)
πvy

∣∣∣∣∣
2

, vy = Wλ sinθ
(17.6.14)

Most of the radiation from the microstrip arises from sides 1 & 3. Indeed, F(θ,φ)
has a maximum towards broadside, vx = vy = 0, whereas f(θ,φ) vanishes. Moreover,
f(θ,φ) vanishes identically for all θ and φ = 0o (E-plane) or φ = 90o (H-plane).

Therefore, sides 2 & 4 contribute little to the total radiation, and they are usually
ignored. For lengths of the order of L = 0.3λ to L = λ, the gain function (17.6.13)
remains suppressed by 7 to 17 dB for all directions, relative to the gain of (17.6.12).

Example 17.6.1: Fig. 17.6.3 shows the E- and H-plane patterns for W = L = 0.3371λ. Both
patterns are fairly broad.

The choice for L comes from the resonant condition L = 0.5λ/
√
εr . For a typical substrate

with εr = 2.2, we find L = 0.5λ/
√

2.2 = 0.3371λ.

Fig. 17.6.4 shows the 3-dimensional gains computed from Eqs. (17.6.12) and (17.6.13). The
field strengths (square roots of the gains) are plotted to improve the visibility of the graphs.
The MATLAB code for generating these plots was:

L = 0.5/sqrt(2.2); W = L;

[th,ph] = meshgrid(0:3:90, 0:6:360); th = th * pi/180; ph = ph * pi/180;

vx = L * sin(th) .* cos(ph);
vy = W * sin(th) .* sin(ph);
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Fig. 17.6.3 E- and H-plane gains of microstrip antenna.
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Fig. 17.6.4 Two-dimensional gain patterns from sides 1 & 3 and 2 & 4.

E13 = sqrt(cos(th).^2.*sin(ph).^2 + cos(ph).^2);
E13 = E13 .* abs(cos(pi*vx) .* sinc(vy));

figure; surfl(vx,vy,E13);
shading interp; colormap(gray(32));

view([-40,10]);

E24 = sqrt(cos(th).^2.*cos(ph).^2 + sin(ph).^2);
E24 = E24 .* abs(4*vx.*dsinc(vx)/pi .* sin(pi*vy));

figure; surfl(vx,vy,E24);
shading interp; colormap(gray(32));

The gain from sides 2 & 4 vanishes along the vx- and vy axes, while its maximum in all
directions is

√g = 0.15 or −16.5 dB. ��

Using the alternative aperture model shown on the right of Fig. 17.6.2, one obtains
identical expressions for the magnetic current densities Jms along the four sides, and
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therefore, identical radiation patterns. The integration surfaces are now dS = hdy for
sides 1 & 3, and dS = hdx for 2 & 4.

17.7 Parabolic Reflector Antennas

Reflector antennas are characterized by very high gains (30 dB and higher) and narrow
main beams. They are widely used in satellite and line-of-sight microwave communica-
tions and in radar.

At microwave frequencies, the most common feeds are rectangular, circular, or cor-
rugated horns. Dipole feeds—usually backed by a reflecting plane to enhance their ra-
diation towards the reflector—are used at lower frequencies, typically, up to UHF. Some
references on reflector antennas and feed design are [642–661].

A typical parabolic reflector, fed by a horn antenna positioned at the focus of the
parabola, is shown in Fig. 17.7.1. A geometrical property of parabolas is that all rays
originating from the focus get reflected in a direction parallel to the parabola’s axis, that
is, the z direction.

Fig. 17.7.1 Parabolic reflector antenna with feed at the focus.

We choose the origin to be at the focus. An incident ray OP radiated from the feed
at an angle ψ becomes the reflected ray PA parallel to the z-axis. The projection of all
the reflected rays onto a plane perpendicular to the z-axis—such as the xy-plane—can
be considered to be the effective aperture of the antenna. This is shown in Fig. 17.7.2.

Let R and h be the lengths of the rays OP and PA. The sum R + h represents the
total optical path length from the focus to the aperture plane. This length is constant,
independent of ψ, and is given by

R+ h = 2F (17.7.1)

where F is the focal length. The length 2F is the total optical length of the incident and
reflected axial rays going from O to the vertex V and back to O.

Therefore, all the rays suffer the same phase delay traveling from the focus to the
plane. The spherical wave radiated from the feed gets converted upon reflection into a
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Fig. 17.7.2 Parabolic antenna and its projected effective aperture.

plane wave. Conversely, for a receiving antenna, an incident plane wave gets converted
into a spherical wave converging onto the focus.

Since h = R cosψ, Eq. (17.7.1) can be written in the following form, which is the
polar representation of the parabolic surface:

R+R cosψ = 2F ⇒ R = 2F
1+ cosψ

, or, (17.7.2)

R = 2F
1+ cosψ

= F
cos2(ψ/2)

(17.7.3)

The radial displacement ρ of the reflected ray on the aperture plane is given by
ρ = R sinψ. Replacing R from (17.7.3), we find:

ρ = 2F
sinψ

1+ cosψ
= 2F tan

(
ψ
2

)
(17.7.4)

Similarly, using R+ h = 2F or F − h = R− F, we have:

F − h = F 1− cosψ
1+ cosψ

= F tan2
(
ψ
2

)
(17.7.5)

It follows that h and ρ will be related by the equation for a parabola:

4F(F − h)= ρ2 (17.7.6)

In terms of the xyz-coordinate system, we have ρ2 = x2 + y2 and z = −h, so that
Eq. (17.7.6) becomes the equation for a paraboloid surface:

4F(F + z)= x2 + y2 (17.7.7)
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The diameter D, or the radius a = D/2, of the reflector and its focal length F deter-
mine the maximum angle ψ. It is obtained by setting ρ = a in Eq. (17.7.4):

a = D
2
= 2F tan

(
ψ0

2

)
⇒ ψ0 = 2 atan

(
D
4F

)
(17.7.8)

Thus, the F/D ratio determines ψ0. For example, if F/D = 0.25,0.35,0.50, then
ψ0 = 90o, 71o, 53o. Practical F/D ratios are in the range 0.25–0.50.

17.8 Gain and Beamwidth of Reflector Antennas

To determine the radiation pattern of a reflector antenna, one may use Eq. (16.4.2),
provided one knows the aperture fields Ea, Ha on the effective aperture projected on
the aperture plane. This approach is referred to as the aperture-field method [21].

Alternatively, the current-distribution method determines the current J s on the sur-
face of the reflector induced by the incident field from the feed, and then applies
Eq. (16.4.1) with Jms = 0, using the curved surface of the reflector as the integration
surface (Jms vanishes on the reflector surface because there are no tangential electric
fields on a perfect conductor.)

The two methods yield slightly different, but qualitatively similar, results for the
radiation patterns. The aperture fields Ea,Ha and the surface current J s are determined
by geometrical optics considerations based on the assumptions that (a) the reflector
lies in the radiation zone of the feed antenna, and (b) the incident field from the feed
gets reflected as if the reflector surface is perfectly conducting and locally flat. These
assumptions are justified because in practice the size of the reflector and its curvature
are much larger than the wavelength λ.

We use the polar and azimuthal angles ψ and χ indicated on Fig. 17.7.2 to charac-
terize the direction R̂ of an incident ray from the feed to the reflector surface.

The radiated power from the feed within the solid angle dΩ = sinψdψdχmust be
equal upon reflection to the power propagating parallel to the z-axis and intercepting
the aperture plane through the area dA = ρdρdχ, as depicted in Fig. 17.7.1.

Assuming that Ufeed(ψ,χ) is the feed antenna’s radiation intensity and noting that
|Ea|2/2η is the power density of the aperture field, the power condition reads:

1

2η
|Ea|2dA = Ufeed(ψ,χ)dΩ ⇒ 1

2η
|Ea|2ρdρ = Ufeed(ψ,χ)sinψdψ (17.8.1)

where we divided both sides by dχ. Differentiating Eq. (17.7.4), we have:

dρ = 2F
dψ
2

1

cos2(ψ/2)
= Rdψ

which implies that ρdρ = R2 sinψdψ. Thus, solving Eq. (17.8.1) for |Ea|, we find:

|Ea(ρ,χ)| = 1

R

√
2ηUfeed(ψ,χ) (17.8.2)

where we think of Ea as a function of ρ = 2F tan(ψ/2) and χ. Expressing R in terms
of ρ, we have R = 2F − h = F + (F − h)= F + ρ2/4F. Therefore, we may also write:
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|Ea(ρ,χ)| = 4F
ρ2 + 4F2

√
2ηUfeed(ψ,χ) (17.8.3)

Thus, the aperture fields get weaker towards the edge of the reflector. A measure of
this tapering effect is the edge illumination, that is, the ratio of the electric field at the
edge (ρ = a) and at the center (ρ = 0). Using Eqs. (17.7.3) and (17.8.2), we find:

|Ea(a,χ)|
|Ea(0, χ)| =

1+ cosψ0

2

√
Ufeed(ψ0, χ)
Ufeed(0, χ)

(edge illumination) (17.8.4)

In Sec. 16.6, we defined the directivity or gain of an aperture by Eq. (16.6.10), which
we rewrite in the following form:

Ga = 4πUmax

Pa
(17.8.5)

where Pa is the total power through the aperture given in terms of Ea as follows:

Pa = 1

2η

∫
A
|Ea|2dA =

∫ ψ0

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ (17.8.6)

and we used Eq. (17.8.1). For a reflector antenna, the gain must be defined relative to
the total power Pfeed of the feed antenna, that is,

Gant = 4πUmax

Pfeed
= 4πUmax

Pa
Pa
Pfeed

= Gaespl (17.8.7)

The factor espl = Pa/Pfeed is referred to as the spillover efficiency or loss and repre-
sents the fraction of the power Pfeed that actually gets reflected by the reflector antenna.
The remaining power from the feed “spills over” the edge of the reflector and is lost.

We saw in Sec. 16.4 that the aperture gain is given in terms of the geometrical area
A of the aperture and the aperture-taper and phase-error efficiencies by:

Ga = 4πA
λ2

eatl epel (17.8.8)

It follows that the reflector antenna gain can be written as:

Gant = Gaespl = 4πA
λ2

eatl epel espl (17.8.9)

The total aperture efficiency is ea = eatl epel espl. In practice, additional efficiency or
loss factors must be introduced, such as those due to cross polarization or to partial
aperture blockage by the feed.

Of all the loss factors, the ATL and SPL are the primary ones that significantly affect
the gain. Their tradeoff is captured by the illumination efficiency or loss, defined to be
the product of ATL and SPL, eill = eatl espl.

The ATL and SPL may be expressed in terms of the radiation intensity Ufeed(ψ,χ).
Using ρdρ = R2 sinψdψ = ρRdψ = 2FR tan(ψ/2)dψ and Eq. (17.8.2), we have:

|Ea|dA =
√

2ηUfeed
1

R
2FR tan

ψ
2
dψdχ = 2F

√
2ηUfeed tan

ψ
2
dψdχ

|Ea|2dA = 2ηUfeed
1

R2
R2 sinψdψdχ = 2ηUfeed sinψdψdχ
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The aperture area is A = πa2 = π(2F)2tan2(ψ0/2). Thus, it follows from the
definition (16.6.13) that the ATL will be:

eatl =

∣∣∣∣
∫
A
|Ea|dA

∣∣∣∣2

A
∫
A
|Ea|2dA

=
(2F)2

∣∣∣∣
∫
A

√
2ηUfeed tan

ψ
2
dψdχ

∣∣∣∣2

π(2F)2tan2(ψ0/2)
∫
A

2ηUfeed sinψdψdχ
, or,

eatl = 1

π
cot2

(
ψ0

2

)
∣∣∣∣∣
∫ ψ0

0

∫ 2π

0

√
Ufeed(ψ,χ) tan

ψ
2
dψdχ

∣∣∣∣∣
2

∫ ψ0

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ

(17.8.10)

Similarly, the spillover efficiency can be expressed as:

espl = Pa
Pfeed

=

∫ ψ0

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ∫ π

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ

(17.8.11)

where we replaced Pfeed by the integral of Ufeed over all solid angles. It follows that the
illumination efficiency eill = eatl espl will be:

eill = 1

π
cot2

(
ψ0

2

)
∣∣∣∣∣
∫ ψ0

0

∫ 2π

0

√
Ufeed(ψ,χ) tan

ψ
2
dψdχ

∣∣∣∣∣
2

∫ π
0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ

(17.8.12)

An example of a feed pattern that approximates practical patterns is the following
azimuthally symmetric radiation intensity [21]:

Ufeed(ψ,χ)=


U0 cos4ψ, if 0 ≤ ψ ≤ π

2
0 , if

π
2
< ψ ≤ π

(17.8.13)

For this example, the SPL, ATL, and ILL can be computed in closed form:

espl = 1− cos5ψ0

eatl = 40 cot2(ψ0/2)
[
sin4(ψ0/2)+ ln

(
cos(ψ0/2)

)]2

1− cos5ψ0

eill = 40 cot2(ψ0/2)
[
sin4(ψ0/2)+ ln

(
cos(ψ0/2)

)]2

(17.8.14)

The edge illumination is from Eq. (17.8.4):

|Ea(ψ0)|
|Ea(0)| =

1+ cosψ0

2
cos2ψ0 (17.8.15)

Fig. 17.8.1 shows a plot of Eqs. (17.8.14) and (17.8.15) versus ψ0. The ATL is a
decreasing and the SPL an increasing function ofψ0. The product eill = eatl espl reaches
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Fig. 17.8.1 Tradeoff between ATL and SPF.

the maximum value of 0.82 at ψ0 = 53.31o. The corresponding edge illumination is
0.285 or −10.9 dB. The F/D ratio is cot(ψ0/2)/4 = 0.498.

This example gives rise to the rule of thumb that the best tradeoff between ATL and
SPL for parabolic reflectors is achieved when the edge illumination is about −11 dB.

The value 0.82 for the efficiency is an overestimate. Taking into account other losses,
the aperture efficiency of practical parabolic reflectors is typically of the order of 0.55–
0.65. Expressing the physical area in terms of the diameter D, we can summarize the
gain of a parabolic antenna:

G = ea 4πA
λ2

= ea
(
πD
λ

)2

, with ea = 0.55–0.65 (17.8.16)

As we discussed in Sec. 14.3, the 3-dB beamwidth of a reflector antenna with diameter
D can be estimated by rule of thumb [654]:

∆θ3dB = 70o λ
D

(17.8.17)

The beamwidth depends also on the edge illumination. Typically, as the edge at-
tenuation increases, the beamwidth widens and the sidelobes decrease. By studying
various reflector sizes, types, and feeds Komen [655] arrived at the following improved
approximation for the 3-dB width, which takes into account the edge illumination:

∆θ3dB =
(
1.05oAedge + 55.95o)

λ
D

(17.8.18)

where Aedge is the edge attenuation in dB, that is, Aedge = −20 log10

[|Ea(ψ0)/Ea(0)|
]
.

For example, for Aedge = 11 dB, the angle factor becomes 67.5o.

17.9 Aperture-Field and Current-Distribution Methods

In the previous section, we used energy flow considerations to determine the magnitude
|Ea| of the aperture field. To determine its direction and phase, we need to start from
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the field radiated by the feed antenna and trace its path as it propagates as a spherical
wave to the reflector surface, gets reflected there, and then propagates as a plane wave
along the z-direction to the aperture plane.

Points on the reflector surface will be parametrized by the spherical coordinates
R,ψ,χ as shown in Figs. 17.7.1 and 17.7.2, and points in the radiation zone of the
reflector antenna, by the usual r,θ,φ.

Let R̂, ψ̂ψψ,χ̂χχ be the unit vectors in the R,ψ,χ directions. The relationships of R,ψ,χ
to the conventional polar coordinates of the x′y′z′ coordinate system are: R = r′,
ψ = θ′, but χ = −φ′, so that the unit vectors are R̂ = r̂′, ψ̂ψψ = θ̂θθ′, and χ̂χχ = −φ̂φφ′. (The
primed system has x̂′ = x̂, ŷ′ = −ŷ, and x̂′ = −ẑ.) In terms of the unprimed system:

R̂ = x̂ sinψ cosχ+ ŷ sinψ sinχ− ẑ cosψ

ψ̂ψψ = x̂ cosψ cosχ+ ŷ cosψ sinχ+ ẑ sinψ

χ̂χχ = −x̂ sinχ+ ŷ cosχ

(17.9.1)

and conversely,
x̂ = R̂ sinψ cosχ+ ψ̂ψψ cosψ cosχ− χ̂χχ sinχ

ŷ = R̂ sinψ sinχ+ ψ̂ψψ cosψ sinχ+ χ̂χχ cosχ

ẑ = −R̂ cosψ+ ψ̂ψψ sinψ

(17.9.2)

Because the reflector is assumed to be in the radiation zone of the feed, the most
general field radiated by the feed, and incident at the point R,ψ,χ on the reflector
surface, will have the form:

E i = e
−jkR

R
f i(ψ,χ) (incident field) (17.9.3)

Because of the requirement R̂ ·E i = 0, the vector function f i must satisfy R̂ · f i = 0.
As expected for radiation fields, the radial dependence on R is decoupled from the
angular dependence on ψ,χ. The corresponding magnetic field will be:

H i = 1

η
R̂× E i = 1

η
e−jkR

R
R̂× f i(ψ,χ) (17.9.4)

The feed’s radiation intensity Ufeed is related to f i through the definition:

Ufeed(ψ,χ)= R2 1

2η
∣∣E i

∣∣2 = 1

2η
∣∣f i(ψ,χ)

∣∣2
(17.9.5)

Assuming that the incident field is reflected locally like a plane wave from the reflec-
tor’s perfectly conducting surface, it follows that the reflected fields E r,H r must satisfy
the following relationships, where where n̂ is the normal to the reflector:

n̂× E r = −n̂× E i , n̂ · E r = n̂ · E i

n̂×H r = n̂×H i , n̂ ·H r = −n̂ ·H i
(17.9.6)

These imply that |E r| = |E i|, |H r| = |H i|, and that:
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E r = −E i + 2n̂(n̂ · E i)

H r = H i − 2n̂(n̂ ·H i)
(17.9.7)

Thus, the net electric field E i+E r is normal to the surface. Fig. 17.9.1 depicts these
geometric relationships, assuming for simplicity that E i is parallel to ψ̂ψψ.

Fig. 17.9.1 Geometric relationship between incident and reflected electric fields.

The proof of Eq. (17.9.7) is straightforward. Indeed, using n̂× (E i+E r)= 0 and the
BAC-CAB rule, we have:

0 = (n̂× (E i + E r)
)× n̂ = E i + E r − n̂(n̂ · E i + n̂ · E r)= E i + E r − n̂(2 n̂ · E i)

It follows now that the reflected field at the point (R,ψ,χ) will have the form:

E r = e
−jkR

R
f r(ψ,χ) (reflected field) (17.9.8)

where f r satisfies |f r| = |f i| and:

f r = −f i + 2n̂(n̂ · f i) (17.9.9)

The condition R̂ · f i = 0 implies that ẑ · f r = 0, so that f r and E r are perpendicular
to the z-axis, and parallel to the aperture plane. To see this, we note that the normal
n̂, bisecting the angle ∠OPA in Fig. 17.9.1, will form an angle of ψ/2 with the z axis, so
that ẑ · n̂ = cos(ψ/2). More explicitly, the vector n̂ can be expressed in the form:

n̂ = −R̂ cos
ψ
2
+ ψ̂ψψ sin

ψ
2
= ẑ cos

ψ
2
− (x̂ cosχ+ ŷ sinχ)sin

ψ
2

(17.9.10)

Then, using Eq. (17.9.2), it follows that:

ẑ · f r = −ẑ · f i + 2(ẑ · n̂)(n̂ · f i)

= −(−R̂ cosψ+ ψ̂ψψ sinψ)·f i + 2 cos
ψ
2
(−R̂ cos

ψ
2
+ ψ̂ψψ sin

ψ
2
)·f i

= −(ψ̂ψψ · f i)
[

sinψ− 2 cos
ψ
2

sin
ψ
2

]
= 0
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Next, we obtain the aperture field Ea by propagating E r as a plane wave along the
z-direction by a distance h to the aperture plane:

Ea = e−jkhE r = e
−jk(R+h)

R
f r(ψ,χ)

But for the parabola, we have R+ h = 2F. Thus, the aperture field is given by:

Ea = e
−2jkF

R
fa(ψ,χ) (aperture field) (17.9.11)

where we defined fa = f r , so that:

fa = −f i + 2n̂(n̂ · f i) (17.9.12)

Because |fa| = |f r| = |f i| =
√

2ηUfeed, it follows that Eq. (17.9.11) is consistent with
Eq. (17.8.2). As plane waves propagating in the z-direction, the reflected and aperture
fields are Huygens sources. Therefore, the corresponding magnetic fields will be:

H r = 1

η
ẑ× E r , Ha = 1

η
ẑ× Ea

The surface currents induced on the reflector are obtained by noting that the total
fields are E i + E r = 2n̂(n̂ · E i) and H i +H r = 2H i − 2n̂(n̂ ·H i). Thus, we have:

J s = n̂× (H i +H r)= 2 n̂×H i = 2

η
e−jkR

R
R̂× f i

Jms = −n̂× (E i + E r)= 0

17.10 Radiation Patterns of Reflector Antennas

The radiation patterns of the reflector antenna are obtained either from the aperture
fields Ea,Ha integrated over the effective aperture using Eq. (16.4.2), or from the cur-
rents J s and Jms = 0 integrated over the curved reflector surface using Eq. (16.4.1).

We discuss in detail only the aperture-field case. The radiation fields at some large
distance r in the direction defined by the polar angles θ,φ are given by Eq. (16.5.3). The
unit vector r̂ in the direction of θ,φ is shown in Fig. 17.7.2. We have:

Eθ = jk e
−jkr

2πr
1+ cosθ

2

[
fx cosφ+ fy sinφ

]

Eφ = jk e
−jkr

2πr
1+ cosθ

2

[
fy cosφ− fx sinφ

] (17.10.1)

where the vector f = x̂ fx + ŷ fy is the Fourier transform over the aperture:

f(θ,φ)=
∫ a

0

∫ 2π

0
Ea(ρ′, χ) ejk·r

′
ρ′dρ′dχ (17.10.2)
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The vector r′ lies on the aperture plane and is given in cylindrical coordinates by
r′ = ρ′ρ̂ρρ = ρ′(x̂ cosχ+ ŷ sinχ). Thus,

k · r′ = kρ′(x̂ cosφ sinθ+ ŷ sinφ sinθ+ ẑ cosθ)·(x̂ cosχ+ ŷ sinχ)

= kρ′ sinθ(cosφ cosχ+ sinφ sinχ)= kρ′ sinθ cos(φ− χ)
It follows that:

f(θ,φ)=
∫ a

0

∫ 2π

0
Ea(ρ,χ) ejkρ sinθ cos(φ−χ)ρdρdχ (17.10.3)

We may convert this into an integral over the feed anglesψ,χ by using Eq. (17.9.11)
and dρ = Rdψ, ρ = 2F tan(ψ/2), and ρdρ = 2FR tan(ψ/2)dψ. Then, the 1/R factor
in Ea is canceled, resulting in:

f(θ,φ)= 2Fe−2jkF
∫ ψ0

0

∫ 2π

0
fa(ψ,χ)e2jkF tan ψ

2 sinθ cos(φ−χ) tan
ψ
2
dψdχ (17.10.4)

Given a feed pattern f i(ψ,χ), the aperture pattern fa(ψ,χ) is determined from
Eq. (17.9.12) and the integrations in (17.10.4) are done numerically.

Because of the condition R̂ · f i = 0, the vector f i will have components only along
the ψ̂ψψ and χ̂χχ directions. We assume that f i has the following more specific form:

f i = ψ̂ψψF1 sinχ+ χ̂χχF2 cosχ (y-polarized feeds) (17.10.5)

where F1, F2 are functions of ψ,χ, but often assumed to be functions only of ψ, repre-
senting the patterns along the principal planes χ = 90o and χ = 0o.

Such feeds are referred to as “y-polarized” and include y-directed dipoles, and
waveguides and horns in which the electric field on the horn aperture is polarized along
the y direction (the x-polarized case is obtained by a rotation, replacing χ by χ+ 90o.)
Using Eqs. (17.9.1) and (17.9.10), the corresponding pattern fa can be worked out:

fa = −ŷ
[
F1 sin2 χ+ F2 cos2 χ

]− x̂
[
(F1 − F2)cosχ sinχ

]
(17.10.6)

If F1 = F2, we have fa = −ŷF1. But if F1 
= F2, the aperture field Ea develops a
“cross-polarized” component along the x direction. Various definitions of cross polar-
ization have been discussed by Ludwig [660].

As examples, we consider the cases of a y-directed Hertzian dipole feed, and waveg-
uide and horn feeds. Adapting their radiation patterns given in Sections 15.2, 17.1, and
17.3, to the R,ψ,χ coordinate system, we obtain the following feed patterns, which are
special cases of (17.10.5):

f i(ψ,χ)= Fd
(
ψ̂ψψ cosψ sinχ+ χ̂χχ cosχ

)
(dipole feed)

f i(ψ,χ)= Fw(ψ,χ)
(
ψ̂ψψ sinχ+ χ̂χχ cosχ

)
(waveguide feed)

f i(ψ,χ)= Fh(ψ,χ)
(
ψ̂ψψ sinχ+ χ̂χχ cosχ

)
(horn feed)

(17.10.7)

where Fd is the constant Fd = −jη(Il)/2λ, and Fw,Fh are given by:
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Fw(ψ,χ) = − jabE0

πλ
(1+ cosψ)

cos(πvx)
1− 4v2

x

sin(πvy)
πvy

Fh(ψ,χ) = − jABE0

8λ
(1+ cosψ)F1(vx,σa)F0(vy,σb)

(17.10.8)

where I, l are the current and length of the Hertzian dipole, a,b and A,B are the di-
mensions of the waveguide and horn apertures, and vx = (a/λ)sinψ cosχ, vy =
(b/λ)sinψ sinχ for the waveguide, and vx = (A/λ)sinψ cosχ, vy = (B/λ)sinψ sinχ,
for the horn, and F1, F0 are the horn pattern functions defined in Sec. 17.3. The corre-
sponding aperture patterns fa are in the three cases:

fa(ψ,χ)= −ŷFd
[
cosψ sin2 χ+ cos2 χ

]− x̂Fd
[
(cosψ− 1)sinχ cosχ

]
fa(ψ,χ)= −ŷFw(ψ,χ)

fa(ψ,χ)= −ŷFh(ψ,χ)

(17.10.9)

In the general case, a more convenient form of Eq. (17.10.6) is obtained by writing it
in terms of the sum and difference patterns:

A = F1 + F2

2
, B = F1 − F2

2
� F1 = A+ B , F2 = A− B (17.10.10)

Using some trigonometric identities, we may write (17.10.6) in the form:

fa = −ŷ
(
A− B cos 2χ

)− x̂
(
B sin 2χ

)
(17.10.11)

In general, A,B will be functions ofψ,χ (as in the waveguide and horn cases.) If we
assume that they are functions only ofψ, then the χ-integration in the radiation pattern
integral (17.10.4) can be done explicitly leaving an integral overψ only. Using (17.10.11)
and the Bessel-function identities,

∫ 2π

0
eju cos(φ−χ)

[
cosnχ
sinnχ

]
dχ = 2πjn

[
cosnφ
sinnφ

]
Jn(u) (17.10.12)

we obtain:

f(θ,φ)= −ŷ
[
fA(θ)−fB(θ)cos 2φ

]− x̂
[
fB(θ)sin 2φ

]
(17.10.13)

where the functions fA(θ) and fB(θ) are defined by:

fA(θ) = 4πFe−2jkF
∫ ψ0

0
A(ψ)J0

(
4πF
λ

tan
ψ
2

sinθ
)

tan
ψ
2
dψ

fB(θ) = −4πFe−2jkF
∫ ψ0

0
B(ψ)J2

(
4πF
λ

tan
ψ
2

sinθ
)

tan
ψ
2
dψ

(17.10.14)

Using Eq. (17.10.13) and some trigonometric identities, we obtain:

fx cosφ+ fy sinφ = −(fA + fB)sinφ

fy cosφ− fx sinφ = −(fA − fB)cosφ
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It follows that the radiation fields (17.10.1) are given by:

Eθ = −j e
−jkr

λr
1+ cosθ

2

[
fA(θ)+fB(θ)

]
sinφ

Eφ = −j e
−jkr

λr
1+ cosθ

2

[
fA(θ)−fB(θ)

]
cosφ

(17.10.15)

Example 17.10.1: Parabolic Reflector with Hertzian Dipole Feed. We compute numerically the
gain patterns for a y-directed Hertzian dipole feed. We take F = 10λ andD = 40λ, so that
F/D = 0.25 and ψ0 = 90o. These choices are similar to those in [658].

Ignoring the constant Fd in (17.10.7), we have F1(ψ)= cosψ and F2(ψ)= 1. Thus, the
sum and difference patters are A(ψ)= (cosψ + 1)/2 and B(ψ)= (cosψ − 1)/2. Up to
some overall constants, the required gain integrals will have the form:

fA(θ)=
∫ ψ0

0
FA(ψ,θ)dψ , fB(θ)=

∫ ψ0

0
FB(ψ,θ)dψ (17.10.16)

where

FA(ψ,θ) = (1+ cosψ)J0

(
4πF
λ

tan
ψ
2

sinθ
)

tan
ψ
2

FB(ψ,θ) = (1− cosψ)J2

(
4πF
λ

tan
ψ
2

sinθ
)

tan
ψ
2

(17.10.17)

The integrals are evaluated numerically using Gauss-Legendre quadrature integration, which
approximates an integral as a weighted sum [98]:

fA(θ)=
N∑
i=1

wi FA(ψi, θ)= wTFA

where wi,ψi are the Gauss-Legendre weights and evaluation points within the integration
interval [0,ψ0], where FA is the column vector with ith component FA(ψi, θ).

For higher accuracy, this interval may be subdivided into a number of subintervals, the
quantities wi,ψi are then determined on each subinterval, and the total integral is evalu-
ated as the sum of the integrals over all the subintervals.

We have written a MATLAB function, quadrs, that determines the quantities wi,ψi over
all the subintervals. It is built on the function quadr, which determines the weights over
a single interval.

The following MATLAB code evaluates and plots in Fig. 17.10.1 the E- andH-plane patterns
(17.10.15) over the polar angles 0 ≤ θ ≤ 5o.

F = 10; D = 40; psi0 = 2*acot(4*F/D); % F/D = 0.25, ψ0 = 90o

ab = linspace(0, psi0, 5); % 4 integration subintervals in [0,ψ0]
[w,psi] = quadrs(ab); % quadrature weights and evaluation points

% uses 16 weights per subinterval

c = cos(psi); t = tan(psi/2); % cosψ, tan(ψ/2) at quadrature points

th = linspace(0, 5, 251); % angle θ in degrees over 0 ≤ θ ≤ 5o

for i=1:length(th),
u = 4*pi*F*sin(th(i)*pi/180); % u = 2kF sinθ
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Fig. 17.10.1 Parabolic reflector patterns with dipole feed.

FA = (1+c) .* besselj(0, u*t) .* t; % integrand of fA(θ)
fA(i) = w’ * FA; % integral evaluated at θ
FB = (1-c) .* besselj(2, u*t) .* t; % integrand of fB(θ)
fB(i) = w’ * FB;

end

gh = abs((1+cos(th)).*(fA-fB)); gh = gh/max(gh); % gain patterns

ge = abs((1+cos(th)).*(fA+fB)); ge = ge/max(ge);

plot(-thd,ge,’-’, thd,ge, ’-’, -thd,gh,’--’,thd,gh,’--’);

The graph on the right hasψ0 = 90o andD = 80λ, resulting in a narrower main beam. ��
Example 17.10.2: Parabolic Reflector with Waveguide Feed. We calculate the reflector radiation

patterns for a waveguide feed radiating in the TE10 mode with a y-directed electric field.
The feed pattern was given in Eq. (17.10.7). Ignoring some overall constants, we have with
vx = (a/λ)sinψ cosχ and vy = (b/λ)sinψ sinχ:

f i = (1+ cosψ)
cos(πvx)
1− 4v2

x

sin(πvy)
πvy

(ψ̂ψψ sinχ+ χ̂χχ cosχ) (17.10.18)

To avoid the double integration in theψ and χ variables, we follow Jones’ procedure [658]
of choosing the a,b such that the E- and H-plane illuminations of the paraboloid are
essentially identical. This is accomplished when a is approximately a = 1.37b. Then, the
above feed pattern may be simplified by replacing it by its E-plane pattern:

f i = (1+ cosψ)
sin(πvy)
πvy

(ψ̂ψψ sinχ+ χ̂χχ cosχ) (17.10.19)

where vy = (b/λ)sinψ. Thus, F1 = F2 and

A(ψ)= (1+ cosψ)
sin(πb sinψ/λ)
πb sinψ/λ

and B(ψ)= 0 (17.10.20)

The radiated field is given by Eq. (17.10.15) with a normalized gain:

g(θ)=
∣∣∣∣∣1+ cosθ

2

fA(θ)
fA(0)

∣∣∣∣∣
2

(17.10.21)
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where fA(θ) is defined up to a constant by Eq. (17.10.14):

fA(θ)=
∫ ψ0

0
A(ψ)J0

(
4πF
λ

tan
ψ
2

sinθ
)

tan
ψ
2
dψ (17.10.22)

We choose a parabolic antenna with diameter D = 40λ and subtended angle of ψ0 = 60o,
so that F = D cot(ψ0/2)/4 = 17.3205λ. The length b of the waveguide is chosen such as
to achieve an edge illumination of −11 dB on the paraboloid. This gives the condition on
b, where the extra factor of (1+ cosψ) arises from the space attenuation factor 1/R:

|E i(ψ0)|
|E i(0)| =

(
1+ cosψ0

2

)2
∣∣∣∣∣ sin(πb sinψ0/λ)

πb sinψ0/λ

∣∣∣∣∣ = 10−11/20 = 0.2818 (17.10.23)

It has solution b = 0.6958λ and therefore, a = 1.37b = 0.9533λ. The illumination effi-
ciency given in Eq. (17.8.12) may be taken to be a measure of the overall aperture efficiency
of the reflector. Because 2ηUfeed = |f i|2 = |fa|2 = |A(ψ)|2, the integrals in (17.8.12) may
be calculated numerically, giving ea = 0.71 and a gain of 40.5 dB.

The pattern function fA(θ)may be calculated numerically as in the previous example. The
left graph in Fig. 17.10.2 shows the E- and H-plane illumination patterns versus ψ of the
actual feed given by (17.10.18), that is, the normalized gains:

gE(ψ) =
∣∣∣∣∣(1+ cosψ)2

4

sin(πb sinψ/λ)
πb sinψ/λ

∣∣∣∣∣
2

gH(ψ) =
∣∣∣∣∣(1+ cosψ)2

4

cos(πa sinψ/λ)
1− 4(πa sinψ/λ)2

∣∣∣∣∣
2

They are essentially identical provided a = 1.37b (the graph actually plots the square
roots of these quantities.) The right graph shows the calculated radiation pattern g(θ)
(or, rather its square root) of the paraboloid.
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Fig. 17.10.2 Feed illumination and reflector radiation patterns.

The following MATLAB code solves (17.10.23) for b, and then calculates the illumination
pattern and the reflector pattern:
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F = 17.3205; D = 40; psi0 = 2*acot(4*F/D); % ψ0 = 60o

f = inline(’(1+cos(x)).^2/4 * abs(sinc(b*sin(x))) - A’,’b’,’x’,’A’);
Aedge = 11;
b = fzero(f,0.8,optimset(’display’,’off’), psi0, 10^(-Aedge/20));
a = 1.37 * b;

psi = linspace(-psi0, psi0, 201); ps = psi * 180/pi;

gE = abs((1+cos(psi)).^2/4 .* sinc(b*sin(psi)));
gH = abs((1+cos(psi)).^2/4 .* dsinc(a*sin(psi)));

figure; plot(ps,gE,’-’, ps,gH,’--’);

[w,psi] = quadrs(linspace(0, psi0, 5)); % quadrature weights and points

s = sin(psi); c = cos(psi); t = tan(psi/2);
A = (1+c) .* sinc(b*s); % the pattern A(ψ)

thd = linspace(0, 5, 251); th = thd*pi/180;

for i=1:length(th),
u = 4*pi*F*sin(th(i));
FA = A .* besselj(0, u*t) .* t;
fA(i) = w’ * FA;

end

g = abs((1+cos(th)) .* fA); g = g/max(g);

figure; plot(-thd,g,’-’, thd,g);

The 3-dB width was calculated from Eq. (17.8.18) and is placed on the graph. The angle
factor was 1.05Aedge + 55.95 = 67.5, so that ∆θ3dB = 67.5oλ/D = 67.5/40 = 1.69o. The
gain-beamwidth product is p = G(∆θ3dB)2= 1040.5/10 (1.69o)2= 32 046 deg2. ��

Example 17.10.3: Parabolic Reflector with Horn Feed. Fig. 17.10.3 shows the illumination and
reflector patterns if a rectangular horn antenna feed is used instead of a waveguide. The
design requirements were again that the edge illumination be -11 dB and that D = 40λ
and ψ0 = 60o. The illumination pattern is (up to a scale factor):

f i = (1+ cosψ)F1(vx,σa)F0(vy,σb) (ψ̂ψψ sinχ+ χ̂χχ cosχ)

The E- and H-plane illumination patterns are virtually identical over the angular range
0 ≤ ψ ≤ ψ0, provided one chooses the horn sides such that A = 1.48B. Then, the
illumination field may be simplified by replacing it by the E-plane pattern and the length B
is determined by requiring that the edge illumination be -11 dB. Therefore, we work with:

f i = (1+ cosψ)F0(vy,σb) (ψ̂ψψ sinχ+ χ̂χχ cosχ) , vy = Bλ sinψ

Then, A(ψ)= (1 + cosψ)F0(vy,σb) and B(ψ)= 0 for the sum and difference patterns.
The edge illumination condition reads now:

(
1+ cosψ0

2

)2 ∣∣∣∣F0(πB sinψ0/λ,σb)
F0(0, σb)

∣∣∣∣ = 10−11/20
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Its solution is B = 0.7806λ, and henceA = 1.48B = 1.1553λ. The left graph in Fig. 17.10.3
shows the E- and H-plane illumination gain patterns of the actual horn feed:

gE(ψ) =
∣∣∣∣∣(1+ cosψ)2

4

F0(πB sinψ0/λ,σb)
F0(0, σb)

∣∣∣∣∣
2

gH(ψ) =
∣∣∣∣∣(1+ cosψ)2

4

F1(πA sinψ0/λ,σa)
F1(0, σa)

∣∣∣∣∣
2

They are seen to be almost identical. The right graph shows the reflector radiation pattern
computed numerically as in the previous example. The following MATLAB code illustrates
this computation:

[w,psi] = quadrs(linspace(0, psi0, 5)); % 4 subintervals in [0,ψ0]

s = sin(psi); c = cos(psi); t = tan(psi/2); % evaluate at quadrature points

Apsi = (1+c) .* (diffint(B*s, sb, 0)); % the pattern A(ψ)

thd = linspace(0, 8, 251); th = thd*pi/180;

for i=1:length(th),
u = 4*pi*F*sin(th(i));
FA = Apsi .* besselj(0, u*t) .* t;
fA(i) = w’ * FA;

end

g = abs((1+cos(th)) .* fA); g = g/max(g);

figure; plot(-thd,g,’-’, thd,g);

The horn’s σ-parameters were chosen to have the usual optimum values of σa = 1.2593
and σb = 1.0246. The 3-dB width is the same as in the previous example, that is, 1.69o

and is shown on the graph. The computed antenna efficiency is now ea = 0.67 and the
corresponding gain 40.24 dB, so that p = G(∆θ3dB)2= 1040.24/10 (1.69o)2= 30 184 deg2

for the gain-beamwidth product. ��

Example 17.10.4: Here, we compare the approximate symmetrized patterns of the previous
two examples with the exact patterns obtained by performing the double-integration over
the aperture variables ψ,χ.

Both the waveguide and horn examples have a y-directed two-dimensional Fourier trans-
form pattern of the form:

fA(θ,φ)= fy(θ,φ)=
∫ ψ0

0

∫ 2π

0
FA(ψ,χ,θ,φ)dψdχ (17.10.24)

where the integrand depends on the feed pattern A(ψ,χ):

FA(ψ,χ,θ,φ)= A(ψ,χ)ej2kF tan(ψ/2)sinθ cos(φ−χ) tan
ψ
2

(17.10.25)

and, up to constant factors, the function A(ψ,χ) is given in the two cases by:

A(ψ,χ) = (1+ cosψ)
cos(πvx)
1− 4v2

x

sin(πvy)
πvy

A(ψ,χ) = (1+ cosψ)F1(vx,σa)F0(vy,σb)
(17.10.26)



17.10. Radiation Patterns of Reflector Antennas 597

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

ψ  (degrees)

fi
el

d 
st

re
n

gt
h

Feed Illumination Patterns

 −11 dB

 E− plane
 H− plane

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

3− dB width

θ  (degrees)

fi
el

d 
st

re
n

gt
h

Paraboloid Reflector Pattern

Fig. 17.10.3 Feed and reflector radiation patterns.

where vx = (a/λ)sinψ cosχ and vy = (b/λ)sinψ sinχ for the waveguide case, and
vx = (A/λ)sinψ cosχ and vy = (B/λ)sinψ sinχ for the horn.

Once, fA(θ,φ) is computed, we obtain the (un-normalized) H- and E-plane radiation pat-
terns for the reflector by setting φ = 0o and 90o, that is,

gH(θ)=
∣∣(1+ cosθ) fA(θ,0o)

∣∣2, gE(θ)=
∣∣(1+ cosθ) fA(θ,90o)

∣∣2
(17.10.27)

The numerical evaluation of Eq. (17.10.24) can be done with two-dimensional Gauss-Legendre
quadratures, approximating the integral by the double sum:

fA(θ,φ)=
N1∑
i=1

N2∑
j=1

w1i FA(ψi, χj)w2j = wT1 FAw2 (17.10.28)

where {w1i,ψi} and {w2j, χj} are the quadrature weights and evaluation points over the
intervals [0,ψ0] and [0,2π], and FA is the matrix FA(ψi, χj). The function quadrs, called
on these two intervals, will generate these weights.

Fig. 17.10.4 shows the patterns (17.10.27) of the horn and waveguide cases evaluated nu-
merically and plotted together with the approximate symmetrized patterns of the previous
two examples. The symmetrized patterns agree very well with the exact patterns and fall
between them. The following MATLAB code illustrates this computation for the horn case:

[w1, psi] = quadrs(linspace(0, psi0, Ni)); % quadrature over [0,ψ0], Ni = 5

[w2, chi] = quadrs(linspace(0, 2*pi, Ni)); % quadrature over [0,2π], Ni = 5

sinpsi = sin(psi); cospsi = cos(psi); tanpsi = tan(psi/2);
sinchi = sin(chi); coschi = cos(chi);

for i = 1:length(chi), % build matrix A(ψi,χj) columnwise

Apsi(:,i) = diffint(A*sinpsi*coschi(i), sa, 1) ...
.* diffint(B*sinpsi*sinchi(i), sb, 0);

end
Apsi = repmat(tanpsi.*(1+cospsi), 1, length(psi)) .* Apsi;

th = linspace(0, 8, 401) * pi/180;
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Fig. 17.10.4 Exact and approximate reflector radiation patterns.

for i=1:length(th),
u = 4*pi*F*sin(th(i)); % u = 2kF sinθ
FH = Apsi .* exp(j*u*tanpsi*coschi’); % H-plane, φ = 0o

FE = Apsi .* exp(j*u*tanpsi*sinchi’); % E-plane, φ = 90o

fH(i) = w1’ * FH * w2; % evaluate double integral

fE(i) = w1’ * FE * w2;
end

gH = abs((1+cos(th)).*fH); gH = gH/max(gH); % radiation patterns

gE = abs((1+cos(th)).*fE); gE = gE/max(gE);

The patterns are plotted in dB, which accentuates the differences among the curves and
also shows the sidelobe levels. In the waveguide case the resulting curves are almost
indistinguishable to be seen as separate. ��

17.11 Dual-Reflector Antennas

Dual-reflector antennas consisting of a main reflector and a secondary sub-reflector are
used to increase the effective focal length and to provide convenient placement of the
feed.

Fig. 17.11.1 shows a Cassegrain antenna† consisting of a parabolic reflector and
a hyperbolic subreflector. The hyperbola is positioned such that its focus F2 coincides
with the focus of the parabola. The feed is placed at the other focus, F1, of the hyperbola.

The focus F2 is referred to a “virtual focus” of the parabola. Any ray originating from
the point F1 will be reflected by the hyperbola in a direction that appears to have origi-
nated from the focus F2, and therefore, it will be re-reflected parallel to the parabola’s
axis.

To better understand the operation of such an antenna, we consider briefly the re-
flection properties of hyperbolas and ellipses, as shown in Fig. 17.11.2.

†Invented in the 17th century by A. Cassegrain.
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Fig. 17.11.1 Cassegrain dual-reflector antenna.

The geometrical properties of hyperbolas and ellipses are characterized completely
by the parameters e, a, that is, the eccentricity and the distance of the vertices from
the origin. The eccentricity is e > 1 for a hyperbola, and e < 1 for an ellipse. A circle
corresponds to e = 0 and a parabola can be thought of as the limit of a hyperbola in the
limit e = 1.

Fig. 17.11.2 Hyperbolic and elliptic reflectors.

The foci are at distances F1 and F2 from a vertex, say from the vertex V2, and are
given in terms of a, e as follows:

F1 = a(e+ 1), F2 = a(e− 1) (hyperbola)
F1 = a(1+ e), F2 = a(1− e) (ellipse)

(17.11.1)

The ray lengths R1 and R2 from the foci to a point P satisfy:

R1 −R2 = 2a (hyperbola)
R1 +R2 = 2a (ellipse)

(17.11.2)
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The polar representations of the hyperbola or ellipse may be given in terms of the
polar angles ψ1 or ψ2. We have:

R1 = a(e2 − 1)
e cosψ1 − 1

, R2 = a(e2 − 1)
e cosψ2 + 1

(hyperbola)

R1 = a(1− e2)
1− e cosψ1

, R2 = a(1− e2)
1− e cosψ2

(ellipse)

(17.11.3)

Note that we can write a(e2 − 1)= F1(e − 1)= F2(e + 1). For the hyperbola, the
denominator ofR1 vanishes at the anglesψ1 = ± acos(1/e), corresponding to two lines
parallel to the hyperbola asymptotes.

In the cartesian coordinates x, z (defined with respect to the origin O in the figure),
the equations for the hyperbola and the ellipse are:

(e2 − 1)z2 − x2 = a2(e2 − 1) (hyperbola)
(1− e2)z2 + x2 = a2(1− e2) (ellipse)

(17.11.4)

The semi-major axes are b2 = a2(e2 − 1) or a2(1− e2). Because of the constraints
(17.11.2), the anglesψ1,ψ2 are not independent of each other. For example, solving for
ψ2 in terms of ψ1, we have in the hyperbolic case:

cosψ2 = e
2 cosψ1 − 2e+ cosψ1

e2 − 2e cosψ1 + 1
(17.11.5)

This implies the additional relationship and the derivative:

1+ cosψ2

e cosψ2 + 1
=
(

1+ cosψ1

e cosψ1 − 1

)(
e− 1

e+ 1

)

dψ2

dψ1
= sinψ1

sinψ2

(
e cosψ2 + 1

e cosψ1 − 1

)2
(17.11.6)

The incident ray R1 reflects off the surface of either the hyperbola or the ellipse as
though the surface is locally a perfect mirror, that is, the local normal bisects the angle
between the incident and reflected rays. The angles of incidence and reflectionφ shown
on the figures are given by:

φ = ψ1 +ψ2

2
(hyperbola)

φ = π
2
− ψ1 +ψ2

2
(ellipse)

(17.11.7)

To determine the aperture field on the aperture plane passing through F2, we equate
the power within a solid angle dΩ1 = sinψ1dψ1dχ radiated from the feed, to the power
reflected within the cone dΩ2 = sinψ2dψ2dχ from the hyperbola, to the power passing
through the aperture dA = ρdρdχ:

dP = U1(ψ1, χ)dΩ1 = U2(ψ2, χ)dΩ2 = 1

2η
|Ea|2 dA (17.11.8)
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where U1 is the radiation intensity of the feed, and U2 the intensity of the virtual feed.
The second of Eqs. (17.11.8) may be solved as in Eq. (17.8.2) giving:

|Ea| = 1

2F
(1+ cosψ2)

√
2ηU2(ψ2, χ) (17.11.9)

where F is the focal length of the parabola. From the first of Eqs. (17.11.8), we find:

√
U2 =

√
U1

√
sinψ1dψ1

sinψ2dψ2
= √U1

e cosψ1 − 1

e cosψ2 + 1
(17.11.10)

Inserting this into Eq. (17.11.9) and using Eqs. (17.11.6), we obtain:

|Ea| = 1

2F

(
e− 1

e+ 1

)
(1+ cosψ1)

√
2ηU1(ψ1, χ) (17.11.11)

Comparing with Eq. (17.8.2), we observe that this is equivalent to a single parabolic
reflector with an effective focal length:

Feff = F e+ 1

e− 1
(17.11.12)

Thus, having a secondary reflector increases the focal length while providing a con-
venient location of the feed near the vertex of the parabola. Cassegrain antenna aperture
efficiencies are typically of the order of 0.65–0.70.

17.12 Lens Antennas

Dielectric lens antennas convert the spherical wave from the feed into a plane wave
exiting the lens. Fig. 17.12.1 shows two types of lenses, one with a hyperbolic and the
other with elliptic profile.

Fig. 17.12.1 Lens antennas.

The surface profile of the lens is determined by the requirement that the refracted
rays all exit parallel to the lens axis. For example, for the lens shown on the left, the
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effective aperture plane is the right side AB of the lens. If this is to be the exiting
wavefront, then each point A must have the same phase, that is, the same optical path
length from the feed.

Taking the refractive index of the lens dielectric to be n, and denoting byR and h the
lengths FP and PA, the constant-phase condition implies that the optical length along
FPA be the same as that for FVB, that is,

R+ nh = F + nh0 (17.12.1)

But, geometrically we have R cosψ+h = F+h0. Multiplying this by n and subtract-
ing Eq. (17.12.1), we obtain the polar equation for the lens profile:

R(n cosψ− 1)= F(n− 1) ⇒ R = F(n− 1)
n cosψ− 1

(17.12.2)

This is recognized from Eq. (17.11.3) to be the equation for a hyperbola with eccen-
tricity and focal length e = n and F1 = F.

For the lens shown on the right, we assume the left surface is a circle of radius R0

and we wish to determine the profile of the exiting surface such that the aperture plane
is again a constant-phase wavefront. We denote by R and h the lengths FA and PA.
Then, R = R0 + h and the constant-phase condition becomes:

R0 + nh+ d = R0 + nh0 (17.12.3)

where the left-hand side represents the optical path FPAB. Geometrically, we have
R cosψ+ d = F and F = R0 + h0. Eliminating d and R0, we find the lens profile:

R =
F
(
1− 1

n
)

1− 1

n
cosψ

(17.12.4)

which is recognized to be the equation for an ellipse with eccentricity and focal length
e = 1/n and F1 = F.

In the above discussion, we considered only the refracted rays through the dielectric
and ignored the reflected waves. These can be minimized by appropriate antireflection
coatings.

17.13 Problems

17.1 Cross Polarization.



18
Antenna Arrays

18.1 Antenna Arrays

Arrays of antennas are used to direct radiated power towards a desired angular sector.
The number, geometrical arrangement, and relative amplitudes and phases of the array
elements depend on the angular pattern that must be achieved.

Once an array has been designed to focus towards a particular direction, it becomes
a simple matter to steer it towards some other direction by changing the relative phases
of the array elements—a process called steering or scanning.

Figure 18.1.1 shows some examples of one- and two-dimensional arrays consisting
of identical linear antennas. A linear antenna element, say along the z-direction, has
an omnidirectional pattern with respect to the azimuthal angle φ. By replicating the
antenna element along the x- or y-directions, the azimuthal symmetry is broken. By
proper choice of the array feed coefficients an, any desired gain pattern g(φ) can be
synthesized.

If the antenna element is replicated along the z-direction, then the omnidirectionality
with respect toφ is maintained. With enough array elements, any prescribed polar angle
pattern g(θ) can be designed.

In this section we discuss array design methods and consider various design issues,
such as the tradeoff between beamwidth and sidelobe level.

For uniformly-spaced arrays, the design methods are identical to the methods for
designing FIR digital filters in DSP, such as window-based and frequency-sampling de-
signs. In fact, historically, these methods were first developed in antenna theory and
only later were adopted and further developed in DSP.

18.2 Translational Phase Shift

The most basic property of an array is that the relative displacements of the antenna ele-
ments with respect to each other introduce relative phase shifts in the radiation vectors,
which can then add constructively in some directions or destructively in others. This is
a direct consequence of the translational phase-shift property of Fourier transforms: a
translation in space or time becomes a phase shift in the Fourier domain.

603
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Fig. 18.1.1 Typical array configurations.

Figure 18.2.1 shows on the left an antenna translated by the vector d, and on the
right, several antennas translated to different locations and fed with different relative
amplitudes.

Fig. 18.2.1 Translated antennas.

The current density of the translated antenna will be Jd(r)= J(r− d). By definition,
the radiation vector is the three-dimensional Fourier transform of the current density,
as in Eq. (13.7.5). Thus, the radiation vector of the translated current will be:

Fd =
∫
ejk·r Jd(r)d3r =

∫
ejk·r J(r− d)d3r =

∫
ejk·(r

′+d)J(r′)d3r′

= ejk·d
∫
ejk·r

′
J(r′)d3r′ = ejk·d F

where we changed variables to r′ = r− d. Thus,
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Fd(k)= ejk·d F(k) (translational phase shift) (18.2.1)

18.3 Array Pattern Multiplication

More generally, we consider a three-dimensional array of several identical antennas lo-
cated at positions d0,d1,d2, . . . with relative feed coefficients a0, a1, a2, . . . , as shown
in Fig. 18.2.1. (Without loss of generality, we may set d0 = 0 and a0 = 1.)

The current density of the nth antenna will be Jn(r)= anJ(r − dn) and the corre-
sponding radiation vector:

Fn(k)= anejk·dn F(k)

The total current density of the array will be:

Jtot(r)= a0J(r− d0)+a1J(r− d1)+a2J(r− d2)+· · ·

and the total radiation vector:

Ftot(k)= F0 + F1 + F2 + · · · = a0ejk·d0 F(k)+a1ejk·d1 F(k)+a2ejk·d2 F(k)+· · ·

The factor F(k) due to a single antenna element at the origin is common to all terms.
Thus, we obtain the array pattern multiplication property:

Ftot(k)= A(k)F(k) (array pattern multiplication) (18.3.1)

where A(k) is the array factor :

A(k)= a0ejk·d0 + a1ejk·d1 + a2ejk·d2 + · · · (array factor) (18.3.2)

Since k = kr̂, we may also denote the array factor asA(r̂) orA(θ,φ). To summarize,
the net effect of an array of identical antennas is to modify the single-antenna radiation
vector by the array factor, which incorporates all the translational phase shifts and
relative weighting coefficients of the array elements.

We may think of Eq. (18.3.1) as the input/output equation of a linear system with
A(k) as the transfer function. We note that the corresponding radiation intensities and
power gains will also be related in a similar fashion:

Utot(θ,φ) = |A(θ,φ)|2U(θ,φ)
Gtot(θ,φ) = |A(θ,φ)|2G(θ,φ)

(18.3.3)

where U(θ,φ) and G(θ,φ) are the radiation intensity and power gain of a single el-
ement. The array factor can dramatically alter the directivity properties of the single-
antenna element. The power gain |A(θ,φ)|2 of an array can be computed with the help
of the MATLAB function array (see Appendix) with typical usage:

[g, phi] = array(d, a, Nph);
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Example 18.3.1: Consider an array of two isotropic antennas at positions d0 = 0 and d1 = x̂d
(alternatively, at d0 = −(d/2)x̂ and d1 = (d/2)x̂), as shown below:

The displacement phase factors are:

ejk·d0 = 1 , ejk·d1 = ejkxd = ejkd sinθ cosφ

or, in the symmetric case:

ejk·d0 = e−jkxd/2 = e−jk(d/2)sinθ cosφ , ejk·d1 = ejkxd/2 = ejk(d/2)sinθ cosφ

Let a = [a0, a1] be the array coefficients. The array factor is:

A(θ,φ) = a0 + a1ejkd sinθ cosφ

A(θ,φ) = a0e−jk(d/2)sinθ cosφ + a1ejk(d/2)sinθ cosφ , (symmetric case)

The two expressions differ by a phase factor, which does not affect the power pattern. At
polar angle θ = 90o, that is, on the xy-plane, the array factor will be:

A(φ)= a0 + a1ejkd cosφ

and the azimuthal power pattern:

g(φ)= |A(φ)|2 = ∣∣a0 + a1ejkd cosφ∣∣2

Note that kd = 2πd/λ. Figure 18.3.1 shows g(φ) for the array spacings d = 0.25λ,
d = 0.50λ, d = λ, or kd = π/2,π,2π, and the following array weights:

a = [a0, a1]= [1,1]
a = [a0, a1]= [1,−1]

a = [a0, a1]= [1,−j]
(18.3.4)

The first of these graphs was generated by the MATLAB code:

d = 0.25; a = [1,1]; % d is in units of λ
[g, phi] = array(d, a, 400); % 400 phi’s in [0,π]
dbz(phi, g, 30, 20); % 30o grid, 20-dB scale
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Fig. 18.3.1 Azimuthal gain patterns of two-element isotropic array.

As the relative phase of a0 and a1 changes, the pattern rotates so that its main lobe is in
a different direction. When the coefficients are in phase, the pattern is broadside to the
array, that is, towards φ = 90o. When they are in anti-phase, the pattern is end-fire, that
is, towards φ = 0o and φ = 180o.

The technique of rotating or steering the pattern towards some other direction by intro-
ducing relative phases among the elements is further discussed in Sec. 18.9. There, we
will be able to predict the steering angles of this example from the relative phases of the
weights.

Another observation from these graphs is that as the array pattern is steered from broad-
side to endfire, the widths of the main lobes become larger. We will discuss this effect in
Sects. 18.9 and 18.10.
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When d ≥ λ, more than one main lobes appear in the pattern. Such main lobes are called
grating lobes or fringes and are further discussed in Sec. 18.6. Fig. 18.3.2 shows some
additional examples of grating lobes for spacings d = 2λ, 4λ, and 8λ. ��
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Fig. 18.3.2 Grating lobes of two-element isotropic array.

Example 18.3.2: Consider a three-element array of isotropic antennas at locations d0 = 0,
d1 = dx̂, and d2 = 2dx̂, or, placed symmetrically at d0 = −dx̂, d1 = 0, and d2 = dx̂, as
shown below:

The displacement phase factors evaluated at θ = 90o are:

ejk·d0 = 1 , ejk·d1 = ejkxd = ejkd cosφ ejk·d2 = ej2kxd = ej2kd cosφ

Let a = [a0, a1, a2] be the array weights. The array factor is:

A(φ)= a0 + a1ejkd cosφ + a2e2jkd cosφ

Figure 18.3.3 shows g(φ)= |A(φ)|2 for the array spacings d = 0.25λ, d = 0.50λ, d = λ,
or kd = π/2,π,2π, and the following choices for the weights:

a = [a0, a1, a2]= [1,1,1]
a = [a0, a1, a2]= [1, (−1), (−1)2]= [1,−1,1]

a = [a0, a1, a2]= [1, (−j), (−j)2]= [1,−j,−1]

(18.3.5)

where in the last two cases, progressive phase factors of 180o and 90o have been introduced
between the array elements.

The MATLAB code for generating the last graph was:
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Fig. 18.3.3 Azimuthal gains of three-element isotropic array.

d = 1; a = [1,-j,-1];
[g, phi] = array(d, a, 400);
dbz(phi, g, 30, 20);

The patterns are similarly rotated as in the previous example. The main lobes are narrower,
but we note the appearance of sidelobes at the level of −10 dB. We will see later that as
the number of array elements increases, the sidelobes reach a constant level of about −13
dB for an array with uniform weights.

Such sidelobes can be reduced further if we use appropriate non-uniform weights, but at
the expense of increasing the beamwidth of the main lobes. ��
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Example 18.3.3: As an example of a two-dimensional array, consider three z-directed half-
wave dipoles: one at the origin, one on the x-axis, and one on the y-axis, both at a distance
d = λ/2, as shown below.

The relative weights are a0, a1, a2. The displacement vectors are d1 = x̂d and d2 = ŷd.
Using Eq. (15.1.4), we find the translational phase-shift factors:

ejk·d1 = ejkxd = ejkd sinθ cosφ , ejk·d2 = ejkyd = ejkd sinθ sinφ

and the array factor:

A(θ,φ)= a0 + a1ejkd sinθ cosφ + a2ejkd sinθ sinφ

Thus, the array’s total normalized gain will be up to an overall constant:

gtot(θ,φ)= |A(θ,φ)|2 g(θ,φ)= |A(θ,φ)|2
∣∣∣∣ cos(0.5π cosθ)

sinθ

∣∣∣∣
2

The gain pattern on the xy-plane (θ = 90o) becomes:

gtot(φ)=
∣∣a0 + a1ejkd cosφ + a2ejkd sinφ∣∣2

Note that because d = λ/2, we have kl = π. The omnidirectional case of a single element
is obtained by setting a1 = a2 = 0 and a0 = 1. Fig. 18.3.4 shows the gain gtot(φ) for
various choices of the array weights a0, a1, a2.

Because of the presence of the a2 term, which depends on sinφ, the gain is not necessarily
symmetric for negative φ’s. Thus, it must be evaluated over the entire azimuthal range
−π ≤ φ ≤ π. Then, it can be plotted with the help of the function dbz2 which assumes
the gain is over the entire 2π range. For example, the last of these graphs was computed
by:

d = 0.5; a0=1; a1=2; a2=2;
phi = (0:400) * 2*pi/400;
psi1 = 2*pi*d*cos(phi);
psi2 = 2*pi*d*sin(phi);
g = abs(a0 + a1 * exp(j*psi1) + a2 * exp(j*psi2)).^2;
g = g/max(g);
dbz2(phi, g, 45, 12);

When a2 = 0, we have effectively a two-element array along the x-axis with equal weights.
The resulting array pattern is broadside, that is, maximum along the perpendicular φ =
90o to the array. Similarly, when a1 = 0, the two-element array is along the y-axis and the
pattern is broadside to it, that is, along φ = 0. When a0 = 0, the pattern is broadside to
the line joining elements 1 and 2. ��



18.3. Array Pattern Multiplication 611

 90o

−90o

 0o180o

φ

45o

−45o

135o

−135o

−3−6−9
dB

a0=1, a1=1, a2=0
 90o

−90o

 0o180o

φ

45o

−45o

135o

−135o

−3−6−9
dB

a0=1, a1=0, a2=1
 90o

−90o

 0o180o

φ

45o

−45o

135o

−135o

−3−6−9
dB

a0=0, a1=1, a2=1

 90o

−90o

 0o180o

φ

45o

−45o

135o

−135o

−3−6−9
dB

a0=1, a1=1, a2=1
 90o

−90o

 0o180o

φ

45o

−45o

135o

−135o

−3−6−9
dB

a0=2, a1=1, a2=1
 90o

−90o

 0o180o

φ

45o

−45o

135o

−135o

−3−6−9
dB

a0=1, a1=2, a2=2

Fig. 18.3.4 Azimuthal gain patterns of two-dimensional array.

Example 18.3.4: The analysis of the rhombic antenna in Sec. 15.7 was carried out with the
help of the translational phase-shift theorem of Eq. (18.2.1). The theorem was applied to
antenna pairs 1,3 and 2,4.

A more general version of the translation theorem involves both a translation and a rotation
(a Euclidean transformation) of the type r′ = R−1(r − d), or, r = Rr′ + d, where R is a
rotation matrix.

The rotated/translated current density is then defined as JR,d(r)= R−1J(r′) and the cor-
responding relationship between the two radiation vectors becomes:

FR,d(k)= ejk·dR−1F
(
R−1k

)

The rhombic as well as the vee antennas can be analyzed by applying such rotational
and translational transformations to a single traveling-wave antenna along the z-direction,
which is rotated by an angle ±α and then translated. ��

Example 18.3.5: Ground Effects Between Two Antennas. There is a large literature on radio-
wave propagation effects [19,35,45,670–686]. Consider a mobile radio channel in which
the transmitting vertical antenna at the base station is at height h1 from the ground and
the receiving mobile antenna is at height h2, as shown below. The ray reflected from the
ground interferes with the direct ray and can cause substantial signal cancellation at the
receiving antenna.
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The reflected ray may be thought of as originating from the image of the transmitting
antenna at −h1, as shown. Thus, we have an equivalent two-element transmitting array.
We assume that the currents on the actual and image antennas are I(z) and ρI(z), where
ρ = −ρTM is the reflection coefficient of the ground for parallel polarization (the negative
sign is justified in the next example), given in terms of the angle of incidence α by:

ρ = −ρTM = n
2 cosα−

√
n2 − sin2α

n2 cosα+
√
n2 − sin2α

, n2 = ε
ε0
− j σ
ωε0

= εr − j η0

2π
σλ

where n is the complex refractive index of the ground, and we replaced ωε0 = 2πfε0 =
2πc0ε0/λ and c0ε0 = 1/η0. Numerically, we may set η0/2π � 60 Ω. From the geometry
of the figure, we find that the angle α is related to the polar angle θ by:

tanα = r sinθ
h1 + r cosθ

In the limit of large r, α tends to θ. For a perfectly conducting ground (σ = ∞), the
reflection coefficient becomes ρ = 1, regardless of the incidence angle.

On the other hand, for an imperfect ground and for low grazing angles (α � 90o), the
reflection coefficient becomes ρ = −1, regardless of the conductivity of the ground. This
is the relevant case in mobile communications.

The array factor can be obtained as follows. The two displaced antennas are at locations
d1 = h1ẑ and d2 = −h1ẑ, so that the displacement phase factors are:

ejk·d1 = ejkzh1 = ejkh1 cosθ , ejk·d2 = e−jkzh1 = e−jkh1 cosθ

where we replaced kz = k cosθ. The relative feed coefficients are 1 and ρ. Therefore, the
array factor and its magnitude will be:

A(θ) = ejkh1 cosθ + ρe−jkh1 cosθ = ejkh1 cosθ(1+ ρe−j∆)
|A(θ)|2 = ∣∣1+ ρe−j∆∣∣2 , where ∆ = 2kh1 cosθ

(18.3.6)

The gain of the transmitting antenna becomesGtot(θ)= |A(θ)|2G(θ), whereG(θ) is the
gain with the ground absent. For the common case of low grazing angles, or ρ = −1, the
array factor becomes:

|A(θ)|2 = ∣∣1− e−j∆∣∣2 = 2− 2 cos(∆)= 4 sin2
(
∆
2

)

At the location of the mobile antenna which is at height h2, the geometry of the figure
implies that cosθ = h2/r. Thus, we have ∆ = 2kh1 cosθ = 2kh1h2/r, and

|A(θ)|2 = 4 sin2
(
∆
2

)
� ∆2 =

(
2kh1h2

r

)2
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where we assumed that kh1h2/r � 1 and used the approximation sinx � x. Therefore,
for fixed antenna heights h1, h2, the gain at the location of the receiving antenna drops
like 1/r2. This is in addition to the 1/r2 drop arising from the power density. Thus, the
presence of the ground reflection causes the overall power density at the receiving antenna
to drop like 1/r4 instead of 1/r2.

For two antennas pointing towards the maximum gain of each other, the Friis transmission
formula must be modified to read:

P2

P1
= G1G2

(
λ

4πr

)2 ∣∣1+ ρe−j∆∣∣2 , ∆ = 2kh1h2

r
= 4πh1h2

λr
(18.3.7)

The direct and ground-reflected rays are referred to as the space wave. When both antennas
are close to the ground, one must also include a term in A(θ) due to the so-called Norton
surface wave [681–686]:

A(θ)= 1+ ρe−j∆︸ ︷︷ ︸
space wave

+ (1− ρ)Fe−j∆︸ ︷︷ ︸
surface wave

where F is an attenuation coefficient that, for kr	 1, can be approximated by [673]:

F = sin2α
jkr(cosα+ u)2

, u = 1

n2

√
n2 − sin2α

At grazing angles, the space-wave terms of A(θ) tend to cancel and the surface wave be-
comes the only means of propagation. A historical review of the ground-wave propagation
problem and some of its controversies can be found in [671]. ��

Example 18.3.6: Vertical Dipole Antenna over Imperfect Ground. Consider a vertical linear an-
tenna at a height h over ground as shown below. When the observation point is far from
the antenna, the direct and reflected rays r1 and r2 will be almost parallel to each other,
forming an angle θ with the vertical. The incidence angle α of the previous example is
then α = θ, so that the TM reflection coefficient is:

ρTM =
√
n2 − sin2 θ− n2 cosθ√
n2 − sin2 θ+ n2 cosθ

, n2 = εr − j η0

2π
σλ

The relative permittivity εr = ε/ε0 and conductivity σ (in units of S/m) are given below
for some typical grounds and typical frequencies:†

†ITU Recommendation ITU-R P.527-3 on the “Electrical Characteristics of the Surface of the Earth,” 1992.
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1 MHz 100 MHz 1 GHz

ground type εr σ εr σ εr σ

very dry ground 3 10−4 3 10−4 3 1.5×10−4

medium dry ground 15 10−3 15 1.5×10−3 15 3.5×10−3

wet ground 30 10−2 30 1.5×10−2 30 1.5×10−1

fresh water 80 3×10−3 80 5×10−3 80 1.5×10−1

sea water 70 5 70 5 70 5

According to Eq. (15.1.6), the electric fields E1 and E2 along the direct and reflected rays
will point in the direction of their respective polar unit vector θ̂θθ, as seen in the above figure.
According to the sign conventions of Sec. 6.2, the reflected field ρTME2 will be pointing in
the −θ̂θθ direction, opposing E1. The net field at the observation point will be:

E = E1 − ρTME2 = θ̂θθ jkη e
−jkr1

4πr1
Fz(θ)sinθ− θ̂θθ jkη e

−jkr2

4πr2
ρTM Fz(θ)sinθ

where F(θ)= ẑFz(θ) is the assumed radiation vector of the linear antenna. Thus, the
reflected ray appears to have originated from an image current −ρTMI(z). Using the ap-
proximations r1 = r−h cosθ and r2 = r+h cosθ in the propagation phase factors e−jkr1
and e−jkr2 , we obtain for the net electric field at the observation point (r,θ):

E = θ̂θθ jkη e
−jkr

4πr
Fz(θ)sinθ

[
ejkh cosθ − ρTM e−jkh cosθ]

It follows that the (unnormalized) gain will be:

g(θ)= ∣∣Fz(θ)sinθ
∣∣2
∣∣∣1− ρTM(θ)e−2jkh cosθ

∣∣∣2

The results of the previous example are obtained if we set ρ = −ρTM. For a Hertzian dipole,
we may replace Fz(θ) by unity. For a half-wave dipole, we have:

g(θ)=
∣∣∣∣ cos(0.5π cosθ)

sinθ

∣∣∣∣
2 ∣∣∣1− ρTM(θ)e−2jkh cosθ

∣∣∣2

Fig. 18.3.5 shows the resulting gains for a half-wave dipole at heights h = λ/4 and h = λ/2
and at frequencies f = 1 MHz and f = 100 MHz. The ground parameters correspond to
the medium dry case of the above table. The dashed curves represent the gain of a single
dipole, that is, G(θ)= ∣∣cos(0.5π cosθ)/ sinθ

∣∣2
.

The following MATLAB code illustrates the generation of these graphs:

sigma=1e-3; ep0=8.854e-12; er=15; f=1e6; h = 1/4;
n2 = er - j*sigma/ep0/2/pi/f;

th = linspace(0,pi/2,301); c =cos(th); s2 = sin(th).^2;
rho = (sqrt(n2-s2) - n2*c)./(sqrt(n2-s2) + n2*c);
A = 1 - rho .* exp(-j*4*pi*h*cos(th)); % array factor

G = cos(pi*cos(th)/2)./sin(th); G(1)=0; % half-wave dipole gain

g = abs(G.*A).^2; g = g/max(g); % normalized gain

dbp(th, g, 30, 12); % polar plot in dB

Thus, the presence of the ground significantly alters the angular gain of the dipole. For
the case h = λ/2, we observe the presence of grating lobes, arising because the effective
separation between the dipole and its image is 2h > λ/2. ��
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Fig. 18.3.5 Vertical dipole over imperfect ground

18.4 One-Dimensional Arrays

Next, we consider uniformly-spaced one-dimensional arrays. An array along the x-axis
(see Fig. 18.3.4) with elements positioned at locations xn, n = 0,1,2, . . . , will have dis-
placement vectors dn = xnx̂ and array factor:

A(θ,φ)=
∑
n
anejk·dn =

∑
n
anejkxxn =

∑
n
anejkxn sinθ cosφ

where we set kx = k sinθ cosφ. For equally-spaced arrays, the element locations are
xn = nd, where d is the distance between elements. In this case, the array factor be-
comes:

A(θ,φ)=
∑
n
anejnkd sinθ cosφ (18.4.1)

Because the angular dependence comes through the factor kxd = kd sinθ cosφ, we are
led to define the variable:

ψ = kxd = kd sinθ cosφ (digital wavenumber) (18.4.2)
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Then, the array factor may be thought of as a function of ψ:

A(ψ)=
∑
n
anejψn (array factor in digital wavenumber space) (18.4.3)

The variable ψ is a normalized version of the wavenumber kx and is measured in
units of radians per (space) sample. It may be called a normalized digital wavenumber, in
analogy with the time-domain normalized digital frequency ω = ΩT = 2πf/fs, which
is in units of radians per (time) sample.† The array factor A(ψ) is the wavenumber
version of the frequency response of a digital filter defined by

A(ω)=
∑
n
ane−jωn (18.4.4)

We note the difference in the sign of the exponent in the definitions (18.4.3) and
(18.4.4). This arises from the difference in defining time-domain and space-domain
Fourier transforms, or from the difference in the sign for a plane wave, that is,

ejωt−jk·r

The wavenumber ψ is defined similarly for arrays along the y- or z-directions. In
summary, we have the definitions:

ψ = kxd = kd sinθ cosφ (array along x-axis)
ψ = kyd = kd sinθ sinφ (array along y-axis)
ψ = kzd = kd cosθ (array along z-axis)

(18.4.5)

The array factors for the y- and z-axis arrays shown in Fig. 18.1.1 will be:

A(θ,φ) =
∑
n
anejkyyn =

∑
n
anejkyn sinθ sinφ

A(θ,φ) =
∑
n
anejkzzn =

∑
n
anejkzn cosθ

where yn = nd and zn = nd. More generally, for an array along some arbitrary direction,
we have ψ = kd cosγ, where γ is the angle measured from the direction of the array.
The two most commonly used conventions are to assume either an array along the z-
axis, or an array along the x-axis and measure its array factor only on the xy-plane, that
is, at polar angle θ = 90o. In these cases, we have:

ψ = kxd = kd cosφ (array along x-axis, with θ = 90o)
ψ = kzd = kd cosθ (array along z-axis)

(18.4.6)

For the x-array, the azimuthal angle varies over−π ≤ φ ≤ π, but the array response
is symmetric in φ and can be evaluated only for 0 ≤ φ ≤ π. For the z-array, the polar
angle varies over 0 ≤ θ ≤ π.

†Here, Ω denotes the physical frequency in radians/sec.
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In analogy with time-domain DSP, we may also define the spatial analog of the z-plane
by defining the variable z = ejψ and the corresponding z-transform:

A(z)=
∑
n
anzn (array factor in spatial z-domain) (18.4.7)

The difference in sign between the space-domain and time-domain definitions is also
evident here, where the expansion is in powers of zn instead of z−n. The array factor
A(ψ) may be called the discrete-space Fourier transform (DSFT) of the array weighting
sequence an, just like the discrete-time Fourier transform (DTFT) of the time-domain
case. The corresponding inverse DSFT is obtained by

an = 1

2π

∫ π
−π
A(ψ)e−jψndψ (inverse DSFT) (18.4.8)

This inverse transform forms the basis of most design methods for the array coeffi-
cients. As we mentioned earlier, such methods are identical to the methods of designing
FIR filters in DSP. Various correspondences between the fields of array processing and
time-domain digital signal processing are shown in Table 18.4.1.

Example 18.4.1: The array factors and z-transforms for Example 18.3.1 are for the three choices
for the coefficients:

A(ψ) = 1+ ejψ ,
A(ψ) = 1− ejψ ,
A(ψ) = 1− jejψ ,

A(z) = 1+ z
A(z) = 1− z
A(z) = 1− jz

where z = ejψ and ψ = kd cosφ. ��

18.5 Visible Region

Because the correspondence from the physical angle-domain to the wavenumber ψ-
domain is through the mapping (18.4.5) or (18.4.6), there are some additional subtleties
that arise in the array processing case that do not arise in time-domain DSP. We note
first that the array factor A(ψ) is periodic in ψ with period 2π, and therefore, it is
enough to know it within one Nyquist interval, that is, −π ≤ ψ ≤ π.

However, the actual range of variation of ψ depends on the value of the quantity
kd = 2πd/λ. As the azimuthal angle φ varies from 0o to 180o, the quantity ψ =
kd cosφ, defined in Eq. (18.4.6), varies from ψ = kd to ψ = −kd. Thus, the overall
range of variation of ψ—called the visible region—will be:

− kd ≤ ψ ≤ kd (visible region) (18.5.1)

The total width of this region is ψvis = 2kd. Depending on the value of kd, the
visible region can be less, equal, or more than one Nyquist interval:
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discrete-time signal processing discrete-space array processing

time-domain sampling tn = nT space-domain sampling xn = nd
sampling time interval T sampling space interval d
sampling rate 1/T [samples/sec] sampling rate 1/d [samples/meter]
frequency Ω wavenumber kx
digital frequencyω = ΩT digital wavenumber ψ = kxd
Nyquist interval −π ≤ω ≤ π Nyquist interval −π ≤ ψ ≤ π
sampling theorem Ω ≤ π/T sampling theorem kx ≤ π/d
spectral images grating lobes or fringes
frequency response A(ω) array factor A(ψ)
z-domain z = ejω z-domain z = ejψ
transfer function A(z) transfer function A(z)
DTFT and inverse DTFT DSFT and inverse DSFT
pure sinusoid ejω0n narrow beam e−jψ0n

windowed sinusoid w(n)ejω0n windowed narrow beam w(n)e−jψ0n

resolution of multiple sinusoids resolution of multiple beams
frequency shifting by AM modulation phased array scanning
filter design by window method array design by window method
bandpass FIR filter design angular sector array design
frequency-sampling design Woodward-Lawson design
DFT Blass matrix
FFT Butler matrix

Table 18.4.1 Duality between time-domain and space-domain signal processing.

d < λ/2 ⇒ kd < π ⇒ ψvis < 2π (less than Nyquist)
d = λ/2 ⇒ kd = π ⇒ ψvis = 2π (full Nyquist)
d > λ/2 ⇒ kd > π ⇒ ψvis > 2π (more than Nyquist)

(18.5.2)

The visible region can also be viewed as that part of the unit circle covered by the
angle range (18.5.1), as shown in Fig. 18.5.1. If kd < π, the visible region is the arc
zazzb with the point z = ejψ moving clockwise from za to zb as φ varies from 0 to π.
In the case kd = π, the starting and ending points, za and zb, coincide with the ψ = π
point on the circle and the visible region becomes the entire circle. If kd > π, the visible
region is one complete circle starting and ending at za and then continuing on to zb.

In all cases, the inverse transform (18.4.8) requires that we know A(ψ) over one
complete Nyquist interval. Therefore, in the case kd < π, we must specify appropriate
values of the array factor A(ψ) over the invisible region.

18.6 Grating Lobes

In the case kd > π, the values of A(ψ) are over-specified and repeat over the visible
region. This can give rise to grating lobes or fringes, which are mainbeam lobes in



18.6. Grating Lobes 619

Fig. 18.5.1 Visible regions on the unit circle.

directions other than the desired one. We saw some examples in Figs. 18.3.1 and 18.3.2.
Grating lobes are essentially the spectral images generated by the sampling process

(in this case, sampling in space.) Inψ-space, these images fall in Nyquist intervals other
than the central one.

The number of grating lobes in an array pattern is the number of complete Nyquist
intervals fitting within the width of the visible region, that is, m = ψvis/2π = kd/π =
2d/λ. For example in Fig. 18.3.2, the number of grating lobes are m = 4,8,16 for
d = 2λ,4λ,8λ (the two endfire lobes count as one.)

In most array applications grating lobes are undesirable and can be avoided by re-
quiring that kd < 2π, or d < λ. It should be noted, however, that this condition does
not necessarily avoid aliasing—it only avoids grating lobes. Indeed, if d is in the range
λ/2 < d < λ, or, π < kd < 2π, part of the Nyquist interval repeats as shown in
Fig. 18.5.1. To completely avoid repetitions, we must have d ≤ λ/2, which is equivalent
to the sampling theorem condition 1/d ≥ 2/λ.

Grating lobes are desirable and useful in interferometry applications, such as radio
interferometry used in radio astronomy. A simple interferometer is shown in Fig. 18.6.1.
It consists of an array of two antennas separated by d 	 λ, so that hundreds or even
thousands of grating lobes appear.

Fig. 18.6.1 Two-element interferometer and typical angular pattern.
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These lobes are extremely narrow allowing very small angular resolution of radio
sources in the sky. The receiver is either an adder or a cross-correlator of the two
antenna outputs. For an adder and identical antennas with equal weights, the output
will be proportional to the array gain:

g(φ)= ∣∣1+ ejkd cosφ∣∣2 = 2+ 2 cos(kd cosφ)

For a cross-correlator, the output will be proportional to cos(Ωτ), where τ is the
time delay between the received signals. This delay is the time it takes the wavefront to
travel the distance d cosφ, as shown in Fig. 18.6.1, that is, τ = (d cosφ)/c. Therefore,

cos(Ωτ)= cos
(

2πfd cosφ
c

)
= cos(kd cosφ)

In either case, the output is essentially cos(kd cosφ), and thus, exhibits the grating-
lobe behavior. Cross-correlating interferometers are more widely used because they are
more broadband.

The Very Large Array (VLA) radio telescope in New Mexico consists of 27 dish an-
tennas with 25-m diameters. The antennas are on rails extending in three different
directions to distances of up to 21 km. For each configuration, the number of possible
interferometer pairs of antennas is 27(27−1)/2 = 351. These 351 outputs can be used
to make a “radio” picture of the source. The achievable resolution is comparable to that
of optical telescopes (about 1 arc second.)

The Very Long Baseline Array (VLBA) consists of ten 25-m antennas located through-
out the continental US, Puerto Rico, and Hawaii. The antennas are not physically con-
nected to each other. Rather, the received signals at each antenna are digitally recorded,
with the antennas being synchronized with atomic frequency standards, and then the
recorded signals are digitally cross-correlated and processed off-line. The achievable
resolution is about one milli-arc-second.

We note finally that in an interferometer, the angular pattern of each antenna element
must also be taken into account because it multiplies the array pattern.

Example 18.6.1: In Fig. 18.3.2, we assumed isotropic antennas. Here, we look at the effect of
the element patterns. Consider an array of two identical z-directed half-wavelength dipole
antennas positioned along the z-axis at locations z0 = 0 and z1 = d. The total polar gain
pattern will be the product of the array gain factor and the gain of each dipole:

gtot(θ)= |A(θ)|2gdipole(θ)=
∣∣a0 + a1ejkd cosθ∣∣2

∣∣∣∣ cos(0.5π cosθ)
sinθ

∣∣∣∣
2

Fig. 18.6.2 shows the effect of the element pattern for the case d = 8λ and uniform weights
a = [a0, a1]= [1,1]. The figure on the left represents the array factor, with the element
pattern superimposed (dashed gain). On the right is the total gain.

The MATLAB code used to generate the right graph was as follows:

d=8; a=[1,1];
[g, th] = array(d, a, 400);
gdip = dipole(0.5, 400);
gtot = g .* gdip;
dbp(th, gtot, 30, 12);
dbadd(1, ’--’, th, gdip, 30, 12); ��
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Fig. 18.6.2 Grating lobes of two half-wavelength dipoles separated by d = 8λ.

18.7 Uniform Arrays

The simplest one-dimensional array is the uniform array having equal weights. For an
array of N isotropic elements at locations xn = nd, n = 0,1, . . . ,N − 1, we define:

a = [a0, a1, . . . , aN−1]= 1

N
[1,1, . . . ,1] (18.7.1)

so that the sum of the weights is unity. The corresponding array polynomial and array
factor are:

A(z) = 1

N
[
1+ z+ z2 + · · · + zN−1] = 1

N
zN − 1

z− 1

A(ψ) = 1

N
[
1+ ejψ + e2jψ + · · · + e(N−1)jψ] = 1

N
ejNψ − 1

ejψ − 1

(18.7.2)

where z = ejψ andψ = kd cosφ for an array along the x-axis and look direction on the
xy-plane. We may also write A(ψ) in the form:

A(ψ)=
sin

(
Nψ

2

)

N sin
(
ψ
2

) ej(N−1)ψ/2 (uniform array) (18.7.3)

The array factor (18.7.2) is the spatial analog of a lowpass FIR averaging filter in
discrete-time DSP. It may also be viewed as a window-based narrow-beam design using a
rectangular window. From this point of view, Eq. (18.7.3) is the DSFT of the rectangular
window.

The array factor has been normalized to have unity gain at dc, that is, at zero
wavenumber ψ = 0, or at the broadside azimuthal angle φ = 90o. The normalized
power gain of the array will be:

g(φ)= |A(ψ)|2 =
∣∣∣∣∣ sin(Nψ/2)
N sin(ψ/2)

∣∣∣∣∣
2

=
∣∣∣∣∣ sin

(
(Nkd/2)cosφ

)
N sin

(
(kd/2)cosφ

)
∣∣∣∣∣

2

(18.7.4)
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Although (18.7.2) defines the array factor for all ψ over one Nyquist interval, the
actual visible region depends on the value of kd.

Fig. 18.7.1 showsA(ψ) evaluated only over its visible region for an 8-element (N = 8)
array, for the following three choices of the element spacing: d = 0.25λ, d = 0.5λ, and
d = λ. The following MATLAB code generates the last two graphs:

d=1; N=8;
a = uniform(d, 90, N);
[g, phi] = array(d, a, 400);
A = sqrt(g);
psi = 2*pi*d*cos(phi);
plot(psi/pi, A);
figure(2);
dbz(phi, g, 45, 20);

Fig. 18.7.1 Array factor and angular pattern of 8-element uniform array.

As φ varies from 0o to 180o, the visible regions for the three cases are:

d = 0.25λ, ψ = (π/2)cosφ ⇒ −π/2 ≤ ψ ≤ π/2
d = 0.5λ, ψ = π cosφ ⇒ −π ≤ ψ ≤ π
d = λ, ψ = 2π cosφ ⇒ −2π ≤ ψ ≤ 2π

Thus, in the first case the visible region is only half of the Nyquist interval; in the
second case, it is the full interval; and in the third case, the Nyquist interval is covered
twice, and therefore, grating lobes will appear. Becauseψ = 2π cosφ, the grating lobes
at ψ = ±2π correspond to the endfire angles of φ = 0o and 180o (the larger width of
the endfire lobes is explained in Sec. 18.10.)
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The N − 1 zeros of the array polynomial A(z) are the N-th roots of unity, except
for the root at z = 1, that is,

zk = ejψk , ψk = 2πk
N
, k = 1,2, . . . ,N − 1

Because these zeros lie on the unit circle, they will correspond to nulls in the angular
pattern, as long as they lie in the visible region. For d = 0.25λ, and in general for any
d < λ/2, only a subset of these zeros will fall in the visible region. The zeros of the
8-element array patterns of Fig. 18.7.1 are shown in Fig. 18.7.2.

Fig. 18.7.2 Zero locations and visible regions of 8-element uniform array.

The two most important features of the uniform array are its 3-dB beamwidth∆ψ3dB,
or ∆φ3dB in angle-space, and its sidelobe level R. These parameters are shown in
Fig. 18.7.3, for an 8-element uniform array with d = 0.5λ.

Fig. 18.7.3 Mainlobe width and sidelobe level of uniform array.

For N larger than about 5–6, the sidelobe level becomes independent of N and has
the limiting value of R = 13 dB. Similarly, the beamwidth in ψ-space—defined as the
full width of the mainlobe at the half-power level—takes the simple form:

∆ψ3dB = 0.886
2π
N

(3-dB width in ψ-space) (18.7.5)

The first nulls in the array factor about the mainlobe are at ±ψ1 = ±2π/N, and
therefore, 2π/N represents half of the base of the mainlobe.
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The 3-dB width∆φ3dB in angle space can be obtained by differentiating the equation
ψ = kd cosφ, that is, dψ = (∂ψ/∂φ)dφ = (−kd sinφ)dφ. Evaluating the derivative
at broadside (φ = 90o) and assuming a narrow mainlobe, we have:

∆ψ3dB =
∣∣∣∣∣∂ψ∂φ

∣∣∣∣∣∆φ3dB = kd∆φ3dB

Solving for ∆φ3dB, we obtain ∆φ3dB = ∆ψ3dB/(kd)= 0.886(2π/N)/(2πd/λ), or

∆φ3dB = 0.886
λ
Nd

(3-dB width at broadside) (18.7.6)

The mainlobe beamwidth gets narrower with increasingN, while the relative sidelobe
level remains the same. To achieve better (lower) sidelobe levels, one must use non-
uniform weights obtained from non-rectangular windows.

The quantity D = Nd is the effective aperture of the array. Thus, we recognize
Eq. (18.7.6) as the classical Rayleigh limit on the resolving power of an optical system,
which states that the angular resolution achieved by an aperture of lengthD is essentially
λ/D.

The beamwidth expression (18.7.5) and the 13-dB sidelobe level can be justified as
follows. The peak of the first sidelobe occurs approximately half-way between the first
two nulls, that is, at ψ = 3π/N. More precisely, it occurs at ψ = 2.8606π/N. Thus,
the sidelobe level in dB will be:

R = −20 log10

∣∣∣∣A(ψ)A(0)

∣∣∣∣
ψ=2.8606π/N

= −20 log10

∣∣∣∣ sin(1.4303π)
N sin(1.4303π/N)

∣∣∣∣
� −20 log10

∣∣∣∣ sin(1.4303π)
N(1.4303π/N)

∣∣∣∣ = −20 log10

∣∣∣∣sin(1.4303π)
1.4303π

∣∣∣∣ = 13.26 dB

where we used the small-x approximation, sinx � x, in the denominator, which is justi-
fied whenN is large. Setting x = Nψ/2, the sidelobe peak corresponds to the secondary
maximum of the approximate array factor sinx/x, which by differentiation leads to the
equation x = tanx, having solution x = 1.4303π, or ψ = 2x/N = 2.8606π/N.

The 3-dB width ∆ψ3dB is twice the 3-dB or half-power frequency ψ3, defined to be
the solution of the equation:

|A(ψ3)|2 =
∣∣∣∣∣ sin(Nψ3/2)
N sin(ψ3/2)

∣∣∣∣∣
2

= 1

2

Becauseψ3 is always smaller than 2π/N, it will be small for large N, and therefore,
we may make the same approximation in the denominator as above, giving the simplified
equation:

∣∣∣∣∣sin(Nψ3/2)
Nψ3/2

∣∣∣∣∣
2

=
∣∣∣∣sinx3

x3

∣∣∣∣2

= 1

2

where x3 = Nψ3/2. The quantity x3 is determined to be the constant x3 = 0.443π.
Thus, ψ3 = 2x3/N = 0.443(2π/N), and ∆ψ3dB = 2ψ3 = 0.886(2π/N).
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18.8 Array Directivity

The value of kd has an impact also on the directivity of an array. In the array processing
literature, the directivity of an array is usually defined with reference to a z-directed
array consisting of isotropic radiators. The wavenumber is ψ = kd cosθ and the max-
imum of the array factor is assumed to occur at broadside θ = 90o, or ψ = 0. This
basically means that the array factor will have a lowpass shape as a function of ψ, with
a maximum value at dc given by

|A(0)| =
∣∣∣∣∣∣
N−1∑
n=0

an

∣∣∣∣∣∣
It follows that the normalized power gain of the array will be:

g(θ)= c|A(θ)|2

where c = 1/|A(0)|2. The corresponding beam solid angle will be:

∆Ω = 2π
∫ π

0
g(θ)sinθdθ = 2π

∫ π
0
c|A(θ)|2 sinθdθ

Changing variables of integration from θ to ψ, which varies over the visible region
(18.5.1), we obtain:

∆Ω = 2π
kd

∫ kd
−kd
c|A(ψ)|2 dψ = 2πc

kd

∫ kd
−kd

∑
n,m
ana∗mej(n−m)ψ dψ

Performing the integration, we get

∆Ω = 4πc
∑
n,m
ana∗m

sin
(
kd(n−m))
kd(n−m)

Therefore, the directivity of the array becomes:

D = 4π
∆Ω

=

∣∣∑
n
an
∣∣2

∑
n,m
ana∗m

sin
(
kd(n−m))
kd(n−m)

(18.8.1)

In the particular case of half-wavelength spacing d = λ/2 or kd = π, the sinc function
acts as a delta function δ(n−m), and the sum simplifies into:

D =
∣∣∑N−1

n=0 an
∣∣2∑N−1

n=0 |an|2
(18.8.2)

The maximum of this quantity is reached when all the coefficients are equal to each
other. The common value may be adjusted so that their sum is unity, that is:

an = 1

N
, n = 0,1, . . . ,N − 1
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The maximized value of D becomes:

max D = N (18.8.3)

Thus, the uniform array with half-wavelength spacing achieves maximum directivity
equal to the number of array elements. This result is analogous to finding the opti-
mum N-tap lowpass FIR filter that minimizes the noise reduction ratio, that is, the sum
of the squares of the coefficients.

18.9 Array Steering

An array is typically designed to have maximum directive gain at broadside, that is,
at φ = 90o (for an array along the x-axis.) The maximum of the array factor A(ψ)
corresponds to ψ = kd cosφ = 0, so that |A|max = |A(0)|.

We wish to “electronically” rotate, or steer, the array pattern towards some other
direction, say φ0, without physically rotating it. The corresponding wavenumber at the
desired look-direction will be:

ψ0 = kd cosφ0 (steering phase) (18.9.1)

Such steering operation can be achieved by wavenumber translation inψ-space, that
is, replacing the broadside pattern A(ψ) by the translated pattern A(ψ −ψ0). Thus,
we define:

A′(ψ)= A(ψ−ψ0) (steered array factor) (18.9.2)

and the translated wavenumber variable,

ψ′ = ψ−ψ0 = kd(cosφ− cosφ0) (steered wavenumber) (18.9.3)

Then, A′(ψ)= A(ψ′). The maximum of A′(ψ) will coincide with the maximum of
A(ψ′), which occurs at ψ′ = 0, or equivalently at ψ = ψ0, or at angle φ = φ0.
Fig. 18.9.1 illustrates this wavenumber translation process and the corresponding ro-
tation of the angular pattern, for an 11-element uniform array with d = λ/2, steered
from broadside to φ0 = 60o. The MATLAB code for the last two graphs was:

d=0.5; N=11; ph0=60;
a = uniform(d, ph0, N);
[g, phi] = array(d, a, 400);
psi = 2*pi*d*cos(phi);
plot(psi/pi, sqrt(g));
figure(2);
dbz(phi, g, 30, 20);

It follows from the translation theorem of Fourier transforms that the weight coef-
ficients a′n of the translated pattern A′(ψ) will be given by:

a′n = ane−jψ0n (steered array weights) (18.9.4)

so that we have:
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Fig. 18.9.1 Array steering or scanning by translation in wavenumber space.

A′(ψ)=
∑
n
a′nejψn =

∑
n
anej(ψ−ψ0)n =

∑
n
anejψ

′n = A(ψ′)

Because of the progressive phase factors e−jψ0n in the weights a′n, the steered or
scanned array is sometimes called a phased or scanning array.

The time-domain version of array steering is AM modulation, in which a baseband
signal is translated up in frequency by modulating with it a sinusoidal carrier, much like
Eq. (18.9.4). Frequency translation is also used in DSP for mapping a lowpass filter into
a bandpass one and for designing filter banks. We will use it in Sec. 19.4 to design arrays
with angular sector patterns.

The MATLAB functions steer.m and scan.m of Appendix G can be used to imple-
ment Eq. (18.9.4). Their usage for even or odd number of array elements is discussed in
Sec. 19.1.

Example 18.9.1: In Examples 18.3.1 and 18.3.2, we considered the three cases having progres-
sive phasesψ0 = 0,π,π/2. These may or may not correspond to a physical steering angle
φ0, depending on whether or not ψ0 lies in the visible region.

In the caseψ0 = π and d = 0.25λ, we haveψ = 0.5π cosφ, and therefore it is not possible
to find a solution for 0.5π cosφ0 = ψ0 = π. However, the array factor does correspond
to a pattern rotated towards endfire. This can be seen from the expression,

|A(ψ)| = |1− ejψ| = 2
∣∣sin(ψ/2)

∣∣ = 2
∣∣sin(0.25π cosφ)

∣∣
which is maximum towards endfire and minimum towards broadside. In the case ψ0 =
π/2 and d = 0.25λ, there is a solution to 0.5π cosφ0 = ψ0 = 0.5π, that is, φ0 = 0o,
which corresponds to the maximum of the steered array.
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In the case ψ0 = π and d = 0.5λ, we have ψ = π cosφ, and the solution to the equation
π cosφ0 = π is φ0 = 0o. However, because the phase ψ0 = π is indistinguishable
from the phase ψ0 = −π (both lead to e−jψ0 = −1), we will also have the solution to
π cosφ0 = −π, which is φ0 = 180o.

In the case ψ0 = π/2 and d = 0.5λ, the solution to π cosφ0 = π/2 is φ0 = 60o, which
corresponds to the maximum, as can be seen in Fig. 18.3.1.

In the case ψ0 = ±π and d = λ, we have ψ = 2π cosφ, and the solutions to 2π cosφ0 =
±π are φ0 = 60o and 120o.

Finally, in the case ψ0 = π/2 and d = λ, the solution to 2π cosφ0 = π/2 is φ0 = 75.5o.
However, there is another grating lobe maximum towardsφ0 = 138.6o, which corresponds
to the solution of 2π cosφ0 = −3π/2. This is so becauseψ0 = π/2 andψ0 = −3π/2 are
indistinguishable phases, both leading to e−jψ0 = −j. ��

The concepts of visible region, beamwidth, and the condition for absence of grating
lobes, translate with minor modifications to the case of a steered array. As the angle φ
varies over 0o ≤ φ ≤ 180o, the translated wavenumberψ′ of Eq. (18.9.3) varies over the
shifted visible region:

−kd(1+ cosφ0)≤ ψ′ ≤ kd(1− cosφ0) (shifted visible region) (18.9.5)

where its total width is again 2kd. The condition for absence of grating lobes is obtained
with the help of the inequality:

|ψ′| ≤ kd| cosφ− cosφ0| ≤ kd
(| cosφ| + | cosφ0|

) ≤ kd(1+ | cosφ0|
)

To ensure no grating lobes, ψ′ must remain strictly less than 2π, which results in
the sufficient condition: kd

(
1+ | cosφ0|

)
< 2π, or replacing kd = 2πd/λ,

d <
λ

1+ | cosφ0| (no grating lobes) (18.9.6)

At broadside,φ0 = 90o, this reduces the earlier condition d < λ. At endfire,φ0 = 0o

or 180o, it reduces to d < λ/2.

18.10 Array Beamwidth

Because the steered array has a mainlobe towards the directionφ0, the beamwidth must
be calculated by linearizing the map ψ = kd cosφ about φ0, that is,

∆ψ =
∣∣∣∣∣∂ψ∂φ

∣∣∣∣∣
φ0

∆φ = | − kd sinφ0|∆φ

which leads to the 3-dB beamwidth in angle-space:

∆φ3dB = 1

kd sinφ0
∆ψ3dB , (3-dB width of steered array) (18.10.1)
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For window-based narrow-beam design methods, the beamwidth ∆ψ3dB is approxi-
mately equal to the product of the beamwidth of the uniform array, Eq. (18.7.5), and a
so-called broadening factor b, whose value depends on the choice of the window. Thus,
we have:

∆ψ3dB = b∆ψ3-dB, uniform = 0.886
2πb
N

(3-dB width in ψ-space) (18.10.2)

Combining Eqs. (18.10.1) and (18.10.2) and replacing kd by 2πd/λ, we get:

∆φ3dB = 0.886

sinφ0

λ
Nd

b , (3-dB width in angle-space) (18.10.3)

The 3-dB angles will be approximately φ0 ± ∆φ3dB/2. Because of the presence of
sinφ0 in the denominator, the beamwidth ∆φ3dB will broaden as the array is steered
from broadside to endfire.

Exactly at endfire, φ0 = 0o or 180o, Eq. (18.10.3) fails and the beamwidth must be
calculated by a different procedure. At φ0 = 0o, the translated wavenumber ψ′ =
ψ −ψ0 becomes ψ′ = kd(cosφ − 1). Using the approximation cosx = 1 − x2/2, we
may relate the 3-dB angle φ3 to the corresponding 3-dB wavenumber by:

ψ′3 = kd(cosφ3 − 1)= kd((1−φ2
3/2)−1

) = −1

2
kdφ2

3

It follows that the 3-dB width inψ-space will be∆ψ3dB = 2|ψ′3| = kdφ2
3. Solving for

φ3, we haveφ3 =
√
∆ψ3dB/kd. Thus, the 3-dB width in angle space will be∆φ3dB = 2φ3,

or

∆φ3dB = 2

√
∆ψ3dB

kd
, (3-dB width at endfire) (18.10.4)

The same expression also holds for endfire towards φ0 = 180o. Replacing ∆ψ3dB

from Eq. (18.10.2), we find the width in angle space:

∆φ3dB = 2

√
0.886

λ
Nd

b , (3-dB width in angle-space) (18.10.5)

To summarize, the angular 3-dB width of the steered array can be computed in terms
of the broadside 3-dB width in wavenumber space by:

∆φ3dB =




1

kd sinφ0
∆ψ3dB , for 0o < φ0 < 180o

2

√
∆ψ3dB

kd
, for φ0 = 0o, 180o

(18.10.6)

In particular, if Eq. (18.10.2) is used:
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∆φ3dB =




0.886

sinφ0

λ
Nd

b , for 0o < φ0 < 180o

2

√
0.886

λ
Nd

b , for φ0 = 0o, 180o

(18.10.7)

In degrees, Eq. (18.10.7) reads as:

∆φ3dB =




50.76o

sinφ0

λ
Nd

b , for 0o < φ0 < 180o

107.86o

√
λ
Nd

b , for φ0 = 0o, 180o

(18.10.8)

In some designs such as binomial arrays, it is easier to determine ∆ψ3dB directly
from the array factor A(ψ). In other designs, it is more convenient to estimate ∆ψ3dB

using Eq. (18.10.2).
The broadening factor b depends on the choice of the window and its sidelobe level.

The larger the sidelobe attenuation, the larger the broadening factor. Some examples of
broadening factors for different windows are given as follows:

Rectangular: b = 1, (R = 13 dB)

Hamming: b = 2, (R = 40 dB)

Taylor-Kaiser: b = 6(R+ 12)
155

Dolph-Chebyshev: b = 1+ 0.636
[

2

Ra
cosh

(√
acosh2(Ra)−π2

)]2

where R and Ra represent the sidelobe level in dB and absolute units, respectively,

R = 20 log10(Ra) � Ra = 10R/20 (sidelobe level) (18.10.9)

Here, R and Ra represent the attenuation of the sidelobe and, therefore, R > 0 and
Ra > 1. The corresponding gain of the sidelobe relative to the mainlobe peak will be
R−1
a = 10−R/20, which is less than one.

The MATLAB function bwidth.m of Appendix G implements Eq. (18.10.6). Its inputs
are the quantities d, φ0, ∆ψ3dB and its output is the 3-dB width in degrees ∆φ3dB. Its
usage is:

Dphi = bwidth(d, phi0, Dpsi)

18.11 Problems

18.1 Show that the modified Friis formula (18.3.7) for two antennas over imperfect ground takes
the following frequency-independent form in the limit of low grazing angles and h1h2 � λr:

P2

P1
= G1G2

(
h1h2

r2

)2
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18.2 Consider two horizontal dipoles I over imperfect ground, oriented along the x and y direc-
tions, as shown below. Show that the effect of the direct and ground-reflected rays can be
obtained by considering an image dipole ρI.

By considering the relative directions of the electric field along the direct and reflected rays,
show that the resulting in array factor has the form:

A(θ)= ejkh cosθ + ρe−jkh cosθ

with ρ = ρTM for the x-directed case and ρ = ρTE for the y-directed one, where ρTM, ρTE are
given by Eq. (6.4.4) with n2 = εr − j60σλ.



19
Array Design Methods

19.1 Array Design Methods

As we mentioned in Sec. 18.4, the array design problem is essentially equivalent to the
problem of designing FIR digital filters in DSP. Following this equivalence, we discuss
several array design methods, such as:

1. Schelkunoff’s zero placement method
2. Fourier series method with windowing
3. Woodward-Lawson frequency-sampling design
4. Narrow-beam low-sidelobe design methods
5. Multi-beam array design

Next, we establish some common notation. One-dimensional equally-spaced arrays
are usually considered symmetrically with respect to the origin of the array axis. This
requires a slight redefinition of the array factor in the case of even number of array
elements. Consider an array ofN elements at locations xm along the x-axis with element
spacing d. The array factor will be:

A(φ)=
∑
m
amejkxxm =

∑
m
amejkxm cosφ

where kx = k cosφ (for polar angle θ = π/2.) If N is odd, say N = 2M + 1, we can
define the element locations xm symmetrically as:

xm =md, m = 0,±1,±2, . . . ,±M
This was the definition we used in Sec. 18.4. The array factor can be written then as

a discrete-space Fourier transform or as a spatial z-transform:

A(ψ) =
M∑

m=−M
amejmψ = a0 +

M∑
m=1

[
amejmψ + a−me−jmψ

]

A(z) =
M∑

m=−M
amzm = a0 +

M∑
m=1

[
amzm + a−mz−m

] (19.1.1)

632
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where ψ = kxd = kd cosφ and z = ejψ. On the other hand, if N is even, say N = 2M,
in order to have symmetry with respect to the origin, we must place the elements at the
half-integer locations:

x±m = ±
(
md− d

2

) = ±(m− 1

2

)
d, m = 1,2, . . . ,M

The array factor will be now:

A(ψ) =
M∑
m=1

[
amej(m−1/2)ψ + a−me−j(m−1/2)ψ

]

A(z) =
M∑
m=1

[
amzm−1/2 + a−mz−(m−1/2)

] (19.1.2)

In particular, if the array weights am are symmetric with respect to the origin, am =
a−m, as they are in most design methods, then the array factor can be simplified into
the cosine forms:

A(ψ)= a0 + 2
M∑
m=1

am cos(mψ), (N = 2M + 1)

A(ψ)= 2
M∑
m=1

am cos
(
(m− 1/2)ψ)

)
, (N = 2M)

(19.1.3)

In both the odd and even cases, Eqs. (19.1.1) and (19.1.2) can be expressed as the
left-shifted version of a right-sided z-transform:

A(z)= z−(N−1)/2Ã(z)= z−(N−1)/2
N−1∑
n=0

ãnzn (19.1.4)

where a = [ã0, ã1, . . . , ãN−1] is the vector of array weights reindexed to be right-sided.
In terms of the original symmetric weights, we have:

[ã0, ã1, . . . , ãN−1]= [a−M, . . . , a−1, a0, a1, . . . , aM], (N = 2M + 1)

[ã0, ã1, . . . , ãN−1]= [a−M, . . . , a−1, a1, . . . , aM], (N = 2M)
(19.1.5)

In time-domain DSP, a factor of z represents a time-advance or left shift. But in the
spatial domain, a left shift is represented by z−1 because of the opposite sign convention
in the definition of the z-transform. Thus, the factor z−(N−1)/2 represents a left shift by
a distance (N − 1)d/2, which places the middle of the right-sided array at the origin.
For instance, see Examples 18.3.1 and 18.3.2.

The corresponding array factors in ψ-space are related in a similar fashion. Setting
z = ejψ, we have:

A(ψ)= e−jψ(N−1)/2Ã(ψ)= e−jψ(N−1)/2
N−1∑
n=0

ãnejnψ (19.1.6)
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Working with Ã(ψ) is more convenient for programming purposes, as it can be
computed by an ordinary DTFT routine, such as that in Ref. [52], Ã(ψ)= dtft(a,−ψ).
The phase factor e−jψ(N−1)/2 does not affect the power gain of the array; indeed, we
have |A(ψ)|2 = |Ã(ψ)|2 = |dtft(a,−ψ)|2.

Some differences arise also for steered array factors. Given a steering phase ψ0 =
kd cosφ0, we define the steered array factor as A′(ψ)= A(ψ−ψ0). Then, we have:

A′(ψ)= A(ψ−ψ0)= e−j(ψ−ψ0)(N−1)/2Ã(ψ−ψ0)= e−jψ(N−1)/2Ã′(ψ)

It follows that the steered version of Ã(ψ) will be:

Ã′(ψ)= ejψ0(N−1)/2Ã(ψ−ψ0) (19.1.7)

which implies for the weights:

ã′n = ãne−jψ0(n−(N−1)/2) , n = 0,1, . . . ,N − 1 (19.1.8)

This simply means that the progressive phase is measured with respect to the middle
of the array. Again, the common phase factor ejψ0(N−1)/2 is usually unimportant. One
case where it is important is the case of multiple beams steered towards different angles;
these are discussed in Sec. 19.10. In the symmetric notation, the steered weights are as
follows:

a′m = ame−jmψ0 , m = 0,±1,±2, . . . ,±M, (N = 2M + 1)

a′±m = a±me∓j(m−1/2)ψ0 , m = 1,2, . . . ,M, (N = 2M)
(19.1.9)

The MATLAB functions scan and steer perform the desired progressive phasing of
the weights according to Eq. (19.1.8). Their usage is as follows:

ascan = scan(a, psi0); % scan array with given scanning phase ψ0

asteer = steer(d, a, ph0); % steer array towards given angle φ0

Example 19.1.1: For the cases N = 7 and N = 6, we have M = 3. The symmetric and right-
sided array weights will be related as follows:

a = [ã0, ã1, ã2, ã3, ã4, ã5, ã6]= [a−3, a−2, a−1, a0, a1, a2, a3]

a = [ã0, ã1, ã2, ã3, ã4, ã5]= [a−3, a−2, a−1, a1, a2, a3]

For N = 7 we have (N − 1)/2 = 3, and for N = 6, (N − 1)/2 = 5/2. Thus, the array
locations along the x-axis will be:

xm =
{−3d, −2d, −d, 0, d, 2d, 3d

}

xm =
{−5

2
d, −3

2
d, −1

2
d,

1

2
d,

3

2
d,

5

2
d
}

Eq. (19.1.4) reads as follows in the two cases:
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A(z) = a−3z−3 + a−2z−2 + a−1z−1 + a0 + a1z+ a2z2 + a3z3

= z−3
[
a−3 + a−2z+ a−1z2 + a0z3 + a1z4 + a2z5 + a3z6

] = z−3Ã(z)

A(z) = a−3z−5/2 + a−2z−3/2 + a−1z−1/2 + a1z1/2 + a2z3/2 + a3z5/2

= z−5/2[a−3 + a−2z+ a−1z2 + a1z3 + a2z4 + a3z5
] = z−5/2Ã(z)

If the arrays are steered, the weights pick up the progressive phases:

[
a−3ej3ψ0 , a−2ej2ψ0 , a−1ejψ0 , a0, a1e−jψ0 , a2e−j2ψ0 , a3e−j3ψ0

]
= ej3ψ0

[
a−3, a−2e−jψ0 , a−1e−2jψ0 , a0e−3jψ0 , a1e−4jψ0 , a2e−j5ψ0 , a3e−j6ψ0

]
[
a−3ej5ψ0/2, a−2ej3ψ0/2, a−1ejψ0/2, a1e−jψ0/2, a2e−j3ψ0/2, a3e−j5ψ0/2

]
= ej5ψ0/2

[
a−3, a−2e−jψ0 , a−1e−2jψ0 , a1e−3jψ0 , a2e−j4ψ0 , a3e−j5ψ0

]

where ψ0 = kd cosφ0 is the steering phase. ��

Example 19.1.2: The uniform array of Sec. 18.7, was defined as a right-sided array. In the
present notation, the weights and array factor are:

a = [ã0, ã1, . . . , ãN−1]= 1

N
[1,1, . . . ,1], Ã(z)= 1

N
zN − 1

z− 1

Using Eq. (19.1.4), the corresponding symmetric array factor will be:

A(z)= z−(N−1)/2Ã(z)= z−(N−1)/2 1

N
zN − 1

z− 1
= 1

N
zN/2 − z−N/2
z1/2 − z−1/2

Setting z = ejψ, we obtain

A(ψ)=
sin

(
Nψ

2

)

N sin
(
ψ
2

) (19.1.10)

which also follows from Eqs. (18.7.3) and (19.1.6). ��

19.2 Schelkunoff’s Zero Placement Method

The array factor of an N-element array is a polynomial of degree N− 1 and therefore it
has N − 1 zeros:

Ã(z)=
N−1∑
n=0

ãnzn = (z− z1)(z− z2)· · · (z− zN−1)ãN−1 (19.2.1)

By proper placement of the zeros on the z-plane, a desired array factor can be de-
signed. Schelkunoff’s paper of more than 45 years ago [578] discusses this and the
Fourier series methods.
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As an example consider the uniform array that has zeros equally spaced around
the unit circle at the N-th roots of unity, that is, at zi = ejψi , where ψi = 2πi/N,
i = 1,2, . . . ,N − 1. The index i = 0 is excluded as z = 1 or ψ = 0 corresponds to the
mainlobe peak of the array. Depending on the element spacing d, it is possible that not
all of these zeros lie within the visible region and, therefore, they may not correspond to
actual nulls in the angular pattern. This happens when d < λ/2 for a broadside array,
which has a visible region that covers less than the full unit circle, ψvis = 2kd < 2π.

Schelkunoff’s design idea was to place all N− 1 zeros of the array within the visible
region, for example, by equally spacing them within it. Fig. 19.2.1 shows the visible
regions and array zeros for a six-element endfire array with element spacings d = λ/4
and d = λ/8.

Fig. 19.2.1 Endfire array zeros and visible regions for N = 6, and d = λ/4 and d = λ/8.

The visible region is determined by Eq. (18.9.5). For an endfire (φ0 = 0) array with
d = λ/4 or kd = π/2, the steered wavenumber will be ψ′ = kd(cosφ − cosφ0)=
(cosφ − 1)π/2 and the corresponding visible region, −π ≤ ψ′ ≤ 0. Similarly, when
d = λ/8 or kd = π/4, we haveψ′ = (cosφ−1)π/4 and visible region,−π/2 ≤ ψ′ ≤ 0.

The uniform array has five zeros. When d = λ/4, only three of them lie in the visible
region, and when d = λ/8 only one of them does. By contrast Schelkunoff’s design
method places all five zeros within the visible regions.

Fig. 19.2.2 shows the gains of the two cases and compares them to the gains of the
corresponding uniform array. The presence of more zeros in the visible regions results
in a narrower mainlobe and smaller sidelobes.

The angular nulls corresponding to the zeros that lie in the visible region may be
observed in these graphs for both the uniform and Schelkunoff designs.

Because the visible region is in both cases −2kd ≤ ψ′ ≤ 0, the five zeros are chosen
as zi = ejψi , where ψi = −2kdi/5, i = 1,2, . . . ,5. The array weights can be obtained
by expanding the zero factors of Eq. (19.2.1). The following MATLAB statements will
perform and plot the design:

d=1/4; kd=2*pi*d;
i = 1:5;
psi = -2*kd*i/5;
zi = exp(j*psi);
a = fliplr(poly(zi));
a = steer(d, a, 0);
[g, ph] = array(d, a, 400);
dbz(ph, g, 45, 40);
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Fig. 19.2.2 Gain of six-element endfire array with d = λ/4 and d = λ/8.

The function poly computes the expansion coefficients. But because it lists them
from the higher coefficient to the lowest one, that is, from zN−1 to z0, it is necessary to
reverse the vector by fliplr. When the weight vector is symmetric with respect to its
middle, such reversal is not necessary.

19.3 Fourier Series Method with Windowing

The Fourier series design method is identical to the same method in DSP for designing
FIR digital filters [51,52]. The method is based on the inverse discrete-space Fourier
transforms of the array factor.

Eqs. (19.1.1) and (19.1.2) may be thought of as the truncated or windowed versions
of the corresponding infinite Fourier series. Assuming an infinite and convergent series,
we have for the “odd” case:

A(ψ)= a0 +
∞∑
m=1

[
amejmψ + a−me−jmψ

]
(19.3.1)

Then, the corresponding inverse transform will be:
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am = 1

2π

∫ π
−π
A(ψ)e−jmψ dψ , m = 0,±1,±2, . . . (19.3.2)

Similarly, in the “even” case we have:

A(ψ)=
∞∑
m=1

[
amej(m−1/2)ψ + a−me−j(m−1/2)ψ

]
(19.3.3)

with inverse transform:

a±m = 1

2π

∫ π
−π
A(ψ)e∓j(m−1/2)ψ dψ , m = 1,2, . . . (19.3.4)

In general, a desired array factor requires an infinite number of coefficients am to be
represented exactly. Keeping only a finite number of coefficients in the Fourier series
introduces unwanted ripples in the desired response, known as the Gibbs phenomenon
[51,52]. Such ripples can be minimized using an appropriate window, but at the expense
of wider transition regions.

The Fourier series method may be summarized as follows. Given a desired response,
say Ad(ψ), pick an odd or even window length, for example N = 2M+ 1, and calculate
the N ideal weights by evaluating the inverse transform:

ad(m)= 1

2π

∫ π
−π
Ad(ψ)e−jmψ dψ , m = 0,±1, . . . ,±M (19.3.5)

then, the final weights are obtained by windowing with a length-N window w(m):

a(m)= w(m)ad(m), m = 0,±1, . . . ,±M (19.3.6)

This method is convenient only when the required integral (19.3.5) can be done ex-
actly, as when Ad(ψ) has a simple shape such as an ideal lowpass filter. For arbitrarily
shaped Ad(ψ) one must evaluate the integrals approximately using an inverse DFT
as is done in the Woodward- Lawson frequency-sampling design method discussed in
Sec. 19.5.

In addition, the method requires thatAd(ψ) be specified over one complete Nyquist
interval, −π ≤ ψ ≤ π, regardless of whether the visible region ψvis = 2kd is more or
less than one Nyquist period.

19.4 Sector Beam Array Design

As an example of the Fourier series method, we discuss the design of an array with
angular pattern confined into a desired angular sector.

First, we consider the design in ψ-space of an ideal bandpass array factor centered
at wavenumber ψ0 with bandwidth of 2ψb. We will see later how to map these spec-
ifications into an actual angular sector. The ideal bandpass response is defined over
−π ≤ ψ ≤ π as follows:
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ABP(ψ)=
{

1, ψ0 −ψb ≤ ψ ≤ ψ0 +ψb
0, otherwise

For the odd case, the corresponding ideal weights are obtained from Eq. (19.3.2):

aBP(m)= 1

2π

∫ π
−π
ABP(ψ)e−jmψ dψ = 1

2π

∫ ψ0+ψb

ψ0−ψb
1 · e−jmψ dψ

which gives:

aBP(m)= e−jmψ0
sin(ψbm)
πm

, m = 0,±1,±2, . . . (19.4.1)

This problem is equivalent to designing an ideal lowpass response with cutoff fre-
quency ψb and then translating it by ABP(ψ)= ALP(ψ′)= ALP(ψ −ψ0), where ψ′ =
ψ−ψ0. The lowpass response is defined as:

ALP(ψ′)=
{

1, −ψb ≤ ψ′ ≤ ψb
0, otherwise

and its ideal weights are:

aLP(m)= 1

2π

∫ π
−π
ALP(ψ′)e−jmψ

′
dψ′ = 1

2π

∫ ψb
−ψb

1 · e−jmψ′ dψ′ = sin(ψbm)
πm

Thus, as expected, the ideal weights for the bandpass and lowpass designs are related
by a scanning phase: aBP(m)= e−jmψ0aLP(m).

A more realistic design of the bandpass response is to prescribe “brickwall” specifi-
cations, that is, defining a passband range over which the response is essentially flat and
a stopband range over which the response is essentially zero. These ranges are defined
by the bandedge frequencies ψp and ψs, such that the passband is |ψ−ψ0| ≤ ψp and
the stopband |ψ−ψ0| ≥ ψs. The specifications of the equivalent lowpass response are
shown in Fig. 19.4.1.

Fig. 19.4.1 Specifications of equivalent lowpass response.

Over the stopband, the attenuation is required to be greater than a minimum value,
say A dB. The attenuation over the passband need not be specified, because the window
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method always results in extremely flat passbands for reasonable values of A, e.g., for
A > 35 dB. Indeed, the maximum passband attenuation is related to A by the approxi-
mate formula Apass = 17.4δ dB, where δ = 10−A/20 (see Ref. [52].)

Most windows do not allow a user-defined choice for the stopband attenuation. For
example, the Hamming window has A = 54 dB and the rectangular window A = 21 dB.
The Kaiser window is the best and simplest of a small class of windows that allow a
variable choice for A.

Thus, the design specifications are the quantities {ψp,ψs,A}. Alternatively, we can
take them to be {ψp,∆ψ,A}, where ∆ψ = ψs −ψp is the transition width. We prefer
the latter choice. The design steps for the bandpass response using the Kaiser window
are summarized below:

1. From the stopband attenuation A, calculate the so-called D-factor of the window
(similar to the broadening factor):

D =


A− 7.95

14.36
, if A > 21

0.922, if A ≤ 21
(19.4.2)

and the window’s shape parameter α:

α =




0.1102(A− 8.7), if A≥ 50

0.5842(A− 21)0.4+0.07886(A− 21), if 21<A< 50

0, if A ≤ 21

(19.4.3)

2. From the transition width ∆ψ, calculate the length of the window by choosing the
smallest odd integer N = 2M + 1 that satisfies:

∆ψ = 2πD
N − 1

(19.4.4)

Alternatively, if N is given, calculate the transition width ∆ψ.

3. Calculate the samples of the Kaiser window:

w(m)= I0
(
α
√

1−m2/M2
)

I0(α)
, m = 0,±1, . . . ,±M (19.4.5)

where I0(x) is the modified Bessel function of first kind and zeroth order.

4. Calculate the ideal cutoff frequency ψb by taking it to be at the middle between
the passband and stopband frequencies:

ψb = 1

2
(ψp +ψs)= ψp + 1

2
∆ψ (19.4.6)
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5. Calculate the final windowed array weights from a(m)= w(m)aBP(m):

a(m)= w(m)e−jmψ0
sin(ψbm)
πm

, m = 0,±1, . . . ,±M (19.4.7)

Next, we use the above bandpass design inψ-space to design an array with an angular
sector response inφ-space. The ideal array will have a pattern that is uniformly flat over
an angular sector [φ1,φ2]:

A(φ)=
{

1, φ1 ≤ φ ≤ φ2

0, otherwise

Alternatively, we can define the sector by means of its center angle and its width,
φc = (φ1 +φ2)/2 and φb = φ2 −φ1. Thus, we have the equivalent definitions of the
angular sector:

φc = 1

2
(φ1 +φ2)

φb = φ2 −φ1

�
φ1 = φc − 1

2
φb

φ2 = φc + 1

2
φb

(19.4.8)

For a practical design, we may take [φ1,φ2] to represent the passband of the re-
sponse and assume an angular stopband with attenuation of at least A dB that begins
after a small angular transition width ∆φ on either side of the passband.

In filter design, the stopband attenuation and the transition width are used to deter-
mine the window length N. But in the array problem, because we are usually limited in
the number N of available array elements, we must assume that N is given and deter-
mine the transition width ∆φ from A and N.

Thus, our design specifications are the quantities {φ1,φ2,N,A}, or alternatively,
{φc,φb,N,A}. These specifications must be mapped into equivalent ones in ψ-space
using the steered wavenumber ψ′ = kd(cosφ− cosφ0).

We require that the angular passband [φ1,φ2] be mapped onto the lowpass pass-
band [−ψp,ψp] in ψ′-space. Thus, we have the conditions:

ψp = kd(cosφ1 −ψ0)

−ψp = kd(cosφ2 −ψ0)

They may be solved for ψp and ψ0 as follows:

ψp = 1

2
kd(cosφ1 − cosφ2)

ψ0 = 1

2
kd(cosφ1 + cosφ2)

(19.4.9)

Using Eq. (19.4.8) and some trigonometry, we have equivalently:

ψp = kd sin(φc)sin
(φb

2

)

ψ0 = kd cos(φc)cos
(φb

2

) (19.4.10)
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Setting ψ0 = kd cosφ0, we find the effective steering angle φ0:

cosφ0 = cos(φc)cos
(φb

2

) ⇒ φ0 = acos
(
cos(φc)cos(φb/2)

)
(19.4.11)

Note that φ0 is not equal to φc, except for very narrow widths φb.
The design procedure is then completed as follows. Given the attenuation A, we

calculate the window parameters D,α from Eqs. (19.4.2) and (19.4.3). Since N is given,
we calculate the transition width ∆ψ directly from Eq. (19.4.4). Then, the ideal lowpass
frequency ψb is calculated from Eq. (19.4.6), that is,

ψb = ψp + 1

2
∆ψ = kd sin(φc)sin

(φb
2

)+ πD
N − 1

(19.4.12)

Finally, the array weights are obtained from Eq. (19.4.7). The transition width ∆φ
can be approximated by linearizing ψ = kd cosφ around φ1, or around φ2, or around
φc. We prefer the latter choice, giving:

∆φ = ∆ψ
kd sinφc

= 2πD
kd(N − 1)sinφc

(19.4.13)

The design method can be extended to the case of evenN = 2M. The integral (19.3.4)
can still be done exactly. The Kaiser window expression (19.4.5) remains the same for
m = ±1,±2, . . . ,±M. We note the symmetry w(−m)= w(m). After windowing and
scanning with ψ0, we get the final designed weights:

a(±m)= w(m)e∓j(m−1/2)ψ0
sin
(
ψb(m− 1/2)

)
π(m− 1/2)

, m = 1,2, . . . ,M (19.4.14)

The MATLAB function sector implements the above design steps for either even or
odd N. Its usage is as follows:

[a, dph] = sector(d, ph1, ph2, N, A); % A=stopband attenuation in dB

Fig. 19.4.2 shows four design examples having sector [φ1,φ2]= [45o,75o], or cen-
ter φc = 60o and width φb = 30o. The number of array elements was N = 21 and
N = 41, with half-wavelength spacing d = λ/2. The stopband attenuations wereA = 20
and A = 40 dB. The two cases with A = 20 dB are equivalent to using the rectangular
window. They have visible Gibbs ripples in their passband. Some typical MATLAB code
for generating these graphs is as follows:

d=0.5; ph1=45; ph2=75; N=21; A=20;
[a, dph] = sector(d, ph1, ph2, N, A);
[g, ph] = array(d, a, 400);
dbz(ph,g, 30, 80);
addray(ph1, ’--’); addray(ph2, ’--’);

The basic design tradeoff is betweenN andA and is captured by Eq. (19.4.4). Because
D is linearly increasing with A, the transition width will increase with A and decrease
with N. As A increases, the passband exhibits no Gibbs ripples but at the expense of
larger transition width.
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Fig. 19.4.2 Angular sector array design with the Kaiser window.

19.5 Woodward-Lawson Frequency-Sampling Design

As we mentioned earlier, the Fourier series method is feasible only when the inverse
transform integrals (19.3.2) and (19.3.4) can be done exactly. If not, we may use the
frequency-sampling design method of DSP [51,52]. In the array context, the method is
referred to as the Woodward-Lawson method.

For anN-element array, the method is based on performing an inverseN-point DFT.
It assumes thatN samples of the desired array factorA(ψ) are available, that is,A(ψi),
i = 0,1, . . . ,N − 1, where ψi are the N DFT frequencies:

ψi = 2πi
N

, i = 0,1, . . . ,N − 1, (DFT frequencies) (19.5.1)

The frequency samples A(ψi) are related to the array weights via the forward N-
point DFT’s obtained by evaluating Eqs. (19.1.1) and (19.1.2) at the N DFT frequencies:
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A(ψi) = a0 +
M∑
m=1

[
amejmψi + a−me−jmψi

]
,

A(ψi) =
M∑
m=1

[
amej(m−1/2)ψi + a−me−j(m−1/2)ψi

]
,

(N = 2M + 1)

(N = 2M)

(19.5.2)

where ψi are given by Eq. (19.5.1). The corresponding inverse N-point DFT’s are as
follows. For odd N = 2M + 1,

am = 1

N

N−1∑
i=0

A(ψi)e−jmψi , m = 0,±1,±2, . . . ,±M (19.5.3)

and for even N = 2M,

a±m = 1

N

N−1∑
i=0

A(ψi)e∓j(m−1/2)ψi , m = 1,2, . . . ,M (19.5.4)

There is an alternative definition of theN DFT frequenciesψi for which the forms of
the forward and inverse DFT’s, Eqs. (19.5.2)–(19.5.4), remain the same. For either even
or odd N, we define:

ψi = 2π(i−K)
N

, (alternative DFT frequencies) (19.5.5)

where i = 0,1, . . . ,N − 1 and K = (N − 1)/2.
This definition makes a difference only for evenN, in which case the index i−K takes

on all the half-integer values in the symmetric interval [−K,K]. For odd N, Eq. (19.5.5)
amounts to a re-indexing of Eq. (19.5.1), with i−K taking values now over the symmetric
integer interval [−K,K].

For both the standard and the alternative sets, theN complex numbers zi = ejψi are
equally spaced around the unit circle. For odd N, they are the N-th roots of unity, that
is, the solutions of the equation zN = 1. For the alternative set with even N, they are
the N solutions of the equation zN = −1.

The alternative set is usually preferred in array processing. In DSP, it leads to the
discrete cosine transform. The MATLAB function woodward implements the inverse DFT
operations (19.5.3) and (19.5.4), for either the standard or the alternative definition of
ψi. Its usage is as follows:

a = woodward(A, alt) % alt=0,1 for standard or alternative

The frequency-sampling array design method is summarized as follows: Given a set
ofN frequency response valuesA(ψi), i = 0,1, . . . ,N−1, calculate theN array weights
a(m) using the inverse DFT formulas (19.5.3) or (19.5.4). Then, replace the weights by
their windowed versions using any symmetric length-N window. The final expressions
for the windowed weights are, for odd N = 2M + 1,
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a(m)= w(m) 1

N

N−1∑
i=0

A(ψi)e−jmψi , m = 0,±1,±2, . . . ,±M (19.5.6)

and for even N = 2M,

a(±m)= w(±m) 1

N

N−1∑
i=0

A(ψi)e∓j(m−1/2)ψi , m = 1,2, . . . ,M (19.5.7)

As an example, consider the design of a sector beam with edges at φ1 = 45o and
φ2 = 75o. Thus, the beam is centered at φc = 60o and has width φb = 30o.

Asφ ranges over [φ1,φ2], the wavenumberψ = kd cosφ will range over kd cosφ2

≤ ψ ≤ kd cosφ1. For all DFT frequencies ψi that lie in this interval, we set A(ψi)= 1,
otherwise, we set A(ψi)= 0. Assuming the alternative definition for ψi, we have the
passband condition:

kd cosφ2 ≤ 2π(i−K)
N

≤ kd cosφ1

Setting kd = 2πd/λ and solving for the DFT index i−K, we find:

j1 ≤ i−K ≤ j2, where j1 = Ndλ cosφ2, j2 = Ndλ cosφ1

This range determines the DFT indices i for which A(ψi)= 1. The inverse DFT
summation over i will then be restricted over this subset of i’s. Fig. 19.5.1 shows the
response of a 20-element array with half-wavelength spacing, d = λ/2, designed with a
rectangular and a Hamming window. The MATLAB code for generating the right graph
was as follows:

d=0.5; N=20; ph1=45; ph2=75; alt=1; K=(N-1)/2;
j1 = N*d*cos(ph2*pi/180);
j2 = N*d*cos(ph1*pi/180);
i = (0:N-1); % DFT index

j = i - alt*K; % alternative DFT index

A = (j>=j1)&(j<=j2); % equals 1, if j1 ≤ j ≤ j2, and 0, otherwise

a = woodward(A, alt); % inverse DFT

w = 0.54 - 0.46*cos(2*pi*i/(N-1)); % Hamming window

awind = a .* w; % windowed weights

[g,ph] = array(0.5, awind, 400); % array gain

dbz(ph, g, 30, 80);
addray(ph1,’--’); addray(ph2,’--’);

The sidelobes of the Hamming window are down approximately at the expected 54-
dB level (they reach 54 dB for larger N.) The design is comparable to that of Fig. 19.4.2.
The power of this method lies in the ability to specify any shape for the array factor
through its frequency samples. The method works well for half-wavelength spacing
d = λ/2, because allN DFT frequenciesψi lie within the visible region, which coincides
in this case with the full Nyquist interval, −π ≤ ψ ≤ π.
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Fig. 19.5.1 Angular sector array design with Woodward-Lawson method.

As another example, we consider the design of an array with a secant-squared gain
pattern, which is relevant in air search radars as discussed in Sec. 14.11. We consider an
array of N elements along the z-direction with half-wavelength spacing d = λ/2. The
corresponding wavenumber ψ will be ψ = kzd, or

ψ = kd cosθ

The design of the secant-squared gain pattern requires that the array factor itself
have a secant dependence. Indeed,

g(θ)= |A(ψ)|2 = K
cos2 θ

⇒ |A(ψ)| = K1/2

| cosθ|
Because the secant pattern is defined only up to an angle θmax, we may define the

theoretical array factor in the normalized form:

A(θ)=



cosθmax

cosθ
, if 0 ≤ θ ≤ θmax

1, if θmax < θ ≤ 90o
(19.5.8)

As θ varies over [0, θmax], the wavenumberψ = kd cosθ will vary over [ψmax, kd],
whereψmax = kd cosθmax. Because d = λ/2, we have kd = π and theψ-range becomes
[ψmax,π]. Noting that cosθmax/ cosθ = ψmax/ψ, we can rewrite Eq. (19.5.8) in terms
of ψ:

A(ψ)=


ψmax

ψ
, if ψmax ≤ ψ ≤ π

1, if 0 ≤ ψ < ψmax

(19.5.9)

We symmetrize A(−ψ)= A(ψ) to cover the entire 2π Nyquist interval in ψ. Eval-
uating Eq. (19.5.9) at the N DFT frequencies ψi = 2πi/N, we obtain the array weights
by doing an inverse DFT and then windowing the array coefficients with a Hamming
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window. Fig. 19.5.2 shows a design case with N = 21 and θmax = 70o. The figure com-
pares the Hamming and rectangular window designs to the exact expression (19.5.8).
The details of the design are indicated in the MATLAB code:

N=21; K=(N-1)/2; d=0.5; thmax=70;

psmax = 2*pi*d * cos(thmax*pi/180);

Ai = ones(1,K+1);
psi = 2*pi*(0:K)/N; % half of DFT frequencies

j = find(psi); % non-zero ψ’s

Ai(j) = psmax*(psi(j)>=psmax)./psi(j) + (psi(j)<psmax); % half of the DFT values

Ai = [Ai, Ai(K:-1:1)]; % all the DFT values

a = woodward(Ai, 0) / N; % inverse DFT with alt=0

aw = a .* (0.54 - 0.46*cos(2*pi*(0:N-1)/(N-1))); % Hamming

th = (0:200) * 90 / 200;
ps = 2*pi*d * cos(th*pi/180);

A = abs(dtft(a, -ps)); % rectangular design

Aw = abs(dtft(aw,-ps)); % Hamming design

A0 = psmax*(ps>=psmax)./ps + (ps<psmax); % exact pattern
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Fig. 19.5.2 Woodward-Lawson design of secant-squared array gain.

19.6 Narrow-Beam Low-Sidelobe Designs

The problem of designing arrays having narrow beams with low sidelobes is equivalent to
the DSP problem of spectral analysis of windowed sinusoids. A single beam corresponds
to a single sinusoid, multiple beams to multiple sinusoids.
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To understand this equivalence, suppose one wants to design an infinitely narrow
beam toward some look direction φ = φ0. In ψ-space, the array factor (spatial or
wavenumber spectrum) should be the infinitely thin spectral line:†

A(ψ)= 2πδ(ψ−ψ0)

where ψ = kd cosφ and ψ0 = kd cosφ0. Inserting this into the inverse DSFT of
Eq. (19.3.2), gives the double-sided infinitely-long array, for −∞ < m <∞:

a(m)= 1

2π

∫ π
−π
A(ψ)e−jmψdψ = 1

2π

∫ π
−π

2πδ(ψ−ψ0)e−jmψdψ = e−jψ0m

This is the spatial analog of an infinite sinusoid a(n)= ejω0n whose spectrum is the
sharp spectral line A(ω)= 2πδ(ω −ω0). A finite-duration sinusoid is obtained by
windowing with a length-N time window w(n) resulting in a(n)= w(n)ejω0n.

In the frequency domain, the effect of windowing is to replace the spectral line
δ(ω−ω0) by its smeared versionW(ω−ω0), whereW(ω) is the DTFT of the window
w(n). The spectrum W(ω −ω0) exhibits a main lobe at ω = ω0 and sidelobes. The
main lobe gets narrower with increasing N.

A finiteN-element array with a narrow beam and low sidelobes, and steered towards
an angle φ0, can be obtained by windowing the infinite narrow-beam array with an
appropriate length-N spatial window w(m). For odd N = 2M+ 1, or even N = 2M, we
define respectively:

a(m) = e−jmψ0w(m), m = 0,±1,±2, . . . ,±M
a(±m) = e∓j(m−1/2)ψ0w(±m), m = 1,2, . . . ,M

(19.6.1)

In both cases, the array factor of Eqs. (19.1.1) and (19.1.2) becomes:

A(ψ)=W(ψ−ψ0) (narrow beam array factor) (19.6.2)

whereW(ψ) is the DSFT of the window, defined for odd or even N as:

W(ψ) = w(0)+
M∑
m=1

[
w(m)ejmψ +w(−m)e−jmψ

]

W(ψ) =
M∑
m=1

[
w(m)ej(m−1/2)ψ +w(−m)e−j(m−1/2)ψ

] (19.6.3)

Assuming a symmetric window, w(−m)= w(m), we can rewrite:

W(ψ) = w(0)+2
M∑
m=1

w(m)cos(mψ)

W(ψ) = 2
M∑
m=1

w(m)cos
(
(m− 1/2)ψ

)
(N = 2M + 1)

(N = 2M)

(19.6.4)

†To be periodic in ψ, all the Nyquist replicas of this term must be added. But they are not shown here
because ψ0 and ψ are assumed to lie in the central Nyquist interval [−π,π].



19.6. Narrow-Beam Low-Sidelobe Designs 649

At broadside,ψ0 = 0,φ0 = 90o, Eq. (19.6.1) reduces to a(m)= w(m) and the array
factor becomesA(ψ)=W(ψ). Thus, the weights of a broadside narrow beam array are
the window samples a(m)= w(m). The steered weights (19.6.1) can be calculated with
the help of the MATLAB function scan, or steer:

a = scan(w, psi0);

a = steer(d, w, phi0);

The primary issue in choosing a window function w(m) is the tradeoff between fre-
quency resolution and frequency leakage, that is, between main-lobe width and sidelobe
level [51,52]. Ideally, one would like to meet, as best as possible, the two conflicting
requirements of having a very narrow mainlobe and very small sidelobes.

Fig. 19.6.1 shows four narrow-beam design examples illustrating this tradeoff. All
designs are 5-element arrays with half-wavelength spacing, d = λ/2, and steered to-
wards 90o. The Dolph-Chebyshev and Taylor-Kaiser arrays were designed with sidelobe
level of R = 20 dB.
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Fig. 19.6.1 Narrow beam design examples.

Shown on the graphs are also the half-power 3-dB circles being intersected by the
angular rays at the 3-dB angles. For comparison, we list below the designed array weights
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(normalized to unity at their endpoints) and the corresponding 3-dB angular widths (in
degrees):

Uniform Dolph-Chebyshev Taylor-Kaiser Binomial
1 1.0000 1.0000 1
1 1.6085 2.2752 4
1 1.9319 2.8427 6
1 1.6085 2.2752 4
1 1.0000 1.0000 1

20.3o 23.5o 25.2o 29.9o

The uniform array has the narrowest mainlobe but also the highest sidelobes. The
Dolph-Chebyshev is optimum in the sense that, for the given sidelobe level of 20 dB, it
has the narrowest width. The Taylor-Kaiser is somewhat wider than the Dolph-Chebyshev,
but it exhibits better sidelobe behavior. The binomial array has the widest mainlobe but
no sidelobes at all.

Fig. 19.6.2 shows another set of examples. All designs are 21-element arrays with
half-wavelength spacing, d = λ/2, and scanned towards 60o.
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Fig. 19.6.2 Comparison of steered 21-element narrow-beam arrays.
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The Dolph-Chebyshev and Kaiser arrays were designed with sidelobe level of R = 25
dB. The uniform array has sidelobes atR = 13 dB. BecauseN is higher than in Fig. 19.6.1,
the beams will be much narrower. The 3-dB beamwidths are in the four cases:

∆φ3dB = 5.58o Uniform
∆φ3dB = 6.44o Dolph-Chebyshev
∆φ3dB = 8.00o Taylor-Kaiser
∆φ3dB = 15.64o Binomial

The two key parameters characterizing a window are the 3-dB width of its main lobe,
∆ψ3dB, and its sidelobe level R (in dB). For some windows, such as Dolph-Chebyshev
and binomial, ∆ψ3dB can be calculated exactly. In others, such as Taylor-Kaiser and
Hamming, it can be calculated approximately by Eq. (18.10.2), that is,

∆ψ3dB = 0.886
2πb
N

(3-dB width in ψ-space) (19.6.5)

where b is a broadening factor that depends on the choice of window and increases
with the sidelobe attenuation R. As discussed in Sec. 18.10, once ∆ψ3dB is known, the
angular 3-dB width of the steered array can be computed approximately by:

∆φ3dB =




∆ψ3dB

kd sinφ0
, for 0o < φ0 < 180o

2

√
∆ψ3dB

kd
, for φ0 = 0o, 180o

(19.6.6)

This is an adequate approximation in practice. In succeeding sections, we discuss
the binomial, Dolph-Chebyshev, and Taylor-Kaiser arrays in more detail.

We finish this section by summarizing the uniform array, which is based on the
rectangular window and has b = 1 and sidelobe level R = 13 dB. Its weights, symmetric
DSFT, and symmetric z-transform were determined in Example 19.1.2:

w = 1

N
[1,1, . . . ,1]

W(ψ) =
sin

(
Nψ

2

)

N sin
(
ψ
2

)

W(z) = 1

N
zN/2 − z−N/2
z1/2 − z−1/2 = z−(N−1)/2 1

N
zN − 1

z− 1

(19.6.7)

19.7 Binomial Arrays

The weights of an N-element binomial array are the binomial coefficients:

(N − 1)!
n!(N − 1− n)! , n = 0,1, . . . ,N − 1 (19.7.1)
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For example, for N = 4 and N = 5 they are:

w = [1,3,3,1]
w = [1,4,6,4,1]

The binomial weights are the expansion coefficients of the polynomial (1 + z)N−1. In-
deed, the symmetric z-transform of the binomial array is defined as:

W(z)= (z1/2 + z−1/2)N−1 = z−(N−1)/2(1+ z)N−1 (19.7.2)

Setting z = ejψ, we find the array factor in ψ-space:

W(ψ)= (ejψ/2 + e−jψ/2)N−1 =
[

2 cos
(ψ

2

)]N−1

(19.7.3)

This response falls monotonically on either side of the peak atψ = 0 until it becomes
zero at the Nyquist frequency ψ = ±π. Indeed, the z-transform has a multiple zero of
order N − 1 at z = −1.

Thus, the binomial response has no sidelobes. This is, of course, at the expense of
a fairly wide mainlobe. The 3-dB width ∆ψ3dB can be determined by finding the 3-dB
frequencies ±ψ3 that satisfy the half-power condition:

|W(ψ3)|2
|W(0)|2 = 1

2
⇒

[
cos

(ψ3

2

)]2(N−1)
= 1

2

The solution is:

ψ3 = 2 acos
(
2−0.5/(N−1))

Therefore, the 3-dB width will be ∆ψ3dB = 2ψ3:

∆ψ3dB = 4 acos
(

2−0.5/(N−1)
)

(19.7.4)

Once ∆ψ3dB is found, the 3-dB width ∆φ3dB in angle space, for an array steered
towards an angle φ0, can be found from Eq. (19.6.6). The MATLAB function binomial
generates the array weights (steered towards φ0) and 3-dB width. Its usage is:

[a, dph] = binomial(d, ph0, N);

For example, the fourth graph of the binomial response of Fig. 19.6.1 was generated
by the MATLAB code:

[a, dph] = binomial(0.5, 90, 5); % array weights and 3-dB width

[g, ph] = array(0.5, a, 200); % compute array gain

dbz(ph, g, 45, 40); % plot gain in dB with 40-dB scale

addcirc(3, 40, ’--’); % add 3-dB grid circle

addray(90 + dph/2, ’-’); % add rays at 3-dB angles

addray(90 - dph/2, ’-’);
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19.8 Dolph-Chebyshev Arrays

Most windows have largest sidelobes near the main lobe. If a window is designed to
achieve a minimum sidelobe attenuation of R dB, then typically R will be the atten-
uation of the sidelobes nearest to the mainlobe; the sidelobes further away will have
attenuations higher than R.

Because of the tradeoff between mainlobe width and sidelobe attenuation, the extra
attenuation of the furthest sidelobes will come at the expense of increased mainlobe
width. If the attenuation of these sidelobes could be decreased (up to the level of the
minimum R), then the mainlobe width would narrow.

It follows that for a given minimum desired sidelobe levelR, the narrowest mainlobe
width will be achieved by a window whose sidelobes are all equal to R. Conversely,
for a given maximum desired mainlobe width, the largest sidelobe attenuation will be
achieved by a window with equal sidelobe levels.

This “optimum” window is the Dolph-Chebyshev window, which is constructed with
the help of Chebyshev polynomials. Themth Chebyshev polynomial Tm(x) is:

Tm(x)= cos
(
m acos(x)

)
(19.8.1)

If |x| > 1, the inverse cosine acos(x) becomes imaginary, and the expression can be
rewritten in terms of hyperbolic cosines: Tm(x)= cosh

(
m acosh(x)

)
.

Setting x = cosθ, or θ = acos(x), we see that Tm(x)= cos(mθ). Using trigonomet-
ric identities, the quantity cos(mθ) can always be expanded as a polynomial in powers
of cosθ. The expansion coefficients are precisely the coefficients of the powers of x of
the Chebyshev polynomial. For example, we have:

cos(0θ)= 1 T0(x)= 1
cos(1θ)= cosθ T1(x)= x
cos(2θ)= 2 cos2 θ− 1 ⇒ T2(x)= 2x2 − 1
cos(3θ)= 4 cos3 θ− 3 cosθ T3(x)= 4x3 − 3x
cos(4θ)= 8 cos4 θ− 8 cos2 θ+ 1 T4(x)= 8x4 − 8x2 + 1

For |x| < 1, the Chebyshev polynomial has equal ripples, whereas for |x| > 1, it
increases like xm. Moreover, Tm(x) is even in x if m is even, and odd in x if m is odd.
Fig. 19.8.1 depicts the Chebyshev polynomials T9(x) and T10(x).

Fig. 19.8.1 Chebyshev polynomials of orders nine and ten.
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The Dolph-Chebyshev window is defined such that its sidelobes will correspond to
a portion of the equi-ripple range |x| ≤ 1 of the Chebyshev polynomial, whereas its
mainlobe will correspond to a portion of the range x > 1.

For either even or odd N, Eq. (19.6.4) implies that any window spectrumW(ψ) can
be written in general as a polynomial of degree N − 1 in the variable u = cos(ψ/2).
Indeed, we have for themth terms:

cos(mψ)= cos
(

2m
ψ
2

)
= T2m(u)

cos
(
(m− 1/2)ψ)= cos

(
(2m− 1)

ψ
2

)
= T2m−1(u)

Thus in the odd case, the summation in Eq. (19.6.4) will result in a polynomial of
maximal degree 2M = N − 1 in the variable u, and in the even case, it will result into a
polynomial of degree 2M − 1 = N − 1.

The Dolph-Chebyshev [579] array factor is defined by the Chebyshev polynomial of
degree N − 1 in the scaled variable x = x0 cos(ψ/2), that is,

W(ψ)= TN−1(x), x = x0 cos
(ψ

2

)
(Dolph-Chebyshev array factor) (19.8.2)

The scale factor x0 is always x0 > 1 and is determined below. For a broadside design,
as the azimuthal angle φ ranges over the interval 0o ≤ φ ≤ 180o, the wavenumberψ =
kd cosφwill range over the visible region−kd ≤ ψ ≤ kd. The quantity x = x0 cos(ψ/2)
will range from xmin = x0 cos(kd/2) to the value x = x0, which is reached broadside at
φ = 90o or ψ = 0, and then x will move back to xmin. Thus, the range of variation of x
will be xmin ≤ x ≤ x0.

Assuming that xmin is in the interval −1 ≤ xmin ≤ 1, we can split the interval
[xmin, x0] into the two subintervals: [xmin,1] and [1, x0], as shown in Fig. 19.8.2. We
require that the subinterval [xmin,1] coincide with the sidelobe interval of the array
factor W(ψ), and that the subinterval [1, x0] coincide with the mainlobe interval. The
zeros of the Chebyshev polynomial within [xmin,1] become the sidelobe zeros of the
array factor and get repeated twice as φ varies over [0o,180o].

In Fig. 19.8.2, for spacing d = λ/2, we have kd = π and xmin = x0 cos(kd/2)
= x0 cos(π/2)= 0. Similarly, we have xmin = x0 cos(3π/4)= −0.707x0 for d = 3λ/4,
and xmin = x0 cos(π/4)= 0.707x0 for d = λ/4.

The relative sidelobe attenuation level in absolute units and in dB is defined in terms
of the ratio of the mainlobe to the sidelobe heights:

Ra = Wmain

Wside
, R = 20 log10(Ra) , Ra = 10R/20

Because the mainlobe peak occurs at ψ = 0 or x = x0, we will have Wmain =
TN−1(x0), and because the sidelobe level is equal to the Chebyshev level within |x| ≤ 1,
we will haveWside = 1. Thus, we find:

Ra = TN−1(x0)= cosh
(
(N − 1)acosh(x0)

)
(19.8.3)
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Fig. 19.8.2 Chebyshev polynomials and array factors for d = λ/2, d = 3λ/4, and d = λ/4.

which can be solved for x0 in terms of Ra:

x0 = cosh
(

acosh(Ra)
N − 1

)
(19.8.4)

Once the scale factor x0 is determined, the window samplesw(m) can be computed
by constructing the z-transform of the array factor from its zeros and then doing an
inverse z-transform. The N − 1 zeros of TN−1(x) are easily found to be:
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TN−1(x)= cos
(
(N − 1)acos(x)

) = 0 ⇒ xi = cos
(
(i− 1/2)π
N − 1

)

for i = 1,2, . . . ,N − 1. Solving for the corresponding wavenumbers through xi =
x0 cos(ψi/2), we find the pattern zeros:

ψi = 2 acos
( xi
x0

)
, zi = ejψi , i = 1,2, . . . ,N − 1

We note that the zeros xi do not have to lie within the sidelobe range [xmin,1] and
the corresponding ψi do not all have to be in the visible region.

The symmetric z-transform of the window is constructed in terms of the one-sided
transform using Eq. (19.1.4) as follows:

W(z)= z−(N−1)/2 W̃(z)= z−(N−1)/2
N−1∏
i=1

(z− zi) (19.8.5)

The inverse z-transform of W(z) are the window coefficients w(m). The MATLAB
function dolph.m of Appendix G implements this design procedure with the help of
the built-in function poly.m, which finds the coefficients from the zeros. The typical
MATLAB code in dolph.m is as follows:

N1 = N-1; % number of zeros

Ra = 10^(R/20); % sidelobe level in absolute units

x0 = cosh(acosh(Ra)/N1); % scaling factor

i = 1:N1;
xi = cos(pi*(i-0.5)/N1); % N1 zeros of Chebyshev polynomial

psi = 2 * acos(xi/x0); % N1 array pattern zeros in psi-space

zi = exp(j*psi); % N1 zeros of array polynomial

a = real(poly(zi)); % zeros-to-polynomial form (N coefficients)

The window coefficients resulting from definition (19.8.5) are normalized to unity
values at their end-points. This definition differs from that of Eq. (19.8.2) by the scale
factor xN−1

0 /2.
The function dolph.m also returns the 3-dB width of the main lobe. The 3-dB fre-

quency ψ3 is defined by the half-power condition:

W(ψ3)= TN−1(x3)= TN−1(x0)√
2

= Ra√
2

⇒ cosh
(
(N − 1)acosh(x3)

) = Ra√
2

Solving for x3 and the corresponding 3-dB angle, x3 = x0 cos(ψ3/2), we have:

x3 = cosh

(
acosh(Ra/

√
2)

N − 1

)
, ψ3 = 2 acos

(
x3

x0

)
(19.8.6)

which yields the 3-dB width in ψ-space, ∆ψ3dB = 2ψ3. The 3-dB width in angle space,
∆φ3dB, is then computed from Eq. (19.6.6) or (18.10.6).

Example 19.8.1: The second graph of Fig. 19.6.1 was generated by the MATLAB commands:
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[a, dph] = dolph(0.5, 90, 5, 20); % array weights and 3-dB width

[g, ph] = array(0.5, a, 200); % compute array gain

dbz(ph, g, 45); % plot gain in dB

addcirc(3, 40, ’--’); % add 3-dB gain circle

addray(90 + dph/2, ’--’); % add 3-dB angles

addray(90 - dph/2, ’--’);

The array weights and 3-dB width were given previously in the table of Fig. 19.6.1. The
weights are constructed as follows. The scale parameter x0 is found to be x0 = 1.2933.
The zeros xi, ψi, and zi are found to be:

i xi ψi zi
1 0.9239 1.5502 0.0206+ 0.9998j
2 0.3827 2.5408 −0.8249+ 0.5653j
3 −0.3827 3.7424 −0.8249− 0.5653j
4 −0.9239 4.7330 0.0206− 0.9998j

It follows that the one-sided array polynomial will be:

W̃(z)= (z− z1)(z− z2)(z− z3)(z− z4)= z4 + 1.6085z3 + 1.9319z2 + 1.6085z+ 1

and the symmetric z-transform:

W(z)= z−2 W̃(z)= z2 + 1.6085z+ 1.9319+ 1.6085z−1 + z−2

resulting in the array weights w = [1.0000, 1.6085, 1.9319, 1.6085, 1.0000]. We note
that the array zeros come in conjugate pairs. Only the first two xi and ψi lie in the visible
region and show up as pattern zeros in the array factor. ��

Example 19.8.2: The second graph of Fig. 19.6.2 was generated by the MATLAB commands:

[a, dph] = dolph(0.5, 60, 21, 25);
[g, ph] = array(0.5, a, 200);
dbz(ph, g);

The function dolph.m was called with the parameters N = 21, R = 20 dB and was steered
towards the angle φ0 = 60o. ��

Example 19.8.3: As another example, consider the design of a nine-element broadside Dolph-
Chebyshev array with half-wavelength spacing and sidelobe attenuation level of R = 20
dB. The array factor is shown in Fig. 19.8.2.

The absolute attenuation level is Ra = 10R/20 = 1020/20 = 10, that is, if the peak is
normalized to height Ra = 10, the sidelobes will have height of unity. The scale factor x0

is found to be x0 = 1.0708, and the array weights:

w = [1.0000, 1.0231, 1.3503, 1.5800, 1.6627, 1.5800, 1.3503, 1.0231, 1.0000]

The array zeros are constructed as follows:



658 Electromagnetic Waves & Antennas – S. J. Orfanidis

i xi ψi zi
1 0.9808 0.8260 0.6778+ 0.7352j
2 0.8315 1.3635 0.2059+ 0.9786j
3 0.5556 2.0506 −0.4616+ 0.8871j
4 0.1951 2.7752 −0.9336+ 0.3583j
5 −0.1951 3.5080 −0.9336− 0.3583j
6 −0.5556 4.2326 −0.4616− 0.8871j
7 −0.8315 4.9197 0.2059− 0.9786j
8 −0.9808 5.4572 0.6778− 0.7352j

The 3-dB width is found from Eq. (19.8.6) to be ∆φ3dB = 12.51o. ��

In order for the Chebyshev interval [xmin,1] to be mapped onto the sidelobe region
of the array factor, we must require that xmin ≥ −1.

If d < λ/2, then this condition is automatically satisfied because kd < π/2 and
xmin = x0 cos(kd/2)> 0. (In this case, we must also demand that xmin ≤ 1. However,
as we discuss below, when d < λ/2 Dolph’s construction is no longer optimal and is
replaced by the alternative procedure of Riblet.)

If λ/2 < d < λ, then π < kd < 2π and xmin < 0 and can exceed the left limit
x = −1. This requires that for the given sidelobe level R, the array spacing may not
exceed a maximum value that satisfies xmin = x0 cos(kdmax/2)= −1. This gives:

kdmax = 2 acos
(
− 1

x0

)
⇒ dmax = λπ acos

(
− 1

x0

)
(19.8.7)

An alternative way of phrasing the condition xmin ≥ −1 is to say that for the given
value of the array spacing d (such that λ/2 < d < λ), there is a maximum sidelobe
attenuation that may be designed. The corresponding maximum value of x0 will satisfy
xmin = x0,max cos(kd/2)= −1, which gives:

x0,max = − 1

cos(kd/2)
⇒ Ra,max = TN−1(x0,max) (19.8.8)

Example 19.8.4: Consider the case d = 3λ/4, R = 20 dB, N = 9. Then for the given R, the
maximum element spacing that we can have is dmax = 0.8836λ.

Alternatively, for the given spacing d = 3λ/4, the maximum sidelobe attenuation that we
can have is Ra,max = 577, or, Rmax = 55.22 dB.

An array designed with the maximum spacing d = dmax will have the narrowest mainlobe,
because its total length will be the longest possible. For example, the following two calls
to the function dolph will calculate the required 3-dB beamwidths:

[w, dph1] = dolph(0.75, 90, 9, 20); % spacing d = 3/4

[w, dph2] = dolph(0.8836, 90, 9, 20); % spacing d = dmax

We find ∆φ1 = 8.34o and ∆φ2 = 7.08o. The array weights w are the same in the two cases
and equal to those of Example 19.8.3. The gains are shown in Fig. 19.8.3. ��
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Fig. 19.8.3 Chebyshev arrays with N = 9, R = 20 dB, d = 3λ/4 and d = 0.8836λ.

As pointed out by Riblet [580], Dolph’s procedure is optimal only for element spac-
ings that are greater than half a wavelength, d ≥ λ/2. For d < λ/2, it is possible to
find another set of window coefficients that would result into a narrower main lobe.
Riblet modified Dolph’s method to obtain an optimal design for both cases, d < λ/2
and d ≥ λ/2, but only for an odd number of array elements, N = 2M + 1.

It follows from Eq. (19.6.4) that if N is odd, the array factorW(ψ) can be expressed
either as a polynomial in the variable cos(ψ/2) or as a polynomial in the variable cosψ.

Dolph’s original definition of Eq. (19.8.2) used a Chebyshev polynomial T2M(x) of
order 2M = N − 1 in the variable x = x0 cos(ψ/2). Riblet used instead a Chebyshev
polynomial TM(y) of orderM in the new variable y = A cosψ+B, where the constants
A,B are to be determined from the desired spacing d and sidelobe attenuation R. The
array factor is defined as:

W(ψ)= TM(y), y = A cosψ+ B (Riblet’s modification) (19.8.9)

The mainlobe peak of height Ra at φ = 90o (orψ = 0) will correspond to a value y0

such that:

Ra = TM(y0)= cosh
(
M acosh(y0)

)
(19.8.10)

which may be solved for y0:

y0 = cosh
(

acosh(Ra)
M

)
(19.8.11)

We note that y0 is related to x0 of Eq. (19.8.3) by y0 = 2x2
0−1. This follows from the

general property of Chebyshev polynomials that:

y = 2x2 − 1 ⇒ T2M(x)= TM(y) (19.8.12)

Indeed, setting x = cosθ and y = cos(2θ)= 2 cos2 θ − 1 = 2x2 − 1, we have
θ = acos(x) and 2θ = acos(y), and therefore:
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T2M(x)= cos
(
(2M)θ)= cos

(
M(2θ)

) = TM(y)
As the azimuthal angle φ varies over 0o ≤ φ ≤ 180o and the wavenumber ψ over

the visible region −kd ≤ ψ ≤ kd, the quantity c = cosψ will vary from c = cos(kd) at
φ = 0o to c = 1 at φ = 90o, and then back to c = cos(kd) at φ = 180o.

If λ/2 ≤ d ≤ λ, then π ≤ kd ≤ 2π and ψ = kd cosφ will pass through the value
ψ = π before it reaches the valueψ = kd. It follows that the quantity c will go through
c = −1 before it reaches c = cos(kd). Thus, in this case the widest range of variation
of c = cosψ is −1 ≤ c ≤ 1.

On the other hand, if d < λ/2, then kd < π and c never reaches the value c = −1.
Its minimum value is c = cos(kd), and the range of c is [cos(kd),1]. To summarize,
the range of variation of c will be the interval [c0,1], where

c0 =
{
−1, if d ≥ λ/2
cos(kd), if d < λ/2 (19.8.13)

Assuming A > 0, it follows that the range of variation of y = A cosψ+B will be the
interval [Ac0 +B, A+B]. The parameters A,B are fixed by requiring that this interval
coincide with the interval [−1, y0] so that the right end will correspond to the mainlobe
peak, while the left end will ensure that we use the maximum size of the equi-ripple
interval of the Chebyshev variable y. Thus, we require the conditions:

Ac0 + B = −1

A+ B = y0

(19.8.14)

which may be solved for A,B:

A = 1+ y0

1− c0

B = −1+ y0c0

1− c0

(19.8.15)

For d ≥ λ/2, the method coincides with Dolph’s original method. In this case,
c0 = −1, and A,B become:

A = y0 + 1

2
= x2

0

B = y0 − 1

2
= x2

0 − 1

(19.8.16)

where we used y0 = 2x2
0 − 1, as discussed above. It follows that the y variable will be

related to the Dolph variable x = x0 cos(ψ/2) by:

y = x2
0 cosψ+ x2

0 − 1 = x2
0(cosψ+ 1)−1 = 2x2

0 cos2(ψ
2

)− 1 = 2x2 − 1

and therefore, Eq. (19.8.12) implies thatW(ψ)= TM(y)= T2M(x).
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Once the parameters A,B are determined, the window w(m) may be constructed
from the zeros of the Chebyshev polynomials. TheM zeros of TM(y) are:

yi = cos
(
(i− 1/2)π

M

)
, i = 1,2, . . . ,M

The corresponding wavenumbers are found by inverting yi = A cosψi + B:

ψi = acos
(
yi − B
A

)
, i = 1,2, . . . ,M

The 2M = N − 1 zeros of the z-transform of the array are the conjugate pairs:

{
ejψi e−jψi

}
, i = 1,2, . . . ,M

The symmetrized z-transform will be then:

W(z)= z−MW̃(z)= z−M
M∏
i=1

(
(z− ejψi)(z− e−jψi))

The inverse z-transform of W(z) will be the desired array weights w(m). This
procedure is implemented by the MATLAB function dolph2.m of Appendix G. We note
again that this definition differs from that of Eq. (19.8.9) by the scale factor AM/2.

The function dolph2 also returns the 3-dB width of the main lobe. The 3-dB fre-
quency ψ3 is computed from the half-power condition:

W(ψ3)= TM(y3)= TM(y0)√
2

= Ra√
2

⇒ y3 = cosh

(
acosh(Ra/

√
2)

M

)

Inverting y3 = A cosψ3 + B, we obtain the 3-dB width in ψ-space:

ψ3 = acos
(
y3 − B
A

)
, ∆ψ3dB = 2ψ3 (19.8.17)

For the case d ≥ λ/2, the maximum element spacing given by Eq. (19.8.7) can also
be expressed in terms of the variable y0 as follows:

dmax = λ
[

1− 1

2π
acos

(3− y0

1+ y0

)]
(19.8.18)

This follows from the condition xmin = x0 cos(kdmax/2)= −1. The corresponding
value of y will be y = 2x2

min − 1 = 1. Using Eq. (19.8.16), this condition reads:

y = y0 + 1

2
cos(kdmax)+y0 − 1

2
= 1 ⇒ cos(kdmax)= 3− y0

1+ y0

Because the function acos always returns a value in the range [0,π], and we want a
value kdmax > π, we must invert the cosine as follows:

kdmax = 2π− acos
(3− y0

1+ y0

)

which implies Eq. (19.8.18).
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Example 19.8.5: The bottom two graphs of Fig. 19.8.2 show the array factor designed using
Dolph’s and Riblet’s methods for the case N = 9, R = 20 dB, and d = λ/4. The Dolph
weights are the same as those given in Example 19.8.3. The Riblet weights computed by
dolph2 are:

w = [1, −3.4884, 7.8029, −11.7919, 13.6780, −11.7919, 7.8029, −3.4884, 1]

The corresponding array gains in dB are shown in Fig. 19.8.4. The 3-dB widths of the Dolph
and Riblet designs are ∆φ3dB = 25.01o and ∆φ3dB = 17.64o. ��
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Fig. 19.8.4 Dolph and Riblet designs of Chebyshev array with N = 9, R = 20 dB, d = λ/4.

Next, we discuss steered arrays [581]. We assume a steering angle 0o < φ0 < 180o.
The endfire caseφ0 = 0o,180o will be treated separately [582]. The steered wavenumber
will be:

ψ′ = ψ−ψ0 = kd(cosφ− cosφ0) (19.8.19)

where ψ0 = kd cosφ0. The corresponding array weights and array factor will be:

a(m) = e−jmψ0w(m) , −M ≤m ≤M
A(ψ) =W(ψ−ψ0)=W(ψ′)= TM(y′), y′ = A cosψ′ + B

(19.8.20)

where we assumed that N is odd, N = 2M + 1. The visible region becomes now:

kd
(
1− | cosφ0|

) ≤ ψ′ ≤ kd(1+ | cosφ0|
)

In order to avoid grating lobes, the element spacing must be less than the maximum:

d0 = λ
1+ | cosφ0| (19.8.21)

which satisfies kd0
(
1+ | cosφ0|

) = 2π.
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The Chebyshev design method is carried out in the same way, except instead of using
the half-wavelength spacing λ/2 as the dividing line between the Riblet and the Dolph
methods, we must use d0/2. Thus, the variable c = cosψ′ = cos(ψ−ψ0) will vary in
the interval [c0,1], where Eq. (19.8.13) is now replaced by

c0 =
{
−1, if d ≥ d0/2
cos

(
kd(1+ | cosφ0|)

)
, if d < d0/2

Replacing 1+ | cosφ0| = λ/d0, we can rewrite this as follows:

c0 =


−1, if d ≥ d0/2

cos
(2πd
d0

)
, if d < d0/2

(19.8.22)

The solutions for A,B will still be given by Eq. (19.8.15) with this new value for c0.
Note that when d < d0/2 the quantities A,B, and hence the array weights w(m), will
depend on φ0. Therefore, the weights must be redesigned for each new value of φ0,
instead of simply steering the broadside weights [581].

When d ≥ d0/2, we have c0 = −1 and the weights w(m) become independent of
φ0. In this case, the steered weights are obtained by steering the broadside weights.

Example 19.8.6: Fig. 19.8.5 shows the gain of an array steered towards φ0 = 60o, with N = 9,
R = 20 dB, and element spacing d = λ/4.

The grating lobe spacing is d0 = λ/(1+ cos(60o))= 2λ/3, and the dividing line between
Dolph and Riblet designs will be d0/2 = λ/3. The second graph shows the gain of a
broadside array, which is steered towards 60o. It demonstrates that the plain steering of
a broadside design will not work for d < d0/2. The array weights were computed by the
MATLAB commands:

a1 = dolph2(1/4, 60, 9, 20); % steered array

w = dolph2(1/4, 90, 9, 20); % broadside array

a2 = steer(1/4, w, 60); % steered broadside array

The 3-dB width was ∆φ3dB = 26.66o. It was obtained using Eq. (19.8.17) and the approx-
imation Eq. (19.6.6). The first graph also shows the 3-dB gain circle intersecting the rays
at the 3-dB angles φ0 ± ∆φ3dB/2, that is, at 46.67o and 73.33o. We note also that the
broadside weights w were given in Example 19.8.5. ��

Endfire Dolph-Chebyshev arrays require special treatment. DuHamel has shown how
to modify Riblet’s design for this purpose [582]. The key idea is not to use a steering
angle φ0 = 0o or φ0 = 180o, but rather to make φ0, and the corresponding steering
phase ψ0 = kd cosφ0, a free design parameter.

The steered wavenumber will still be ψ′ = kd cosφ − kd cosφ0 = kd cosφ −ψ0

and the array factor and array weights will still be given by Eq. (19.8.20).
The three parameters {A,B,ψ0} are determined by the following conditions. For a

forward endfire array (with mainlobe peak towards φ = 0o,) we require that y′ = y0 at
φ = 0, or, at ψ′ = kd−ψ0. Moreover, we require that the two endpoints y′ = −1 and
y′ = 1 of the equi-ripple range of the Chebyshev polynomial are reached at ψ′ = 0 and
at φ = 180o, or, ψ′ = −kd−ψ0. These three conditions can be stated as follows:
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Fig. 19.8.5 Nine-element array with d = λ/4 steered towards 60o.

A cos(kd−ψ0)+B = y0

A+ B = −1

A cos(kd+ψ0)+B = 1

(19.8.23)

For a backward endfire array (with mainlobe towards φ = 180o,) we must replace
ψ0 by −ψ0. The solution of Eqs. (19.8.23) is:

A = −y0 + 3+ 2 cos(kd)
√

2(y0 + 1)
2 sin2(kd)

B = −1−A

ψ0 = ± asin
(

y0 − 1

2A sin(kd)

) (19.8.24)

where in the solution forψ0, the plus (minus) sign is chosen for the forward (backward)
endfire array. Bidirectional endfire arrays can also be designed. In that case, we set
ψ0 = 0 and only require the first two conditions in (19.8.23), which become

A cos(kd)+B = y0

A+ B = −1
(19.8.25)

with solution

A = − y0 + 1

1− cos(kd)

B = y0 + cos(kd)
1− cos(kd)

(19.8.26)



19.9. Taylor-Kaiser Arrays 665

In all three of the above endfire designs, we must assume d ≤ λ/2 in order to avoid
grating lobes. The MATLAB function dolph3.m of Appendix G implements all three
cases.

Example 19.8.7: Fig. 19.8.6 shows three endfire designs for a nine-element array with quarter-
wavelength spacing d = λ/4, and sidelobe level of R = 20 dB. The array weights and 3-dB
widths were computed as follows:

[a1, dph1] = dolph3(1, 1/4, 9, 20); % forward endfire

[a2, dph2] = dolph3(-1, 1/4, 9, 20); % backward endfire

[a3, dph3] = dolph3(2, 1/4, 9, 20); % bidirectional endfire

The first argument of dolph3 takes on one of the three values {1,−1,2}, for forward,
backward, and bidirectional designs. In the forward and backward cases, the array weights
are already scanned by the effective scanning phase ±ψ0. The calculated array weights
are in the three cases:

weights forward backward bidirectional

a0 18.3655 18.3655 20.4676

a1 = a∗−1 −15.8051− 1.0822j −15.8051+ 1.0822j −17.5583

a2 = a∗−2 9.8866+ 1.3603j 9.8866− 1.3603j 10.8723

a3 = a∗−3 −4.1837− 0.8703j −4.1837+ 0.8703j −4.5116

a4 = a∗−4 0.9628+ 0.2701j 0.9628− 0.2701j 1.0000

Because the backward case is obtained by the replacement ψ0 → −ψ0, its weights will be
the conjugates of those of the forward case.

The 3-dB widths are in the three cases: ∆φ3dB = 22.85o,22.85o,22.09o. The graphs also
show the 3-dB gain circles intersecting the gains at the 3-dB angles. ��
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Fig. 19.8.6 Forward, backward, and bidirectional endfire designs.

19.9 Taylor-Kaiser Arrays

In Sec. 19.4, we used the Kaiser window to design a sector array pattern. That de-
sign problem was equivalent to designing an FIR lowpass digital filter using the window
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method. Here, we use the Kaiser window to design a narrow beam array. The Kaiser
window will be used in exactly the same way as in the problem of spectral analysis of
sinusoids [51,52,593].

The broadside array weights are equal to the window coefficients a(m)= w(m),
which are assumed to be normalized to unity at their endpoints:

w(m)= I0
(
α
√

1−m2/M2

)
(19.9.1)

wherem = ±1,±2, . . . ,±M, orm = 0,±1,±2, . . . ,±M, for even or odd number of array
elements, N = 2M or N = 2M + 1.

Taylor [589] was the first to use this window function in array problems and, in his
notation, the window shape parameter α was denoted by α = πB. The relationship of
α to the sidelobe level Ra (in absolute units) is given by:

Ra = 4.60333
sinh(πB)
πB

= 4.60333
sinhα
α

(19.9.2)

To avoid having to solve this equation for α for a given Ra, Kaiser and Schafer
[593] have developed an empirical formula for α in terms of the sidelobe level in dB,
R = 20 log10Ra, which is valid across the range 13 < R < 120 dB:

α =




0, R < 13.26

0.76609(R− 13.26)0.4+0.09834(R− 13.26), 13.26<R< 60

0.12438(R+ 6.3), 60<R< 120

(19.9.3)

For R ≤ 13.26, w(m) becomes the rectangular window. The broadening factor b,
and the 3-dB width in ψ-space can also be expressed in terms of the dB sidelobe level
R, as follows [593]:

b = 6(R+ 12)
155

, ∆ψ3dB = 0.886
2πb
N

(19.9.4)

The 3-dB width in angle space, ∆φ3dB, is then calculated from Eq. (19.6.6).
The array weights w(m) can be steered towards an angle φ0 using Eq. (19.6.1). In

this case, to avoid grating lobes, the element spacing must be less than the maximum:

d0 = λ
1+ | cosφ0| (19.9.5)

As discussed in Sec. 19.8, in order for the visible region is ψ-space to cover at least
one Nyquist period, the element spacing d must be in the range:

d0

2
≤ d < d0 (19.9.6)

The MATLAB function taylor.m of Appendix G implements this design procedure.
The outputs of the function are the steered array weights and the 3-dB width.
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Example 19.9.1: Fig. 19.9.1 depicts the gain of a 14- and a 15-element Taylor-Kaiser array with
half-wavelength spacing d = λ/2, steered towards φ0 = 60o. The sidelobe level was
R = 20 dB. The array weights were obtained by:

[a1, dph1] = taylor(0.5, 60, 14, 20);
[a2, dph2] = taylor(0.5, 60, 15, 20);

The array weights are already steered towards 60o. The designed unsteered weights were
in the two cases:

w1 = [1.0000, 1.3851, 1.7653, 2.1171, 2.4180, 2.6485, 2.7933,
2.7933, 2.6485, 2.4180, 2.1171, 1.7653, 1.3851, 1.0000]

w2 = [1.0000, 1.3851, 1.7653, 2.1171, 2.4180, 2.6485, 2.7933, 2.8427,
2.7933, 2.6485, 2.4180, 2.1171, 1.7653, 1.3851, 1.0000

The corresponding 3-dB widths were ∆φ3dB = 10.37o and ∆φ3dB = 9.68o, with the second
being slightly narrower because the array is slightly longer. The maximum and minimum
array spacings are from (19.9.5): d0 = 2λ/3 and d0/2 = λ/3. ��
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Fig. 19.9.1 Taylor-Kaiser arrays with N = 14 and N = 15, and d = λ/2.

Example 19.9.2: Fig. 19.9.2 depicts the gain of a 31-element endfire array with spacing d = λ/4
and sidelobe level R = 20 dB, steered towards the forward direction, φ0 = 0o, and the
backward one, φ0 = 180o.

The maximum and minimum array spacings, calculated from Eq. (19.9.5) for φ0 = 0o and
φ0 = 180o, are d0 = λ/2 and d0/2 = λ/4. We have chosen d = d0/2 = λ/4.

The 3-dB widths are in both cases ∆φ3dB = 43.12o. The graphs also show the 3-dB circle
intersecting the 3-dB angle rays. ��
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Fig. 19.9.2 Taylor-Kaiser endfire arrays with N = 31 and d = λ/4.

19.10 Multibeam Arrays

An array can form multiple narrow beams towards different directions. For example,
suppose it is desired to form three beams towards the steering angles φ1, φ2, and φ3.
The weights for such a multibeam array can be obtained by superimposing the weights
of a single broadside array, say w(m), steered towards the three angles. Defining the
corresponding scanning phases ψi = kd cosφi, i = 1,2,3, we have:

a(m)= A1e−jmψ1w(m)+A2e−jmψ2w(m)+A3e−jmψ3w(m)

where m = 0,±1,±2, . . . ,±M and we assumed an odd number of array elements N =
2M + 1. The complex amplitudes A1, A2, A3 represent the relative importance of the
three beams. The corresponding array factor becomes:

A(ψ)= A1W(ψ−ψ1)+A2W(ψ−ψ2)+A3W(ψ−ψ3)

and will exhibit narrow peaks towards the three steering angles. More generally, we
can form L beams towards the angles φi, i = 1,2, . . . , L by superimposing the steered
beams:

a(m)=
L∑
i=1

Aie−jmψiw(m) , m = 0,±1,±2, . . . ,±M (19.10.1)

where ψi = kd cosφi, i = 1,2, . . . , L. For an even number of array elements, N = 2M,
we replace Eq. (19.10.1) with:

a(±m)=
L∑
i=1

Aie∓j(m−1/2)ψiw(±m) , m = 1,2, . . . ,M (19.10.2)

For either even or odd N, the corresponding array factor will be the superposition:
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A(ψ)=
L∑
i=1

AiW(ψ−ψi) (multi-beam array factor) (19.10.3)

The basic broadside array weights w(m) can be designed to achieve a desired side-
lobe level or beam width. As the broadside beam w(m) is steered away from 90o, the
beamwidths will broaden. To avoid grating lobes, the element spacing d must be less
the quantity d0 (and greater than d0/2):

d0 = min
i
di, where di = λ

1+ | cosφi| , i = 1,2, . . . , L

This minimum is realized at the beam angle closest to endfire. If the steering angles
are closer to each other than about one 3-dB beamwidth, the mainlobes will begin to
merge with each other reducing the resolvability of the individual beams. This behavior
is analogous to the problem of frequency resolution of multiple sinusoids.

The MATLAB function multbeam.m of Appendix G implements Eqs. (19.10.1) and
(19.10.2). Its inputs are the vector of broadside array weights w—which can be designed
beforehand using for example dolph2 or taylor—and the beam angles and amplitudes
φi, Ai.

Example 19.10.1: Fig. 19.10.1 shows the gains of two 21-element three-beam arrays with half-
wavelength spacing, and steered towards the three angles of 45o, 90o, and 120o. The
broadside array was designed as a Taylor-Kaiser array with sidelobe level of R = 20 and
R = 30 dB.

The relative amplitudes of the three beams were equal to unity. The MATLAB code used
to generate the right figure was:

w = taylor(0.5, 90, 21, 30); % unsteered weights

a = multbeam(0.5, w, [1,1,1], [45, 90, 120]); % equal-amplitude beams

[g, ph] = array(d, a, 400); % compute gain

dbz(ph, g); % plot gain in dB

addray(45); addray(-45); % add ± 45o grid rays

We note the broadening of the beam widths of the larger beam angles. The left array
has narrower mainlobes than the right one because its sidelobe attenuation is less. But, it
also exhibits more constructive interference between mainlobes causing somewhat smaller
sidelobe attenuations than the desired one of 20 dB. ��

Equations (19.10.1) and (19.10.2) generalize the Woodward-Lawson frequency sam-
pling design equations (19.5.6) and (19.5.7) in the sense that the steering phasesψi can
be arbitrary and do not have to be the DFT frequencies.

However, if the ψi are chosen to be the DFT frequencies given by Eq. (19.5.1) or
(19.5.5), and the broadside array is chosen to be a length-N uniform array, w(m)= 1,
then the inverse DFT expressions (19.5.6) and (19.5.7) can be thought of as defining
N beams—called the Woodward-Lawson-Butler beams—steered towards the DFT angles
φi = acos(ψi/kd), that is, towards
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Fig. 19.10.1 Multi-beam arrays with R = 20 and R = 30 dB sidelobes.

φi = acos
(
ψi
kd

)
= acos

(
2πi
Nkd

)
= acos

(
λi
Nd

)
, i = 0,1, . . . ,N − 1 (19.10.4)

The array weights will be given then by the inverse DFT:

a(m)= 1

N

N−1∑
i=0

A(ψi)e−jmψi (19.10.5)

and the corresponding array factor by:

A(ψ)= 1

N

N−1∑
i=0

A(ψi)W(ψ−ψi) (19.10.6)

where W(ψ)= sin(Nψ/2)/ sin(ψ/2) is the array factor of the uniform window. The
DFT values are identified as the relative beam weights Ai = A(ψi)/N.

A single Butler beam, say the jth beam, can be turned on by choosing Aj = δij. By
successively turning on the Butler beams one by one, the array will act as a scanning
array. Fig. 19.10.2 depicts such a multi-beam array structure. The inverse DFT box
implements Eq. (19.10.5). The inputs are the “beams”Ai and the outputs are the weights
a(m).

Somewhat before the advent of the FFT algorithm, Butler proposed a hardware real-
ization of the inverse DFT network, which was quickly recognized to be equivalent to the
FFT algorithm [594,595,597–600]. The DFT matrix realization of this network is called
the Blass matrix in the antenna array context [18,10].

Example 19.10.2: Fig. 19.10.3 shows the individual Butler beams turned on successively for
an eight-element array. Both the standard and alternative DFT frequency sets are shown.
There are eight beams in each graph. For the standard DFT set, the two endfire beams
count as one, that is, the i = 0 beam.

The sidelobes are at the 13-dB level because these are scanned versions of the uniform
array. The mainlobes intersect exactly half-way between the DFT frequencies ψi, that is,
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Fig. 19.10.2 Woodward-Lawson-Butler beam matrix network for N = 8.

the ith beam intersects the neighboring ones at ψ = ψi +π/N = 2π(i + 0.5)/N. These
intersection points are approximately 4 dB down (3.92 dB to be exact) from the main peaks.
The 4-dB gain circle intersects the gain curves at these points. ��
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Fig. 19.10.3 Woodward-Lawson-Butler beams for N = 8.

19.11 Problems



20
Currents on Linear Antennas

20.1 Hallén and Pocklington Integral Equations

In Sec. 13.4, we determined the electromagnetic fields generated by a given current
distribution on a thin linear antenna, but did not discuss the mechanism by which the
current distribution is set up and maintained. In Chap. 15, we assumed that the currents
were sinusoidal, but this was only an approximation. Here, we discuss the integral
equations that determine the exact form of the currents.

An antenna, whether transmitting or receiving, is always driven by an external source
field. In transmitting mode, the antenna is driven by a generator voltage applied to its
input terminals, and in receiving mode, by an incident electric field (typically, a uniform
plane wave if it is arriving from far distances.) In either case, we will refer to this external
source field as the “incident” field Ein.

The incident field Ein induces a current on the antenna. In turn, the current generates
its own field E, which is radiated away. The total electric field is the sum Etot = E +
Ein. Assuming a perfectly conducting antenna, the boundary conditions are that the
tangential components of the total electric field vanish on the antenna surface. These
boundary conditions are enough to determine the current distribution induced on the
antenna.

Fig. 20.1.1 depicts a z-directed thin cylindrical antenna of length l and radius a, with
a current distribution I(z) along its length. We will concentrate only on the z-component
Ez of the electric field generated by the current and use cylindrical coordinates.

For a perfectly conducting antenna, the current is essentially a surface current at ra-
dial distance ρ = a and surface density Js(z)= ẑ I(z)/2πa. The corresponding volume
current density will be as in Eq. (13.4.2):

J(r)= Js(z)δ(ρ− a)= ẑ I(z)δ(ρ− a) 1

2πa
Following the procedure of Sec. 13.4, we obtain the z-component of the vector potential:

Az(z, ρ,φ) = µ
4π

∫
V′

I(z′)δ(ρ′ − a)e−jkR
2πaR

ρ′dρ′dφ′dz′

= µ
4π

∫ l/2
−l/2

∫ 2π

0

I(z′)e−jkR

2πR
dφ′dz′

672
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Fig. 20.1.1 Thin-wire model of cylindrical antenna.

where R = |r− r′| =
√
(z− z′)2+|ρρρ−ρρρ′|2. Because ρ′ = a, we have:

|ρρρ−ρρρ′|2 = ρ2 + a2 − 2ρρρ ·ρρρ′ = ρ2 + a2 − 2ρa cos(φ′ −φ)
Becauseφ′ appears only through the differenceφ′ −φ, we may change the variable

of integration from φ′ to φ′ −φ. This implies that Az will be cylindrically symmetric,
that is, independent of φ. It follows that:

Az(z, ρ)= µ
4π

∫ l/2
−l/2

I(z′)K(z− z′, ρ)dz′ (20.1.1)

where we defined the kernel:

K(z− z′, ρ)= 1

2π

∫ 2π

0

e−jkR

R
dφ′ (20.1.2)

with R =
√
(z− z′)2+ρ2 + a2 − 2ρa cosφ′. In the limit of a thin antenna, a → 0,

Eq. (20.1.1) reduces to:

Az(z, ρ)= µ
4π

∫ l/2
−l/2

I(z′)G(z− z′, ρ)dz′ (20.1.3)

where G(z− z′, ρ) is the reduced thin-wire kernel:

G(z− z′, ρ)= e
−jkR

R
, R =

√
(z− z′)2+ρ2 (20.1.4)

Eq. (20.1.3) is the same as (13.4.3) because the limit a = 0 is equivalent to assuming
that the current density is a line current J(r)= ẑ I(z)δ(x)δ(y), as given by Eq. (13.4.1).
In practice the thin-wire approximation is adequate.

Given the vector potential Az, the z-component of the electric field generated by the
current is obtained from Eq. (13.4.6):

jωµεEz = (∂2
z + k2)Az (20.1.5)
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Even though we took the limit asa→ 0, it is still meaningful to consider the boundary
conditions at the cylindrical surface of the antenna, as shown on the right of Fig. 20.1.1.
Evaluating Eqs. (20.1.3) and (20.1.4) at ρ = a, we obtain:

Az(z)= µ
4π

∫ l/2
−l/2

I(z′)G(z− z′)dz′ (20.1.6)

where we denoted Az(z)= Az(z, a) and G(z− z′)= G(z− z′, a):

G(z− z′)= e
−jkR

R
, R =

√
(z− z′)2+a2 (20.1.7)

The boundary condition on the surface is that the z-component of the total electric
field vanish, that is, at ρ = a:

Ez,tot(z, ρ)= Ez(z, ρ)+Ez,in(z, ρ)= 0

Thus, with Ez(z)= Ez(z, a) and Ein(z)= Ez,in(z, a), we have Ez(z)= −Ein(z), and
Eq. (20.1.5) can be expressed in terms of the z-component of the incident field:

(∂2
z + k2)Az(z)= −jωµεEin(z) (20.1.8)

To summarize, given an incident field Ein(z) that is known along the length of the
antenna, Eq. (20.1.8) may be solved for Az(z) and then the integral equation (20.1.6)
can be solved for the current I(z).

Depending on how this procedure is carried out, one obtains either the Hallén or
the Pocklington equations. Solving Eq. (20.1.8) by formally inverting the differential
operator (∂2

z + k2) and combining with (20.1.6), we obtain Hallén’s integral equation:

µ
4π

∫ l/2
−l/2

I(z′)G(z− z′)dz′ = −jωµε(∂2
z + k2)−1Ein(z) (20.1.9)

Alternatively, applying the differential operator (∂2
z+k2) directly to Eq. (20.1.6) and

combining with (20.1.8) , we obtain Pocklington’s integral equation:

µ
4π

∫ l/2
−l/2

I(z′)(∂2
z + k2)G(z− z′)dz′ = −jωµεEin(z) (20.1.10)

The two integral equations must be solved subject to the constraint that the current
I(z) vanish at the antenna ends, that is, I(l/2)= I(−l/2)= 0.

Hallén’s equation involves a simpler and numerically better-behaved kernel than
Pocklington’s. The inverse differential operator in the right-hand side of Eq. (20.1.9) can
be rewritten as an integral convolutional operator acting on Ein. We discuss this in detail
in Sec. 20.3.
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20.2 Delta-Gap and Plane-Wave Sources

Although the external source field Ein(z) can be specified arbitrarily, there are two spe-
cial cases of practical importance. One is the so-called delta-gap model, which imitates
the way a transmitting antenna is fed by a transmission line. The other is a uniform
plane wave incident at an angle on a receiving antenna connected to a load impedance.
Fig. 20.2.1 depicts these cases.

Fig. 20.2.1 External sources acting on a linear antenna.

The left figure shows the delta-gap model of a generator voltage applied between
the upper and lower halves of the antenna across a short gap of length ∆z. The applied
voltage V0 can be thought of as arising from an electric field—the “incident” field in this
case—which exists only within the gap, such that

V0 =
∫ ∆z/2
−∆z/2

Ein(z)dz (20.2.1)

A simplified case arises when we take the limit ∆z → 0. Then, approximately, V0 =
Ein∆z, or Ein = V0/∆z. In order to maintain a finite value of V0 in the left-hand side of
Eq. (20.2.1), Ein must become commensurately large. This means that in this limit,

Ein(z)= V0δ(z) (delta-gap model of incident field) (20.2.2)

King [3] has discussed the case of a finite ∆z. Fig. 20.2.1 shows on the right a
receiving antenna with a uniform plane wave incident at a polar angle θ and such that
the propagation vector k̂ is co-planar with the antenna axis.

The electric field vector is perpendicular to k̂ and has a space dependence E0e−jk·r.
For a thin antenna, we may evaluate the field along the z-axis, that is, we set x = y = 0
so that e−jk·r = e−jkzz = ejkz cosθ because kz = −k cosθ. Then, the z-component of the
incident field will be:

Ein(z)= E0 sinθejkz cosθ (incident uniform plane wave) (20.2.3)

If the wave is incident from broadside (θ = π/2), then Ein(z)= E0, that is, a constant
along the antenna length. And, if θ = 0 or π, then Ein(z)= 0.
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20.3 Solving Hallén’s Equation

Instead of working with the vector potential Az(z) it proves convenient to work with a
scaled version of it that has units of volts and is defined as:

V(z)= 2jcAz(z) (20.3.1)

where c is the speed of light. We note thatV(z) is not the scalar potentialϕ(z) along the
antenna length. From the Lorenz condition, Eq. (13.4.5), we have ∂zAz = −jωµεϕ(z).
Multiplying by 2jc and noting that cωεµ =ω/c = k, we find:

∂zV(z)= 2kϕ(z) (20.3.2)

Multiplying both sides of Eq. (20.1.8) by 2jc, we can rewrite it as:

(∂2
z + k2)V(z)= 2kEin(z) (20.3.3)

Similarly, Eq. (20.1.6) becomes:

∫ h
−h
Z(z− z′)I(z′)dz′ = V(z) (20.3.4)

where for later convenience, we introduced the half-length of the antenna h = l/2 and
defined the “impedance” kernel:

Z(z− z′)= jη
2π
G(z− z′)= jη

2π
e−jkR

R
, R =

√
(z− z′)2+a2 (20.3.5)

where η = √µ/ε. Eqs. (20.3.3)–(20.3.5) represent our rescaled version of Hallén’s equa-
tions. Formally, we can write V(z)= 2k(∂2

z + k2)−1Ein(z), but we prefer to express
V(z) as an integral operator acting on Ein(z).

A particular solution of (20.3.3) is obtained with the help of the Green’s function
F(z) for this differential equation:

(∂2
z + k2)F(z)= 2kδ(z) (20.3.6)

The general solution of Eq. (20.3.3) is obtained by adding the most general solution
of the homogeneous equation, (∂2

z + k2)V(z)= 0, to the Green’s function solution:

V(z)= C1ejkz +C2e−jkz +
∫ h
−h
F(z− z′)Ein(z′)dz′ (20.3.7)

With a re-definition of the constants C1, C2, we can also write:

V(z)= C1 coskz+C2 sinkz+
∫ h
−h
F(z− z′)Ein(z′)dz′ (20.3.8)

In fact, F(z) itself is defined up to an arbitrary solution of the homogeneous equa-
tion. If F(z) satisfies Eq. (20.3.6), so does F1(z)= F(z)+C1ejkz+C2e−jkz, with arbitrary
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constants C1, C2. Some possible choices for F(z) are as follows. They differ from each
other by a homogeneous term:

F1(z) = je−jk|z| = F2(z)+j coskz

F2(z) = sink|z| = F3(z)− sinkz

F3(z) = 2 sin(kz)u(z)= F4(z)+2 sinkz

F4(z) = −2 sin(kz)u(−z)

(20.3.9)

where u(z) is the unit-step function. All satisfy Eq. (20.3.6) as well as the required
discontinuity conditions on their first derivative, that is,

F′(0+)−F′(0−)= 2k (20.3.10)

This discontinuity condition is obtained by integrating Eq. (20.3.6) over the small
interval −ε ≤ z ≤ ε and then taking the limit ε → 0 and assuming that F(z) itself is
continuous at z = 0. Depending on the choice of F(z), the corresponding solutionV(z)
can be written in the equivalent forms (each with different C1, C2):

V(z) = C1ejkz +C2e−jkz +
∫ h
−h
je−jk|z−z

′|Ein(z′)dz′

V(z) = C1ejkz +C2e−jkz +
∫ h
−h

sin
(
k|z− z′|)Ein(z′)dz′

V(z) = C1ejkz +C2e−jkz + 2

∫ z
−h

sin
(
k(z− z′))Ein(z′)dz′

V(z) = C1ejkz +C2e−jkz − 2

∫ h
z

sin
(
k(z− z′))Ein(z′)dz′

(20.3.11)

We will use mostly the first and second choices for F(z), that is, F(z)= je−jk|z|
and F(z)= sink|z|. Combining the solution for V(z) with Eq. (20.3.4), we obtain the
equivalent form of Hallén’s integral equation:

∫ h
−h
Z(z− z′)I(z′)dz′ = C1ejkz +C2e−jkz +

∫ h
−h
F(z− z′)Ein(z′)dz′ (20.3.12)

or, alternatively,

∫ h
−h
Z(z− z′)I(z′)dz′ = C1 coskz+C2 sinkz+

∫ h
−h
F(z− z′)Ein(z′)dz′

The constants C1, C2 are determined from the end conditions I(h)= I(−h)= 0.
Next, we consider the particular forms of Eq. (20.3.12) in the delta-gap and plane-wave
cases. In the delta-gap case, we have Ein(z)= V0δ(z) and the integral on the right-hand
side can be done trivially, giving:

∫ h
−h
F(z− z′)Ein(z′)dz′ =

∫ h
−h
F(z− z′)V0δ(z′)dz′ = V0F(z)
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Thus, we have the integral equation:

∫ h
−h
Z(z− z′)I(z′)dz′ = C1 coskz+C2 sinkz+V0F(z)

We expect the current I(z) to be an even function of z (because Ein(z) is), and thus
we may drop the C2 term. Using F(z)= sink|z| as our Green’s function choice, we
obtain Hallén’s equation for the delta-gap case:

∫ h
−h
Z(z− z′)I(z′)dz′ = V(z)= C1 coskz+V0 sink|z| (20.3.13)

This equation forms the basis for determining the current on a center-driven lin-
ear antenna. We will consider several approximate solutions of it as well as numerical
solutions based on moment methods.

We can verify that V(z) correctly gives the potential difference between the upper
and lower halves of the antenna. DifferentiatingV(z) about z = 0 and using Eq. (20.3.2),
we have:

V′(0+)−V′(0−)= 2kV0 = 2k
(
ϕ(0+)−ϕ(0−)) ⇒ ϕ(0+)−ϕ(0−)= V0

As a second example, consider the case of an antenna receiving a uniform plane wave
with incident field as in Eq. (20.2.3). Using F(z)= je−jk|z| as the Green’s function, the
convolution integral of F(z) and Ein(z) can be done easily giving:

∫ h
−h
je−jk|z−z

′|E0 sinθejkz
′ cosθ dz′ = 2E0

k sinθ
ejkz cosθ + (homogeneous terms)

where the last terms are solutions of the homogeneous equation, and thus, can be ab-
sorbed into the other homogeneous terms of V(z). Because the current is not expected
to be symmetric in z, we must keep both homogeneous terms, resulting in Hallén’s
equation for a receiving antenna:

∫ h
−h
Z(z− z′)I(z′)dz′ = V(z)= C1ejkz +C2e−jkz + 2E0

k sinθ
ejkz cosθ (20.3.14)

20.4 Sinusoidal Current Approximation

Here, we look at simplified solutions of Eq. (20.3.13), which justify the common sinu-
soidal assumption for the current.

Inspecting the kernel Z(z − z′) or G(z − z′)= e−jkR/R of the integral equation
(20.3.13), we note that as the integration variable z′ sweeps past z, the denominator
becomes very large, because R = a at z′ = z. Therefore, the integral is dominated by
the value of the integrand near z′ = z. We can write approximately,

∫ h
−h
Z(z− z′)I(z′)dz′ � Z̄(z)I(z)� Z̄I(z) (20.4.1)
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where Z̄(z) is a sort of an average value of Z(z − z′) in the neighborhood of z′ = z.
This quantity varies slowly with z and we may approximate it with a constant, say Z̄.
Then, Hallén’s equation (20.3.13) becomes approximately:

Z̄I(z)= V(z)= C1 coskz+V0 sink|z|

This shows that I(z) is approximately sinusoidal. The constant C1 is fixed by the
end-condition I(h)= 0, which gives:

C1 coskh+V0 sinkh = 0 ⇒ C1 = −V0
sinkh
coskh

so that I(z) becomes:

Z̄I(z)= −V0
1

coskh
[
sinkh coskz− coskh sink|z|] = −V0

1

coskh
sin
(
k(h− |z|))

Solving for I(z), we obtain the common standing-wave expression for the current:

I(z)= I(0)sin
(
k(h− |z|))
sinkh

, I(0)= −V0 sinkh
Z̄ coskh

(20.4.2)

where I(0) is the input current at z = 0. The crude approximation of Eq. (20.4.1) can
be refined further using King’s three-term approximation discussed in Sec. 20.6. From
Eq. (20.4.2), the antenna input impedance is seen to be:

ZA = V0

I(0)
= −Z̄ cotkh (20.4.3)

20.5 Reflecting and Center-Loaded Receiving Antennas

A similar approximation to Hallén’s equation can be carried out in the plane-wave case
shown in Fig. 20.2.1. We distinguish three cases: (a)ZL = 0, corresponding to a reflecting
parasitic antenna with short-circuited output terminals, (b) ZL = ∞, corresponding to
open-circuited terminals, and (c) arbitraryZL, corresponding to a center-loaded receiving
antenna. See Ref. [12] for more details on this approach.

By finding the short-circuit current from case (a) and the open-circuit voltage from
case (b), we will determine the output impedance of the receiving antenna, that is, the
Thevénin impedance ZA of the model of Sec. 14.4, and show that it is equal to the
input impedance (20.4.3) of the transmitting antenna, in accordance with the reciprocity
principle. We will also show from case (c) that the angular gain pattern of the receiving
antenna agrees with that of the transmitting one.

Starting with the short-circuited case, the approximation of Eq. (20.4.1) applied to
(20.3.14) gives:

Z̄I(z)= V(z)= C1ejkz +C2e−jkz + 2E0

k sinθ
ejkz cosθ

The end-point conditions I(h)= I(−h)= 0 provide two equations in the two un-
knowns C1, C2, that is,
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C1ejkh +C2e−jkh + 2E0

k sinθ
ejkh cosθ = 0

C1e−jkh +C2ejkh + 2E0

k sinθ
e−jkh cosθ = 0

with solution:

C1 = −E0 sin
(
kh(1+ cosθ)

)
k sinθ sinkh coskh

, C2 = −E0 sin
(
kh(1− cosθ)

)
k sinθ sinkh coskh

Then, the current I(z) becomes:

I(z)= 1

Z̄
[
C1ejkz +C2e−jkz + 2E0

k sinθ
ejkz cosθ] (20.5.1)

For normal incidence, θ = 90o, we have C1 = C2 and Eq. (20.5.1) becomes:

I(z)= 2E0

Z̄k coskh
(coskh− coskz) (20.5.2)

For θ = 0 and θ = π, the z-component of the incident field is zero, Ein(z)= 0, and
we expect I(z)= 0. This can be verified by carefully taking the limit of Eq. (20.5.1) at
θ = 0,π, with the seemingly diverging term 2E0/k sinθ getting canceled.

The short-circuit current at the output terminals is obtained by setting z = 0 in
Eq. (20.5.1):

Isc = I(0)= 1

Z̄
[
C1 +C2 + 2E0

k sinθ
]

Inserting the expressions for C1, C2, we find:

Isc = 2E0

Z̄k coskh
coskh− cos(kh cosθ)

sinθ
(20.5.3)

For the open-circuit case, the incident field will induce an open-circuit voltage across
the gap, and therefore, the scalar potential ϕ(z) will be discontinuous at z = 0. In
addition, the current must vanish at z = 0. Therefore, we must apply Eq. (20.3.14)
separately to the upper and lower halves of the antenna. Using coskz and sinkz as the
homogeneous terms, instead of e±jkz, we have the approximation:

Z̄I(z)= V(z)=



C1 coskz+C2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≥ 0

D1 coskz+D2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≤ 0

The conditions I(0+)= I(h)= 0 and I(0−)= I(−h)= 0 provide four equations in
the four unknowns C1, C2,D1,D2. They are:

C1 + 2E0

k sinθ
= 0, C1 coskh+C2 sinkh+ 2E0

k sinθ
ejkh cosθ = 0

D1 + 2E0

k sinθ
= 0, D1 coskh−D2 sinkh+ 2E0

k sinθ
e−jkh cosθ = 0
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with solution:

C1 = D1 = − 2E0

k sinθ

C2 = 2E0(coskh− ejkh cosθ)
k sinθ sinkh

, D2 = −2E0(coskh− e−jkh cosθ)
k sinθ sinkh

The open-circuit voltage is Voc =ϕ(0+)−ϕ(0−). Using Eq. (20.3.2), we have:

V′(0+)−V′(0−)= 2kVoc = k(C2 −D2) ⇒ Voc = 1

2
(C2 −D2)

and using the solution for C2,D2, we find:

Voc = 2E0

k sinkh
coskh− cos(kh cosθ)

sinθ
(20.5.4)

Having found the short-circuit current and open-circuit voltage, we obtain the cor-
responding output Thevénin impedance by dividing Eq. (20.5.4) and (20.5.3):

ZA = −Voc

Isc
= −Z̄ cotkh (20.5.5)

where the minus sign is due to the fact that Isc is flowing into (instead of out of) the top
antenna terminal. We note that Eq. (20.5.5) agrees with (20.4.3) of the transmitting case.

Equations (20.5.3) and (20.5.4) are special cases of a more general result, which is a
consequence of the reciprocity principle (for example, see [35]). Given an incident field
on a receiving linear antenna, the induced short-circuit current and open-circuit voltage
at its terminals are given by:

Isc = 1

V0

∫ h
−h
Ein(z)I(z)dz , Voc = − 1

I0

∫ h
−h
Ein(z)I(z)dz (20.5.6)

where I(z) is the current generated by V0 when the antenna is transmitting. Inserting
Eq. (20.4.2) into (20.5.6), we can easily derive Eqs. (20.5.3) and (20.5.4). We will use
(20.5.6) in Sec. 21.2 to derive the mutual impedance between two antennas.

Finally, we consider case (c) of an arbitrary load impedance ZL. The current will be
continuous across the gap but it does not have to vanish at z = 0. The voltage difference
across the gap will be equal to the voltage drop across the load, that is, VL = −ZLI(0).
The approximate Hallén equation is now:

Z̄I(z)= V(z)=



C1 coskz+C2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≥ 0

D1 coskz+D2 sinkz+ 2E0

k sinθ
ejkz cosθ, z ≤ 0

where D1 = C1 because of the continuity of I(z) at z = 0. The end conditions, I(h)=
I(−h)= 0, give:

C1 coskh+C2 sinkh+ 2E0

k sinθ
ejkh cosθ = 0

C1 coskh−D2 sinkh+ 2E0

k sinθ
e−jkh cosθ = 0
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Moreover, we have the discontinuity condition:

V′(0+)−V′(0−)= 2kVL = k(C2 −D2) ⇒ VL = 1

2
(C2 −D2)

Ohm’s law at the load gives:

VL = −ZLI(0)= −ZLZ̄
(
C1 + 2E0

k sinθ

)
= ZL
ZA

(
C1 + 2E0

k sinθ

)
cotkh

where we used Eq. (20.5.5). Solving the above four equations for C1, C2,D2, VL, we find
eventually:

VL = ZL
ZA + ZL

2E0

k sinkh
coskh− cos(kh cosθ)

sinθ
= VocZL
ZA + ZL (20.5.7)

This is equivalent to the Thevénin model that we used in Sec. 14.4. The power
delivered to the load will be proportional to |VL|2, which is proportional to the gain
pattern of a transmitting dipole, that is,

∣∣∣∣coskh− cos(kh cosθ)
sinθ

∣∣∣∣
2

20.6 King’s Three-Term Approximation

To improve the crude sinusoidal approximation of Eq. (20.4.1), we must look more care-
fully at the properties of the impedance kernel. Separating its real and imaginary parts,
we have:

Z(z− z′)= jη
2π
e−jkR

R
= kη

2π

[
sinkR
kR

+ j coskR
kR

]

For R near zero, the imaginary part becomes very large and we may apply the ap-
proximation (20.4.1) to it. But, the real part remains finite at R = 0. For kR ≤ π,
which will be guaranteed if kh ≤ π, the sinc function can be very well approximated by
cos(kR/2)� cos(k|z−z′|/2) as can be verified by plotting the two functions. Therefore,

sinkR
kR

� cos
(kR

2

) � cos
(k(z− z′)

2

)
, for kR ≤ π

Using this approximation for the real part of the kernel, and applying the approx-
imation of Eq. (20.4.1) to its imaginary part, King has shown [4,74] that an improved
approximation of the convolution integral is as follows:

∫ h
−h
Z(z− z′)I(z′)dz′ � R cos

(kz
2

)+ jXI(z)
where R,X are appropriate constants, which are real if I(z) is real. This approximation
also assumes that the current is symmetric, I(z)= I(−z). Thus, Hallén’s equation
(20.3.13) can be approximated as:

R cos
(kz

2

)+ jXI(z)= V(z)= C1 coskz+V0 sink|z|
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It shows that the current I(z) is a linear combination of the sinusoidal terms sink|z|,
coskz, and cos(kz/2). This leads to King’s three-term approximation for the current
[4,74], which incorporates the condition I(h)= 0. There are two alternative forms:

I(z)= A1I1(z)+A2I2(z)+A3I3(z)= A′1I′1(z)+A′2I′2(z)+A′3I′3(z) (20.6.1)

where the expansion currents are defined by:

I1(z) = sink|z| − sinkh

I2(z) = coskz− coskh

I3(z) = cos(kz/2)− cos(kh/2)

,

I′1(z) = sin
(
k(h− |z|))

I′2(z) = coskz− coskh

I′3(z) = cos(kz/2)− cos(kh/2)

(20.6.2)

Using the trigonometric identity I1(z)= I′2(z)tankh−I′1(z)/ coskh, the relationship
between the primed and unprimed coefficients is:

A′1 = −
A1

coskh
, A′2 = A1 +A2 tankh , A′3 = A3 (20.6.3)

The transformation between the primed and unprimed currents breaks down when
coskh = 0, that is, when l = 2h is an odd-multiple of λ/2. In that case, only the
unprimed form may be used. Otherwise, the primed form is preferable because the
term I′1(z)= sin

(
k(h − |z|)) has the conventional standing-wave form. We will work

with the unprimed form because it is always possible.
To determine the expansion coefficientsA1,A2,A3, we insert Eq. (20.6.1) into Hallén’s

equation (20.3.13) and get:

A1V1(z)+A2V2(z)+A3V3(z)= V(z)= C1 coskz+V0 sink|z| (20.6.4)

where

Vi(z)=
∫ h
−h
Z(z− z′)Ii(z′)dz′ , i = 1,2,3 (20.6.5)

At z = h, we have:

A1V1(h)+A2V2(h)+A3V3(h)= V(h)= C1 coskh+V0 sinkh (20.6.6)

Subtracting Eqs. (20.6.4) and (20.6.6), and defining Vdi(z)= Vi(z)−Vi(h), we have:

A1Vd1(z)+A2Vd2(z)+A3Vd3(z)= C1(coskz− coskh)+V0(sink|z| − sinkh)

Using the definition (20.6.2), we can write:

A1Vd1(z)+A2Vd2(z)+A3Vd3(z)= C1I2(z)+V0I1(z) (20.6.7)

Introducing the difference kernel Zd(z− z′)= Z(z− z′)−Z(h− z′), we have:

Vdi(z)=
∫ h
−h
Zd(z− z′)Ii(z′)dz′ , i = 1,2,3 (20.6.8)
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The improved approximation applied to the difference kernel gives:∫ h
−h
Zd(z− z′)I(z′)dz′ = R

(
cos(kz/2)− cos(kh/2)

)+ jXI(z)= RI3(z)+jXI(z)
Therefore, applying it to the three separate currents I1(z), I2(z), I3(z), we obtain:

Vdi(z)= Vi(z)−Vi(h)= RiI3(z)+jXiIi(z) , i = 1,2,3 (20.6.9)

Inserting these approximations in Eq. (20.6.4), we have:

A1
[
R1I3(z)+jX1I1(z)

]+A2
[
R2I3(z)+jX2I2(z)

]+A3
[
R3I3(z)+jX3I3(z)

] =
= C1I2(z)+V0I1(z)

Defining Z3 = R3 + jX3 and matching the coefficients of I1(z), I2(z), I3(z) in the
two sides, gives three equations in the four unknowns A1,A2,A3, C1:

jX1A1 = V0, jX2A2 −C1 = 0, R1A1 +R2A2 + Z3A3 = 0

The fourth equation is (20.6.6). Thus, we obtain the linear system:


jX1 0 0 0
0 jX2 0 −1
R1 R2 Z3 0
V1(h) V2(h) V3(h) − coskh





A1

A2

A3

C1


 =




V0

0
0

V0 sinkh


 (20.6.10)

The matrix elements can be determined by evaluating the defining approximations
(20.6.9) at z-points at which the currents Ii(z) take on their maximum values. For I1(z),
the maximum occurs at z1 = 0 if h ≤ λ/4 and at z1 = h− λ/4 if λ/4 ≤ h ≤ 5λ/8. For
I2(z) and I3(z), the maxima occur at z = 0. Thus, the defining equations for the matrix
elements are:

Vd1(z1)= V1(z1)−V1(h)= R1I3(z1)+jX1I1(z1)

Vd2(0)= V2(0)−V2(h)= R2I3(0)+jX2I2(0)

Vd3(0)= V3(0)−V3(h)= Z3I3(0)

(20.6.11)

The coefficients R1, X1, R2, X2 are obtained by extracting the real and imaginary
parts of these expressions. The left-hand sides can be computed by direct numerical
integration of the definitions (20.6.5). The expected range of applicability of the 3-term
approximation is for antenna lengths l ≤ 1.25λ (see [4,74].) However, it works well even
for longer lengths.

The MATLAB function king implements the design equations (20.6.10) and (20.6.11).
It has usage:

A = king(L,a); % King’s 3-term sinusoidal approximation

where L,a are the antenna length and its radius in units of λ and the output A is the
column vector of the coefficients Ai. If the length is an odd-multiple of λ/2, then A =
[A1,A2,A3]T, otherwise, A = [A′1,A′2,A′3]T.

The numerical integrations are done with a 32-point Gauss-Legendre quadrature in-
tegration routine implemented with the function quadr, which provides the appropriate
weights and evaluation points for the integration.
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Example 20.6.1: Fig. 20.6.1 compares the tree-term approximation to the standard sinusoidal
approximation, I(z)= sin

(
k(h − |z|)), and to the exact numerical solution of Hallén’s

equation for the two cases of l = λ and l = 1.5λ. The antenna radius was a = 0.005λ.
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Fig. 20.6.1 Three-term approximation for l = λ and l = 1.5λ.

In the full-wavelength case, the sinusoidal approximation has I(0)= 0, which would imply
infinite antenna impedance. The three-term approximation gives a nonzero value for I(0).
The computed three-term coefficients are in the two cases:


A′1
A′2
A′3


 = 10−3




−3.0409j
0.3573+ 0.3686j
0.3044+ 0.3369j


 ,



A1

A2

A3


 = 10−3




−2.4348j
7.8154− 3.6654j
0.9416+ 2.8503j




We used the primed representation of Eq. (20.6.1) for the full-wavelength case, and the
unprimed one for l = 1.5λ. The graphs were generated by the following example code:

L = 1.0; % length in wavelengths

a = 0.008; % radius in wavelengths

h = L/2;
k = 2*pi; % wavenumber in rads/wavelength

A = king(L,a); % 3-term coefficients

z = 0 : h/100 : h;
Ik = kingeval(L,A,z); % evaluate 3-term approximation

Is = sin(k*(h-abs(z))); % sinusoidal approximation

M = 30; % number of upper-half segments

[In,zn,cnd] = hallen(L,a,M); % numerical solution

In = In(M+1:end); % upper-half of the current

zn = zn(M+1:end); % centers of upper-half segments

mk = max(abs(Ik)); % scale factors

ms = max(abs(Is));
mn = max(abs(In));

plot(z, abs(Ik)*mn/mk, z, abs(Is)*mn/ms, ’--’, zn, abs(In), ’.’);

The function kingeval simply evaluates the three-term approximation (20.6.1) at a given
number of z-points. �	
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20.7 Numerical Solution of Hallén’s Equation

In the past three sections, we looked at approximate solutions of Hallén’s equation
obtained by simplifying the convolution integral.

Here, we discuss numerical solutions of the full integral equation based on mo-
ment methods. We consider both the delta-gap case of a center-driven antenna and
the more general case of an arbitrary incident field. The relevant Hallén equations are
Eqs. (20.3.12) and (20.3.13), that is,

∫ h
−h
Z(z− z′)I(z′)dz′ = V(z)= C1 coskz+V0 sink|z| (20.7.1)

∫ h
−h
Z(z− z′)I(z′)dz′ = V(z)= C1ejkz +C2e−jkz +

∫ h
−h
F(z− z′)Ein(z′)dz′ (20.7.2)

A numerical solution attempts to discretize these equations and convert them to
a system of linear equations. Perhaps, the simplest scheme is to replace the current
I(z) by its sampled version, sampled at N = 2M + 1 equally-spaced z-points along the
antenna length, that is,

I(z′)=
M∑

m=−M
I(zm)δ(z′ − zm)∆z (20.7.3)

where for −M ≤m ≤M,

zm =m∆z, ∆z = h
M
= l
N − 1

(type-0) (20.7.4)

Such a discretization scheme is shown on the lower part of Fig. 20.7.1, labeled as
“type-0”, for the case ofN = 11 andM = 5. The spacing interval ∆z appears as a factor
in Eq. (20.7.3) in order to have the right dimensions for I(z). Note that the last sample
coincides with the end-point of the antenna, zM = M∆z = h. The antenna length is
divided into N− 1 segments of length ∆z and two half-segments of length ∆z/2 at the
two ends.

The sharp delta function δ(z−zm)∆z can be replaced by a finite pulse of width ∆z
centered around the point zm, as shown in Fig. 20.7.1. We will consider this case later.
Inserting Eq. (20.7.3) into (20.7.1), the integration can be done trivially giving:

M∑
m=−M

Z(z− zm)I(zm)∆z = V(z)= C1 coskz+V0 sink|z|

If we evaluate this equation at the same sampled points zn = n∆z, we will obtain an
N×N system of linear equations in the unknowns I(zm), that is,

M∑
m=−M

Z(zn − zm)I(zm)∆z = V(zn)= C1 coskzn +V0 sink|zn| (20.7.5)

for −M ≤ n ≤ M. The constant C1 will be chosen in order to satisfy the end condition
I(zM)= I(h)= 0. Eq. (20.7.5) can be written in the compact matrix form:
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Fig. 20.7.1 Sampling schemes along an antenna, with N = 11,M = 5.

ZI = v = C1c+V0s (20.7.6)

where Z is theN×Nmatrix Znm = Z(zn−zm)∆z and I, s, and c are the column vectors
with elements In = I(zn), cn = coskzn, and sn = sink|zn|, and vn = C1cn + V0sn,
for n = −M, . . . ,M. All of these vectors are symmetric about their middle, that is,
I(z−n)= I(zn), and similarly for the others. Therefore, we have:

I =




IM
...
I1
I0
I1
...
IM



, v =




vM
...
v1

v0

v1

...
vM



, c =




cM
...
c1

c0

c1

...
cM



, s =




sM
...
s1
s0
s1
...
sM




(20.7.7)

The matrix Z is a symmetric Toeplitz matrix because the nmth matrix element de-
pends only on the difference |n−m|, indeed,

Znm = Z(zn − zm)∆z = ∆z jη
2π
e−jkR

R
, R =

√
a2 +∆z2(n−m)2 (20.7.8)

Taking advantage of the Toeplitz nature of Z and the symmetry of the vectors
(20.7.7), the matrix system (20.7.6) can be replaced by one essentially half its size, thus,
speeding up the solution. To see this, we partition the vector I into its upper (negative-z),
middle, and lower (positive-z) parts:

I =

 IR1
I0
I1


 , I1 =




I1
I2
...
IM


 , IR1 =




IM
...
I2
I1



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The upper part IR1 is the reverse of the lower part I1. The reversal operation can be
expressed as a matrix operation:

IR1 = JI1 , J =




0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0




where J is theM×M reversing matrix J, that is, the matrix with ones along its antidiag-
onal. Then, the impedance matrix Z and Eq. (20.7.6) can be partitioned in a compatible
way as follows: 


AR aR1 BR

aTR2 a0 aT2
B a1 A




 IR1
I0
I1


 =


 vR1
v0

v1


 (20.7.9)

where we have separated out the middle column and row of Z. Because Z satisfies the
reversal invariance condition Z(n,m)= Z(−n,−m), the upper-left block AR will be
the reverse of the lower-right block A, and the upper-right, the reverse of the lower-
left. Moreover, because Z is symmetric, we have a2 = a1, and also for the Toeplitz
submatrices, AR = AT = A and BR = BT.

The reverse of a matrix is obtained by reversing its columns and then reversing its
rows, an operation which is equivalent to multiplication by the reversing matrix J from
left and right:

AR = JAJ
Writing out the three sub-block equations of Eq. (20.7.9), we obtain:

ARIR1 + aR1 I0 + BRI1 = vR1

aTR2 IR1 + a0I0 + aT2 I1 = v0

BIR1 + a1I0 +AI1 = v1

But, the first is exactly the reverse of the last, and therefore redundant. Noting that
aTRIR1 = aT2 I1 and BIR1 = BJI1, we obtain the reduced system:

a0I0 + 2aT2 I1 = v0

a1I0 + (A+ BJ)I1 = v1

which can be written in the reduced block matrix form:[
a0 2aT2
a1 A+ BJ

][
I0
I1

]
=
[
v0

v1

]
(20.7.10)

Thus, we can replace the N×N system (20.7.6) or (20.7.9) by the (M + 1)×(M + 1)
system (20.7.10) acting only on half-vectors. We will write Eq. (20.7.10) in the following
compact form:

ZI = v = C1c+V0s (20.7.11)

whereZ is constructed fromZ according to (20.7.10) and the vectors are the half-vectors:
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I =




I0
I1
...
IM


 , v =




v0

v1

...
vM


 , c =




c0

c1

...
cM


 , s =




s0
s1
...
sM


 (20.7.12)

Next, we impose the condition that IM = 0. It can be written vectorially in the form
uTI = 0, where uT = [0, . . . ,0,1]. Solving (20.7.11) for I, we obtain:

I = C1Z−1c+V0Z−1s (20.7.13)

Multiplying both sides by uT, we obtain the condition:

uTI = C1uTZ−1c+V0uTZ−1s = 0

which may be solved for C1:

C1 = −V0
uTZ−1s

uTZ−1c
(20.7.14)

The two equations (20.7.13) and (20.7.14) provide the complete solution of the dis-
cretized Hallén equation. The MATLAB function hallen implements this solution pro-
cedure. It has usage:

[I,z,cnd] = hallen(L,a,M); % solve Hallen’s integral equation with delta-gap input

The function solves the half system (20.7.11) but returns the full N-dimensional
symmetric vector I of Eq. (20.7.7). The quantity z is theN-dimensional vector of sampled
z-points (20.7.4), and cnd is the condition number of the matrix Z that is being inverted.
The quantities L,a are the antenna length and radius in units of λ, andM has the same
meaning as above. It assumes V0 = 1. Therefore, the input impedance of the antenna
will be ZA = V0/I0 = 1/I0.

Because the submatricesA,B in (20.7.10) are Toeplitz, it follows that the row-reversed
matrix BJ will be Hankel. These matrices are constructed with the help of the MATLAB
functions toeplitz and hankel. No inverse of Z is computed. Instead we perform
the single MATLAB operation Z\[c, s], from which the rest of the solution can be con-
structed.

Fast Toeplitz solvers can also be used, based on the Levinson recursion and fast
Cholesky factorizations [52]. However, we found that the built-in linear system solver
of MATLAB is much faster for sizes of the orderM = 20–100.

20.8 Numerical Solution Using Pulse Functions

The delta function discretization scheme works well. An example was seen in Fig. 20.6.1.
An alternative to this discretization is to replace the delta functions with finite pulses
of width ∆z, that is,

δ(z− zm)∆z→ ∆(z− zm)
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where ∆(z) is the unit-pulse centered at the origin:

∆(z)= u(z+∆z/2)−u(z−∆z/2)=

 1, if |z| ≤ 1

2
∆z

0, otherwise
(20.8.1)

The delta function is obtained in the limit ∆z→ 0:

δ(z)= lim
∆z→0

∆(z)
∆z

The sampled current (20.7.3) is now replaced by:

I(z′)=
M∑

m=−M
I(zm)∆(z′ − zm) (20.8.2)

and Hallén’s equation becomes:

M∑
m=−M

I(zm)
∫ h
−h
Z(z− z′)∆(z′ − zm)dz′ = V(z)= C1 coskz+V0 sink|z|

Evaluating it at the sampled points zn = n∆z, for −M ≤ n ≤M, we have:

M∑
m=−M

I(zm)
∫ h
−h
Z(zn − z′)∆(z′ − zm)dz′ = V(zn)= C1 coskzn +V0 sink|zn|

We define the impedance matrix by:

Znm =
∫ h
−h
Z(zn − z′)∆(z′ − zm)dz′ (20.8.3)

Changing variable of integration to z′′ = z′ − zm, and noting that ∆(z′′) has unity
height and support on the∆z-interval centered at the origin, the above integration range
reduces to:†

Znm =
∫ ∆z/2
−∆z/2

Z(zn − zm − z′′)∆(z′′)dz′′ =
∫ ∆z/2
−∆z/2

Z(zn − zm − z′′)dz′′

Changing variables again to z′′ = x∆z, we have the final form of the matrix:

Znm = ∆z
∫ 1/2

−1/2
Z(zn − zm − x∆z)dx (20.8.4)

where

Z(zn − zm − x∆z)= jη
2π
e−jkR

R
, R =

√
a2 +∆z2(n−m− x)2

The resulting discrete Hallén equation becomes:

†Strictly speaking, at the two ends of the antenna, the z′′ segment is only half as long as the other
segments. However, very little loss of accuracy arises if we artificially extend these end-segments to full
length ∆z. This issue does not arise in the type-1 case.
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M∑
m=−M

ZnmIm = V(zn)= C1 coskzn +V0 sink|zn| (20.8.5)

and can be written in a similar matrix form as (20.7.6):

ZI = v = C1c+V0s (20.8.6)

The only difference between this and (20.7.6) is in the definition of the sampled
impedance matrix Z. In this case too, Z is Toeplitz, symmetric, and invariant un-
der reversal. Therefore, it can be wrapped to half-size in exactly the same fashion as
Eq. (20.7.11).

The MATLAB function hallen also implements this case. The required integration
over x is done using Gauss-Legendre quadrature integration withNint points. The MAT-
LAB function quadr is used to provide the Nint weights and evaluation points:

[w,x] = quadr(-1/2, 1/2, Nint);

The integral in (20.8.4) is then calculated by the dot product:

Znm = wTZ(zn − zm − x∆z)∆z (20.8.7)

where Z(zn − zm − x∆z) is the column vector of values of the integrand at the Gauss-
Legendre evaluation points x. Some examples of weights and evaluation points are given
below for Nint = 1,2,3:

w = [1], w =
[

0.5000
0.5000

]
, w =




0.2778
0.4444
0.2778




x = [0], x =
[
−0.2887

0.2887

]
, x =



−0.3873

0.0000
0.3873




We note in particular, that the case Nint = 1 has unity weight and evaluation point
x = 0 so that Eq. (20.8.7) becomes identical to (20.7.8). Thus, the delta-function case is
obtained as a special case of our implementation of the pulse case. The function hallen
can be called with an extra input parameter to specify the number of integration points:

[I,z,cnd] = hallen(L,a,M,Nint); % Hallen’s integral equation with delta-gap input

The function also has an additional optional input variable, type, which takes on the
values 0,1 and specifies the desired sampling scheme, as shown in Fig. 20.7.1. Thus,
the full set of input parameters of the function is:

[I,z,cnd] = hallen(L,a,M,Nint,type); % Hallen’s integral equation with delta-gap input

The type-1 case corresponds to dividing the antenna into N = 2M + 1 equal subin-
tervals, instead of the (N− 1) of the type-0 case. Now, the sampling points are defined
as follows, for −M ≤m ≤M,
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zm =m∆z, ∆z = h
M + 0.5

= l
N

(type-1) (20.8.8)

The last sample does not quite reach the end of the antenna, zM =M∆z = h−∆z/2.
However, our solution still enforces the end-point condition I(zM)= 0. This can be
justified by thinking of I(zM) as representing the value of entire last pulse interval,
which does extend to the end of the antenna.

Example 20.8.1: To clarify the structure of the impedance matrix (20.8.4) and show how to wrap
it efficiently into the half-size of (20.7.10), consider the case N = 7 or M = 3. Because Z
is Toeplitz and symmetric, it can be built from the knowledge of its first column or first
row. The first row is Zn,−M = Zn+M,0, for −M ≤ n ≤ M. Setting m = n +M, so that
m = 0,1, . . . ,2M, the first row consists of the numbers:

am = ∆z jη
2π

∫ 1/2

−1/2

e−jkR

R
dx , R =

√
a2 +∆z2(m− x)2 (20.8.9)

Therefore, the full matrix Z will have the form:

Z =




a0 a1 a2 a3 a4 a5 a6

a1 a0 a1 a2 a3 a4 a5

a2 a1 a0 a1 a2 a3 a4

a3 a2 a1 a0 a1 a2 a3

a4 a3 a2 a1 a0 a1 a2

a5 a4 a3 a2 a1 a0 a1

a6 a5 a4 a3 a2 a1 a0




where we partitioned it as in Eq. (20.7.10), with submatrices:

A =


a0 a1 a2

a1 a0 a1

a2 a1 a0


 , B =



a4 a3 a2

a5 a4 a3

a6 a5 a4


 , a1 = a2 =



a1

a2

a3




Therefore, the wrapped version of Z will be:

Z =
[
a0 2aT2
a1 A+ BJ

]
=



a0 2a1 2a2 2a3

a1 a0 + a2 a1 + a3 a2 + a4

a2 a1 + a3 a0 + a4 a1 + a5

a3 a2 + a4 a1 + a5 a0 + a6


 (20.8.10)

This matrix can be constructed quickly as follows. Once the numbers am,m = 0,1, . . . ,2M
are computed, take the first and last M + 1 numbers, that is, define the two row vectors
at, ah:

a = [a0, a1, a2, a3, a4, a5, a6] ⇒ at = [a0, a1, a2, a3] , ah = [a3, a4, a5, a6]

Then, form the Toeplitz matrix whose first column and first row are at, and add it to the
Hankel matrix whose first column is at and last row is ah. This is accomplished easily by
the built-in MATLAB functions toeplitz and hankel:
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toeplitz(at, at)+hankel(at, ah)=




2a0 2a1 2a2 2a3

2a1 a0 + a2 a1 + a3 a2 + a4

2a2 a1 + a3 a0 + a4 a1 + a5

2a3 a2 + a4 a1 + a5 a0 + a6




Then, replace the first column by half its value. These procedures are incorporated into
the function hallen. �	

Example 20.8.2: Another numerical issue is the accuracy of the Gauss-Legendre integration.
The accuracy can be improved by increasing Nint (typical values are 16–32.) But a better
method is to keep Nint fixed at some value, say 16, and split the integration interval into
several subintervals, for example,

∫ 1/2

−1/2
=
∫ −δ
−1/2

+
∫ δ
−δ
+
∫ 1/2

δ

Then, compute the Legendre weights and evaluation points in each subinterval:

[w1,x1] = quadr(-1/2, -delta, Nint);

[w2,x2] = quadr(-delta, delta, Nint);

[w3,x3] = quadr(delta, 1/2, Nint);

And, finally, add the values of the sub-integrals. This procedure is not implemented into
hallen, but is implemented into the king function and also into imped, which calculates
the self and mutual impedance of dipole antennas. �	

20.9 Numerical Solution for Arbitrary Incident Field

The numerical solution of Hallén’s equation with arbitrary incident field, Eq. (20.7.2),
can be accomplished in the same way as in the delta-gap case. Assuming a pulse basis
expansion for both the current and the incident field, we have:

I(z′) =
M∑

m=−M
I(zm)∆(z′ − zm)

Ein(z′) =
M∑

m=−M
Ein(zm)∆(z′ − zm)

(20.9.1)

Sampled at the points zn = n∆z, −M ≤ n ≤M, the convolution of the incident field
with the Green’s function F(z) becomes:

∫ h
−h
F(zn − z′)Ein(z′)dz′ =

M∑
m=−M

Ein(zm)
∫ h
−h
F(zn − z′)∆(z′ − zm)dz′

As in Eq. (20.8.3), we define the Green’s matrix:

Fnm =
∫ h
−h
F(zn − z′)∆(z′ − zm)dz′ (20.9.2)
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Changing integration variable to z′ = zm + x∆z, we may rewrite this as:

Fnm = ∆z
∫ 1/2

−1/2
F(zn − zm − x∆z)dx (20.9.3)

And, in particular, if we use F(z)= je−jk|z| as the Green’s function:

Fnm = ∆z
∫ 1/2

−1/2
je−jk∆z|n−m−x| dx (20.9.4)

The integration can be done exactly giving the matrix elements:

Fnm = ∆z
[

1− cos(k∆z/2)
k∆z/2

δnm + sin(k∆z/2)
k∆z/2

je−jk∆z|n−m|
]

(20.9.5)

The discretized Hallén equation (20.7.2) then takes the form:

M∑
m=−M

ZnmIm = C1ejkzn +C2e−jkzn +
M∑

m=−M
FnmEm (20.9.6)

where we denoted Em = Ein(zm). Eq. (20.9.6) can be written in the compact form:

ZI = C1s1 +C2s2 + FE (20.9.7)

where s1 and s2 are the vectors with elements s1(n)= ejkzn and s2(n)= e−jkzn . Defining
the N×2 matrix S = [s1, s2] and the two-dimensional column vector of constants C =
[C1, C2]T, we write Eq. (20.9.7) in the form:

ZI = SC+ FE (20.9.8)

It is not possible to wrap this equation in half because E is not necessarily symmetric
about its middle. The constants C must be found by imposing the two independent end
conditions I(zM)= I(−zM)= 0. These conditions can be written compactly as:

UTI = 0

where U = [utop,ubot] and utop = [1,0, . . . ,0]T selects the top entry of the vector I,
while ubot = [0, . . . ,0,1]T selects the bottom entry. Solving for I, we have:

I = Z−1SC+Z−1FE (20.9.9)

Multiplying from the left by the matrix UT, we obtain the condition:

UTI = UTZ−1SC+UTZ−1FE = 0

which may be solved for C:

C = −(UTZ−1S)−1(UTZ−1F)E (20.9.10)

The two equations (20.9.9) and (20.9.10) describe the complete solution of the dis-
crete Hallén equation (20.9.8). The MATLAB function hallen2 implements this solution
procedure. Its usage is:
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[I,z,cnd] = hallen2(L,a,E,Nint,type); % Hallen’s equation with arbitrary incident E-field

where instead of the parameter M, it has as input the vector E of the samples of the
incident field. The dimensionN = 2M+1 is extracted from the length of E. The default
values of the last two input parameters are Nint = 16 and type = 1.

The functions hallen and hallen2 produce practically identical output in the delta-
gap case, that is, when the incident field is:

E = [0,0, . . . ,0︸ ︷︷ ︸
M zeros

,
1

∆z
,0, . . . ,0,0︸ ︷︷ ︸
M zeros

]T (20.9.11)

The middle entry imitates the delta-gap V0δ(z)� V0∆(z)/∆z = V0/∆z. For the
case of a field incident at a polar angle θ as in Eq. (20.2.3), the sampled vector E will
have entries, for −M ≤ n ≤M:

En = E0 sinθejkzn cosθ (20.9.12)

20.10 Numerical Solution of Pocklington’s Equation

Pocklington’s equation (20.1.10) is an alternative equation for determining the current
I(z) induced by a given incident field Ein(z). It can be solved numerically by simi-
lar discretization techniques as in the previous section. Rearranging the constants in
Eq. (20.1.10), we can write it in the form:

∫ h
−h
I(z′)Z(z− z′)dz′ = Ein(z) (20.10.1)

where we defined the Pocklington impedance kernel by:

Z(z− z′)= jηλ
8π2

(∂2
z + k2)G(z− z′) (20.10.2)

Assuming a pulse function expansion of the type of Eq. (20.8.2) and evaluating
(20.10.1) at the sampling points zn = n∆z, we obtain the discretized version:

M∑
m=−M

I(zm)
∫ h
−h
Z(zn − z′)∆(z′ − zm)dz′ = E(zn) (20.10.3)

As before, we define the impedance matrix (it has units of ohm/m):

Znm =
∫ h
−h
Z(zn − z′)∆(z′ − zm)dz′ =

∫ ∆z/2
−∆z/2

Z(zn − zm − z′′)dz′′ (20.10.4)

Part of this integral can be done directly, with no approximations. We have:

Znm = jηλ
8π2

∫ ∆z/2
−∆z/2

(∂2
z′′ + k2)G(zn − zm − z′′)dz′′

where we replaced ∂2
z by ∂2

z′′ . Integrating the first term, we obtain:
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Znm = jηλ
8π2

[
∂z′′G(R+)−∂z′′G(R−)+k2

∫ ∆z/2
−∆z/2

G(zn − zm − z′′)dz′′
]

where

R+ =
√
a2 + (z+nm)2 , z+nm = zn − zm −

1

2
∆z

R− =
√
a2 + (z−nm)2 , z−nm = zn − zm +

1

2
∆z

(20.10.5)

Using the derivative ∂z′G(R)= (z− z′)(1+ jkR)e−jkR/R3, we obtain:

Znm = jηλ
8π2

[
z+nm
R3+
(1+ jkR+)e−jkR+ − z

−
nm

R3−
(1+ jkR−)e−jkR− +Gnm

]
(20.10.6)

where

Gnm = k2
∫ ∆z/2
−∆z/2

G(zn − zm − z′′)dz′′ (20.10.7)

This term must be evaluated by numerical integration. With definitions (20.10.5)–
(20.10.7), the discretized Pocklington equation (20.10.3) becomes:

M∑
m=−M

ZnmIm = Em (20.10.8)

which can be written in the matrix form

ZI = E (20.10.9)

with solution I = Z−1E. The MATLAB function pockling implements this solution
procedure. It has the same inputs and outputs as hallen2 with usage:

[I,z,cnd] = pockling(L,a,E,Nint,type); % solve Pocklington’s integral equation

Because the Pocklington kernel depends on R like 1/R3, the impedance matrix of
Eq. (20.10.9) will be more singular than in the Hallén case which has a kernel that varies
like 1/R.

Specifically, for the same value of M, the condition number of Eq. (20.10.9) can be
one to two orders of magnitude larger than that of Eq. (20.7.11) or (20.9.8). Moreover, the
Pocklington solution requires a much higher value ofM to converge to the true solution.
These remarks are illustrated in the examples below.

Example 20.10.1: For antennas of length near λ/2, the sinusoidal assumption for the current
distribution is approximately correct. Assuming it to be exactly sinusoidal will simplify,
in Chap. 21, the treatment of parasitic arrays, such as Yagi-Uda arrays.

In this example, we calculate Hallén’s and Pocklington’s solutions for the currents in the
three cases l = 0.45λ, 0.50λ, 0.55λ and compare them to the sinusoidal current. The
antenna radius was a = 0.001λ in all cases. Fig. 20.10.1 shows the computed currents for
the casesM = 20 andM = 40.
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Fig. 20.10.1 Comparison of Hallen and Pocklington solutions for l = 0.45λ, 0.50λ, 0.55λ.

The Hallén solution converges for both values ofM, but the Pocklington one, only forM =
40. Also, the condition numbers of the linear systems (20.7.11) and (20.10.9) are widely
different. For example, for the half-wavelength antenna, the Hallén condition numbers
are 3.24 and 5.16 for M = 20 and M = 40, but the Pocklington numbers are 943.44 and
4519.76, respectively. These graphs were produced by the following typical MATLAB code:

L = 0.50; h = L/2;
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a = 0.001; type = 1; Nint = 16; M = 20;

Dz = h/(M+type*0.5); spacing interval

E = zeros(2*M+1,1); E(M+1) = 1/Dz; delta-gap incident field

[Ih,zh,ch] = hallen(L,a,M,Nint,type);
[Ip,zp,cp] = pockling(L,a,E,Nint,type); zp is the same as zh

Ih = abs(Ih(M+1:end)); upper half of the current

zh = zh(M+1:end); upper half of sampled z-points

Ip = abs(Ip(M+1:end));

A = max(Ih); scale factor

z = 0 : Dz/20 : h; dense set of z-points

I = kingeval(L,A,z); sinusoidal current at z

plot(zh,Ih,’.’, z,I,’:’, zh,Ip,’o’);

In the above code, A is the maximum value of the Hallén current and serves as a scale
factor for the sinusoidal current, that is, I(z)= A sin

(
k(h−|z|)). The function kingeval

simply evaluates the sinusoidal expression at a dense set of z-points. �	

Example 20.10.2: As another example, consider the cases l = λ, 1.5λ, 2λ. Fig. 20.10.2 shows
the computed currents withM = 30 andM = 60.

The same slow convergence behavior of the Pocklington case is observed again. The sinu-
soidal current I(z)= A sin

(
k(h−|z|)) is not a good approximation at z = 0 for the cases

l = λ and l = 2λ, but works well for l = 1.5λ. �	

Example 20.10.3: Next, we consider the case of a field incident at broadside (θ = 90o) on a
linear antenna of length l = 1.2λ and radius a = 0.001λ. Fig. 20.10.3 shows the computed
currents according to Hallén and Pocklington equations, forM = 30 andM = 40.

The Hallén current was computed with the function hallen2. Superimposed on each graph
is the current based on the sinusoidal approximation of Eq. (20.5.1), or rather, (20.5.2),
that is, I(z)= coskh − coskz. The sinusoidal current has been normalized such that its
maximum value agrees with the maximum from Hallén. Typical MATLAB code for this
example was as follows:

L = 1.2; h = L/2; a = 0.001;
k = 2*pi; th = pi/2; M = 30;

Dz = h/(M+0.5);
zm=(-M:M)*Dz;
E = exp(j*k*zm*cos(th));

[Ih,zh,ch] = hallen2(L,a,E,16,1);
[Ip,zp,cp] = pockling(L,a,E,16,1);

z = -h:(Dz/20):h; I = cos(k*h) - cos(k*z);

Ih = abs(Ih); Ip = abs(Ip); I = abs(I); mh = max(Ih); mp = max(Ip);
I = I/max(I) * mh;
plot(zh, Ih, ’.’, z, I, ’:’, zh, Ip, ’o’);
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Fig. 20.10.2 Comparison of Hallen and Pocklington solutions for l = λ, 1.5λ, 2λ.

Just to emphasize the dependence of the induced current on the type of incident field,
we also show in Fig. 20.10.4 the current for the delta-gap case and compare it with the
sinusoidal current I(z)= A sin

(
k(h−|z|)). In all cases, the Pocklington solution improves

with increasingM. �	

We observe in all of the above examples that the Pocklington current is not required
to vanish at the last sampling point, like the Hallén case. This condition was not incor-
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Fig. 20.10.3 Hallen and Pocklington solutions for broadside incident field.
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Fig. 20.10.4 Hallen and Pocklington solutions in delta-gap case.

porated into the Pocklington equation. Nevertheless, the Pocklington currents tend to
zero at the antenna end-points asM becomes larger.

This entire chapter dealt with the nature of the currents on a single linear antenna.
The case of several antennas forming an array and interacting with each other is treated
in Chap. 21.

Hallén’s and Pocklington’s integral equations generalize into a system of several
integral equations for the currents induced on the antennas. We solve the coupled
Hallén equations in the case of delta-gap center-driven antennas. The linearity of the
equations allows us to collect them together into a block matrix system from which the
currents on each antenna can be obtained.

One simplification arises in the case of an array of identical antennas. Then, the
block linear system can be wrapped in half much like it was done in Sec. 20.7, thus,
drastically reducing the computational cost. The MATLAB function hallen3 implements
this special case.

The case of an array of non-identical antennas is also considered and we obtain
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solutions for Yagi-Uda arrays with parasitic reflector and director antennas. This case
is implemented by the MATLAB function hallen4.

20.11 Problems



21
Coupled Antennas

21.1 Near Fields of Linear Antennas

In calculating mutual coupling effects between closely-spaced linear antennas, we need
to know the fields produced by an antenna at near distances. The fields produced by a
thin wire antenna with current I(z) were worked out in Sec. 13.4.

We summarize these results here. All field components can be obtained from the
knowledge of the z-component of the magnetic vector potential Az(z, ρ):

Az(z, ρ)= µ
4π

∫ h
−h
I(z′)

e−jkR

R
dz′ , R =

√
ρ2 + (z− z′)2 (21.1.1)

where h is the half-length of the antenna, h = l/2, and the geometry is shown in
Fig. 21.1.1. Then, the non-zero field components Ez, Eρ,Hφ can be constructed from
the two alternative sets of formulas:

Fig. 21.1.1 Fields of a thin wire antenna.

702



21.1. Near Fields of Linear Antennas 703

jωµεEz = ∂2
zAz + k2Az

jωµεEρ = ∂ρ∂zAz
µHφ = −∂ρAz

,

jωµεEz = ∂2
zAz + k2Az

∂ρ(ρHφ) = jωερEz
jωεEρ = −∂zHφ

(21.1.2)

As a first approximation, we will assume that the current I(z) is sinusoidal. This is
justified only when the antenna length is near half a wavelength λ/2, as we saw in the
examples of Sec. 20.10. Most coupled antenna arrays that are used in practice, such as
Yagi-Uda, satisfy this condition. Thus, we assume that:

I(z)= I0 sin
(
k(h− |z|))
sinkh

= Im sin
(
k(h− |z|)) (21.1.3)

where we distinguish between the current I0 at z = 0 and the maximum current Im =
I0/ sinkh. For half-wavelength antennas, we have kh = π/2, I0 = Im, and the current
becomes I(z)= I0 coskz.

In principle, one could insert Eq. (21.1.3) into (21.1.1) and perform the required
integrations to get Az. However, for the purpose of determining the fields, this is not
necessary. Combining (21.1.1) and (21.1.2), we obtain Pocklington’s equation:

jωµεEz = ∂2
zAz + k2Az = µ

4π

∫ h
−h
I(z′)(∂2

z′ + k2)G(z− z′)dz′ (21.1.4)

where we denoted G(z− z′)= e−jkR/R and replaced ∂2
z by ∂2

z′ . Next, we use the differ-
ential identity:

I(∂2
z′ + k2)G−G(∂2

z′ + k2)I = ∂z′
[
I∂z′G−G∂z′I

]
Because of the assumed form (21.1.3), I(z′) satisfies the Helmholtz equation, (∂2

z′ +
k2)I(z′)= 0, and therefore, the integrand of (21.1.4) becomes a complete derivative:

I(z′)(∂2
z′ + k2)G(z− z′)= ∂z′

[
I(z′)∂z′G(z− z′)−G(z− z′)∂z′I(z′)

]
(21.1.5)

Integrating the first term, we obtain:

∫ h
−h
∂z′
[
I(z′)∂z′G(z− z′)

]
dz′ = I(h)∂z′G(z− h)−I(−h)∂z′G(z+ h)= 0

where we used the end-conditions I(h)= I(−h)= 0. The second term in (21.1.5) is a
little trickier because ∂z′I(z′) is discontinuous at z = 0. Splitting the integration range,
we obtain:∫ h

−h
∂z′
[
G(z− z′)∂z′I(z′)

]
dz′ =

(∫ 0

−h
+
∫ h

0

)
∂z′
[
G(z− z′)∂z′I(z′)

]
dz′

= [G(z)I′(0−)−G(z+ h)I′(−h)]+ [G(z− h)I′(h)−G(z)I′(0+)]
= kIm

[
2 coskhG(z)−G(z− h)−G(z+ h)]
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where we used I′(0±)= ∓kIm coskh and I′(±h)= ∓kIm. Inserting this result into
Eq. (21.1.4) and rearranging some constants, we find:

Ez(z, ρ)= − jηIm
4π

[
G(z− h)+G(z+ h)−2 coskhG(z)

]
(21.1.6)

The quantities G(z− h),G(z+ h),G(z) can be written conveniently as follows:

G(z) = e
−jkR0

R0
, R0 =

√
ρ2 + z2

G(z− h) = e
−jkR1

R1
, R1 =

√
ρ2 + (z− h)2

G(z+ h) = e
−jkR2

R2
, R2 =

√
ρ2 + (z+ h)2

(21.1.7)

where R0, R1, R2 are recognized to be the distances from the center and the two ends
of the antenna to the observation point, as shown in Fig. 21.1.1. Thus, we can write:

Ez(z, ρ)= − jηIm
4π

[
e−jkR1

R1
+ e

−jkR2

R2
− 2 coskh

e−jkR0

R0

]
(21.1.8)

Next, we determineHφ from Ampère’s law in (21.1.2) by noting thatρEz is a complete
derivative with respect to ρ. Indeed, for any of the quantities R, we have:

∂ρ(e−jkR)= −jk(∂ρR)e−jkR = −jkρe
−jkR

R
⇒ e−jkR

R
= − 1

jkρ
∂ρ(e−jkR)

Applying this result to all three terms of Eq. (21.1.8), we have:

ρEz(z, ρ)= − jηIm
4π

1

−jk∂ρ
[
e−jkR1 + e−jkR2 − 2 coskhe−jkR0

]

Inserting this into Ampère’s law, ∂ρ(ρHφ)= jωερEz, and rearranging some con-
stants, we find:

∂ρ(ρHφ)= jIm
4π
∂ρ
[
e−jkR1 + e−jkR2 − 2 coskhe−jkR0

]

which can be integrated trivially, giving:

Hφ(z, ρ)= jIm
4πρ

[
e−jkR1 + e−jkR2 − 2 coskhe−jkR0

]
(21.1.9)

A possible integration constant in ρ is dropped because the field must vanish when
its source vanishes, that is, when Im = 0. Finally, we obtain Eρ from Faraday’s law in
(21.1.2). Noting the differentiation property:

∂z(e−jkR)= −jk zRe
−jkR, R =

√
ρ2 + z2

we obtain from jωεEρ = −∂zHφ:



21.2. Self and Mutual Impedance 705

Eρ(z, ρ)= − jηIm
4πρ

[
z− h
R1

e−jkR1 + z+ h
R2

e−jkR2 − 2 coskh
z
R0
e−jkR0

]
(21.1.10)

It is worth also to verify that the exact expressions for the fields give correctly the
radiation fields that were derived in Sec. 15.3. At large distances, we can make the
approximations:

R0 = r, R1 = r − h cosθ, R2 = r + h cosθ

where r is the radial distance and θ the polar angle. Replacing ρ = r sinθ, the magnetic
field (21.1.9) becomes approximately:

Hφ(r,θ)= jIm
4πr sinθ

[
e−jk(r−h cosθ) + e−jk(r+h cosθ) − 2 coskhe−jkr

]

which simplifies into:

Hφ(r,θ)= jIme
−jkr

2πr
cos(kh cosθ)− coskh

sinθ
(21.1.11)

This agrees with the results of Sec. 15.3.

21.2 Self and Mutual Impedance

The mutual coupling between antennas cannot be ignored if the antennas are near each
other. The mutual impedance is a measure of such coupling effects.

Consider two parallel center-driven linear dipoles, as shown in Fig. 21.2.1. Their
distance along the x-direction is d and their centers are offset by b along the z-direction.

Fig. 21.2.1 Parallel linear dipoles.

If antenna-1 is driven and antenna-2 is open-circuited, the near field generated by
the current on antenna-1 will cause an open-circuit voltage, sayV21,oc on antenna-2. The
mutual impedance of antenna-2 due to antenna-1 is defined to be:
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Z21 = V21,oc

I1
(21.2.1)

where I1 is the input current on antenna-1. Reciprocity implies that Z12 = Z21. More
generally, if both antennas are driven, then, the relationship of the driving voltages to
the input currents is given by:

V1 = Z11I1 + Z12I2
V2 = Z21I1 + Z22I2

(21.2.2)

The quantities Z11, Z22 are the self impedances of the two antennas and are approx-
imately equal to the input impedances of the isolated antennas, that is, when the other
antenna is absent. If antenna-2 is open-circuited, so that I2 = 0, then the second of
Eqs. (21.2.2) gives (21.2.1).

In order to derive convenient expressions that allow the calculation of the mutual
and self impedances, we use the reciprocity result given in Eq. (20.5.6) for the short-
circuit current and open-circuit voltage induced on a receiving antenna in the presence
of an incident field.

If antenna-2 is open-circuited and the z-component of the electric field generated
by antenna-1 and incident on antenna-2 is E21(z), then according to Eq. (20.5.6), the
induced open-circuit voltage will be:

V21,oc = − 1

I2

∫ h2

−h2

E21(z)I2(z)dz (21.2.3)

where h2 = l2/2, and I2(z), I2 = I2(0) are the current and input current on antenna-2
when it is transmitting. It follows from definition (21.2.1) that:

Z21 = V21,oc

I1
= − 1

I1I2

∫ h2

−h2

E21(z)I2(z)dz (21.2.4)

Assuming that the currents are sinusoidal,

I1(z) = I1 sin
(
k(h1 − |z|)

)
sinkh1

= Im1 sin
(
k(h1 − |z|)

)

I2(z) = I2 sin
(
k(h2 − |z|)

)
sinkh2

= Im2 sin
(
k(h2 − |z|)

)
then, according to Eq. (21.1.8) the electric field E21(z) along antenna-2 will be:

Ez(z)= − jηIm1

4π

[
e−jkR1

R1
+ e

−jkR2

R2
− 2 coskh1

e−jkR0

R0

]
(21.2.5)

where −h2 ≤ z ≤ h2, and R1, R2, R0 are defined in Fig. 21.2.1:

R0 =
√
d2 + (z+ b)2

R1 =
√
d2 + (z+ b− h1)2

R2 =
√
d2 + (z+ b+ h1)2

(21.2.6)
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Inserting Eq. (21.2.5) into (21.2.4) and rearranging some constants, we find the final
expression for the mutual impedance Z21:

Z21 = jη
4π sinkh1 sinkh2

∫ h2

−h2

F(z)dz (21.2.7)

F(z)=
[
e−jkR1

R1
+ e

−jkR2

R2
− 2 coskh1

e−jkR0

R0

]
sin
(
k(h2 − |z|)

)
(21.2.8)

This is the mutual impedance referred to the input terminals of the antennas. If
one or both of the antennas have lengths that are multiples of λ, then one or both of
the denominator factors sinkh1, sinkh2 will vanish resulting in an infinite value for the
mutual impedance.

This limitation is caused by the sinusoidal current assumption. We saw in Sects. 20.7–
20.10 that the actual input currents are not zero in a real antenna. On the other hand,
in most of applications of Eq. (21.2.7) the lengths differ slightly from half-wavelength
for which the sinusoidal approximation is good.

The definition (21.2.4) can also be referred to the maximum currents by normalizing
by the factor Im1Im2, instead of I1I2. In this case, the mutual impedance is Z21m =
Z21 sinkh1 sinkh2, that is,

Z21m = jη
4π

∫ h2

−h2

F(z)dz (21.2.9)

The self-impedance of a single antenna can be calculated also by the same formula
(21.2.7). Evaluating the near-field on the surface of the single antenna, that is, at d = a,
where a is the antenna radius, and setting h2 = h1 and b = 0 in Eq. (21.2.6), we find:

Z11 = − 1

I21

∫ h1

−h1

E11(z)I1(z)dz = jη
4π sin2 kh1

∫ h1

−h1

F(z)dz (21.2.10)

F(z)=
[
e−jkR1

R1
+ e

−jkR2

R2
− 2 coskh1

e−jkR0

R0

]
sin
(
k(h1 − |z|)

)
(21.2.11)

R0 =
√
a2 + z2 , R1 =

√
a2 + (z− h1)2 , R2 =

√
a2 + (z+ h1)2 (21.2.12)

The MATLAB function imped implements Eq. (21.2.7), as well as (21.2.10). It returns
both Z21 and Z21m and has usage:

[Z21,Z21m] = imped(L2,L1,d,b) % mutual impedance of dipole 2 due to dipole 1

[Z21,Z21m] = imped(L2,L1,d) % b = 0, side-by-side arrangement

[Z,Zm] = imped(L,a) % self impedance
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where all the lengths are in units of λ. The function uses 16-point Gauss-Legendre
integration, implemented with the help of the function quadr, to perform the integral
in Eq. (21.2.7).

In evaluating the self impedance of an antenna with a small radius, the integrand
F(z) varies rapidly around z = 0. To maintain accuracy in the integration, we split the
integration interval into three subintervals, as we mentioned in Sec. 20.8.

Example 21.2.1: Because the function imped uses an even length (that is, 16) for the Gauss-
Legendre integration, the integrand F(z) is never evaluated at z = 0, even if the antenna
radius is zero. This allows us to estimate the self-impedance of an infinitely thin half-
wavelength antenna by setting L = 0.5 and a = 0:

Z = imped(0.5,0)= 73.0790+ 42.5151j Ω

Similarly, for radii a = 0.001λ and 0.005λ, we find:

Z = imped(0.5,0.001)= 73.0784+ 42.2107j Ω
Z = imped(0.5,0.005)= 73.0642+ 40.6319j Ω

A resonant antenna is obtained by adjusting the length L such that the reactance part of Z
becomes zero. The resonant length depends on the antenna radius. For zero radius, this
length is L = 0.48574823 and the corresponding impedance, Z = 67.1843 Ω. ��

Example 21.2.2: Consider two identical parallel half-wavelength dipoles in side-by-side arrange-
ment separated by distance d. The antenna radius is a = 0.001 and therefore, its self
impedance is as in the previous example. If antenna-1 is driven and antenna-2 is parasitic,
that is, short-circuited, then Eq. (21.2.2) gives:

V1 = Z11I1 + Z12I2
0 = Z21I1 + Z22I2

Solving the second for the parasitic current I2 = −I1Z21/Z22 and substituting in the first,
we obtain driving-point impedance of the first antenna:

Zin = V1

I1
= Z11 − Z12Z21

Z22
= Z11

(
1− Z

2
21

Z2
11

)

where we used Z12 = Z21 and Z22 = Z11. The ratio Z2
21/Z2

11 quantifies the effect of the
coupling and the deviation of Zin from Z11. For example, we find the values:

d 0.125λ 0.25λ 0.50λ 0.75λ 1.00λ
|Z21/Z11|2 0.58 0.35 0.15 0.08 0.05

Thus, the ratio decreases rapidly with increasing distance d. ��
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Fig. 21.3.1 Array of two linear antennas.

21.3 Coupled Two-Element Arrays

Next, we consider a more precise justification of Eq. (21.2.2) and generalize it to the
case of an arbitrary array of parallel linear antennas. Fig. 21.3.1 shows two z-directed
parallel dipoles with centers at locations (x1, y1) and (x2, y2).

We assume that the dipoles are center-driven by the voltage generators V1, V2. Let
I1(z), I2(z) be the currents induced on the dipoles by the generators and by their mu-
tual interaction, and let h1, h2 be the half-lengths of the antennas, and a1, a2, their
radii. Then, assuming the thin-wire model, the total current density will have only a
z-component given by:

Jz(x′, y′, z′)= I1(z′)δ(x′ − x1)δ(y′ − y1)+I2(z′)δ(x′ − x2)δ(y′ − y2) (21.3.1)

It follows that the magnetic vector potential will be:

Az(x, y, z)= µ
4π

∫
e−jkR

R
Jz(x′, y′, z′)dx′dy′dz′ , R = |r− r′|

Inserting (21.3.1) and performing the x′, y′ integrations, we obtain:

Az(x, y, z)= µ
4π

∫ h1

−h1

e−jkR1

R1
I1(z′)dz′ + µ

4π

∫ h2

−h2

e−jkR2

R2
I2(z′)dz′ (21.3.2)

where, as shown in Fig. 21.3.1,R1, R2 are the distances from the z′ point on each antenna
to the (x, y, z) observation point, that is,

R1 =
√
(z− z′)2+(x− x1)2+(y − y1)2

R2 =
√
(z− z′)2+(x− x2)2+(y − y2)2

The z-component of the induced electric field will be:
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jωεµEz = (∂2
z + k2)Az

Working with the rescaled vector potential V(x, y, z)= 2jcAz(x, y, z), we rewrite:

V(x, y, z)= jη
2π

∫ h1

−h1

e−jkR1

R1
I1(z′)dz′ + jη

2π

∫ h2

−h2

e−jkR2

R2
I2(z′)dz′ (21.3.3)

(∂2
z + k2)V(x, y, z)= −2kEz(x, y, z) (21.3.4)

Denoting by V1(z) and V2(z) the values of V(x, y, z) on the surfaces of antenna-1
and antenna-2, we obtain from Eq. (21.3.3):

V1(z)= V11(z)+V12(z)

V2(z)= V21(z)+V22(z)
(21.3.5)

The z-components of the electric fields induced on the surfaces of antenna-1 and
antenna-2 are obtained by applying Eq. (21.3.4) to each term of (21.3.5):

E1(z)= E11(z)+E12(z)

E2(z)= E21(z)+E22(z)
(21.3.6)

where we defined, for p,q = 1,2:

Vpq(z)=
∫ hq
−hq
Zpq(z− z′)Iq(z′)dz′ (21.3.7)

(∂2
z + k2)Vpq(z)= −2kEpq(z) (21.3.8)

and the impedance kernels, as in Eq. (20.3.5):

Zpq(z− z′)= jη
2π
Gpq(z− z′)= jη

2π
e−jkRpq
Rpq

, Rpq =
√
(z− z′)2+d2

pq (21.3.9)

If p �= q, then dpq is the xy-distance between the antennas, and if p = q, it is the
radius of the corresponding antenna, that is,

d12 = d21 =
√
(x1 − x2)2+(y1 − y2)2 , d11 = a1, d22 = a2 (21.3.10)

Thus, Epq(z) is the z-component of the electric field induced on antenna-p by the
current Iq(z) on antenna-q.

Now, on the surface of the first antenna, the electric field Ez must cancel the field of
the delta-gap generator in order for the total tangential field to vanish, that is, E1(z)=
−E1,in(z)= −V1δ(z). Similarly, on the surface of the second antenna, we must have
E2(z)= −E2,in(z)= −V2δ(z). Then, Eq. (21.3.6) becomes:
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E11(z)+E12(z)= −V1δ(z)
E21(z)+E22(z)= −V2δ(z)

(21.3.11)

Combining these with the Eq. (21.3.7), we obtain the coupled version of the Hallén-
Pocklington equations:

(∂2
z + k2)

[
V11(z)+V12(z)

] = 2kV1δ(z)

(∂2
z + k2)

[
V21(z)+V22(z)

] = 2kV2δ(z)
(21.3.12)

We will solve these numerically in Sec. 21.6. Next, we derive Eq. (21.2.2). Accord-
ing to definitions (21.2.4) and (21.2.10), the mutual impedance between antenna-p and
antenna-q can be restated as follows, for p,q = 1,2:

Zpq = − 1

IpIq

∫ hp
−hp
Epq(z)Ip(z)dz (21.3.13)

and, more explicitly:

Z11 = − 1

I1I1

∫ h1

−h1

E11(z)I1(z)dz , Z12 = − 1

I1I2

∫ h1

−h1

E12(z)I1(z)dz

Z21 = − 1

I2I1

∫ h2

−h2

E21(z)I2(z)dz , Z22 = − 1

I2I2

∫ h2

−h2

E22(z)I2(z)dz

Using these definitions and Eq. (21.3.11), we find:

Z11I1 + Z12I2 = − 1

I1

∫ h1

−h1

[
E11(z)+E12(z)

]
I1(z)dz

= − 1

I1

∫ h1

−h1

[−V1δ(z)
]
I1(z)dz = 1

I1
V1I1(0)= V1

where, by definition, I1(0)= I1. Similarly, we can show the second of Eq. (21.2.2).
The mutual impedance defined in Eq. (21.3.13) actually satisfies the reciprocity sym-

metry condition, Zpq = Zqp. To write it in a form that shows this condition explicitly, we
replace Epq(z) by Eq. (21.3.8) and (21.3.7), and obtain the alternative symmetric form:

Zpq = 1

2k

∫ hp
−hp

∫ hq
−hq

Ip(z)Iq(z′)
IpIq

(∂2
z + k2)Zpq(z− z′)dzdz′ (21.3.14)

In the rest of this section, we will make the simplifying assumption that the currents
are sinusoidal, that is, for p = 1,2:

Ip(z)= Ip sin
(
k(hp − |z|)

)
sinkhp

(21.3.15)

Therefore, in Eq. (21.3.14) the ratios Ip(z)/Ip and hence Zpq are independent of
the input currents at the antenna terminals and depend only on the geometry of the
antennas.
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21.4 Arrays of Parallel Dipoles

The above results on two antennas generalize in a straightforward fashion to several
antennas. Fig. 21.4.1 depicts the case of K parallel dipoles in side-by-side arrangement
with centers at positions (xp, yp), and driving voltages, lengths, half-lengths, and radii,
Vp, lp, hp, ap, where p = 1,2 . . . , K.

Fig. 21.4.1 Two-dimensional array of parallel dipoles.

Assuming sinusoidal currents as in Eq. (21.3.15), we define the mutual impedances
Zpq by Eq. (21.3.13) or (21.3.14), where p,q take on the values p,q = 1,2 . . . , K. The
Hallén-Pocklington equations (21.3.12) generalize into:

(∂2
z + k2)

K∑
q=1

Vpq(z)= −2k
K∑
q=1

Epq(z)= 2kVpδ(z) , p = 1,2, . . . , K (21.4.1)

where Vpq(z) is defined by Eqs. (21.3.7) and (21.3.9). The mutual distances are:

dpq =
{ √

(xp − xq)2+(yp − yq)2 , if p �= q
ap, if p = q (21.4.2)

Multiplying Eq. (21.4.1) by Ip(z) and integrating along the length of the pth antenna,
and using the mutual impedance definitions (21.3.13), we obtain the generalization of
Eq. (21.2.2) to the case of K antennas:

Vp =
K∑
q=1

ZpqIq , p = 1,2, . . . , K (21.4.3)

where Iq is the input current at the center of the qth antenna. Eq. (21.4.3) may be written
in a compact matrix form:

V = ZI (21.4.4)

where Z is the impedance matrix. For example, in the case K = 4, we have:
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V =



V1

V2

V3

V4


 =



Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44





I1
I2
I3
I4


 = ZI

We note that Z is a symmetric matrix, Z = ZT, as a consequence of the reciprocity
relations Zpq = Zqp.

Given the driving voltages Vp, Eq. (21.4.4) may be solved for the input currents Ip,
which completely define the assumed sinusoidal currents Ip(z) of Eq. (21.3.15). From
the knowledge of the currents Ip(z), one can obtain the radiation pattern of the array.
Indeed, the radiation fields are obtained from Eq. (15.1.6), that is,

E = θ̂θθEθ = θ̂θθ jkη e
−jkr

4πr
Fz(θ,φ)sinθ

H = φ̂φφHφ = φ̂φφjk e
−jkr

4πr
Fz(θ,φ)sinθ

(21.4.5)

where the radiation vector F = ẑFz has only a z-component given by:

Fz(θ,φ)=
∫
V′
Jz(r′)ejk·r

′
dr′ (21.4.6)

But, in the thin-wire approximation, the total current density of the array is:

Jz(r′)=
K∑
p=1

Ip(z′)δ(x′ − xp)δ(y′ − yp)

Inserting this into Eq. (21.4.6) and performing the x′, y′ integrations, we obtain:

Fz(θ,φ)=
K∑
p=1

ejkxxp+jkyyp
∫ hp
−hp
Ip(z′)ejkzz

′
dz′ (21.4.7)

Using Eq. (21.3.15) for Ip(z) and replacing kz = k cosθ, we obtain:

Fz(θ,φ)=
K∑
p=1

ejkxxp+jkyyp
2Ip

k sinkhp
cos(khp cosθ))− coskhp

sin2 θ
(21.4.8)

The radiation intensity is given, in general, by Eq. (14.1.4):

U(θ,φ)= ηk2

32π2

∣∣sinθFz(θ,φ)
∣∣2

Replacing kx = k sinθ cosφ and ky = k sinθ sinφ, we obtain:

U(θ,φ)= η
8π2

∣∣∣∣∣∣
K∑
p=1

Ip
cos(khp cosθ))− coskhp

sinkhp sinθ
ejk sinθ(xp cosφ+yp sinφ)

∣∣∣∣∣∣
2
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Thus, the normalized gain of the array will be, up to a proportionality constant:

g(θ,φ)=
∣∣∣∣∣∣
K∑
p=1

Ip
cos(khp cosθ))− coskhp

sinkhp sinθ
ejk sinθ(xp cosφ+yp sinφ)

∣∣∣∣∣∣
2

(21.4.9)

Equations (21.4.4) and (21.4.9) provide a complete solution to the problem of cou-
pled antenna arrays, based on the sinusoidal approximation for the currents. In the
special case of identical antennas, Eq. (21.4.9) factors as usual into an array factor and
an element factor:

g(θ,φ)=
∣∣∣∣∣∣
K∑
p=1

Ipejk sinθ(xp cosφ+yp sinφ)

∣∣∣∣∣∣
2 ∣∣∣∣∣cos(kh cosθ))− coskhp

sinkh sinθ

∣∣∣∣∣
2

The MATLAB function impedmat calculates the K×K mutual impedance matrix Z of
such an array, given the antenna lengths and radii, lp, ap, and the coordinates (xp, yp),
for p = 1,2, . . . , K. It has usage:

Z = impedmat(L,a,d); % mutual impedance matrix of array of parallel dipoles

where all the lengths must be given in units ofλ. It calls imped to calculate the individual
matrix elements Zpq.

The input parameters L, a, d are the vectors of antenna lengths, antenna radii, and
(xp, yp) pairs, or the xp positions, if the array is along the x-axis:

L =




L1

L2

...
LK


 , a =




a1

a2

...
aK


 , d =




x1, y1

x2, y2

...
xK, yK


 or




x1

x2

...
xK




The MATLAB function gain2 calculates the E-plane and H-plane array gains us-
ing Eq. (21.4.9) and assumes that the input currents Ip have been obtained by solving
Eq. (21.4.4). It has usage:

[ge,gh,th] = gain2(L,d,I,N,ph0); % normalized gain of 2D array of linear dipoles

[ge,gh,th] = gain2(L,d,I,N); % equivalent to φ0 = 0

where the input parameters L, a have the same meaning as in impedmat, and I is the
vector of input currents I = [I1, I2, . . . , IK]. The output angle parameter th is either the
polar or the azimuthal angle and takes N equally-spaced values in the interval [0,2π].

The H-plane gain gH(φ) is defined to be the azimuthal gain on the xy-plane corre-
sponding to θ = π/2, and the E-plane gain gE(θ) is defined to be the polar gain on any
fixed azimuthal plane φ = φ0, that is,

gH(φ)= g(π/2,φ), 0 ≤ φ ≤ 2π

gE(θ)= g(θ,φ0), 0 ≤ θ ≤ 2π
(21.4.10)
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Note that by allowing θ to vary over [0,2π], the E-plane gain can give both the
forward and backward gain. The polar angle range [0,π] covers the forward direction
φ = φ0, whereas, the range [π,2π] covers the backward direction φ = φ0 +π, that
is, we have the equivalence:

g(θ,φ0)= g(θ−π,φ0 +π), π ≤ θ ≤ 2π

This follows from the trigonometric identities:

sin(θ−π)cos(φ0 +π)= sinθ cosφ0

sin(θ−π)sin(φ0 +π)= sinθ sinφ0

Because both gains are defined over a 2π-angular range, they must be plotted with
the MATLAB functions abp2 and abz2, or in dB, with dbp2 and dbz2.

Example 21.4.1: Three-element parasitic array. Undriven parasitic antennas located near trans-
mitting ones can act as reflectors or directors, directing the radiation towards certain
preferred directions. Fig. 21.4.2 shows an array of three half-wavelength dipoles. The
geometry is the same as that of Example 18.3.3. The xy-coordinates of the elements are
d1 = (0,0), d2 = (0.5λ,0), and d3 = (0,0.5λ).

Fig. 21.4.2 Three-element array.

Let V = [V1, V2, V3]T be the driving voltages of the three elements. If only element-1 is
driven and the others parasitic, we may take V = [1,0,0]T .

If the mutual couplings between the antennas are ignored, that is, the impedance matrix Z
of Eq. (21.4.4) is taken to be diagonal, then, the input currents, will be I = [I1,0,0] and the
parasitic elements will be completely passive as though they were absent. The radiation
pattern would be that of a single half-wave dipole. In particular, the azimuthal pattern
would be omnidirectional.

This is not the case if the mutual couplings are taken into account. The parasitic elements
act as reflectors, reflecting the radiation back towards the active element-1. By the sym-
metry of the arrangement, the maximum directivity will be in the direction with azimuthal
angle φ = −135o. Fig. 21.4.3 shows the resulting H-plane and E-plane radiation patterns
demonstrating this behavior. The dashed gains were computed by solving the coupled sys-
tem of Hallén equations for the exact currents on each of the three antennas, as discussed
in Example 21.6.1.



716 Electromagnetic Waves & Antennas – S. J. Orfanidis

 90o

−90o

 0o180o

φ

60o

−60o

30o

−30o

120o

−120o

150o

−150o

−3−6−9
dB

Azimuthal gain
 0o

 180o

 90o90o

θθ
30o

150o

60o

120o

30o

150o

60o

120o

−3−6−9
dB

Polar gain towards φ0 =45o

Fig. 21.4.3 H-plane and E-plane radiation patterns, V = [1,0,0].

Assuming equal radii, a = 0.001λ, the 3×3 impedance matrix Z is found to be:

Z =



73.08+ 42.21j −12.52− 29.91j −12.52− 29.91j
−12.52− 29.91j 73.08+ 42.21j −24.62+ 0.78j
−12.52− 29.91j −24.62+ 0.78j 73.08+ 42.21j




Then, the solution of Eq. (21.4.4) is:

I =


I1
I2
I3


 = Z−1V = Z−1




1
0
0


 =




0.0133∠−7.46o

0.0066∠18.23o

0.0066∠18.23o




The typical MATLAB code used to generate these graphs was as follows:

L = [0.5, 0.5, 0.5]; % lengths

a = [0.001, 0.001, 0.001]; % radii

d = [0,0; 0.5,0; 0,0.5]; % xy locations

Z = impedmat(L,a,d); % impedance matrix

V = [1; 0; 0]; % driving voltages

I = Z\V; % input currents

ph0 = 45; % 45o azimuthal plane for polar gain

[ge1,gh1,ph] = gain2(L,d,I,360,ph0); % gain2 assumes sinusoidal currents

M = 40; % number of upper-half samples

[I,z] = hallen3(L,a, d, V, M); % solves for currents on all antennas

[ge2,gh2,ph] = gain2h(L,d,I,360,ph0); % gain2h uses Hallén currents

figure; dbz2(ph,gh1,30,12); dbadd2(2,’--’,ph,gh2,30,12);
figure; dbp2(ph,ge1,30,12); dbadd2(1,’--’,ph,ge2,30,12);
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Anticipating the symmetry about the 45o azimuthal plane, the E-plane gain was computed
withφ0 = 45o. As expected, the polar plot shows that the maximum gain is in the backward
φ0 direction, that is, toward φ0 + 180o = 225o = −135o. ��

Example 21.4.2: Next, consider the case when element-one is parasitic, but elements two and
three are driven by equal voltages, V = [0,1,1]T . If the mutual coupling is ignored, then
the two active elements act as an array which is broadside to the line joining them, that
is, maximum directivity is in the 45o azimuthal direction, but with both the forward and
the backward (i.e., −135o) directions being equal. This pattern is shown in the upper-right
graph of Fig. 18.3.4.

If the mutual couplings are taken into account, element-1 will act as a reflector, reflecting
towards the φ0 = 45o direction and reducing the gain in the opposite direction. This is
demonstrated in Fig. 21.4.4. As in the previous example, the dashed gains correspond to
the exact coupled Hallén solution.
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Fig. 21.4.4 H-plane and E-plane radiation patterns, V = [0,1,1].

Because of the identical geometry, the impedance matrix Z is the same as that of the
previous example. But, the input currents are different:

I =


I1
I2
I3


 = Z−1V = Z−1




0
1
1


 =




0.0133∠18.23o

0.0173∠−19.04o

0.0173∠−19.04o




The only change in the previous MATLAB code was to use V = [0,1,1]T . ��

Example 21.4.3: One of the earliest experimental studies of parasitic reflectors was by Nagy
[704]. One of his arrangements is shown in Fig. 21.4.5 in which the driven element is at
the origin and the other three elements are parasitic. The antenna lengths were l = 1.19
m, and their radii a = 0.395 cm. The operating wavelength was λ = 2.5 meters, (i.e.,
frequency of 120 MHz.)

It follows that, l = 0.476λ and a = 0.00158λ. Elements two and four were placed symmet-
rically along the y-axis at distances ±0.535λ, and element three was on the negative side
of the x-axis at distance 0.248λ from the origin. Fig. 21.4.6 shows the calculated patterns.
We observe that the three parasitic antennas act as reflectors, enhancing the radiation in
the φ = 0 direction.
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Fig. 21.4.5 Four-element parasitic array.
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Fig. 21.4.6 H-plane and E-plane radiation patterns, V = [1,0,0,0].

This array was later studied theoretically by Brown [703], using the same methods as those
presented here. Brown treated monopole antennas (i.e, half dipoles above a ground plane,)
and therefore, the values of his mutual impedances are half of ours. The inputs to the
design equations were the parameters:

L =




0.476
0.476
0.476
0.476


 , a =




0.00158
0.00158
0.00158
0.00158


 , d =




0.000, 0.000
0.000, 0.535
−0.248, 0.000

0.000, −0.535




The impedance matrix elements are:

Z11 = Z22 = Z33 = 63.42∠0.65o, Z12 = Z14 = 26.76∠−123.87o

Z13 = 43.56∠−34.69o, Z23 = Z34 = 24.78∠−141.96o

Z24 = 14.74∠53.15o

With V = [1,0,0,0]T , the solution of ZI = V is:
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I =



I1
I2
I3
I4


 =




0.0135∠−26.26o

0.0043∠74.61o

0.0126∠116.70o

0.0043∠4.61o




and we find for the ratios:

I2
I1
= I4
I1
= 0.3180∠100.87o ,

I3
I1
= 0.9343∠142.96o

These numerical results are in close agreement with Brown’s [703]. The dashed Hallén gains
are not shown, as in the previous examples, because they are virtually indistinguishable
from the sinusoidal ones (forM = 40.) ��

Example 21.4.4: Coupled Dolph-Chebyshev array. In this example, we study the impact of
mutual coupling on the array design methods of Chap. 19. For a typical array spacing of
half-wavelength, the mutual impedance matrix is diagonally dominant and therefore, there
will be some but minor impact on the design.

Fig. 21.4.7 shows a 15-element array of z-directed half-wavelength dipoles with spacing
d = λ/2 arranged along the x-axis. The antenna radii are a = 0.001λ.

Fig. 21.4.7 Fifteen-element Dolph-Chebyshev array.

We take the feed voltages V = [V1, V2, . . . , V15]T to be Dolph-Chebyshev weights that
would steer the azimuthal array gain towards φ0 = 120o and would achieve a 20-dB side-
lobe level. These weights can be designed with the function dolph.

If the mutual coupling is ignored, the impedance matrix Z will be proportional to the
identity matrix because the antenna elements are identical. Then, the input currents I will
be essentially equal to the driving voltages V and the array will behave according to the
desired design.

If the mutual coupling is taken into account, the currents must be calculated from the
solution of ZI = V and some distortions on the desired angular pattern may occur because
Z is no longer diagonal.

Fig. 21.4.8 shows the azimuthal and polar gain patterns with and without mutual coupling.
The primary effect is to distort the sidelobe levels so that they are no longer equal. But
they are still acceptable as a close approximation to the desired Dolph-Chebyshev pattern.

The typical MATLAB code used in this example was as follows:
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Fig. 21.4.8 H-plane and E-plane patterns with and without coupling.

K = 15;
ph0 = 120; % steering angle

L = 0.5 * ones(1,K); % vector of antenna lengths

a = 0.001 * ones(1,K); % antenna radii

d = (0:K-1)*0.5; % equally-spaced with λ/2 spacing

V = dolph(0.5, ph0, K, 20).’; % Dolph design with 20-dB sidelobes

Z = impedmat(L,a,d); % 15×15 impedance matrix

I = Z\V; % input currents

[ge,gh,ph] = gain2(L,d,I,400,ph0); % gains with coupling

figure; dbz2(ph,gh); % azimuthal gain

figure; dbp2(ph,ge); % polar gain

[ge,gh,ph] = gain2(L,d,V,400,ph0); % gains without coupling

figure; dbz2(ph,gh);
figure; dbp2(ph,ge);
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The E-plane polar gains were computed on the plane of the desired steering angle, that is,
φ0 = 120o. The figures show that maximum gain is at θ = 90o in the φ0 direction. In
the case without coupling, we set I = V inside gain2 because any proportionality constant
gets canceled out. ��

21.5 Yagi-Uda Antennas

A special type of parasitic array is the Yagi-Uda array shown in Fig. 21.5.1. The z-
directed dipoles are arranged along the x-axis. The second dipole is driven; all others
are parasitic.

Fig. 21.5.1 Five-element Yagi-Uda array.

The first dipole has length slightly longer than that of the driven dipole, and acts as a
“reflector”. The elements to the right of the driven dipole have lengths slightly shorter,
and act as “directors.” The reflector and directors direct the radiation preferentially
towards endfire, that is, along the x-axis.

The Yagi-Uda array is widely used as a TV reception antenna and achieves fairly good
directivity with such a simple structure. Good directivity characteristics are realized
with certain choices for the antenna lengths and separations.

The analysis of the Yagi-Uda array follows the steps of the previous section. We
assume that there are K dipoles, with the last K − 2 being the directors, and that the
currents are sinusoidal as in Eq. (21.3.15) because the antenna lengths are of the order
of half-wavelength. Then, we compute the mutual impedance matrix Z and the input
currents I = Z−1V. Because only the second element is driven, the vector of voltages is:

V = [0,1,0,0, . . . ,0︸ ︷︷ ︸
(K−2) zeros

]T (21.5.1)

Once we have the input currents I = [I1, I2, . . . , IK]T, the gain of the array is com-
puted by Eq. (21.4.9), which simplifies into the following form because the dipoles lie
along the x-axis:

g(θ,φ)=
∣∣∣∣∣∣
K∑
p=1

Ip
cos(khp cosθ))− coskhp

sinkhp sinθ
ejkxp sinθ cosφ

∣∣∣∣∣∣
2

(21.5.2)
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We assume that the lengths and separations are such that the maximum gain is
towards endfire, that is, towards θ = 90o, φ = 0o. The forward and backward gains,
and the forward-backward or front-to-back ratio are defined as:

gf = gmax = g(90o,0o), gb = g(90o,180o), Rfb = gfgb (21.5.3)

It follows that the normalized gain will be gn(θ,φ)= g(θ,φ)/gf . Integrating it
over all solid angles, we obtain the beam solid angle and hence the directivity of the
Yagi-Uda array:

∆Ω =
∫ π

0

∫ 2π

0
gn(θ,φ)sinθdθdφ, D = 4π

∆Ω
(21.5.4)

In dB, the directivity and forward-backward ratio are 10 log10D and 10 log10Rfb.
The MATLAB function yagi implements the above design steps. It computes the input
currents I as well as the directivity and forward-backward ratio. Its usage is:

[I,D,Rfb] = yagi(L,a,d); % Yagi-Uda array design

The function always assumes that the second element is the driven element and sets
the value of V according to Eq. (21.5.1). The double integral in Eq. (21.5.4) is done with a
16-point Gauss-Legendre quadrature integration formula for each integration variable.

Example 21.5.1: Reflectors and directors. The simplest possible Yagi-Uda array has one driven
element and either one reflector and no directors, or a single director and no reflector.
Fig. 21.5.2 depicts the two cases.

Fig. 21.5.2 The simplest Yagi-Uda arrays.

If the reflector is slightly longer than the driven element, and if the director is slightly
shorter, then in both cases the radiation will be directed to the right, along the x-axis.
Fig. 21.5.3 shows the resulting radiation patterns.

The length of the driven element was 0.50λ and that of the reflector and director, 0.54λ
and 0.46λ, respectively. The antenna radii were a = 0.003λ and their separation d = 0.1λ.
The mutual impedances were calculated with impedmat:

Z =
[

92.47+ 104.19j 75.68+ 11.63j
75.68+ 11.63j 73.07+ 41.37j

]
, Z =

[
73.07+ 41.37j 59.77+ 4.35j
59.77+ 4.35j 57.65− 17.01j

]

The typical MATLAB code that was used was:
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Fig. 21.5.3 H-plane and E-plane gains of simple Yagi-Uda arrays.

L = [0.54,0.50] % reflector case

a = 0.003*[1,1]; % radii

d = [0,0.1]; % x-coordinates of locations

Z = impedmat(L,a,d); % impedance matrix

I = Z\[0,1]’; % input currents

[ge,gh,th] = gain2(L,d,I,400); % gain computation

figure; dbz2(th,gh,30,16); % azimuthal gain

figure; dbp2(th,ge,30,16); % polar gain

The driving voltages were in the two cases: V = [0,1]T and V = [1,0]T . ��
Example 21.5.2: Three-element Yagi. Here, we consider a three-element Yagi-Uda array with

one reflector, one driven element, and one director. The corresponding antenna lengths,
radii, and locations along the x-axis (with the driven element at the origin) were in units of
λ:

L =



0.50
0.48
0.46


 , a =




0.003
0.003
0.003


 , d =



x1

x2

x3


 =



−0.125

0
0.125



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The azimuthal and polar gains are shown in Fig. 21.5.4. The dashed gains correspond to the
exact coupled Hallén equations, as discussed in Example 21.6.3. The computed directivity
and front/back ratio wereD = 8.18 dB and Rfb = 18.69 dB. Thus, the array achieves a gain
of D− 2.15 = 6.03 dB over a single half-wavelength dipole.
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Fig. 21.5.4 Azimuthal and polar gains of three-element Yagi-Uda array.

The impedance matrix was:

Z =



73.07+ 41.37j 60.47− 0.97j 36.25− 25.53j
60.47− 0.97j 64.93+ 11.75j 53.72− 2.71j
36.25− 25.53j 53.72− 2.71j 57.65− 17.01j




The input currents and input impedance of the driving element were:

I =


I1
I2
I3


 =



−0.0290+ 0.0176j

0.1062− 0.0182j
−0.0801− 0.0256j


 , Z2 = V2

I2
= 1

I2
= 9.15+ 1.57j

The typical MATLAB code for this example was:

L = [0.50, 0.48, 0.46]; % antenna lengths

a = 0.003*[1,1,1]; % radii

d = [-0.125, 0, 0.125]; % x-locations

[I,D,Rfb] = yagi(L,a,d); % solve ZI = V

[ge,gh,th] = gain2(L,d,I,360); % compute gains at 1o increments

M = 40; % number of upper-half samples

[I,z] = hallen4(L,a,d,[0,1,0],M); % compute Hallén currents

[ge2,gh2,ph] = gain2h(L,d,I,360); % gain of Hallén currents

figure; dbz2(ph,gh); dbadd2(2,’--’,ph,gh2);
figure; dbp2(ph,ge); dbadd2(1,’--’,ph,ge2);
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The driving voltages were defined within yagi to be V = [0,1,0]T . ��
Example 21.5.3: Optimized six-element Yagi. Chen and Cheng [714] applied King’s three-term

current approximation [4] and devised procedures for optimizing the choices of the an-
tenna lengths and separations of Yagi-Uda arrays. Fig. 21.5.5 shows the gains before and
after optimization of a six-element Yagi-Uda array calculated with the functions yagi and
gain2. The antenna radii were a = 0.003369λ.
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Fig. 21.5.5 Gains of six-element Yagi-Uda array.

For the unoptimized case, the antenna lengths and x-locations were in units of λ:

L = [L1, L2, L3, L4, L5, L6]= [0.510,0.490,0.430,0.430,0.430,0.430]

d = [x1, x2, x3, x4, x5, x6]= [−0.25,0,0.310,0.620,0.930,1.240]

The directors were identical and equally spaced at spacing of 0.31λ. The computed direc-
tivity and front/back ratio were 11 dB and 9.84 dB, respectively. The optimized case has
slightly different lengths and x-locations:

L = [L1, L2, L3, L4, L5, L6]= [0.476,0.452,0.436,0.430,0.434,0.430]

d = [x1, x2, x3, x4, x5, x6]= [−0.25,0,0.289,0.695,1.018,1.440]

Typical MATLAB code was as follows:
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L = [0.476, 0.452, 0.436, 0.430, 0.434, 0.430];
a = 0.003369 * [1,1,1,1,1,1];
d = [-0.25, 0, 0.289, 0.695, 1.018, 1.440];

[I,D,Rfb] = yagi(L,a,d);

[ge,gh,th] = gain2(L,d,I,360);

figure; dbz2(th,gh,30,40);
figure; dbp2(th,ge,30,40);

The optimized directivity was 12.54 dB and the forward/backward ratio 17.6 dB. ��

21.6 Hallén Equations for Coupled Antennas

In Sects. 21.3 and 21.4, we developed the Hallén-Pocklington equations for coupled an-
tennas, that is, Eqs. (21.3.7)–(21.3.9) and (21.4.1). Here, we discuss their numerical solu-
tion. On the pth antenna, we have:

(∂2
z + k2)Vp(z)= 2kVpδ(z), p = 1,2, . . . , K (21.6.1)

whereVp(z) is defined to be the sum of the (scaled) vector potentials due to the currents
on all antennas:

Vp(z)=
K∑
q=0

Vpq(z)=
K∑
q=0

∫ hq
−hq
Zpq(z− z′)Iq(z′)dz′ (21.6.2)

where we recall the definition of the impedance kernel:

Zpq(z− z′)= jη
2π
Gpq(z− z′)= jη

2π
e−jkR

R
, R =

√
(z− z′)2+d2

pq (21.6.3)

and dpq are the mutual distances or radii, as defined in Eq. (21.4.2). Following the
discussion of Sec. 20.3, the solution of (21.6.1) is of the form:

Vp(z)= Cp coskz+Vp sink|z|, −hp ≤ z ≤ hp (21.6.4)

where we assumed that all the antennas are center-driven, and therefore, Vp(z) will
be even in z. Combining (21.6.4) with (21.6.2), we obtain the coupled system of Hallén
equations, for p = 1,2, . . . , K:

K∑
q=0

∫ hq
−hq
Zpq(z− z′)Iq(z′)dz′ = Cp coskz+Vp sink|z| (21.6.5)

The K constants C1, C2, . . . , CK are determined by imposing the end conditions on
the K currents: Ip(hp)= 0, p = 1,2, . . . , K. To solve this system, we apply a pulse-
function expansion of the form of Eq. (20.8.2). For simplicity, we take N = 2M + 1
sampling points on each antenna. Because the antenna lengths may be different, the
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sample spacings will also be different. For the type-1 sampling scheme, we have on the
qth antenna, for q = 1,2, . . . , K:

zm =m∆zq , ∆zq = hq
M + 0.5

= lq
N
, −M ≤m ≤M (21.6.6)

Therefore, the pulse-function expansion for the qth current must use a square pulse
of width ∆zq. We denote this pulse function by ∆q(z) and define it as in Eq. (20.8.1)
with ∆z = ∆zq. Then, the current expansion will be:

Iq(z′)=
M∑

m=−M
Iq(zm)∆q(z′ − zm), q = 1,2, . . . , K (21.6.7)

If we use (21.6.7) and sample Eq. (21.6.5) along the p-th antenna, that is, at the points
z = zn = n∆zp, for −M ≤ n ≤M, we obtain the discretized system:

K∑
q=0

∫ hq
−hq

M∑
m=−M

Iq(zm)Zpq(zn − z′)∆q(z′ − zm)dz′ = Cp coskzn +Vp sink|zn|

We define the N×N impedance matrix Zpq whose nmth matrix element is:

Zpq(n,m)=
∫ hq
−hq
Zpq(zn − z′)∆q(z′ − zm)dz′ , −M ≤ n,m ≤M

We can rewrite it in the form:

Zpq(n,m)= ∆zq
∫ 1/2

−1/2
Zpq(zn − zm − x∆zq)dx = jη∆zq

2π

∫ 1/2

−1/2

e−jkR

R
dx (21.6.8)

where

R =
√
d2
pq + (n∆zp −m∆zq − x∆zq)2 (21.6.9)

Denoting Iq(m)= Iq(zm), the discretized Hallén system becomes:

K∑
q=0

M∑
m=−M

Zpq(n,m)Iq(m)= Cp coskzn +Vp sink|zn| (21.6.10)

where p = 1,2, . . . , K. And, in a more compact form:

K∑
q=0

ZpqIq = Cpcp +Vpsp (21.6.11)

where we defined the N-dimensional vectors:
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Iq =




Iq(M)
...

Iq(1)
Iq(0)
Iq(1)

...
Iq(M)



, cp =




coskzM
...

coskz1

coskz0

coskz1

...
coskzM



, sp =




sinkzM
...

sinkz1

sinkz0

sinkz1

...
sinkzM




(21.6.12)

and used the even symmetry in z. The vectors cp and sp depend on p through the sample
spacing in zn = n∆zp, −M ≤ n ≤M, where ∆zp = hp/(M + 0.5).

The system (21.6.11) provides K coupled matrix equations by which to determine
the K sampled current vectors I1, I2, . . . , IK on each antenna. The N×N matrices Zpq
are not Toeplitz, unless the antennas are identical, in which case ∆zp = ∆zq and the
quantity R in Eq. (21.6.9) depends only on the difference n −m. Of course, for p = q,
Zpp is both symmetric and Toeplitz.

However, while not Toeplitz, the matrix Zpq is reversal-invariant because of the
property Zpq(n,m)= Zpq(−n,−m), which follows from Eq. (21.6.8). Therefore, the
matrix system (21.6.11) can be wrapped in half by the procedure discussed in Sec. 20.7,
which replaced the matrix equation (20.7.9) by (20.7.10).

Here, each N×N matrix Zpq is wrapped to size (M + 1)×(M + 1) by the same
process. The resulting system looks identical to (21.6.11), except the currents and right-
hand sides are essentially half those of (21.6.12):

Iq =




Iq(0)
Iq(1)

...
Iq(M)


 , cp =




coskz0

coskz1

...
coskzM


 , sp =




sinkz0

sinkz1

...
sinkzM


 (21.6.13)

In particular, if all antennas are identical, then the wrapping process can be made
even more efficient using the Toeplitz-Hankel properties of the wrapped matrices, as
discussed in Example 20.8.1. In any case, we will assume in the sequel that the system
(21.6.11) has been wrapped in half.

If the constants Cp were known, the solution of the system (21.6.11) could be ob-
tained by writing it as a single block-matrix linear system of the form:

ZI = Cc+Vs (21.6.14)

where Z is the K×K block matrix whose pqth matrix element is the (M + 1)×(M + 1)
matrix Zpq, and C, V are appropriate block-diagonal matrices. The vectors I, c, s are the
concatenations of Ip, cp, sp. For example, in the case K = 3, the system (21.6.11) reads:

Z11I1 +Z12I2 +Z13I3 = C1c1 +V1s1

Z21I1 +Z22I2 +Z23I3 = C2c2 +V2s2

Z31I1 +Z32I2 +Z33I3 = C3c3 +V3s3

It can be written in the 3×3 block-matrix form:



21.6. Hallén Equations for Coupled Antennas 729



Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33






I1

I2

I3


 =



C1I 0 0
0 C2I
0 0 C3I






c1

c2

c3


+



V1I 0 0
0 V2I 0
0 0 V3I






s1

s2

s3




where I is the (M + 1)×(M + 1) identity matrix.
Next, we discuss the determination of the constants Cp. The condition Ip(M)= 0

can be written vectorially in the form uTIp = 0, where u = [0, . . . ,0,1]T, as was done in
Sec. 20.7. Separating the pth term of the pth equation in (21.6.11), we have:

ZppIp +
∑
q�=p
ZpqIq = Cpcp +Vpsp (21.6.15)

Solving for Ip and multiplying by uT, we obtain the condition:

uTIp = CpuTZ−1
ppcp +VpuTZ−1

ppsp −
∑
q�=p

uTZ−1
ppZpqIq = 0

Defining the quantity up = Z−1
ppu, we solve this condition for Cp:

Cp = 1

uTpcP


∑
q�=p

uTpZpqIq −VpuTpsp




Inserting Cp into Eq. (21.6.15) and rearranging terms, we obtain:

ZppIp +
∑
q�=p

(
I − cpuTp

cTpup

)
ZpqIq = Vp

(
I − cpuTp

cTpup

)
sp (21.6.16)

To simplify it, we define the (M + 1)×(M + 1) projection matrices:

Pp = I −
cpuTp
cTpup

, p = 1,2, . . . , K (21.6.17)

Then, Eq. (21.6.16) can be written in the form:

ZppIp +
∑
q�=p
PpZpqIq = VpPpsp (21.6.18)

Thus, eliminating the constants Cp by enforcing the end conditions, amounts to
replacing the impedance matrices Zpq by the projected ones:

Z̄pq =
{ Zpp, if q = p
PpZpq, if q �= p (21.6.19)

and the term sp by the projected one, s̄p = Ppsp. Then, Eq. (21.6.18) can be written in
the form:

K∑
q=0

Z̄pqIq = Vps̄p , p = 1,2, . . . , K (21.6.20)



730 Electromagnetic Waves & Antennas – S. J. Orfanidis

or, compactly in the block-matrix form:

Z̄I = Vs̄ (21.6.21)

with solution:

I =




I1

I2

...
IK


 = Z̄

−1Vs̄ = Z̄−1




V1s̄1

V2s̄2

...
VKs̄K


 (21.6.22)

The MATLAB function hallen4 implements the above solution procedure. First, it
constructs the impedance matricesZpq by calculating the integrals in Eq. (21.6.8) using a
16-point Gauss-Legendre quadrature integration formula. Second, it wraps the matrices
Zpq in half and puts them together into the block-matrix Z. And third, it constructs the
projected matrix Z̄ and the solution (21.6.22). Its usage is:

[I,z] = hallen4(L,a,d,V,M); % Hallen’s equations for 2D array of non-identical antennas

where L, a,d are the vectors of antenna lengths, radii, and xy-locations, and V is the
vector of the driving voltages V = [V1, V2, . . . , VK]. The parameters L, a,d have the
same usage as in the functions yagi and gain2.

The output I is the (2M+1)×Kmatrix whose pth column is the double-sided vector
of current samples Ip(zm), zm = m∆zp, −M ≤ m ≤ M. Thus, the matrix elements
of I are I(m,p)= Ip(zm). Similarly, the pth column of the output matrix z holds the
sampled z-locations on the pth antenna, that is, z(m,p)=m∆zp.

The output matrix I is obtained by using the MATLAB function reshape to reshape
the

(
K(M+1)

)
-dimensional column vector solution (21.6.22) into a matrix of size (M+

1)×K, and then, symmetrizing it to size (2M + 1)×K.
A faster version of hallen4 is the function hallen3, which assumes the antennas

are identical. It is faster because it makes use of the Toeplitz-Hankel structure of the
wrapped matrices Zpq to construct them more efficiently. Its usage is:

[I,z] = hallen3(L,a,d,V,M); % Hallen’s equations for 2D array of identical antennas

where I has the same meaning as in hallen4, but z is now a single column vector, that is,
zm =m∆z, −M ≤m ≤M. In both hallen3 and hallen4, the final solution is obtained
by solving the system (21.6.21), which is

(
K(M + 1)

)×(K(M + 1)
)
-dimensional.

In order to conveniently manipulate the block impedance matrices, we developed a
MATLAB function, blockmat, which is used extensively inside hallen3 and hallen4. It
allows one to create block matrices and to extract or insert sub-blocks. Its usage is as
follows:

Z = blockmat(K,K,M+1,M+1); % create a
(
K(M + 1)

)×(K(M + 1)
)

matrix of zeros

Zpq = blockmat(K,K,p,q,Z); % extract pqth submatrix of Z

Z = blockmat(K,K,p,q,Z,Zpq); % insert Zpq into pqth submatrix of Z

s = blockmat(K,1,M+1,1); % create a
(
K(M + 1)

)
-dimensional column of zeros

sp = blockmat(K,1,p,1,s); % extract the pth subvector of s

s = blockmat(K,1,p,1,s,sp); % insert sp into pth subvector of s
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Once the sampled currents Ip(m) are known, the gain of the array can be computed
by finding the total current density, J(r)= ẑJz(r) :

Jz(r)=
K∑
p=1

Ip(z)δ(x− xp)δ(y− yp)=
K∑
p=1

M∑
m=−M

Ip(m)∆p(z− zm)δ(x− xp)δ(y− yp)

where we used Eq. (21.6.7). The corresponding radiation vector is:

Fz(θ,φ) =
∫
Jz(r)ejk·r dr =

M∑
m=−M

K∑
p=1

Ip(m)ejkxxp+jkyyp
∫
∆p(z− zm)ejkzz dz

=
M∑

m=−M

K∑
p=1

Ip(m)ejkxxp+jkyyp
∫ zm+∆zp/2
zm−∆zp/2

ejkzz dz

Performing the z-integration over themth pulse interval, we finally get:

Fz(θ,φ)=
M∑

m=−M

K∑
p=1

Ip(m)ejkzm∆zpejkxxp+jkyyp∆zp
sin(kz∆zp/2)
kz∆zp/2

(21.6.23)

where kx = k sinθ cosφ, ky = k sinθ sinφ, and kz = k cosθ. The corresponding
normalized gain of the array will be, up to a constant:

g(θ,φ)= ∣∣sinθFz(θ,φ)
∣∣2

(21.6.24)

The MATLAB function gain2h computes the E-plane polar gain and the H-plane
azimuthal gain from Eqs. (21.6.23) and (21.6.24). Its usage is:

[ge,gh,th] = gain2h(L,d,I,N,ph0) % gain of 2D array of antennas with Hallen currents

[ge,gh,th] = gain2h(L,d,I,N) % equivalent to φ0 = 0

where the current input I is exactly the same as the output matrix from hallen4 or
hallen3. The meaning of the outputs are exactly the same as in the function gain2
discussed in Sec. 21.4.

The difference between gain2 and gain2h is that the former assumes the currents
are sinusoidal and I represents only the input currents, I = [I1, I2, . . . , IK]. whereas in
the latter, the full (2M + 1)×K current matrix is needed, I = [I1, I2, . . . , IK].

Example 21.6.1: Hallén solution of parasitic array. Consider the three-element array of Example
21.4.1 and shown in Fig. 21.4.2. The Hallén currents on each antenna can be computed
by using hallen3 because the elements are identical. Fig. 21.6.1 shows the computed
sampled currents with N = 2M + 1 = 81 orM = 40.

Because of the symmetry, the currents on the two parasitic antennas are the same. For all
three antennas, the currents are essentially sinusoidal, justifying the use of this assump-
tion. The gains computed with gain2h, and under the sinusoidal assumption with gain2,
were shown in Fig. 21.4.3. The MATLAB code used to generate the currents and the gains
was given in Example 21.4.1. ��
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Fig. 21.6.1 Currents on driven and parasitic antennas.

Example 21.6.2: Full-wavelength parasitic array. If one or more of the antennas has length
equal to a multiple of λ, the analysis methods based on the sinusoidal assumption break
down because the impedance matrix computed with Eq. (21.3.14) becomes infinite.

On the other hand, the numerical solution of the Hallén system can still be carried through
giving a finite answer. Fig. 21.6.2 shows the gains and currents of the parasitic array of
Example 21.4.1, but all the antennas being full-wavelength elements, l = λ. The distance of
the parasitic antennas to the driven element was also changed to d = 0.25λ from d = 0.5λ.

The sinusoidal assumption for the driven element is fairly accurate except near z = 0,
where the current has an non-zero value. But on the parasitic element, the sinusoidal
assumption is completely wrong. ��

Example 21.6.3: Three-element Yagi-Uda array. Here, we compute the currents on the three
antennas of the Yagi-Uda array of Example 21.5.2. Because the antennas are not identical,
the function hallen4 must be used. The gains were computed with gain2 and gain2h in
Example 21.5.2. and shown in Fig. 21.5.4. The sampled currents on the three antennas are
shown in Fig. 21.6.3.

We observe that the sinusoidal assumption is fairly accurate. The MATLAB code used to
generate the current graphs was as follows:

L = [0.50, 0.48, 0.46]; h = L/2;
a = 0.003 * [1, 1, 1];
d = [-0.125, 0, 0.125];
V = [0, 1, 0]; % can be defined as column or row

k = 2*pi;
M = 40;

[I,z] = hallen4(L,a,d,V,M);

I1 = abs(I(M+1:end,1)); m1 = max(I1); z1 = z(M+1:end,1);
I2 = abs(I(M+1:end,2)); m2 = max(I2); z2 = z(M+1:end,2);
I3 = abs(I(M+1:end,3)); m3 = max(I3); z3 = z(M+1:end,3);

s1 = 0:h(1)/50:h(1); Is1 = m1*abs(sin(k*(h(1)-s1)));
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Fig. 21.6.2 Gains and currents of full-wavelength parasitic array.

s2 = 0:h(2)/50:h(2); Is2 = m2*abs(sin(k*(h(2)-s2)));
s3 = 0:h(3)/50:h(3); Is3 = m3*abs(sin(k*(h(3)-s3)));

figure; plot(z1, I1, ’.’, s1, Is1, ’:’);
figure; plot(z2, I2, ’.’, s2, Is2, ’:’);
figure; plot(z3, I3, ’.’, s3, Is3, ’:’);

Note that I1, I2, and I3 are obtained from the three columns of I, and z1, z2, and z3 from
the three columns of z. Only the currents on the upper-half of each antenna are plotted.
The sinusoidal currents are scaled to the maximum values of the corresponding Hallén
currents.

These examples demonstrate the remark made earlier that the sinusoidal assumption is
justified only for antennas with lengths near half a wavelength. ��

21.7 Problems
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Fig. 21.6.3 Currents on the Yagi antennas.
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Appendices

A. Physical Constants

We use SI units throughout this text. Simple ways to convert between SI and other
popular units, such as Gaussian, may be found in Refs. [100–103].

The Committee on Data for Science and Technology (CODATA) of NIST maintains
the values of many physical constants [90]. The most current values can be obtained
from the CODATA web site [716]. Some commonly used constants are listed below:

quantity symbol value units

speed of light in vacuum c0, c 299 792 458 m s−1

permittivity of vacuum ε0 8.854 187 817× 10−12 F m−1

permeability of vacuum µ0 4π× 10−7 H m−1

characteristic impedance η0, Z0 376.730 313 461 Ω

electron charge e 1.602 176 462× 10−19 C
electron mass me 9.109 381 887× 10−31 kg

Boltzmann constant k 1.380 650 324× 10−23 J K−1

Avogadro constant NA,L 6.022 141 994× 1023 mol−1

Planck constant h 6.626 068 76× 10−34 J/Hz

Gravitational constant G 6.672 59× 10−11 m3 kg−1s−2

Earth mass M⊕ 5.972× 1024 kg
Earth equatorial radius ae 6378 km

In the table, the constants c, µ0 are taken to be exact, whereas ε0, η0 are derived
from the relationships:

ε0 = 1

µ0c2
, η0 =

√
µ0

ε0
= µ0c

The energy unit of electron volt (eV) is defined to be the work done by an electron
in moving across a voltage of one volt, that is, 1 eV = 1.602 176 462× 10−19 C · 1 V, or

1 eV = 1.602 176 462× 10−19 J
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In units of eV/Hz, Planck’s constant h is:

h = 4.135 667 27× 10−15 eV/Hz = 1 eV/241.8 THz

that is, 1 eV corresponds to a frequency of 241.8 THz, or a wavelength of 1.24 µm.

B. Electromagnetic Frequency Bands

The ITU† divides the radio frequency (RF) spectrum into the following frequency and
wavelength bands in the range from 30 Hz to 3000 GHz:

RF Spectrum

band designations frequency wavelength

ELF Extremely Low Frequency 30–300 Hz 1–10 Mm
VF Voice Frequency 300–3000 Hz 100–1000 km
VLF Very Low Frequency 3–30 kHz 10–100 km
LF Low Frequency 30–300 kHz 1–10 km
MF Medium Frequency 300–3000 kHz 100–1000 m
HF High Frequency 3–30 MHz 10–100 m
VHF Very High Frequency 30–300 MHz 1–10 m
UHF Ultra High Frequency 300–3000 MHz 10–100 cm
SHF Super High Frequency 3–30 GHz 1–10 cm
EHF Extremely High Frequency 30–300 GHz 1–10 mm

Submillimeter 300-3000 GHz 100–1000 µm

An alternative subdivision of the low-frequency
bands is to designate the bands 3–30 Hz, 30–300 Hz,
and 300–3000 Hz as extremely low frequency (ELF),
super low frequency (SLF), and ultra low frequency
(ULF), respectively.

Microwaves span the 300 MHz–300 GHz fre-
quency range. Typical microwave and satellite com-
munication systems and radar use the 1–30 GHz
band. The 30–300 GHz EHF band is also referred to
as the millimeter band.

The 1–100 GHz range is subdivided further into
the subbands shown on the right.

Microwave Bands

band frequency

L 1–2 GHz
S 2–4 GHz
C 4–8 GHz
X 8–12 GHz
Ku 12–18 GHz
K 18–27 GHz
Ka 27–40 GHz
V 40–75 GHz
W 80–100 GHz

Some typical RF applications are as follows. AM radio is broadcast at 535–1700
kHz falling within the MF band. The HF band is used in short-wave radio, navigation,
amateur, and CB bands. FM radio at 88–108 MHz, ordinary TV, police, walkie-talkies,
and remote control occupy the VHF band.

Cell phones, personal communication systems (PCS), pagers, cordless phones, global
positioning systems (GPS), RF identification systems (RFID), UHF-TV channels, microwave
ovens, and long-range surveillance radar fall within the UHF band.

†International Telecommunication Union.
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The SHF microwave band is used in radar (traffic control, surveillance, tracking, mis-
sile guidance, mapping, weather), satellite communications, direct-broadcast satellite
(DBS), and microwave relay systems. Multipoint multichannel (MMDS) and local multi-
point (LMDS) distribution services, fall within UHF and SHF at 2.5 GHz and 30 GHz.

Industrial, scientific, and medical (ISM) bands are within the UHF and low SHF, at 900
MHz, 2.4 GHz, and 5.8 GHz. Radio astronomy occupies several bands, from UHF to L–W
microwave bands.

Beyond RF, come the infrared (IR), visible, ultraviolet (UV), X-ray, and γ-ray bands.
The IR range extends over 3–300 THz, or 1–100 µm. Many IR applications fall in the
1–20 µm band. For example, optical fiber communications typically use laser light at
1.55 µm or 193 THz because of the low fiber losses at that frequency. The UV range lies
beyond the visible band, extending typically over 10–400 nm.

band wavelength frequency energy

infrared 100–1 µm 3–300 THz
ultraviolet 400–10 nm 750 THz–30 PHz
X-Ray 10 nm–100 pm 30 PHz–3 EHz 0.124–124 keV
γ-ray < 100 pm > 3 EHz > 124 keV

The CIE† defines the visible spectrum to be the wavelength range 380–780 nm, or
385–789 THz. Colors fall within the following typical wavelength/frequency ranges:

Visible Spectrum

color wavelength frequency

red 780–620 nm 385–484 THz
orange 620–600 nm 484–500 THz
yellow 600–580 nm 500–517 THz
green 580–490 nm 517–612 THz
blue 490–450 nm 612–667 THz
violet 450–380 nm 667–789 THz

X-ray frequencies fall in the PHz (petahertz) range and γ-ray frequencies in the EHz
(exahertz) range.‡ X-rays and γ-rays are best described in terms of their energy, which is
related to frequency through Planck’s relationship, E = hf . X-rays have typical energies
of the order of keV, andγ-rays, of the order of MeV and beyond. By comparison, photons
in the visible spectrum have energies of a couple of eV.

The earth’s atmosphere is mostly opaque to electromagnetic radiation, except for
three significant “windows”, the visible, the infrared, and the radio windows. These
three bands span the wavelength ranges of 380-780 nm, 1-12 µm, and 5 mm–20 m,
respectively.

Within the 1-10 µm infrared band there are some narrow transparent windows. For
the rest of the IR range (1–1000µm), water and carbon dioxide molecules absorb infrared
radiation—this is responsible for the Greenhouse effect. There are also some minor
transparent windows for 17–40 and 330–370 µm.

†Commission Internationale de l’Eclairage (International Commission on Illumination.)
‡1 THz = 1012 Hz, 1 PHz = 1015 Hz, 1 EHz = 1018 Hz.
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Beyond the visible band, ultraviolet and X-ray radiation are absorbed by ozone and
molecular oxygen (except for the ozone holes.)

C. Vector Identities and Integral Theorems

Algebraic Identities

|A|2|B|2 = |A · B|2 + |A× B|2 (C.1)

(A× B)·C = (B× C)·A = (C× A)·B (C.2)

A× (B× C) = B (A · C)−C (A · B) (BAC-CAB rule) (C.3)

(A× B)·(C×D) = (A · C)(B ·D)−(A ·D)(B · C) (C.4)

(A× B)×(C×D) = [(A× B)·D]C− [(A× B)·C]D (C.5)

A = n̂× (A× n̂)+(n̂ · A)n̂ = A⊥ + A‖ (C.6)

where n̂ is any unit vector, and A⊥, A‖ are the components of A perpendicular and
parallel to n. Note also that n̂× (A× n̂)= (n̂× A)×n̂.

Differential Identities

∇∇∇× (∇∇∇ψ) = 0 (C.7)

∇∇∇ · (∇∇∇× A) = 0 (C.8)

∇∇∇ · (ψA) = A ·∇∇∇ψ+ψ∇∇∇ · A (C.9)

∇∇∇× (ψA) = ψ∇∇∇× A+∇∇∇ψ× A (C.10)

∇∇∇(A · B) = (A ·∇∇∇)B+ (B ·∇∇∇)A+ A× (∇∇∇× B)+B× (∇∇∇× A) (C.11)

∇∇∇ · (A× B) = B · (∇∇∇× A)−A · (∇∇∇× B) (C.12)

∇∇∇× (A× B) = A(∇∇∇ · B)−B(∇∇∇ · A)+(B ·∇∇∇)A− (A ·∇∇∇)B (C.13)

∇∇∇× (∇∇∇× A) =∇∇∇(∇∇∇ · A)−∇2A (C.14)

Ax∇∇∇Bx +Ay∇∇∇By +Az∇∇∇Bz = (A ·∇∇∇)B+ A× (∇∇∇× B) (C.15)

Bx∇∇∇Ax + By∇∇∇Ay + Bz∇∇∇Az = (B ·∇∇∇)A+ B× (∇∇∇× A) (C.16)

(n̂×∇∇∇)×A = n̂× (∇∇∇× A)+(n̂ ·∇∇∇)A− n̂(∇∇∇ · A) (C.17)

ψ(n̂ ·∇∇∇)E− E (n̂ ·∇∇∇ψ)= [(n̂ ·∇∇∇)(ψE)+ n̂× (∇∇∇× (ψE)
)− n̂∇∇∇ · (ψE)

]
+ [n̂ψ∇∇∇ · E− (n̂× E)×∇∇∇ψ−ψ n̂× (∇∇∇× E)−(n̂ · E)∇∇∇ψ] (C.18)
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With r = x x̂+ y ŷ+ z ẑ, r = |r| = √x2 + y2 + z2, and the unit vector r̂ = r/r, we have:

∇∇∇r = r̂ , ∇∇∇r2 = 2r , ∇∇∇1

r
= − r̂

r2
, ∇∇∇ · r = 3 , ∇∇∇× r = 0 , ∇∇∇ · r̂ = 2

r
(C.19)

Integral Theorems for Closed Surfaces

The theorems involve a volume V surrounded by a closed surface S. The divergence or
Gauss’ theorem is:

∫
V
∇∇∇ · AdV =

∮
S

A · n̂ dS (Gauss’ divergence theorem) (C.20)

where n̂ is the outward normal to the surface. Green’s first and second identities are:

∫
V

[
ϕ∇2ψ+∇∇∇ϕ ·∇∇∇ψ]dV =

∮
S
ϕ
∂ψ
∂n
dS (C.21)

∫
V

[
ϕ∇2ψ−ψ∇2ϕ

]
dV =

∮
S

(
ϕ
∂ψ
∂n
−ψ∂ϕ

∂n

)
dS (C.22)

where
∂
∂n
= n̂ ·∇∇∇ is the directional derivative along n̂. Some related theorems are:

∫
V
∇2ψdV =

∮
S

n̂ ·∇∇∇ψdS =
∮
S

∂ψ
∂n
dS (C.23)

∫
V
∇∇∇ψdV =

∮
S
ψ n̂dS (C.24)

∫
V
∇2AdV =

∮
S
(n̂ ·∇∇∇)AdS =

∮
S

∂A

∂n
dS (C.25)

∮
S
(n̂×∇∇∇)×AdS =

∮
S

[
n̂× (∇∇∇× A)+(n̂ ·∇∇∇)A− n̂(∇∇∇ · A)

]
dS = 0 (C.26)

∫
V
∇∇∇× AdV =

∮
S

n̂× AdS (C.27)

Using Eqs. (C.18) and (C.26), we find:

∮
S

(
ψ
∂E

∂n
− E

∂ψ
∂n

)
dS =

=
∮
S

[
n̂ψ∇∇∇ · E− (n̂× E)×∇∇∇ψ−ψ n̂× (∇∇∇× E)−(n̂ · E)∇∇∇ψ]dS

(C.28)

The vectorial forms of Green’s identities are [605,602]:

∫
V
(∇∇∇× A ·∇∇∇× B− A ·∇∇∇×∇∇∇× B)dV =

∮
S

n̂ · (A×∇∇∇× B)dS (C.29)

∫
V
(B ·∇∇∇×∇∇∇× A− A ·∇∇∇×∇∇∇× B)dV =

∮
S

n̂ · (A×∇∇∇× B− B×∇∇∇× A)dS (C.30)
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Integral Theorems for Open Surfaces

Stokes’ theorem involves an open surface S and its boundary contour C:

∫
S

n̂ ·∇∇∇× AdS =
∮
C

A · dl (Stokes’ theorem) (C.31)

where dl is the tangential path length around C. Some related theorems are:

∫
S

[
ψ n̂ ·∇∇∇× A− (n̂× A)·∇∇∇ψ]dS =

∮
C
ψA · dl (C.32)

∫
S

[
(∇∇∇ψ) n̂ ·∇∇∇× A− ((n̂× A)·∇∇∇)∇∇∇ψ]dS =

∮
C
(∇∇∇ψ)A · dl (C.33)

∫
S

n̂×∇∇∇ψdS =
∮
C
ψdl (C.34)

∫
S
(n̂×∇∇∇)×AdS =

∫
S

[
n̂× (∇∇∇× A)+(n̂ ·∇∇∇)A− n̂(∇∇∇ · A)

]
dS =

∮
C
dl× A (C.35)

∫
S

n̂dS = 1

2

∮
C

r× dl (C.36)

Eq. (C.36) is a special case of (C.35). Using Eqs. (C.18) and (C.35) we find:

∫
S

(
ψ
∂E

∂n
− E

∂ψ
∂n

)
dS+

∮
C
ψE× dl =

=
∫
S

[
n̂ψ∇∇∇ · E− (n̂× E)×∇∇∇ψ−ψ n̂× (∇∇∇× E)−(n̂ · E)∇∇∇ψ]dS

(C.37)

D. Green’s Functions

The Green’s functions for the Laplace, Helmholtz, and one-dimensional Helmholtz equa-
tions are listed below:

∇∇∇2g(r)= −δ(3)(r) ⇒ g(r)= 1

4πr
(D.1)

(∇∇∇2 + k2)G(r)= −δ(3)(r) ⇒ G(r)= e
−jkr

4πr
(D.2)

(
∂2
z + β2)g(z)= −δ(z) ⇒ g(z)= e

−jβ|z|

2jβ
(D.3)

where r = |r|. Eqs. (D.2) and (D.3) are appropriate for describing outgoing waves. We
considered other versions of (D.3) in Sec. 20.3. A more general identity satisfied by the
Green’s function g(r) of Eq. (D.1) is as follows (for a proof, see Refs. [109,110]):
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∂i∂jg(r)= −1

3
δij δ(3)(r)+3xixj − r2δij

r4
g(r) i, j = 1,2,3 (D.4)

where ∂i = ∂/∂xi and xi stands for any of x, y, z. By summing the i, j indices, Eq. (D.4)
reduces to (D.1). Using this identity, we find for the Green’s function G(r)= e−jkr/4πr :

∂i∂jG(r)= −1

3
δij δ(3)(r)+

[(
jk+ 1

r
)3xixj − r2δij

r3
− k2 xixj

r2

]
G(r) (D.5)

This reduces to Eq. (D.2) upon summing the indices. For any fixed vector p, Eq. (D.5)
is equivalent to the vectorial identity:

∇∇∇×∇∇∇× [pG(r)] = 2

3
pδ(3)(r)+

[(
jk+ 1

r
)3r̂(r̂ · p)−p

r2
+ k2 r̂× (p× r̂)

]
G(r) (D.6)

The second term on the right is simply the left-hand side evaluated at points away
from the origin, thus, we may write:

∇∇∇×∇∇∇× [pG(r)] = 2

3
pδ(3)(r)+

[
∇∇∇×∇∇∇× [pG(r)]]

r�=0
(D.7)

Then, Eq. (D.7) implies the following integrated identity, where∇∇∇ is with respect to r :

∇∇∇×∇∇∇×
∫
V

P(r′)G(r− r′)dV′ = 2

3
P(r)+

∫
V

[
∇∇∇×∇∇∇×[P(r′)G(r− r′)

]]
r′ �=r

dV′ (D.8)

and r is assumed to lie within V. If r is outside V, then the term 2P(r)/3 is absent.
Technically, the integrals in (D.8) are principal-value integrals, that is, the limits as

δ→ 0 of the integrals over V−Vδ(r), whereVδ(r) is an excluded small sphere of radius
δ centered about r. The 2P(r)/3 term has a different form if the excluded volumeVδ(r)
has shape other than a sphere or a cube. See Refs. [27,120,132,182] and [104–108] for
the definitions and properties of such principal value integrals.

Another useful result is the so-called Weyl representation or plane-wave-spectrum
representation [22,26–28,175] of the outgoing Helmholtz Green’s function G(r):

G(r)= e
−jkr

4πr
=
∫∞
−∞

∫∞
−∞
e−j(kxx+kyy)e−jkz|z|

2jkz
dkx dky
(2π)2

(D.9)

where k2
z = k2 − k2⊥, with k⊥ =

√
k2
x + k2

y. In order to correspond to either outgoing
waves or decaying evanescent waves, kz must be defined more precisely as follows:

kz =



√
k2 − k2⊥ , if k⊥ ≤ k , (propagating modes)

−j
√
k2⊥ − k2 , if k⊥ > k , (evanescent modes)

(D.10)

The propagating modes are important in radiation problems and conventional imag-
ing systems, such as Fourier optics [50]. The evanescent modes are important in the new
subject of near-field optics, in which objects can be probed and imaged at nanometer
scales improving the resolution of optical microscopy by factors of ten. Some near-field
optics references are [154–174].
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To prove (D.9), we consider the two-dimensional spatial Fourier transform of G(r)
and its inverse. Indicating explicitly the dependence on the coordinates x, y, z, we have:

g(kx, ky, z) =
∫∞
−∞

∫∞
−∞
G(x, y, z)ej(kxx+kyy)dxdy = e

−jkz|z|

2jkz

G(x, y, z) =
∫∞
−∞

∫∞
−∞
g(kx, ky, z)e−j(kxx+kyy)

dkx dky
(2π)2

(D.11)

Writing δ(3)(r)= δ(x)δ(y)δ(z) and using the inverse Fourier transform:

δ(x)δ(y)=
∫∞
−∞

∫∞
−∞
e−j(kxx+kyy)

dkx dky
(2π)2

,

we find from Eq. (D.2) that g(kx, ky, z) must satisfy the one-dimensional Helmholtz
Green’s function equation (D.3), with k2

z = k2 − k2
x − k2

y = k2 − k2⊥, that is,

(
∂2
z + k2

z
)
g(kx, ky, z)= −δ(z) (D.12)

whose outgoing/evanescent solution is g(kx, ky, z)= e−jkz|z|/2jkz.
A more direct proof of (D.9) is to use cylindrical coordinates, kx = k⊥ cosψ, ky =

k⊥ sinψ, x = ρ cosφ, y = ρ sinφ, where k2⊥ = k2
x + k2

y and ρ2 = x2 + y2. It follows that
kxx+ kyy = k⊥ρ cos(φ−ψ). Setting dxdy = ρdρdφ = r dr dφ, the latter following
from r2 = ρ2 + z2, we obtain from Eq. (D.11) after replacing ρ = √r2 − z2:

g(kx, ky, z) =
∫ ∫

e−jkr

4πr
ej(kxx+kyy)dxdy =

∫ ∫
e−jkr

4πr
ejk⊥ρ cos(φ−ψ)r dr dφ

= 1

2

∫∞
|z|
dr e−jkr

∫ 2π

0

dφ
2π
ejk⊥ρ cos(φ−ψ) = 1

2

∫∞
|z|
dr e−jkr J0

(
k⊥
√
r2 − z2

)

where we used the integral representation (16.9.2) of the Bessel function J0(x). Looking
up the last integral in the table of integrals [99], we find:

g(kx, ky, z)= 1

2

∫∞
|z|
dr e−jkr J0

(
k⊥
√
r2 − z2

) = e−jkz|z|
2jkz

(D.13)

where kz must be defined exactly as in Eq. (D.10). A direct consequence of Eq. (D.11)
and the even-ness of G(r) in r and of g(kx, ky, z) in kx, ky, is the following result:

∫∞
−∞

∫∞
−∞
e−j(kxx

′+kyy′)G(r− r′)dx′dy′ = e−j(kxx+kyy) e
−jkz|z−z′|

2jkz
(D.14)

One can also show the integral:

∫∞
0
e−jk

′
zz′ e

−jkz|z−z′|

2jkz
dz′ =




e−jk′zz

k′2z − k2
z
− e−jkzz

2kz(k′z − kz) , for z ≥ 0

− ejkzz

2kz(k′z + kz) , for z < 0

(D.15)
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The proof is obtained by splitting the integral over the sub-intervals [0, z] and
[z,∞). To handle the limits at infinity, k′z must be assumed to be slightly lossy, that is,
k′z = βz − jαz, with αz > 0. Eqs. (D.14) and (D.15) can be combined into:

∫
V+
e−j k

′·r′G(r− r′)dV′ =




e−j k
′·r

k′2 − k2
− e−j k·r

2kz(k′z − kz) , for z ≥ 0

− e−j k−·r

2kz(k′z + kz) , for z < 0

(D.16)

where V+ is the half-space z ≥ 0, and k, k−, k′ are wave-vectors with the same kx, ky
components, but different kzs:

k = kx x̂+ ky ŷ+ kz ẑ

k− = kx x̂+ ky ŷ− kz ẑ

k′ = kx x̂+ ky ŷ+ k′z ẑ

(D.17)

where we note that k′2 − k2 = (k2
x + k2

y + k′2z )−(k2
x + k2

y + k2
z)= k′2z − k2

z.
The Green’s function results (D.8)–(D.17) are used in the discussion of the Ewald-

Oseen extinction theorem in Sec. 13.6:

E. Coordinate Systems

The definitions of cylindrical and spherical coordinates were given in Sec. 13.8. The
expressions of the gradient, divergence, curl, Laplacian operators, and delta functions
are given below in cartesian, cylindrical, and spherical coordinates.

Cartesian Coordinates

∇∇∇ψ = x̂
∂ψ
∂x
+ ŷ

∂ψ
∂y
+ ẑ

∂ψ
∂z

∇2ψ = ∂
2ψ
∂x2

+ ∂
2ψ
∂y2

+ ∂
2ψ
∂z2

∇∇∇ · A = ∂Ax
∂x

+ ∂Ay
∂y

+ ∂Az
∂z

∇∇∇× A = x̂

(
∂Az
∂y

− ∂Ay
∂z

)
+ ŷ

(
∂Ax
∂z

− ∂Az
∂x

)
+ ẑ

(
∂Ay
∂x

− ∂Ax
∂y

)

=

∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣
δ(3)(r− r′)= δ(x− x′)δ(y − y′)δ(z− z′)

(E.1)



E. Coordinate Systems 745

Cylindrical Coordinates

∇∇∇ψ = ρ̂ρρ ∂ψ
∂ρ
+ φ̂φφ 1

ρ
∂ψ
∂φ

+ ẑ
∂ψ
∂z

∇2ψ = 1

ρ
∂
∂ρ

(
ρ
∂ψ
∂ρ

)
+ 1

ρ2

∂2ψ
∂φ2

+ ∂
2ψ
∂z2

∇∇∇ · A = 1

ρ
∂(ρAρ)
∂ρ

+ 1

ρ
∂Aφ
∂φ

+ ∂Az
∂z

∇∇∇× A = ρ̂ρρ
(

1

ρ
∂Az
∂φ

− ∂Aφ
∂z

)
+ φ̂φφ

(
∂Aρ
∂z

− ∂Az
∂ρ

)
+ ẑ

1

ρ

(
∂(ρAφ)
∂ρ

− ∂Aρ
∂φ

)

δ(3)(r− r′)= 1

ρ
δ(ρ− ρ′)δ(φ−φ′)δ(z− z′)

(E.2)

Spherical Coordinates

∇∇∇ψ = r̂
∂ψ
∂r
+ θ̂θθ 1

r
∂ψ
∂θ
+ φ̂φφ 1

r sinθ
∂ψ
∂φ

∇2ψ = 1

r2

∂
∂r

(
r2 ∂ψ
∂r

)
+ 1

r2 sinθ
∂
∂θ

(
sinθ

∂ψ
∂θ

)
+ 1

r2 sin2 θ
∂2ψ
∂φ2

∇∇∇ · A = 1

r2

∂(r2Ar)
∂r

+ 1

r sinθ
∂(sinθAθ)

∂θ
+ 1

r sinθ
∂Aφ
∂φ

∇∇∇× A = r̂
1

r sinθ

(
∂(sinθAφ)

∂θ
− ∂Aθ
∂φ

)
+ θ̂θθ 1

r

(
1

sinθ
∂Ar
∂φ

− ∂(rAφ)
∂r

)

+ φ̂φφ 1

r

(
∂(rAθ)
∂r

− ∂Ar
∂θ

)

δ(3)(r− r′)= 1

r2 sinθ
δ(r − r′)δ(θ− θ′)δ(φ−φ′)

(E.3)

Transformations Between Coordinate Systems

A vector A can be expressed component-wise in the three coordinate systems as:

A = x̂Ax + ŷAy + ẑAz

= ρ̂ρρAρ + φ̂φφAφ + ẑAz

= r̂Ar + θ̂θθAθ + φ̂φφAφ

(E.4)

The components in one coordinate system can be expressed in terms of the compo-
nents of another by using the following relationships between the unit vectors, which
were also given in Eqs. (13.8.1)–(13.8.3):

x = ρ cosφ
y = ρ sinφ

ρ̂ρρ = x̂ cosφ+ ŷ sinφ
φ̂φφ = −x̂ sinφ+ ŷ cosφ

x̂ = ρ̂ρρ cosφ− φ̂φφ sinφ
ŷ = ρ̂ρρ sinφ+ φ̂φφ cosφ

(E.5)
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ρ = r sinθ
z = r cosθ

r̂ = ẑ cosθ+ ρ̂ρρ sinθ
θ̂θθ = −ẑ sinθ+ ρ̂ρρ cosθ

ẑ = r̂ cosθ− θ̂θθ sinθ
ρ̂ρρ = r̂ sinθ+ θ̂θθ cosθ

(E.6)

x = r sinθ cosφ
y = r sinθ sinφ
z = r cosθ

r̂ = x̂ cosφ sinθ+ ŷ sinφ sinθ+ ẑ cosθ
θ̂θθ = x̂ cosφ cosθ+ ŷ sinφ cosθ− ẑ sinθ
φ̂φφ = −x̂ sinφ+ ŷ cosφ

(E.7)

and the inverse relationships:

x̂ = r̂ sinθ cosφ+ θ̂θθ cosθ cosφ− φ̂φφ sinφ
ŷ = r̂ sinθ sinφ+ θ̂θθ cosθ sinφ+ φ̂φφ cosφ
ẑ = r̂ cosθ− θ̂θθ sinθ

(E.8)

For example, to express the spherical components Aθ,Aφ in terms of the cartesian
components, we proceed as follows:

Aθ = θ̂θθ · A = θ̂θθ · (x̂Ax + ŷAy + ẑAz)= (θ̂θθ · x̂)Ax + (θ̂θθ · ŷ)Ay + (θ̂θθ · ẑ)Az

Aφ = φ̂φφ · A = φ̂φφ · (x̂Ax + ŷAy + ẑAz)= (φ̂φφ · x̂)Ax + (φ̂φφ · ŷ)Ay + (φ̂φφ · ẑ)Az

The dot products can be read off Eq. (E.7), resulting in:

Aθ = cosφ cosθAx + sinφ cosθAy − sinθAz

Aφ = − sinφAx + cosφAy
(E.9)

Similarly, using Eq. (E.6) the cylindrical componentsAρ,Az can be expressed in terms
of spherical components as:

Aρ = ρ̂ρρ · A = ρ̂ρρ · (r̂Ar + θ̂θθAθ + φ̂φφAφ)= sinθAr + cosθAθ

Az = ẑ · A = ẑ · (r̂Ar + θ̂θθAθ + φ̂φφAφ)= cosθAr − cosθAθ
(E.10)

F. Fresnel Integrals

The Fresnel functions C(x) and S(x) are defined by [98]:

C(x)=
∫ x

0
cos

(
π
2
t2
)
dt , S(x)=

∫ x
0

sin
(
π
2
t2
)
dt (F.1)

They may be combined into the complex function:

F(x)= C(x)−jS(x)=
∫ x

0
e−j(π/2)t

2
dt (F.2)

C(x), S(x), and F(x) are odd functions of x and have the asymptotic values:

C(∞)= S(∞)= 1

2
, F(∞)= 1− j

2
(F.3)
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At x = 0, we have F(0)= 0 and F′(0)= 1, so that the Taylor series approximation is
F(x)
 x, for small x. The asymptotic expansions of C(x), S(x), and F(x) are for large
positive x:

F(x) = 1− j
2
+ j
πx
e−jπx

2/2

C(x) = 1

2
+ 1

πx
sin

(
π
2
x2
)

S(x) = 1

2
− 1

πx
cos

(
π
2
x2
)

(F.4)

Associated with C(x) and S(x) are the type-2 Fresnel integrals:

C2(x)=
∫ x

0

cos t√
2πt

dt , S2(x)=
∫ x

0

sin t√
2πt

dt (F.5)

They are combined into the complex function:

F2(x)= C2(x)−jS2(x)=
∫ x

0

e−jt√
2πt

dt (F.6)

The two types are related by, if x ≥ 0:

C(x)= C2

(
π
2
x2
)
, S(x)= S2

(
π
2
x2
)
, F(x)= F2

(
π
2
x2
)

(F.7)

and if x < 0, we set F(x)= −F(−x)= −F2(πx2/2).
The Fresnel function F2(x) can be evaluated numerically using Boersma’s approx-

imation [626], which achieves a maximum error of 10−9 over all x. The algorithm ap-
proximates the function F2(x) as follows:

F2(x)=




e−jx
√x

4

11∑
n=0

(an + jbn)
(
x
4

)n
, if 0 ≤ x ≤ 4

1− j
2
+ e−jx

√
4

x

11∑
n=0

(cn + jdn)
(

4

x

)n
, if x > 4

(F.8)

where the coefficients an, bn, cn, dn are given in [626]. Consistency with the small- and
large-x expansions of F(x) requires that a0 + jb0 =

√
8/π and c0 + jd0 = j/

√
8π. We

have implemented Eq. (F.8) with the MATLAB function fcs2:

F2 = fcs2(x); % Fresnel integrals F2(x) = C2(x)−jS2(x)

The ordinary Fresnel integral F(x) can be computed with the help of Eq. (F.7). The
MATLAB function fcs calculates F(x) for any vector of values x by calling fcs2:

F = fcs(x); % Fresnel integrals F(x) = C(x)−jS(x)

In calculating the radiation patterns of pyramidal horns, it is desired to calculate a
Fresnel diffraction integral of the type:
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F0(v,σ)=
∫ 1

−1
ejπvξ e−j(π/2)σ

2 ξ2
dξ (F.9)

Making the variable change t = σξ−v/σ, this integral can be computed in terms of
the Fresnel function F(x)= C(x)−jS(x) as follows:

F0(v,σ)= 1

σ
ej(π/2)(v

2/σ2)
[
F
(
v
σ
+σ

)
− F

(
v
σ
−σ

)]
(F.10)

where we also used the oddness of F(x). The value of Eq. (F.9) at v = 0 is:

F0(0, σ)= 1

σ
[
F(σ)−F(−σ)] = 2

F(σ)
σ

(F.11)

Eq. (F.10) assumes that σ �= 0. If σ = 0, the integral (F.9) reduces to the sinc function:

F0(v,0)= 2
sin(πv)
πv

(F.12)

From either (F.11) or (F.12), we find F0(0,0)= 2. A related integral that is also
required in the theory of horns is the following:

F1(v,σ)=
∫ 1

−1
cos

(
πξ
2

)
ejπvξ e−j(π/2)σ

2 ξ2
dξ (F.13)

Writing cos(πξ/2)= (ejπξ/2+ e−jπξ/2)/2, the integral F1(v, s) can be expressed in
terms of F0(v,σ) as follows:

F1(v,σ)= 1

2

[
F0(v+ 0.5, σ)+F0(v− 0.5, σ)

]
(F.14)

It can be verified easily thatF0(0.5, σ)= F0(−0.5, σ), therefore, the value ofF1(v,σ)
at v = 0 will be given by:

F1(0, σ)= F0(0.5, σ)= 1

σ
ejπ/(8σ

2)
[
F
(

1

2σ
+σ

)
− F

(
1

2σ
−σ

)]
(F.15)

Using the asymptotic expansion (F.4), we find the expansion valid for small σ:

F
(

1

2σ
±σ

)
= 1− j

2
∓ 2σ
π
e−jπ/(8σ

2) , for small σ (F.16)

For σ = 0, the integral F1(v,σ) reduces to the double-sinc function:

F1(v,0)=
∫ 1

−1
cos

(
πξ
2

)
ejπvξ dξ = 1

2

[
F0(v+ 0.5,0)+F0(v− 0.5,0)

]

= sin
(
π(v+ 0.5)

)
π(v+ 0.5)

+ sin
(
π(v− 0.5)

)
π(v− 0.5)

= 4

π
cos(πv)
1− 4v2

(F.17)
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From either Eq. (F.16) or (F.17), we find F1(0,0)= 4/π.
The MATLAB function diffint can be used to evaluate both Eq. (F.9) and (F.13) for

any vector of values v and any vector of positive numbers σ, including σ = 0. It calls
fcs to evaluate the diffraction integral (F.9) according to Eq. (F.10). Its usage is:

F0 = diffint(v,sigma,0); % diffraction integral F0(v,σ), Eq. (F.9)

F1 = diffint(v,sigma,1); % diffraction integral F1(v,σ), Eq. (F.13)

The vectors v,sigma can be entered either as rows or columns, but the result will
be a matrix of size length(v) x length(sigma). The integral F0(v,σ) can also be
calculated by the simplified call:

F0 = diffint(v,sigma); % diffraction integral F0(v,σ), Eq. (F.9)

Actually, the most general syntax of diffint is as follows:

F = diffint(v,sigma,a,c1,c2); % diffraction integral F(v,σ, a), Eq. (F.18)

It evaluates the more general integral:

F(v,σ, a)=
∫ c2

c1

cos
(
πξa

2

)
ejπvξ e−j(π/2)σ

2 ξ2
dξ (F.18)

For a = 0, we have:

F(v,σ,0)= 1

σ
ej(π/2)(v

2/σ2)
[
F
(
v
σ
−σc1

)
− F

(
v
σ
−σc2

)]
(F.19)

For a �= 0, we can express F(v,σ, a) in terms of F(v,σ,0):

F(v,σ, a)= 1

2

[
F(v+ 0.5a,σ,0)+F(v− 0.5a,σ,0)

]
(F.20)

For a = 0 and σ = 0, F(v,σ, a) reduces to the complex sinc function:

F(v,0,0)= e
jπvc2 − ejπvc1

jπv
= (c2 − c1)

sin
(
π(c2 − c1)v/2

)
π(c2 − c1)v/2

ejπ(c2+c1)v/2 (F.21)

G. MATLAB Functions

The MATLAB functions are grouped by category. They are available from the web page:
www.ece.rutgers.edu/~orfanidi/ewa.
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Multilayer Dielectric Structures

brewster - calculates Brewster and critical angles
fresnel - Fresnel reflection coefficients for isotropic or birefringent media

n2r - refractive indices to reflection coefficients of M-layer structure
r2n - reflection coefficients to refractive indices of M-layer structure

multidiel - reflection response of a multilayer dielectric structure

omniband - bandwidth of omnidirectional mirrors and Brewster polarizers
omniband2 - bandwidth of birefringent multilayer mirrors

snell - calculates refraction angles from Snell’s law for birefringent media

Quarter-Wavelength Transformers

bkwrec - order-decreasing backward layer recursion - from a,b to r
frwrec - order-increasing forward layer recursion - from r to A,B

chebtr - Chebyshev broadband reflectionless quarter-wave transformer
chebtr2 - Chebyshev broadband reflectionless quarter-wave transformer
chebtr3 - Chebyshev broadband reflectionless quarter-wave transformer

Dielectric Waveguides

dguide - TE modes in dielectric slab waveguide
dslab - solves for the TE-mode cutoff wavenumbers in a dielectric slab

Transmission Lines

g2z - reflection coefficient to impedance transformation
z2g - impedance to reflection coefficient transformation
lmin - find locations of voltage minima and maxima

mstripa - microstrip analysis (calculates Z,eff from w/h)
mstripr - microstrip synthesis with refinement (calculates w/h from Z)
mstrips - microstrip synthesis (calculates w/h from Z)

multiline - reflection response of multi-segment transmission line

swr - standing wave ratio
tsection - T-section equivalent of a length-l transmission line segment

gprop - reflection coefficient propagation
vprop - wave impedance propagation
zprop - wave impedance propagation

Impedance Matching

qwt1 - quarter wavelength transformer with series segment
qwt2 - quarter wavelength transformer with 1/8-wavelength shunt stub
qwt3 - quarter wavelength transformer with shunt stub of adjustable length

stub1 - single-stub matching
stub2 - double-stub matching
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stub3 - triple-stub matching

onesect - one-section impedance transformer
twosect - two-section impedance transformer

pi2t - Pi to T transformation
t2pi - Pi to T transformation
lmatch - L-section reactive conjugate matching network
pmatch - Pi-section reactive conjugate matching network

S-Parameters

gin - input reflection coefficient in terms of S-parameters
gout - output reflection coefficient in terms of S-parameters
nfcirc - constant noise figure circle
nfig - noise figure of two-port
sgain - transducer, available, and operating power gains of two-port
sgcirc - stability and gain circles
smat - S-parameters to S-matrix
smatch - simultaneous conjugate match of a two-port
smith - draw basic Smith chart
smithcir - add stability and constant gain circles on Smith chart
sparam - stability parameters of two-port
circint - circle intersection on Gamma-plane
circtan - point of tangency between the two circles

Linear Antenna Functions

dipole - gain of center-fed linear dipole of length L
travel - gain of traveling-wave antenna of length L
vee - gain of traveling-wave vee antenna
rhombic - gain of traveling-wave rhombic antenna
dmax - computes directivity and beam solid angle of g(th) gain

hallen - solve Hallen’s integral equation with delta-gap input
hallen2 - solve Hallen’s integral equation with arbitrary incident E-field
hallen3 - solve Hallen’s equation for 2D array of identical linear antennas
hallen4 - solve Hallen’s equation for 2D array of non-identical linear antennas
pockling - solve Pocklington’s integral equation for linear antenna

king - King’s 3-term sinusoidal approximation
kingeval - evaluate King’s 3-term sinusoidal current approximation
kingfit - fits a sampled current to King’s 2-term sinusoidal approximation

gain2 - normalized gain of arbitrary 2D array of linear sinusoidal antennas
gain2h - gain of 2D array of linear antennas with Hallen currents

imped - mutual impedance between two parallel standing-wave dipoles
impedmat - mutual impedance matrix of array of parallel dipole antennas

yagi - simplified Yagi-Uda array design

Aperture Antenna Functions

diffint - generalized Fresnel diffraction integral
diffr - knife-edge diffraction coefficient



752 22. Appendices

dsinc - the double-sinc function cos(pi*x)/(1-4*x^2)

fcs - Fresnel integrals C(x) and S(x)
fcs2 - type-2 Fresnel integrals C2(x) and S2(x)

hband - horn antenna 3-dB width
heff - aperture efficiency of horn antenna
hgain - horn antenna H-plane and E-plane gains
hopt - optimum horn antenna design
hsigma - optimum sigma parametes for horn antenna

Antenna Array Functions

array - gain computation for 1D equally-spaced isotropic array
bwidth - beamwidth mapping from psi-space to phi-space
binomial - binomial array weights
dolph - Dolph-Chebyshev array weights
dolph2 - Riblet-Pritchard version of Dolph-Chebyshev
dolph3 - DuHamel version of endfire Dolph-Chebyshev
multibeam - multibeam array design
scan - scan array with given scanning phase
sector - sector beam array design
steer - steer array towards given angle
taylor - Taylor-Kaiser window array weights
uniform - uniform array weights
woodward - Woodward-Lawson-Butler beams

Gain Plotting Functions

abp - polar gain plot in absolute units
abz - azimuthal gain plot in absolute units
ab2p - polar gain plot in absolute units - 2*pi angle range
abz2 - azimuthal gain plot in absolute units - 2pi angle range

dbp - polar gain plot in dB
dbz - azimuthal gain plot in dB
dbp2 - polar gain plot in dB - 2*pi angle range
dbz2 - azimuthal gain plot in dB - 2pi angle range

abadd - add gain in absolute units
abadd2 - add gain in absolute units - 2pi angle range
dbadd - add gain in dB
dbadd2 - add gain in dB - 2pi angle range
addbwp - add 3-dB angle beamwidth in polar plots
addbwz - add 3-dB angle beamwidth in azimuthal plots
addcirc - add grid circle in polar or azimuthal plots
addline - add grid ray line in azimuthal or polar plots
addray - add ray in azimuthal or polar plots

Miscellaneous Utility Functions

ab - dB to absolute power units
db - absolute power to dB units

c2p - complex number to phasor form
p2c - phasor form to complex number
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d2r - degrees to radians
r2d - radians to degrees

dtft - DTFT of a signal x at a frequency vector w

ellipse - polarization ellipse parameters
etac - eta and c
wavenum - calculate wavenumber and characteristic impedance

quadr - Gauss-Legendre quadrature weights and evaluation points
quadrs - quadrature weights and evaluation points on subintervals
blockmat - manipulate block matrices

upulse - trapezoidal, rectangular, triangular pulses, or a unit-step
ustep - generate a unit-step or a rising unit-step function
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